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ON THE DISCONNECTION OF A DISCRETE CYLINDER BY
A BIASED RANDOM WALK

BY DAVID WINDISCH

ETH Zürich

We consider a random walk on the discrete cylinder (Z/NZ)d ×Z, d ≥ 3
with drift N−dα in the Z-direction and investigate the large N -behavior of the
disconnection time T disc

N , defined as the first time when the trajectory of the
random walk disconnects the cylinder into two infinite components. We prove
that, as long as the drift exponent α is strictly greater than 1, the asymptotic
behavior of T disc

N remains N2d+o(1), as in the unbiased case considered by

Dembo and Sznitman, whereas for α < 1, the asymptotic behavior of T disc
N

becomes exponential in N .

1. Introduction. Informally, the object of our study can be described as fol-
lows: a particle feeling a drift moves randomly through a cylindrical object, and
damages every visited point. How long does it take until the cylinder breaks apart,
and how does the answer to this question depend on the drift felt by the particle?
This is a variation on the problem of “the termite in a wooden beam” considered
by Dembo and Sznitman [4].

We henceforth consider the discrete cylinder

E = Td
N × Z, d ≥ 1,(1.1)

where Td
N denotes the d-dimensional integer torus Td

N = (Z/NZ)d . The discon-
nection time of the cylinder E by a simple (unbiased) random walk was introduced
by Dembo and Sznitman in [4], where it was shown that its asymptotic behavior
is approximately N2d = |Td

N |2 as N → ∞ when d ≥ 1. This result was extended
by Sznitman in [12] to a wide class of bases of E with uniformly bounded degree
as N → ∞. Similar models related to interfaces created by simple random walk
trajectories have been studied by Benjamini and Sznitman [3] and Sznitman [13].
The former of these two works has led Dembo and Sznitman [5] to sharpen their
lower bound on the disconnection time of E for large d . Here we investigate the
disconnection time for a random walk with bias into the Z-direction.

We now proceed to the precise description of the problem studied in the present
work. The cylinder E is equipped with the Euclidean distance | · | and the natural
product graph structure, for which all vertices x1, x2 ∈ E with |x1 − x2| = 1 are
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connected by an edge. The (discrete-time) random walk with drift � ∈ [0,1) is the
Markov chain (Xn)n≥0 on E with starting point x ∈ E and transition probability

pX(x1, x2) = 1 + �(πZ(x2 − x1))

2d + 2
1{|x1−x2|=1}, x1, x2 ∈ E,(1.2)

where πZ denotes the projection from E onto Z. The process is defined on a suit-
able filtered probability space (�N, (Fn)n≥0,P

�
x ) (see Section 2 for details). In

particular, under P 0
0 , X is the ordinary simple random walk on E. We say that a

set K ⊆ E disconnects E if Td
N × (−∞,−M] and Td

N × [M,∞) are contained in
two distinct components of E \ K for large M ≥ 1. The central object of interest
is the disconnection time

T disc
N = inf{n ≥ 0 :X([0, n]) disconnects E}.(1.3)

We consider drifts of the form N−dα = |Td
N |−α , α > 0. Our main result shows that

the asymptotic behavior of T disc
N as N → ∞ is the same as in the case without drift

considered in [4] as long as α > 1, and becomes exponential in N when α < 1:

THEOREM 1.1 (d ≥ 3, α > 0, ε > 0).

For α > 1, N2d−ε ≤ T disc
N ≤ N2d+ε,

(1.4)
for α < 1, exp

{
Nd(1−α−ϕ(α))−ε} ≤ T disc

N ≤ exp{Nd(1−α)+ε},
with probability tending to 1 as N → ∞, where the continuous function ϕ : (0,

1) → (0, 1
d−1) is defined by

ϕ(α) = α1{0<α<α∗} +
(

1

d
+ α

d − 1
− α

)
1{α∗<α<1/d}

(1.5)

+ 1 − α

(d − 1)2 1{1/d≤α<1},

for α∗ = 1
d(2−1/(d−1))

. In particular, ϕ satisfies limα→0 ϕ(α) = limα→1 ϕ(α) = 0
[see Figure 1 for an illustration of the region between 1 − α − ϕ(α) and 1 − α].

We now outline the ideas entering the proof of this result. The upper bounds on
T disc

N are derived in Theorem 3.1. The proof of this theorem is based on the simple
observation that the cylinder E is disconnected as soon as a slice of the form
Td

N ×{z} ⊆ E is completely covered by the walk. We thus show that the trajectory
of the random walk X up to time N2d+ε (for α > 1), respectively exp{Nd(1−α)+ε}
(for α < 1), does cover such a slice with probability tending to 1 as N → ∞. To
this end, we fix the slice Td

N × {0} and record visits made to it by X, where we
only count visits with a sufficient time of “relaxation” in between. The process
recording these visits is defined as (V ,0) [cf. (3.8)]. Once we have checked that
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FIG. 1. The shaded region lies between the exponents of the upper and lower bounds in Theorem 1.1
for α ∈ (0,1).

V forms a Markov chain on Td
N in Lemma 3.5, we can infer from the coupon-

collector-type estimate (3.9) on the cover time that after a certain “critical” number
of visits, the slice Td

N × {0} is covered with overwhelming probability by (V ,0),
hence by X. Since the same estimates apply to any slice Td

N × {z}, z ∈ Z, we are
left with the one-dimensional problem of finding an upper bound on the time until
sufficiently many such visits occur for some slice Td

N × {z}.
Let us now describe the ideas involved in the more delicate derivation of the

lower bounds. In this work, we reduce the problem of finding a lower bound on
T disc

N to a large deviations problem concerning the disconnection of a certain finite
subset of E by excursions of an unbiased simple random walk, and then derive
estimates on this large deviations problem. Let us describe this last problem and the
reduction step in more detail. For any subsets K , B ⊆ E, B finite, and κ ∈ (0, 1

2),
we say that K κ-disconnects B if K contains the relative boundary in B of a subset
of B with relative volume between κ and 1 − κ , that is, if there is a subset I of B

(generally not unique) such that

κ|B| ≤ |I | ≤ (1 − κ)|B| and ∂B(I ) ⊆ K,(1.6)

where, for sets A, B ⊆ E, |A| denotes the number of points in A and ∂B(A) the
B-relative boundary of A, that is, the set of points in B \ A with neighbors in A.
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The set whose disconnection concerns us is

B(α) =
[
−
[
N

4

]
,

[
N

4

]]d

×
[
−
[
Ndα∧1

4

]
,

[
Ndα∧1

4

]]
.(1.7)

Note that in the case α ≥ 1
d

, B(α) becomes B∞(0, [N/4]), the closed ball of radius
[N/4] with respect to the l∞-distance, centered at 0. We define UB(α) as the first
time when the trajectory of the random walk 1

3 -disconnects B(α), that is,

UB(α) = inf
{
n ≥ 0 :X([0, n]) 1

3 -disconnects B(α)
}
.(1.8)

The random walk excursions featuring in the large deviations problem are excur-
sions in and out of slices of the form

Sr = Td
N × [−[r], [r]] ⊆ E (r > 0).(1.9)

Finally, the crucial reduction step comes in the following theorem, proved in Sec-
tion 4:

THEOREM 1.2 (d ≥ 2, α > 0, β > 0). Suppose that f is a nonnegative
function on (0,∞)2 such that, for (Rn)n≥1, (Dn)n≥1, the successive returns to
S2[Ndα∧1] and departures from S4[Ndα∧1] [cf. (2.24)] and the stopping time defined
in (1.8), one has

lim
N→∞

1

Nξ
log sup

x∈S2[Ndα∧1]
P 0

x

[
UB(α) ≤ D[Nβ ]

]
< 0

(1.10)
for any 0 < ξ < f (α,β).

If f (α,β) > 0 for all α > 1, β ∈ (0, d − 1), then it follows that

P N−dα

0 [N2d−ε ≤ T disc
N ] N→∞−→ 1 for any α > 1, ε > 0,(1.11)

while for any f ≥ 0,

P N−dα

0 [exp{Nζ−ε} ≤ T disc
N ] N→∞−→ 1 for any α > 0, ε > 0,(1.12)

where

ζ = sup
β>0

gα(β) and gα(β) = (
β − (dα − 1)+

) ∧ f (α,β).(1.13)

In order to apply Theorem 1.2, one has to find a suitable nonnegative func-
tion f satisfying the fundamental large deviations estimate (1.10). We show in
Theorem 6.1 that (1.10) holds for the function f illustrated in Figure 2. With this
function f , the lower bound exponents ζ [in (1.12)] and d(1−α −ϕ(α)) [in (1.4)]
are related via

d
(
1 − α − ϕ(α)

) = ζ ∨ (
d(1 − 2α)1{α<1/d}

)
,(1.14)
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FIG. 2. The function f provided by Theorem 6.1, case α ∈ (0, 1
d
) on the left, case α ∈ [ 1

d
,∞) on

the right.

as is shown in Corollary 6.3. The fact that the lower bound on T disc
N holds with

the expression d(1 − 2α)1{α<1/d} in (1.14) follows from the rather straightforward
lower bound derived in Proposition 6.2.

We now sketch some of the techniques involved in the proof of Theorem 1.2
and the subsequent derivation of the large deviations estimate (1.10). The first step
in the proof of Theorem 1.2 is a purely geometric argument in the spirit of Dembo
and Sznitman [4] showing that any trajectory disconnecting E must 1

3 -disconnect
a set of the form x∗ + B(α) (see Lemma 4.1). On the event that the walk performs
no more than [Nβ] excursions between x∗ + S2[Ndα−1] and x∗ + Sc

4[Ndα−1] for any
x∗ ∈ E until some time tN , disconnection before time tN can only occur if these
at most [Nβ] excursions 1

3 -disconnect x∗ + B(α) for some x∗ ∈ E. One can thus
apply the assumed large deviations estimate (1.10) after getting rid of the drift
with the help of a Girsanov-type control (see Lemma 2.1) and applying translation
invariance. It then remains to bound the probability that more than [Nβ] of the
above-mentioned excursions occur for some x∗ ∈ E. This can be achieved with
standard estimates on one-dimensional random walk.

In order to derive the fundamental large deviations estimate (1.10), we begin
with some more geometric lemmas. We show in Lemmas 5.1–5.3 that when 0 <

γ < γ ′ < 1, for large N and any set K 1
3 -disconnecting B∞(0, [N/4]) [cf. (1.7)

and thereafter], one can find a subcube of B∞(0, [N/4]) with size L = [Nγ ′ ], so
that K contains a “well-spread” set of points in each of a “well-spread” collection
of sub-subcubes with size l = [Nγ ] (we refer to Lemma 5.3 for the precise state-
ment). A key ingredient for the proof of this geometric result, similar to Lemma 2.5
of [4], is an isoperimetric inequality from [6] (see Lemma 5.2). A small modifi-
cation of the argument shows a similar result for B(α), α < 1

d
(see Lemma 5.4).

As a consequence of these geometric results, one finds that the event under con-
sideration in the large deviations estimate (1.10) is included in the event that the
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trajectory left by the [Nβ] excursions has substantial presence in many small sub-
cubes of B(α). The key control on an event of this form is provided by Lemma 6.5.
The main part of the argument there is to obtain a tail estimate on the number of
points contained in the projection on one of the d-dimensional hyperplanes of the
small subcubes intersected with the trajectory of the random walk stopped when
exiting a large set. It follows from Khaśminskii’s lemma that this number of points,
divided by its expectation, is a random variable whose exponential moment is uni-
formly bounded with N . In order to bound the expected number of visited points,
we use standard estimates on the Green function of the simple random walk.

An obvious question arising from Theorem 1.1 is whether one can prove the
same result with ϕ ≡ 0 in (1.4). With Theorem 1.2, it is readily seen that this would
follow if one could show that the large deviations estimate (1.10) holds with

f ∗(α,β) =
{

d − (dα ∧ 1), β < d − (dα ∧ 1),
0, β ≥ d − (dα ∧ 1);

(1.15)

see Figure 2. In fact, the above function f ∗ can be shown to be the correct expo-
nent associated to a large deviations problem similar to (1.10), where one replaces
the time UB(α) by U, defined as the first time when the trajectory of X covers
Td

N × {0}. Plainly one has UB(α) ≤ U, and it follows that any function f in (1.10)
satisfies f (α,β) ≤ f ∗(α,β) for all points (α,β) of continuity of f ; we refer to
Remark 6.7 for more details. The crucial open question is therefore: are these two
problems sufficiently similar for (1.10) to hold with f ∗?

Organization of the article. In Section 2, we provide the definitions and the
notation to be used throughout this article and prove a Girsanov-type estimate to
be frequently used later on.

In Section 3, we derive the upper bounds on T disc
N of Theorem 1.1.

In Section 4, we prove Theorem 1.2, thus reducing the derivation of a lower
bound on T disc

N to a large deviations estimate.
In Section 5, we prove several geometric lemmas in preparation of our deriva-

tion of the latter estimate.
In Section 6, we supply the key large deviations estimate in Theorem 6.1 and

derive a simple lower bound on T disc
N for large drifts. As we show, this yields the

lower bounds on T disc
N in Theorem 1.1.

Constants. Finally, we use the following convention concerning constants:
Throughout the text, c or c′ denote positive constants which only depend on the
base-dimension d , with values changing from place to place. The numbered con-
stants c0, c1, . . . are fixed and refer to their first place of appearance in the text.
Dependence of constants on parameters other than d appears in the notation. For
example, c(γ, γ ′) denotes a positive constant depending on d , γ and γ ′.
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2. Definitions, notation and a useful estimate. The purpose of this section
is to set up the notation and the definitions to be used in this article and to provide
a Girsanov-type estimate comparing the random walks with drift and without drift,
to be frequently applied later on.

Throughout this article, we denote, for s, t ∈ R, by s ∧ t the minimum of s

and t , by s ∨ t the maximum of s and t , by [s] the largest integer satisfying
[s] ≤ s and we set t+ = t ∨ 0 and t− = −(t ∧ 0). Recall that we introduced
the cylinder E in (1.1). E is equipped with the Euclidean distance | · | and the
l∞-distance | · |∞. We denote a generic element of E by x = (u, v), u ∈ Td

N ,
v ∈ Z and the corresponding closed ball of | · |∞-radius r > 0 centered at x ∈ E

by B∞(x, r). Note that E is the image of Zd+1 = Zd × Z by the mapping πE :
Zd × Z → E, (u, v) → (πTd

N
(u), v), where πTd

N
denotes the canonical projection

from Zd onto the torus Td
N . We write {ei}d+1

i=1 for the canonical basis of Rd+1.
The projections πi , i = 1, . . . , d + 1 onto the d-dimensional hyperplanes of E

are the mappings from E to (Z/NZ)d−1 × Z when i = 1, . . . , d , or to (Z/NZ)d

when i = d + 1, defined by omitting the ith component of (u, v) = (u1, . . . , ud,

v) ∈ E. These projections are not to be confused with the Z-projection πZ from E

onto Z,

πZ(x) = x · ed+1.(2.1)

For any subset A ⊆ E and l ≥ 1, we define the l-neighborhood of A,

A(l) = {x ∈ E : for some x′ ∈ A, |x − x′|∞ ≤ l},(2.2)

its l-interior,

A(−l) = {x ∈ A : for all x′ /∈ A, |x − x′|∞ > l}(2.3)

(so that A ⊆ B(−l) if and only if A(l) ⊆ B) and its diameter

diam(A) = sup{|x − x′|∞ :x, x′ ∈ A}.(2.4)

Given another subset B ⊆ E, we define the B-relative boundary of A,

∂B(A) = {x ∈ B \ A : for some x′ ∈ A, |x − x′| = 1},(2.5)

and the B-relative boundary of A in direction i ∈ {1, . . . , d + 1},
∂B,i(A) = {x ∈ B \ A : for some x′ ∈ A, |x − x′| = 1 and πi(x) = πi(x

′)}.(2.6)

The cube of side-length l − 1, l = 1, . . . ,N is defined as

C(l) = [0, l − 1]d+1 ⊆ E(2.7)

(where [0, l − 1] = {0, . . . , l − 1}) and the same cube with base-point x ∈ E

as

Cx(l) = x + C(l),(2.8)
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where, for x ∈ E and A ⊂ E, we set x + A = {x + x′ :x′ ∈ A} ⊆ E. For any fixed
N ≥ 1, we now define the probability space

�N = E ([0,∞),Td
N) × E ([0,∞),Z),(2.9)

where, for a set H , E ([0,∞),H) is the space of piecewise constant, right-
continuous functions from [0,∞) to H with infinitely many discontinuities and at
most finitely many discontinuities on compact intervals. The canonical processes
(X̄t )t∈[0,∞), (Ȳt )t∈[0,∞) and (Z̄t )t∈[0,∞) are defined on �N by X̄t ((ω

(1),ω(2))) =
(Ȳt , Z̄t )(ω

(1),ω(2)) = (ω
(1)
t ,ω

(2)
t ) ∈ E. These processes generate the canonical

filtration (F̄t )t∈[0,∞) on �N and have the associated shift operators (θ̄t )t∈[0,∞),

as well as the jump times (J X̄
n )n≥0, (J Ȳ

n )n≥0, (J Z̄
n )n≥0 and counting processes

(NX̄
t )t∈[0,∞), (NȲ

t )t∈[0,∞) and (NZ̄
t )t∈[0,∞), defined for X̄ (and analogously for Ȳ

and Z̄) as

J X̄
0 = 0, J X̄

1 = inf{t > 0 : X̄t �= X̄t−} ∈ (0,∞),
(2.10)

J X̄
n = J X̄

1 ◦ θ̄
J X̄
n−1

+ J X̄
n−1 for n ≥ 2,

NX̄
t = sup{n ≥ 0 :J X̄

n ≤ t} < ∞, t ∈ [0,∞).(2.11)

The discrete-time processes (Xn)n≥0, (Yn)n≥0 and (Zn)n≥0 corresponding to X̄,
Ȳ and Z̄ are obtained by restricting time to the integers n ≥ 0, that is,

Xn = X̄
J X̄
n

, Yn = Ȳ
J Ȳ
n
, Zn = Z̄

J Z̄
n
, n ≥ 0.(2.12)

Note that, as a consequence one obtains [cf. (2.11)]

X̄t = X
NX̄

t
, Ȳt = Y

NȲ
t
, Z̄t = Z

NZ̄
t
, t ≥ 0.(2.13)

For the process X, we also define the discrete-time shift operators (θn)n≥0 and the
discrete-time filtration (Fn)n≥0 as θn = θ̄

J X̄
n

, Fn = σ(X1, . . . ,Xn).

We proceed to construct the probability measures P �
x , for x = (u, v) ∈ E and

0 ≤ � < 1 on (�N, (F̄t )t∈[0,∞)) (and write E�
x for the corresponding expecta-

tions) such that, under P �
x ,

Y,J Ȳ ,Z,J Z̄ [cf. (2.10), (2.12)] are independent,(2.14)

Y is a simple random walk on Td
N with starting point u,(2.15)

Z is a random walk on Z starting at v with transition probability
(2.16)

pZ(v′, v′ − 1) = 1 − �

2
, pZ(v′, v′ + 1) = 1 + �

2
, v′ ∈ Z

(so � can be interpreted as the drift of the walk in the Z-component),

(J Ȳ
n − J Ȳ

n−1)n≥1 [cf. (2.10)] are i.i.d. Exp(1) variables(2.17)
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[here and throughout this article, Exp(ρ) denotes the exponential distribution with
parameter ρ > 0], and

(J Z̄
n − J Z̄

n−1)n≥1 are i.i.d. Exp
(

1

d

)
variables.(2.18)

It follows from this construction that, under P �
x , X is a random walk on E with

drift � starting at x, that is, a Markov chain on E with initial distribution δ{x} and
transition probability specified in (1.2) (in particular, the notation P �

x , x ∈ E, is
consistent with its use in the Introduction). Furthermore,

(J X̄
n − J X̄

n−1)n≥1 are i.i.d. Exp
(

d + 1

d

)
variables(2.19)

and

NX̄,NȲ and NZ̄ [cf. (2.11)] are Poisson processes
(2.20)

on [0,∞) with respective intensities
d + 1

d
, 1 and

1

d
.

The disconnection time T disc
N was defined in (1.3). It will also be useful to consider

its continuous-time analog

T̄ disc
N = inf{t ∈ [0,∞) : X̄([0, t]) disconnects E}.(2.21)

Moreover, we will frequently use the following stopping times: The entrance time
HX

A of the set A ⊆ E,

HX
A = inf{n ≥ 0;Xn ∈ A},(2.22)

where we write HX
x if A = {x}, and the cover time CX

A of A ⊆ E,

CX
A = inf{n ≥ 0;X([0, n]) ⊇ A},(2.23)

with obvious modifications such as HZ̄· for processes other than X in either dis-
crete or continuous time. For the random walk X and any sets A ⊆ Ā ⊆ E, the
successive returns (Rn)n≥1 to A and departures (Dn)n≥1 from Ā are defined as

R1 = HX
A , D1 = HX

Āc ◦ θR1 + R1 and for n ≥ 2,
(2.24)

Rn = R1 ◦ θDn−1 + Dn−1, Dn = D1 ◦ θDn−1 + Dn−1,

so that 0 ≤ R1 ≤ D1 ≤ · · · ≤ Rn ≤ Dn ≤ · · · ≤ ∞ and P �
x -a.s. all these inequalities

are strict, except possibly the first one. Finally, we also use the Green function of
the simple random walk X without drift, killed when exiting A ⊆ E, defined as

gA(x, x′) = E0
x

[ ∞∑
n=0

1{Xn = x′, n < HX
Ac}

]
, x, x′ ∈ E.(2.25)

We conclude this section with the Girsanov-type estimate comparing P �
x and P 0

x .
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LEMMA 2.1 [d ≥ 1, N ≥ 1, � ∈ (0,1), x ∈ E]. Consider any (Fn)n≥0-
stopping time T and any FT -measurable event A such that, for some b, b′ ∈
R ∪ {−∞,∞},

T < ∞ and b ≤ πZ(XT − x) ≤ b′, P 0
x -a.s. on A.(2.26)

Then

(1 − �)b−(1 + �)b+E0
x

[
A, (1 − �2)[T/2]] ≤ P �

x [A](2.27)

and

P �
x [A] ≤ (1 − �)b

′−(1 + �)b
′+P 0

x [A],(2.28)

where we set (1 − �)∞ = 0 and (1 + �)∞ = ∞.

PROOF. For any Fn-measurable event An, it follows directly from the defini-
tion of the transition probabilities of the walk X [cf. (1.2)] that

P �
x [An] = E0

x

[
An,

n∏
i=1

(
1 + �πZ(Xi − Xi−1)

)]
.(2.29)

For any (Fn)n≥0-stopping time T satisfying (2.26), we apply (2.29) with the Fn-
measurable event An = A ∩ {T = n} for n ≥ 0 and deduce, via monotone conver-
gence,

P �
x [A] = ∑

n≥0

P �
x [An] = ∑

n≥0

E0
x

[
An,

T∏
i=1

(
1 + �πZ(Xi − Xi−1)

)]

(2.30)

= E0
x

[
A,

T∏
i=1

(
1 + �πZ(Xi − Xi−1)

)]
.

To complete the proof, we bound the product inside the expectation on the right-
hand side of (2.30) from above and from below. The contribution of the product is
a factor of 1 + � for every displacement of X into the positive Z-direction up to
time T and a factor of 1 − � for every displacement into the negative Z-direction
during the same time. We now group together the factors in the product as pairs of
the form (1 + �)(1 − �) = 1 − �2 for as many factors as possible (i.e., until all
remaining factors are of the form 1 + � or all remaining factors are of the form
1 − �). By (2.26), the contribution of these remaining factors is bounded from
below by (1−�)b−(1+�)b+ and from above by (1−�)b

′−(1+�)b
′+ . For (2.28),

we note that 1 − �2 < 1 and bound the contribution made by the pairs from above
by 1. For (2.27), we note that the number of pairs contributed can be at most [T

2 ].
This completes the proof of the lemma. �
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3. Upper bounds. This section is devoted to upper bounds on T disc
N . We will

prove the following theorem, which is more than sufficient to yield the upper
bounds in Theorem 1.1:

THEOREM 3.1 (d ≥ 2, α > 0, ε > 0). For some constant c0 > 0,

for α > 1, P N−dα

0 [T disc
N ≤ N2d(logN)4+ε] N→∞−→ 1,(3.1)

for α ≤ 1, P N−dα

0 [T disc
N ≤ exp{c0N

d(1−α)(logN)2}] N→∞−→ 1.(3.2)

In order to show Theorem 3.1, it suffices to show the corresponding result in
continuous time, which is [cf. (2.21)]:

THEOREM 3.2 (d ≥ 2, α > 0, ε > 0). For some constant c0 > 0,

for α > 1, P N−dα

0 [T̄ disc
N ≤ N2d(logN)4+ε] N→∞−→ 1,(3.3)

for α ≤ 1, P N−dα

0 [T̄ disc
N ≤ exp{c0N

d(1−α)(logN)2}] N→∞−→ 1.(3.4)

PROOF THAT THEOREM 3.2 IMPLIES THEOREM 3.1. For this proof as well
as for future reference, we note that, for any Poisson process (N

(ρ)
t )t∈[0,∞) of

parameter ρ > 0, one has by the exponential Chebyshev inequality, for any t ≥ 0,

P
[
N

(ρ)
t ≥ eρt

] ≤ e−eρtE
[
eN

(ρ)
t

] = e−eρt+ρt (e−1) = e−ρt ,

as well as

P
[
N

(ρ)
t ≤ e−1ρt

] ≤ ee−1ρtE
[
e−N

(ρ)
t

] = ee−1ρt+ρt (e−1−1) = e−ρt (1−2e−1),

hence

P
[
N

(ρ)
t /∈ (e−1ρt, eρt)

] ≤ 2e−cρt .(3.5)

Let us now assume that Theorem 3.2 is true. By definition of X and X̄ [cf. (2.13)],
one has, for any s, t ≥ 0, on the event {NX̄

t ≤ s},
{T disc

N > s} = {X([0, [s]]) does not disconnect E}
⊆ {X([0,NX̄

t ]) does not disconnect E} ((2.13),(2.21))= {T̄ disc
N > t}.

Using this last observation with s = e d+1
d

t , we deduce

P N−dα

0

[
T disc

N > e
d + 1

d
t

]
≤ P N−dα

0

[
T disc

N > e
d + 1

d
t,NX̄

t ≤ e
d + 1

d
t

]

+ P N−dα

0

[
T disc

N > e
d + 1

d
t,NX̄

t > e
d + 1

d
t

]
(3.6)

≤ P N−dα

0 [T̄ disc
N > t] + P N−dα

0

[
NX̄

t > e
d + 1

d
t

]
.
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We now fix any α > 1 and ε > 0. The last inequality with tN = N2d(logN)4+ε/2

yields, for N ≥ c(ε) (we refer to the end of the Introduction for our convention
concerning constants),

P N−dα

0 [T disc
N ≥ N2d(logN)4+ε]

≤ P N−dα

0

[
T disc

N > e
d + 1

d
tN

]

(3.6)≤ P N−dα

0 [T̄ disc
N > tN ] + P N−dα

0

[
NX̄

tN
> e

d + 1

d
tN

]
.

The first of the two terms on the right-hand side tends to 0 as N → ∞, by
(3.3), while the second term is bounded from above by 2 exp{−cN2d(logN)4+ε/2}
by (3.5). We have thus deduced (3.1).

For α ≤ 1, we proceed in the same way: Applied with t ′N = exp{c0N
d(1−α) ×

(logN)2}, (3.6) and (3.5) yield, for N ≥ c(c0),

P N−dα

0 [T disc
N ≥ exp{2c0N

d(1−α)(logN)2}]
≤ P N−dα

0

[
T disc

N > e
d + 1

d
t ′N

]

≤ P N−dα

0 [T̄ disc
N > t ′N ] + exp

{−cec0N
d(1−α)(logN)2}

,

so that (3.2) follows from (3.4). �

PROOF OF THEOREM 3.2. Following the idea outlined in the Introduction,
we define the process V , whose purpose is to record visits of X to Td

N × {0}. To
this end, we introduce the stopping times (S̄n)n≥0 by setting [cf. (2.10), (2.22)]

S̄0 = 0, S̄1 = HZ̄
0 ◦ θ̄

J Ȳ
1

+ J Ȳ
1 ≤ ∞, and for n ≥ 2,

(3.7)

S̄n =
{

S̄1 ◦ θ̄S̄n−1
+ S̄n−1, on {S̄n−1 < ∞},

∞, on {S̄n−1 = ∞},
and on the event {S̄k < ∞}, we define

Vn = ȲS̄n
, n = 0, . . . , k.(3.8)

Note that, as soon as V has visited all points of Td
N , X̄ has visited all points of

Td
N × {0}, and has therefore disconnected E. Hence, we are interested in an upper

bound on the cover time CV

Td
N

[cf. (2.23)]. This desired upper bound will result from

the following estimate on cover times for symmetric Markov chains. Following
Aldous and Fill ([1], Chapter 7, page 2), we call a Markov chain (Wn)n≥0 on the
finite state-space G with transition probabilities pW(g,g′), g,g′ ∈ G symmetric, if
for any states g0, g1 ∈ G, there exists a bijection γ :G → G satisfying γ (g0) = g1
and pW(g,g′) = pW(γ (g), γ (g′)) for all g, g′ ∈ G.
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LEMMA 3.3. Given a symmetric, irreducible and reversible Markov chain
(Wn)n≥0 on the finite state-space G whose transition matrix (pW(g, g′))g,g′∈G

has eigenvalues 1 = λ1(W) > λ2(W) ≥ · · · ≥ λ|G|(W) ≥ −1, one has

Pg[CW
G ≥ n] ≤ |G| exp

{
−
[

n

4eu(W)

]}
for any g ∈ G, n ≥ 1,(3.9)

where Pg is the canonical probability on GN governing W with W0 = g and

u(W) =
|G|∑

m=2

1

1 − λm(W)
.(3.10)

PROOF. We assume that n ≥ 4eu(W), for otherwise there is nothing to prove.
The following estimate on the maximum hitting time [cf. (2.22)] is a consequence
of the so-called eigentime identity (see [1], Lemma 15 and Proposition 13 in Chap-
ter 3, and note that Eg[HW

g′ ] = Eg′ [HW
g ] by our assumptions on symmetry, irre-

ducibility and reversibility; cf. [1], Chapter 3, Lemma 1):

max
g,g′∈G

Eg[HW
g′ ] ≤ 2

|G|∑
m=2

1

1 − λm(W)

(3.10)= 2u(W).(3.11)

Choosing any 1 ≤ s ≤ n, we deduce the following tail estimate on CW
G with

a standard application of the simple Markov property at the times ([s] −
1)[n

s
], . . . ,2[n

s
], [n

s
]:

Pg[CW
G ≥ n]
= Pg[for some g′ ∈ G :HW

g′ ≥ n]

≤ |G| max
g,g′∈G

Pg[HW
g′ ≥ n] (Markov)≤ |G|

(
max

g,g′∈G
Pg

[
HW

g′ ≥
[
n

s

]])[s]

(Chebyshev, (3.11))≤ |G|
([

n

s

]−1

2u(W)

)[s] (n/s≤2[n/s])≤ |G|
(

4su(W)

n

)[s]
.

With 1 ≤ s = n
4eu(W)

≤ n, this yields (3.9). �

In what follows, we require the following alternative expression for the distribution
of the stopping times (S̄n)n≥0 [cf. 3.7)]:

LEMMA 3.4 (d ≥ 1, n ≥ 1, � ∈ [0,1)). The following equality in distribution
holds under P �

0 :

S̄n
(dist.)= σ1 + · · · + σn + HZ̄(1)

−Ẑ
(1)
σ1

+ · · · + HZ̄(n)

−Ẑ
(n)
σn

,(3.12)
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where the random variables {σi}i≥1 and the processes {Z̄(i), Ẑ(i)}i≥1 are inde-
pendent, {Z̄(i), Ẑ(i)}i≥1 are i.i.d. copies of the random walk Z̄ and the σi are
exponentially distributed with parameter 1.

PROOF. It suffices to prove that, for any n ≥ 1,

(S̄1, S̄2 − S̄1, . . . , S̄n − S̄n−1)
(dist.)= (

σ1 + HZ̄(1)

−Ẑ
(1)
σ1

, . . . , σn + HZ̄(n)

−Ẑ
(n)
σn

)
,(3.13)

for then we obtain

S̄n =
n∑

i=1

(S̄i − S̄i−1)
(dist.)=

n∑
i=1

(
σi + HZ̄(i)

−Ẑ
(n)
σi

)
,

as required. For the purpose of showing (3.13), we fix any t1, . . . , tn ≥ 0 and find,
with the strong Markov property:

P �
0

[
n⋂

i=1

{S̄i − S̄i−1 ≤ ti}
]

= P �
0

[
n−1⋂
i=1

{S̄i − S̄i−1 ≤ ti} ∩ θ−1
S̄n−1

{S̄1 ≤ tn}
]

(3.14)

= E�
0

[
n−1⋂
i=1

{S̄i − S̄i−1 ≤ ti},P �
X̄S̄n−1

[S̄1 ≤ tn]
]
.

Thanks to translation invariance in the Td
N -direction, the distribution of S̄n, n ≥ 0,

does not depend on the Td
N -coordinate of the starting point. In particular, one has

P �
(u,0)[S̄n ≤ ·] = P �

0 [S̄n ≤ ·] for any u ∈ Td
N ,n ≥ 0.(3.15)

Therefore (3.14) simplifies to

P �
0

[
n⋂

i=1

{S̄i − S̄i−1 ≤ ti}
]

= P �
0

[
n−1⋂
i=1

{S̄i − S̄i−1 ≤ ti}
]
P �

0 [S̄1 ≤ tn](3.16)

(induction)=
n∏

i=1

P �
0 [S̄1 ≤ ti].

However, J Ȳ
1 is exponentially distributed with parameter 1 [cf. (2.17)] and inde-

pendent of Z̄ [cf. (2.14)]. We hence obtain by Fubini’s theorem that, for any t ≥ 0:

P �
0 [S̄1 ≤ t] (3.7)= P �

0 [HZ̄
0 ◦ θ̄

J Ȳ
1

+ J Ȳ
1 ≤ t]

(3.17)
(Fub.)=

∫ t

0
P �

0 [HZ̄
0 ◦ θ̄s + s ≤ t]e−s ds.
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Applying the simple Markov property at time s to the probability inside this last
integral, one finds

P �
0 [HZ̄

0 ◦ θ̄s + s ≤ t] = E�
0
[
P �

(0,Z̄s )
[HZ̄

0 ≤ t − s]]
(Z̄

(dist.)= Ẑ(1))= E�
0
[
P �

(0,Ẑ
(1)
s )

[HZ̄
0 ≤ t − s]]

(transl. inv.)= P �
0
[
HZ̄

−Ẑ
(1)
s

≤ t − s
]
.

Inserting this last expression into (3.17) and applying again Fubini’s theorem, we
obtain

P �
0 [S̄1 ≤ t] = P �

0
[
σ1 + HZ̄

−Ẑ
(1)
σ1

≤ t
]
.

By this observation and independence of {σi, Z̄
(i), Ẑ(i)}i≥1, (3.16) becomes

P �
0

[
n⋂

i=1

{S̄i − S̄i−1 ≤ ti}
]

= P �
0

[
n⋂

i=1

{
σi + HZ̄(i)

−Ẑ
(i)
σi

≤ ti
}]

,

which shows (3.13) and hence completes the proof of Lemma 3.4. �

The next step toward the application of Lemma 3.3 is to show that (Vn)
k
n=1

[cf. (3.8)] satisfies the hypotheses imposed on W , provided we take the event
{S̄k < ∞} as probability space, equipped with the probability measure P �

(u,0)(·|
S̄k < ∞), u ∈ Td

N .

LEMMA 3.5 (d ≥ 1, k ≥ 1, � ∈ [0,1), u ∈ Td
N ). On the probability space

({S̄k < ∞},P �
(u,0)[·|S̄k < ∞]) and the finite time interval n = 0, . . . , k, (Vn)

k
n=0 is

a symmetric, irreducible and reversible Markov chain on Td
N starting at u with

transition probability

pV (u,u′) = P �
(u,0)[ȲS̄1

= u′|S̄1 < ∞], u,u′ ∈ Td
N .(3.18)

PROOF. By construction Y , J Ȳ , Z̄ are independent [cf. (2.14)]. Since S̄1

and NȲ
S̄1

are both σ(J Ȳ , Z̄)-measurable [cf. (2.11), (3.7)], it follows that Y and

(S̄1,N
Ȳ
S̄1

) are independent as well. Hence, one can rewrite the expression for

pV (u,u′) in (3.18) using Fubini’s theorem:

pV (u,u′) (3.15)= 1

P �
0 [S̄1 < ∞]P

�
(u,0)

[
Y

NȲ
S̄1

= u′, S̄1 < ∞]
(Fubini)= 1

P �
0 [S̄1 < ∞]E

�
(u,0)

[
P �

(u,0)[Yn = u′]|
n=NȲ

S̄1

, S̄1 < ∞]
(3.19)

= 1

P �
0 [S̄1 < ∞]E

�
0
[
P �

(u,0)[Yn = u′]|
n=NȲ

S̄1

, S̄1 < ∞]
,



1456 D. WINDISCH

where in the last line we have used that the expression inside the expectation is
a function of NȲ

S̄1
and S̄1 and therefore does not depend on the Td

N -coordinate of
the starting point. From (3.19), it follows that the transition probabilities pV (·, ·)
define an irreducible, symmetric (as defined above Lemma 3.3) and reversible
process. Indeed, for any u,u′ ∈ Td

N such that P �
(u,0)[Y1 = u′] > 0, (3.19) and

P �
0 [NȲ

S̄1
= 1, S̄1 < ∞] ≥ P �

0 [X1 ∈ Td
N × {0}] > 0 imply that pV (u,u′) > 0, so

that irreducibility follows from irreducibility of the simple random walk Y . Sim-
ilarly, (3.19) shows that symmetry follows from symmetry of Y , which holds by
translation invariance. Finally, reversibility follows by exchanging u and u′ in the
last line of (3.19), which one can do by reversibility of Y . It thus remains to be
shown that pV (·, ·) are in fact the correct transition probabilities for V , that is, that
for any u,u1, . . . , un ∈ Td

N , 1 ≤ n ≤ k, and

A = {V0 = u, . . . , Vn−1 = un−1},(3.20)

one has

P �
(u,0)[Vn = un,A|S̄k < ∞] = pV (un−1, un)P

�
(u,0)[A|S̄k < ∞].(3.21)

Using the strong Markov property at time S̄n, one has

P �
(u,0)[Vn = un,A|S̄k < ∞]

(Markov)= 1

P �
0 [S̄k < ∞]

(3.22)
× E�

(u,0)

[
ȲS̄n

= un,A, S̄n < ∞,P �
(ȲS̄n

,0)
[S̄k−n < ∞]]

(3.15)= P �
0 [S̄k−n < ∞]
P �

0 [S̄k < ∞] P �
(u,0)[ȲS̄n

= un,A, S̄n < ∞].

Applying the strong Markov property at time S̄n−1 to the last probability in this
expression, we infer that

P �
(u,0)[ȲS̄n

= un,A, S̄n < ∞]
(Markov)= E�

(u,0)

[
A, S̄n−1 < ∞,P �

(ȲS̄n−1
,0)

[ȲS̄1
= un, S̄1 < ∞]]

((3.18),(3.20))= pV (un−1, un)E
�
(u,0)

[
A, S̄n−1 < ∞,P �

(un−1,0)[S̄1 < ∞]]
(3.20)= pV (un−1, un)E

�
(u,0)

[
A, S̄n−1 < ∞,P �

X̄S̄n−1

[S̄1 < ∞]]
(Markov)= pV (un−1, un)P

�
(u,0)[A, S̄n < ∞].
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Substituting this last expression into (3.22), and noting that (once more by the
strong Markov property)

P �
0 [S̄k−n < ∞]P �

(u,0)[A, S̄n < ∞] (3.15)= E�
(u,0)

[
A, S̄n < ∞,P �

X̄S̄n

[S̄k−n < ∞]]
(Markov)= P �

(u,0)[A, S̄k < ∞],
we obtain (3.21) and finish the proof of Lemma 3.5. �

With the notation of Lemma 3.3, we recall that λm(V ) and λm(Y ), m =
1, . . . ,Nd stand for the decreasingly ordered eigenvalues of the transition matrices
(pV (u,u′))u,u′∈Td

N
and (pY (u,u′))u,u′∈Td

N
of V and Y , respectively. The following

proposition shows how these two sets of eigenvalues are related.

PROPOSITION 3.6 (d ≥ 1, � ∈ [0,1)).

λm(V ) = E�
0 [λm(Y )

NȲ
S̄1 |S̄1 < ∞], 1 ≤ m ≤ Nd.(3.23)

PROOF. From (3.19), we know that, for u, u′ ∈ Td
N ,

pV (u,u′) = E�
0 [pNȲ

S̄1
Y (u,u′)|S̄1 < ∞].

For any eigenvalue/eigenvector pair (λm(Y ), vm), we infer that

(pV (u,u′))u,u′vm = E�
0 [(pY (u,u′))

NȲ
S̄1

u,u′vm|S̄1 < ∞]

= E�
0 [λm(Y )

NȲ
S̄1 vm|S̄1 < ∞] = E�

0 [λm(Y )
NȲ

S̄1 |S̄1 < ∞]vm.

Hence, (pV (u,u′))u,u′∈Td
N

has the same eigenvectors as (pY (u,u′))u,u′∈Td
N

and the
corresponding eigenvalues are indeed given by (3.23). �

We can thus relate the quantity u(V ) to u(Y ) [cf. (3.10)], which is well known
from Aldous and Fill [1]:

PROPOSITION 3.7 (d ≥ 2, N ≥ 1).

u(Y ) ≤ cN2 logN (d = 2),(3.24)

u(Y ) ≤ cNd (d ≥ 3).(3.25)

(We refer to the end of the Introduction for our convention concerning constants.)

PROOF. The proof is contained in [1]: By the eigentime identity from Chap-
ter 3, Proposition 13, u(Y ) is equal to the average hitting time (cf. Chapter 4,



1458 D. WINDISCH

page 1, for the definition), for which the estimates hold by Proposition 8 in Chap-
ter 13. �

As a consequence, we now obtain our desired estimate on CV

Td
N

by an application

of Lemma 3.3:

LEMMA 3.8 (d ≥ 2, N ≥ 2, u ∈ Td
N ). For any k ≥ [c1N

d(logN)2], one has

sup
�∈[0,1)

P �
(u,0)

[
CV

Td
N

≥ [c1N
d(logN)2]|S̄k < ∞] ≤ 1

N10 .(3.26)

PROOF. We fix any � ∈ [0,1) and consider the canonical Markov chain
(Wn)n≥0, with state-space Td

N , starting point u and with the same transition proba-
bility as (Vn)

k
n=0 under P �

u,0[·|S̄k < ∞], that is, pW(·, ·) = pV (·, ·). By Lemma 3.5,

(Wn)n≥0 then satisfies the assumptions of Lemma 3.3. Moreover, (Wn)
k
n=0 has the

same distribution as (Vn)
k
n=0 under P �

u,0[·|S̄k < ∞]. With the help of Lemma 3.3,
we see that, for k ≥ [cNd(logN)2],

P �
(u,0)

[
CV

Td
N

≥ [cNd(logN)2]|S̄k < ∞]
= Pu

[
CW

Td
N

≥ [cNd(logN)2]](3.27)

(3.9)≤ Nd exp
{
−
[ [cNd(logN)2]

4eu(W)

]}
.

Since V and W have the same transition probability, we have u(W) = u(V ), so
once we show that

u(V ) =
Nd∑

m=2

1

1 − λm(V )
≤ cNd + u(Y ),(3.28)

the proof of (3.26) will be complete with (3.24), (3.25), (3.27) by choosing c = c1 a
large enough constant and noting that the right-hand side of (3.27) does not depend
on �. We use the expression for λm(V ) of (3.23) and distinguish the two cases
0 < λm(Y ) < 1 and −1 ≤ λm(Y ) ≤ 0. If 0 < λm(Y ) < 1, then λm(V ) ≤ λm(Y ),
because NȲ

S̄1
≥ 1 by definition of S̄1 [cf. (3.7)], and hence

1

1 − λm(V )
≤ 1

1 − λm(Y )
.(3.29)

If, on the other hand, −1 ≤ λm(Y ) ≤ 0, then λm(Y )n is nonnegative only for even
n ≥ 1 and not larger than 1 for all n ≥ 1, so in particular

λm(V ) ≤ P �
0 [NȲ

S̄1
≥ 2|S̄1 < ∞]

(NȲ
S̄1

≥1)

= 1 − P �
0 [NȲ

S̄1
= 1|S̄1 < ∞].(3.30)
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Since {X1 ∈ Td
N × {0}} ⊆ {S̄1 = J Ȳ

1 } ⊆ {NȲ
S̄1

= 1} [cf. (3.7)], we deduce from
(3.30) that

λm(V ) ≤ 1 − P �
0
[
X1 ∈ Td

N × {0}|S̄1 < ∞] = 1 − P �
0 [X1 ∈ Td

N × {0}]
P �

0 [S̄1 < ∞]

≤ 1 − P �
0 [X1 ∈ Td

N × {0}] = 1 − d

d + 1
,

and hence
1

1 − λm(V )
≤ d + 1

d
.(3.31)

The estimates (3.29) and (3.31) together yield (3.28), so the proof of Lemma 3.8
is complete. �

In view of (3.26), we still need an upper bound on the amount of time it takes
for the corresponding [c1N

d(logN)2] returns to occur. For simplicity of notation,
we set

aN = Nd(logN)2,(3.32)

and we treat the cases α > 1 and α ≤ 1 in Theorem 3.2 separately.
Case α > 1. We observe that

P N−dα

0 [T̄ disc
N ≥ a2

N(logN)ε] ≤ P N−dα

0
[
T̄ disc

N ≥ S̄[c1aN ]
]

(3.33)
+ P N−dα

0
[
S̄[c1aN ] > a2

N(logN)ε
]
.

By Lemma 3.8 one has

P N−dα

0
[
T̄ disc

N ≥ S̄[c1aN ]
] ≤ P N−dα

0
[
CX̄

Td
N×{0} ≥ S̄[c1aN ]

]
= P N−dα

0
[
CV

Td
N

≥ [c1aN ], S̄[c1aN ] < ∞] (3.26)−→ 0.

In view of (3.33), the proof of (3.3) will thus be complete once it is shown that

P N−dα

0
[
S̄[c1aN ] ≤ a2

N(logN)ε
] N→∞−→ 1.(3.34)

With (3.12), this will follow from (we refer to the statement of Lemma 3.4 for the
notation)

P N−dα

0

[[c1aN ]∑
i=1

(
σi + HZ̄(i)

−Ẑ
(i)
σi

) ≤ a2
N(logN)ε

]
N→∞−→ 1.(3.35)

Let us define the event A(c1aN) by

A(c1aN) = {
σ1 + · · · + σ[c1aN ] ≤ [2c1aN ],

(3.36) ∣∣Ẑ(1)
σ1

∣∣ + · · · + ∣∣Ẑ([c1aN ])
σ[c1aN ]

∣∣ ≤ [2c1aN ]}.
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Since |Z̄σ1 | ≤ NZ̄
σ1

P N−dα

0 -a.s. [cf. (2.13), (2.16)], we have EN−dα

0 [|Z̄σ1 |] ≤
EN−dα

0 [NZ̄
σ1

] = 1
d

[cf. (2.20)]. Hence, by the law of large numbers,

P N−dα

0 [A(c1aN)] N→∞−→ 1.(3.37)

For the probability in (3.35), we obtain the following lower bound using indepen-
dence of {Z̄(i), Ẑ(i), σi}i≥1 and N−dα > 0, for N ≥ c(c1, ε):

P N−dα

0

[[c1aN ]∑
i=1

(
σi + HZ̄(i)

−Ẑ
(i)
σi

) ≤ a2
N(logN)ε

]

(3.36)≥ P N−dα

0

[[c1aN ]∑
i=1

HZ̄(i)

−Ẑ
(i)
σi

≤ 1
2a2

N(logN)ε,A([c1aN ])
]

(indep., N−dα>0)≥
[2c1aN ]∑

j1=−[2c1aN ]
· · ·

[2c1aN ]∑
j[c1aN ]=−[2c1aN ]

(3.38)

× P N−dα

0

[[c1aN ]∑
i=1

HZ̄(i)

−|ji | ≤ 1
2a2

N(logN)ε

]

× P N−dα

0
[
A(c1aN), Ẑ(i)

σi
= ji,

i = 1, . . . , [c1aN ]].
By the simple Markov property and the fact that the increments of Z̄ are indepen-
dent and identically distributed, we have the following equality in distribution:

[c1aN ]∑
i=1

HZ̄(i)

−|ji |
(dist.)= HZ̄−|j1|−···−|j[c1aN ]|.(3.39)

For the ji’s summed over in (3.38) [recall the definition of A(c1aN) in (3.36)], we
have −|j1| − · · · − |j[c1aN ]| ≥ −[2c1aN ], so (3.39) implies that, for such ji’s,

P N−dα

0

[[c1aN ]∑
i=1

HZ̄(i)

−|ji | ≤ 1
2a2

N(logN)ε

]
≥ P N−dα

0
[
HZ̄−[2c1aN ] ≤ 1

2a2
N(logN)ε

]
.

Substituted into (3.38), this yields

P N−dα

0

[[c1aN ]∑
i=1

(
σi + HZ̄(i)

−Ẑ
(i)
σi

) ≤ a2
N(logN)ε

]

(3.40)
≥ P N−dα

0
[
HZ̄−[2c1aN ] ≤ 1

2a2
N(logN)ε

]
P N−dα

0 [A(c1aN)].
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Since we already know (3.37), the proof of (3.35), and hence of (3.3), will be
complete once it is shown that

P N−dα

0
[
HZ̄−[2c1aN ] ≤ 1

2a2
N(logN)ε

] N→∞−→ 1.(3.41)

For πZ(X), the Z-projection of the discrete-time random walk X, any v ∈ Z and
s, t ≥ 0, we have [cf. (2.13)]

{
H

πZ(X)
−v ≤ s,NX̄

t ≥ s
} ⊆ {

H
πZ(X̄)
−v ≤ t

} = {HZ̄−v ≤ t}.
By this last observation, applied with tN = 1

2a2
N(logN)ε , sN = d+1

ed
tN , v =

[2c1aN ], we see with (3.5) and (2.20) that instead of (3.41) it suffices to show
that

P N−dα

0

[
H

πZ(X)
−[2c1aN ] ≤ d + 1

2ed
a2
N(logN)ε

]
N→∞−→ 1.(3.42)

With (2.27) of Lemma 2.1, applied with T = H
πZ(X)
−[2c1aN ], A = {HπZ(X)

−[2c1aN ] ≤
d+1
2ed

a2
N(logN)ε} and b = −[2c1aN ], we can bound the probability in (3.42) from

below by

(1 − N−dα)caN (1 − N−2dα)ca
2
N(logN)εP 0

0
[
H

πZ(X)
−[caN ] ≤ c′a2

N(logN)ε
]
.

Since α > 1, the factor before the above probability tends to 1 as N → ∞
[cf. (3.32)], while the last probability tends to 1 by the invariance principle. This
shows (3.42), hence (3.41), and thus completes the proof of (3.3).

Case α ≤ 1. We claim that in order to prove (3.4), it suffices to show that for
some constant c2(c1) > 0 and N ≥ c(c1), with aN defined in (3.32),

P N−dα

0
[
X̄([0,N3d)) ⊇ Td

N × {0}] ≥ e−c2N
−dαaN(3.43)

(recall our convention concerning constants from the end of the Introduction).
Indeed, suppose that (3.43) holds true. Then observe that, on the event {T̄ disc ≥
ec0N

−dαaN }, X̄ does not cover Td
N × {Z̄nN3d } during the time interval [nN3d, (n +

1)N3d) for 0 ≤ n ≤ [N−3dec0N
−dαaN ] − 1, n ≥ 1, for covering of a slice of E

results in the disconnection of E. We thus apply the simple Markov property in-
ductively at times

{nN3d :n = [N−3dec0N
−dαaN ] − 1, . . . ,2,1},

and obtain

P N−dα

0 [T̄ disc
N ≥ ec0N

−dαaN ]

≤ P N−dα

0

[[N−3dec0N−dαaN ]−1⋂
n=0

θ̄−1
nN3d

{
X̄([0,N3d)) � Td

N × {Z̄nN3d }}
]
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(Markov, transl. inv.)= P N−dα

0
[
X̄([0,N3d)) � Td

N × {0}][N−3de(c0N−dαaN )]

(3.43)≤ exp
{−ce(c0−c2)N

−dαaN N−3d}
(3.32)= exp

{−ce(c0−c2)N
d(1−α)(logN)2

N−3d},
so the proof of (3.4) is complete by the fact that α ≤ 1, provided we choose c0 >

c2(c1). It thus remains to establish the estimate (3.43). To this end, we observe that

P N−dα

0
[
X̄([0,N3d)) ⊇ Td

N × {0}]
≥ P N−dα

0
[
X̄([0,∞)) ⊇ Td

N × {0}](3.44)

− P N−dα

0
[
X̄([N3d,∞)) ∩ Td

N × {0} �= ∅
]
.

Standard large deviations estimates allow us to bound the second probability on
the right-hand side. Observe that independence of NZ̄ and Z [cf. (2.14)] implies
with Fubini’s theorem that

P N−dα

0
[
X̄([N3d,∞)) ∩ Td

N × {0} �= ∅
]

= P N−dα

0 [for some t ≥ N3d, Z̄t = 0]
(2.13)= P N−dα

0 [for some k ≥ NZ̄
N3d ,Zk = 0]

(Fubini)= EN−dα

0
[
P N−dα

0 [for some k ≥ n,Zk = 0]|
n=NZ̄

N3d

]

≤ EN−dα

0

[ ∑
k≥NZ̄

N3d

P N−dα

0
[
Zk − N−dαk < −1

2N−dαk
]]

.

Now observe that (Zn − �n)n≥0 is a P �
0 -martingale with increments bounded

by 1 + � ≤ 2 [cf. (2.16)]. By Azuma’s inequality (see, e.g., [2], page 85), the
expression in the last sum is therefore bounded from above by exp{−cN−2dαk}.
This yields

P N−dα

0 [X̄([N3d,∞)) ∩ Td
N × {0} �= ∅]

≤ EN−dα

0

[ ∑
k≥NZ̄

N3d

e−cN−2dαk

]

= 1

1 − e−cN−2dα
EN−dα

0 [e−cN−2dαNZ̄

N3d ]
(N≥c′(α))≤ cN2dαEN−dα

0 [e−cN−2dαNZ̄

N3d ]
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(2.20)= cN2dα exp
{
− 1

d
N3d(1 − e−cN−2dα

)

}

(N≥c′(α))≤ exp{−cN3dN−2dα} (α≤1)≤ exp{−cNd}.
Inserting this last estimate into (3.44), we see that in fact (3.43) will follow from

P N−dα

0
[
X̄([0,∞)) ⊇ Td

N × {0}] ≥ ce−(1/2)c2N
−dαaN .(3.45)

By (3.26), we have

P N−dα

0
[
X̄([0,∞)) ⊇ Td

N × {0}]
≥ P N−dα

0
[
S̄[c1aN ] < ∞, X̄

([
0, S̄[c1aN ]

)) ⊇ Td
N × {0}]

(3.46)
= P N−dα

0
[
S̄[c1aN ] < ∞]

P N−dα

0
[
CV

Td
N

≤ [c1aN ]|S̄[c1aN ] < ∞]
((3.26),(3.32))≥ cP N−dα

0
[
S̄[c1aN ] < ∞]

.

With the help of (3.12), we obtain, with the same arguments as in (3.38), (3.39)
and (3.40) with A(c1aN) replaced by {∑[c1aN ]

i=1 |Ẑ(i)
σi | ≤ [2c1aN ]},

P N−dα

0
[
S̄[c1aN ] < ∞]

(3.12)= P N−dα

0

[[c1aN ]∑
i=1

HZ̄(i)

−Ẑ
(i)
σi

< ∞
]

(3.47)

≥ P N−dα

0
[
HZ̄−[2c1aN ] < ∞]

P N−dα

0

[[c1aN ]∑
i=1

∣∣Ẑ(i)
σi

∣∣ ≤ [2c1aN ]
]

=
(

1 − N−dα

1 + N−dα

)[2c1aN ]
P N−dα

0

[[c1aN ]∑
i=1

∣∣Ẑ(i)
σi

∣∣ ≤ [2c1aN ]
]
.

The factor in front of the probability on the right-hand side is bounded from below
by e−c(c1)N

−dαaN , while the probability tends to 1 as N → ∞, again by the estimate
EN−dα

0 [|Z̄σ1 |] ≤ EN−dα

0 [NZ̄
σ1

] = 1
d

and the law of large numbers. Therefore, (3.46)
and (3.47) together show (3.45) for a suitably chosen constant c2(c1) > 0. Hence,
the proof of (3.4) and thus of Theorem 3.2 is complete. �

4. Lower bounds: Reduction to large deviations. The goal of this section
is to prove Theorem 1.2 reducing the problem of finding a lower bound on T disc

N

to a large deviations estimate of the form (1.10). As a preliminary step toward this
reduction, we prove the following geometric lemma in the spirit of Dembo and
Sznitman [4], where we refer to (1.6) for our notion of κ-disconnection:
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LEMMA 4.1 [d ≥ 1, α > 0, κ ∈ (0, 1
2)]. There is a constant c(α, κ) such that

for all N ≥ c(α, κ), whenever K ⊆ E disconnects E, there is an x∗ ∈ E such that
K κ-disconnects x∗ + B(α); cf. (1.7). (We refer to the end of the Introduction for
our convention concerning constants.)

PROOF. We follow the argument contained in the proof of Lemma 2.4 in
Dembo and Sznitman [4]. Assuming that K disconnects E, we refer as Top to
the connected component of E \ K containing Td

N × [M,∞) for large M ≥ 1. We
can then define the function

t :E −→ R+

x → |T op ∩ (x + B(α))|
|B(α)| .

The function t takes the value 0 for x = (u, v) ∈ E with v ∈ Z a large negative
number and the value 1 for v a large positive number. Moreover, for x = (u, v),
x ′ = (u, v′) ∈ E such that |v − v′| = 1 we have (with � denoting symmetric dif-
ference)

|t (x) − t (x′)| ≤ |(x + B(α))�(x′ + B(α))|
|B(α)| ≤ cNd

Nd+dα∧1 = c

Ndα∧1 .

Using these last two observations on t , we see that, for N ≥ c(α, κ), there is at
least one x∗ ∈ E satisfying∣∣∣∣t (x∗) − 1

2

∣∣∣∣ ≤ c

Ndα∧1 ≤ 1

2
− κ,

which can be restated as

κ|B(α)| ≤ ∣∣T op ∩ (
x∗ + B(α)

)∣∣ ≤ (1 − κ)|B(α)|.(4.1)

If we set I = T op∩ (x∗ +B(α)), then ∂(x∗+B(α))(I ) ⊆ K (since K disconnects E),
so that the proof is complete with (4.1). �

PROOF OF THEOREM 1.2. We claim that it suffices to prove the following two
estimates on P N−dα

0 [T disc
N ≤ t], valid for any t ≥ 1, ξ ∈ (0, f (α,β)) [for α,β > 0

and f as in (1.10)] and N ≥ c(α,β, ξ):

P N−dα

0 [T disc
N ≤ t] ≤ cNd(t + N)

(
e−Nξ + e−c′Nβ+(dα∧1)t−1/2)

(4.2)

and

P N−dα

0 [T disc
N ≤ t] ≤ cNd(t + N)

(
e−Nξ + e−c′Nβ−(dα−1)+ )

.(4.3)

Indeed, suppose that (4.2) and (4.3) both hold. In order to deduce (1.11), we then
choose any α > 1, 0 < ε < 2d such that β = d − 1 − ε

4 > 0 (note d ≥ 2) and
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ξ ∈ (0, f (α,β)) (which is possible by the assumption on f ). With t = N2d−ε ,
(4.2) then yields, for N ≥ c(α,β, ξ, ε),

P N−dα

0 [T disc
N ≤ N2d−ε] ≤ cN3d−ε(e−Nξ + e−c′Nε/4

),

and hence shows (1.11).
On the other hand, choosing t = exp{Nμ}, μ > 0, in (4.3), we have, for any

α,β > 0, ξ ∈ (0, f (α,β)) and N ≥ c(α,β, ξ,μ),

P N−dα

0 [T disc
N ≤ exp{Nμ}]

(4.4)
≤ cNd(exp{Nμ − Nξ } + exp

{
Nμ − c′Nβ−(dα−1)+}).

The right-hand side of (4.4) tends to 0 as N → ∞ for α,β, ξ as above, provided
β > (dα − 1)+ and μ < ξ ∧ (β − (dα − 1)+). We thus obtain (1.12) by optimizing
over β and ξ in (4.4).

It therefore remains to establish (4.2) and (4.3). To this end, we apply the geo-
metric Lemma 4.1, noting that, up to time t , only sets (u, v)+B(α) [in the notation
of (1.7)] with |v| ≤ t + Ndα∧1 can be entered by the discrete-time random walk,
and thus deduce that, for N ≥ c(α),

P N−dα

0 [T disc
N ≤ t]

(4.5)
≤ cNd(t + N) sup

x∈E

P N−dα

0
[
X([0, [t]]) 1

3 -disconnects x + B(α)
]
.

For the first return time Rx
1 , defined as Rx

1 = HX
S2[Ndα∧1]

[cf. (2.22)], one has

{
X([0, [t]]) 1

3 -disconnects x + B(α)
}

⊆ θ−1
Rx

1

{
X([0, [t]]) 1

3 -disconnects x + B(α)
}
.

Applying the strong Markov property at time Rx
1 and using translation invariance,

we thus obtain that [cf. (1.8)]

P N−dα

0
[
X([0, [t]]) 1

3 -disconnects x + B(α)
]

≤ sup
x∈S2[Ndα∧1]

P N−dα

x

[
X([0, [t]]) 1

3 -disconnects B(α)
]

= sup
x∈S2[Ndα∧1]

P N−dα

x

[
UB(α) ≤ t

]
.

Inserted into (4.5), this yields

P N−dα

0 [T disc
N ≤ t] ≤ cNd(t + N) sup

x∈S2[Ndα∧1]
P N−dα

x

[
UB(α) ≤ t

]
.(4.6)
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We then observe that, for any x ∈ S2[Ndα∧1],

P N−dα

x

[
UB(α) ≤ t

]
≤ P N−dα

x

[
UB(α) < D[Nβ ]

] + P N−dα

x

[
R[Nβ ] ≤ UB(α) ≤ t

]
(4.7)

(def.)= P1 + P2.

By definition of UB(α) we know that, on the event {UB(α) < ∞}, πZ(XUB(α)
−x) ≤

c[Ndα∧1], P N−dα

x -a.s., for x ∈ S2[Ndα∧1]. We can thus apply (2.28) of Lemma 2.1
with A = {UB(α) < D[Nβ ]}, T = UB(α) and b′ = c[Ndα∧1] and obtain, for P1
in (4.7),

P1
(2.28)≤ (1 + N−dα)c[Ndα∧1]P 0

x

[
UB(α) < D[Nβ ]

]
≤ cP 0

x

[
UB(α) < D[Nβ ]

]
(4.8)

(1.10)≤ e−Nξ

,

for any ξ ∈ (0, f (α,β)) and all N ≥ c(α,β, ξ). Turning to P2 in (4.7), we ap-
ply (2.28) of Lemma 2.1 with A = {R[Nβ ] ≤ t}, T = R[Nβ ] and b′ = c[Ndα∧1],
and obtain

P2 ≤ P N−dα

x

[
R[Nβ ] ≤ t

] ≤ (1 + N−dα)c[Ndα∧1]P 0
x

[
R[Nβ ] ≤ t

]
≤ cP 0

x

[
R[Nβ ] ≤ t

]
.

For this last probability, we make the observation that, under P 0
x , R[Nβ ] − D1

(≤ R[Nβ ]) is distributed as the sum of at least [cNdα∧1Nβ] independent random
variables, all of which are distributed as the hitting time of 1 for the unbiased
simple random walk πZ(X) [cf. (2.1)] starting at the origin with geometric delay
of constant parameter 1

d+1 . Applying an elementary estimate on one-dimensional
simple random walk for the second inequality (cf. Durrett [7], Chapter 3, (3.4)),
we deduce that, for t ≥ 1,

P2 ≤ cP 0
0
[
H

πZ(X)
1 ≤ t

]cNβ+(dα∧1) ≤ c(1 − c′t−1/2)c
′Nβ+(dα∧1)

≤ c exp
{−c′Nβ+(dα∧1)t−1/2}.

Together with (4.8), (4.7) and (4.6), this yields (4.2).
In order to obtain (4.3), we use the following different method for estimating P2

in (4.7): We let A− be the event that the random walk X first exits S4[Ndα∧1] into
the negative direction, that is,

A− = {πZ(XD1) < 0} ∈ FD1 .
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One then has

P2 ≤ sup
x∈S2[Ndα∧1]

P N−dα

x

[
R[Nβ ] < ∞]

(4.9)
= sup

x∈S2[Ndα∧1]

(
P N−dα

x

[
R[Nβ ] < ∞,A−] + P N−dα

x

[
R[Nβ ] < ∞, (A−)c

])
.

We now apply the strong Markov property at the times D1 and R2 and use trans-
lation invariance to infer from (4.9) that, for Nβ ≥ 2,

P2 ≤ sup
x∈S2[Ndα∧1]

P N−dα

x

[
R[Nβ ]−1 < ∞]

× sup
x∈S2[Ndα∧1]

(
P N−dα

x [A−](4.10)

+ P N−dα

x [(A−)c]P N−dα

0
[
H

πZ(X)

−c[Ndα∧1] < ∞])
.

Next, we apply the estimate (2.28) of Lemma 2.1 with T = D1, A = A− and
b′ = −2[Ndα∧1], then the invariance principle for one-dimensional simple random
walk, and obtain, for any x ∈ S2[Ndα∧1],

P N−dα

x [A−] (2.28)≤ P 0
x [A−] (inv. princ.)≤ (1 − c3), c3 > 0.(4.11)

Moreover, since the projection πZ(X) of X on Z is a one-dimensional random
walk with drift N−dα

d+1 and geometric delay of constant parameter 1
d+1 , standard

estimates on one-dimensional biased random walk imply

P N−dα

0
[
H

πZ(X)

−c[Ndα∧1] < ∞] ≤
(

1 − N−dα(d + 1)−1

1 + N−dα(d + 1)−1

)c[Ndα∧1]

(4.12)
≤ e−cN−dα[Ndα∧1].

Inserting (4.11) and (4.12) into (4.10) and using induction, we deduce

P2 ≤ (
1 − c3 + c3e

−cN−dα[Ndα∧1])[Nβ ]−1
.(4.13)

Note that N−dα[Ndα∧1] ≤ 1. If dα > 1, then the right-hand side of (4.13) is
bounded from above by (1 − cN−dα[Ndα∧1])[Nβ ]−1 ≤ e−cN−dα[Ndα∧1]Nβ

, while
if dα ≤ 1, the right-hand side of (4.13) is bounded by e−cNβ

. In any case, we infer
from (4.13) that

P2 ≤ e−cN−dαNβ+(dα∧1) = e−cNβ−(dα−1)+
.

Together with (4.8), (4.7) and (4.6) this yields (4.3) and completes the proof of
Theorem 1.2. �
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5. More geometric lemmas. The purpose of this section is to prove several
geometric lemmas needed for the derivation of the large deviations estimate (1.10)
in Theorem 1.2. The general purpose of these geometric results is to impose re-
strictions on a set K 1

3 -disconnecting B(α). This will enable us to obtain an upper
bound on the probability appearing in (1.10), when choosing K = X([0,D[Nβ ]]).

Throughout this and the next section, we consider the scales L and l, defined as

l = [Nγ ], L = [Nγ ′ ] for 0 < γ < γ ′ ∧ dα,0 < γ ′ < 1.(5.1)

The crucial geometric estimates come in Lemma 5.3 and its modification
Lemma 5.4. These geometric results, in the spirit of Dembo and Sznitman [4],
require as key ingredient an isoperimetric inequality of Deuschel and Pisztora [6];
see Lemma 5.2. In rough terms, Lemmas 5.3 and 5.5 show that for any set K

disconnecting C(L) or B(α) for dα < 1 [cf. (1.7), (2.7)], one can find a whole
“surface” of subcubes of C(L) or B(α) such that the set K occupies a “surface”
of points inside every one of these subcubes. More precisely, it is shown that there
exist subcubes (Cx(l))x∈E [cf. (2.8)] of C(L), respectively of B(α), with the fol-
lowing properties: for one of the projections π∗ on the d-dimensional hyperplanes,
the projected set of base-points π∗(E) is arranged on a subgrid of side-length l and
is substantially large. In the case of C(L), this set of points occupies at least a
constant fraction of the volume of the projected subgrid of C(L). Moreover, for
one of the projections π∗∗ (possibly different from π∗), the π∗∗-projection of the
disconnecting set K intersected with any subcube Cx(l), x ∈ E , contains at least
cld points, that is, at least a constant fraction of the volume of π∗∗(Cx(l)) (see
Figure 3 for an illustration of the idea).

The first lemma in this section allows to propagate disconnection of the | · |∞-
ball B∞(0, [N/4]) to a smaller scale of size L, in the sense that, for any set K
1
3 -disconnecting B∞(0, [N/4]), one can find a sub-box Cx∗(L) of B∞(0, [N/4])
which is 1

4 -disconnected by K [cf. (1.6)]. This result will prove useful for the
case B(α) = B∞(0, [N/4]) (i.e., if dα ≥ 1), where we use an upper bound on the
number of excursions between Cx∗(L) and (Cx∗(L)(L))c performed by the random
walk X until time D[Nβ ]. We refer to the end of the Introduction for our convention
concerning constants.

LEMMA 5.1 (d ≥ 1, γ ′ ∈ (0,1), L = [Nγ ′ ], N ≥ 1). There is a constant
c(γ ′) > 0 such that for all N ≥ c(γ ′), whenever K ⊆ B∞(0, [N/4]) 1

3 -disconnects

B∞(0, [N/4]), there is an x∗ ∈ B∞(0, [N/4]) such that K 1
4 -disconnects Cx∗(L) ⊆

B∞(0, [N/4]).
PROOF. Since K 1

3 -disconnects B∞(0, [N/4]) [cf. (1.6)], there is a set
I ⊆ B∞(0, [N/4]) satisfying 1

3 |B∞(0, [N/4])| ≤ |I | ≤ 2
3 |B∞(0, [N/4])| and

∂B∞(0,[N/4])(I ) ⊆ K . We want to find a point x∗ ∈ E such that Cx∗(L) ⊆
B∞(0, [N/4]) and

1
4 |C(L)| ≤ |Cx∗(L) ∩ I | ≤ 3

4 |C(L)|.(5.2)
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FIG. 3. An illustration of the crucial geometric Lemma 5.3. The figure shows the set C(L), discon-
nected by K ⊆ C(L). The small boxes are the collection of subcubes (Cx(l))x∈E . The circles on the
left are the points on the projected subgrid of side-length l, a large number of which (the filled ones)
are occupied by the projected set π∗(E) of base-points E [cf. (5.12), (5.13)]. In every subcube, the
set K occupies a surface of a significant number of points, in the sense of (5.14).

To this end, we introduce the subgrid BL ⊆ B∞(0, [N/4])(−L) of side-length L,
defined as

BL = B∞(0, [N/4])(−L) ∩ πE([−[N/4], [N/4]]d+1 ∩ LZd+1)
(5.3)

[cf. (2.3)].

The boxes (Cx(L))x∈BL
[see (2.7), (2.8)] are disjoint subsets of B∞(0, [N/4]),

and their union covers all but at most cNdL points of B∞(0, [N/4]). Hence, we
have ∑

x∈BL

|I ∩ Cx(L)| ≤ |I | ≤ ∑
x∈BL

|I ∩ Cx(L)| + cNdL,(5.4)

|B∞(0, [N/4])| − cNdL ≤ |BL||C(L)| ≤ |B∞(0, [N/4])|.(5.5)

We now claim that, for N ≥ c(γ ′), there is at least one x1 ∈ BL such that

|I ∩ Cx1(L)| ≤ 3
4 |C(L)|.(5.6)

Indeed, otherwise it would follow from the definition of I and the left-hand side
inequalities of (5.4) and (5.5) that

2
3 |B∞(0, [N/4])| ≥ |I | (5.4)

> 3
4 |C(L)||BL| (5.5)≥ 3

4 |B∞(0, [N/4])| − cNdL,
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which due to the definition of L is impossible for N ≥ c(γ ′). Similarly, for N ≥
c(γ ′), we can find an x2 ∈ BL such that

1
4 |C(L)| ≤ |I ∩ Cx2(L)|,(5.7)

for otherwise the right-hand side inequalities of (5.4) and (5.5) would yield that
1
3 |B∞(0, [N/4])| ≤ 1

4 |B∞(0, [N/4])| + cNdL, thus again leading to a contradic-
tion.

Next, we note that, for any neighbors x and x′ ∈ B∞(0, [N/4]), one has, with
� denoting the symmetric difference,∣∣∣∣ |Cx(L) ∩ I |

|C(L)| − |Cx′(L) ∩ I |
|C(L)|

∣∣∣∣ ≤ |Cx(L)�Cx′(L)|
|C(L)| ≤ c

Nγ ′ .(5.8)

Since both x1 and x2 are in BL ⊆ B∞(0, [N/4])(−L), we can now choose a nearest-
neighbor path P = (x1 = y1, y2, . . . , yn = x2) from x1 to x2 such that Cyi

(L) ⊆
B∞(0, [N/4]) for all yi ∈ P . Consider now the first point x∗ = yi∗ on P such that
1
4 |C(L)| ≤ |Cx∗(L) ∩ I |, which is well defined thanks to (5.7). If x∗ = y1, then
by (5.6), x∗ satisfies (5.2). If x∗ �= y1, then by (5.8) and choice of x∗, one also has

1

4
|C(L)| ≤ |Cx∗(L) ∩ I | (5.8)≤ |Cyi∗−1(L) ∩ I | + c

Nγ ′ |C(L)|

<

(
1

4
+ c

Nγ ′

)
|C(L)|,

hence again (5.2) for N ≥ c(γ ′). For N ≥ c(γ ′), we have thus found an
x∗ ∈ B∞(0, [N/4]) satisfying 1

4 |C(L)| ≤ |Cx∗(L) ∩ I | ≤ 3
4 |C(L)| and Cx∗(L) ⊆

B∞(0, [N/4]). Moreover, ∂Cx∗ (L)(Cx∗(L) ∩ I ) ⊆ ∂B∞(0,[N/4])(I ) ⊆ K . In other
words, K 1

4 -disconnects Cx∗(L) ⊆ B∞(0, [N/4]). �

The following lemma contains the essential ingredients for the proof of the two
main geometric lemmas thereafter.

LEMMA 5.2 [d ≥ 1, κ ∈ (0,1), M ∈ {0, . . . ,N − 1}, N ≥ 1]. Suppose A ⊆
[0,M]d+1 ⊆ E. Then there is an i0 ∈ {1, . . . , d + 1} such that

|A| ≤ |πi0(A)|(d+1)/d .(5.9)

If A in addition satisfies

|A| ≤ (1 − κ)(M + 1)d+1,(5.10)

then there is an i1 ∈ {1, . . . , d + 1} and a constant c(κ) > 0 such that [cf. (2.6)]∣∣πi1

(
∂[0,M]d+1,i1

(A)
)∣∣ ≥ c(κ)|A|d/(d+1).(5.11)
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PROOF. The estimate (5.9) follows, for instance, from a theorem of Loomis
and Whitney [10]. The proof of (5.11) can be found in (A.3)–(A.6) in Deuschel
and Pisztora [6], page 480. �

We now come to the main geometric lemma, which provides a necessary crite-
rion for disconnection of the box C(L) [cf. (2.7)]. A schematic illustration of its
content can be found in Figure 3.

LEMMA 5.3 (d ≥ 1, 0 < γ < γ ′ < 1, l = [Nγ ], L = [Nγ ′ ], N ≥ 1). For all
N ≥ c(γ, γ ′), whenever K ⊆ C(L) 1

4 -disconnects C(L) [cf. (1.6)], then there ex-
ists a set E ⊆ C(L)(−l) [cf. (2.3)] and projections π∗ and π∗∗ ∈ {π1, . . . , πd+1}
such that

π∗(E) ⊆ π∗
(
C(L) ∩ πE([0,L]d+1 ∩ lZd+1)

)
,(5.12)

|π∗(E)| ≥ c′
(

L

l

)d

,(5.13)

for all x ∈ E :
∣∣π∗∗

(
K ∩ Cx(l)

)∣∣ ≥ c′′ld [cf. (2.8)].(5.14)

PROOF. Since K 1
4 -disconnects C(L), there exists a set I ⊆ C(L) satisfying

1
4Ld+1 ≤ |I | ≤ 3

4Ld+1 and ∂C(L)(I ) ⊆ K . We introduce here the subgrid Cl ⊆
C(L)(−l) of side-length l, that is,

Cl = C(L)(−l) ∩ πE([0,L]d+1 ∩ lZd+1),(5.15)

with sub-boxes Cx(l), x ∈ Cl . The set A is then defined as the set of all x ∈ Cl

whose corresponding box Cx(l) is filled up to more than 1
8 th by I :

A = {
x ∈ Cl : |Cx(l) ∩ I | > 1

8 ld+1}.(5.16)

Since the disjoint union of the boxes (Cx(l))x∈Cl
contains all but at most cLdl

points of C(L), we have

1
4Ld+1 ≤ |I | ≤ 1

8 ld+1|Cl \ A| + ld+1|A| + cLdl.(5.17)

Using the estimate |Cl \ A| ≤ |Cl| ≤ (L
l
)d+1 and rearranging, we deduce

from (5.17) that (
1

8
− c

l

L

)(
L

l

)d+1

≤ |A|,

so that for N ≥ c(γ, γ ′),

1

9
|Cl| ≤ 1

9

(
L

l

)d+1

≤ |A|.(5.18)
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In order to apply the isoperimetric inequality (5.11) of Lemma 5.2 with A and Cl

playing the roles of A and [0,M]d+1 for N ≥ c(γ, γ ′), we need to keep |A| away
from |Cl|. We therefore distinguish two cases, as to whether or not

|A| ≤ c4|Cl| with c3
4 = 1

2

(
1 + 4

5

)
.(5.19)

Suppose first that (5.19) holds. Then for N ≥ c(γ, γ ′), the isoperimetric inequality
(5.11), applied on the subgrid Cl , yields an i ∈ {1, . . . , d + 1} such that

|πi(∂Cl ,i (A))| ≥ c|A|d/(d+1)
(5.18)≥ c′

(
L

l

)d

,(5.20)

where ∂Cl ,i (A) denotes the boundary on the subgrid Cl , defined in analogy
with (2.6). In order to construct the set E , we apply the following procedure. Given
w ∈ πi(∂Cl ,i (A)), we choose an x′ ∈ ∂Cl ,i (A) with πi(x

′) = w. In view of (2.6),
at least one of x′ + lei and x′ − lei belongs to A. Without loss of generality, we
assume that x′ + lei ∈ A. We then have |Cx′(l)∩ I | ≤ 1

8 ld+1 [because x′ ∈ Cl \A;
cf. (5.16)] and |Cx′+lei

(l)∩ I | > 1
8 ld+1 (because x′ + lei ∈ A). Observe that neigh-

boring x1, x2 ∈ E satisfy∣∣∣∣ |Cx1(l) ∩ I |
ld+1 − |Cx2(l) ∩ I |

ld+1

∣∣∣∣ ≤ c

Nγ
.(5.21)

Now consider the first point x = x′ + l∗ei on the segment [x′, x′ + lei] = (x′, x′ +
ei, . . . , x

′ + lei) satisfying 1
8 ld+1 < |Cx(l) ∩ I |. By the above observations, this

point x is well defined and not equal to x′. By (5.21), x then also satisfies

ld+1

8
< |Cx(l) ∩ I | (5.21)≤ ∣∣Cx′+(l∗−1)ei

(l) ∩ I
∣∣ + cld+1

Nγ

(5.22)

≤
(

1

8
+ c

Nγ

)
ld+1 ≤ ld+1

7
,

for N ≥ c(γ ). In addition, one has πi(x) = πi(x
′) = w. This construction thus

yields, for any w ∈ πi(∂Cl ,i (A)), a point x ∈ C(L)(−l) [note that x′, x′ + lei ∈
C(L)(−l) and C(L)(−l) is convex], satisfying (5.22) and πi(x) = w. We de-
fine the set E ′ as the set of all such points x. Then by construction, we have
πi(E

′) = πi(∂Cl ,i (A)); in particular (5.12) holds with E ′ in place of E and π∗ = πi ,
as does (5.13), by (5.20). For any x ∈ E ′, we apply the isoperimetric inequal-
ity (5.11) of Lemma 5.2 with Cx(l) in place of [0,M]d+1, Cx(l) ∩ I in place
of A and 1 − κ = 1

7 ; cf. (5.22). We thus find a j (x) ∈ {1, . . . , d + 1} with

∣∣πj(x)

(
∂Cx(l),j (x)(Cx(l) ∩ I )

)∣∣ ≥ c|Cx(l) ∩ I |d/(d+1)
(5.22)≥ c′ld .(5.23)

It follows from the choice of I that ∂Cx(l),j (x)(Cx(l) ∩ I ) ⊆ K ∩ Cx(l), and hence∣∣πj(x)

(
K ∩ Cx(l)

)∣∣ ≥ cld .(5.24)
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We now let π∗∗ be the πj(x) occurring most in (5.23), where x varies over E ′,
and define E ⊆ E ′ as the subset of those x in E ′ for which πj(x) = π∗∗. With this
choice, (5.14) holds by (5.24). Moreover, since (5.12) and (5.13) both hold for E ′
and since |E | ≥ 1

d+1 |E ′|, the same identities hold for E as well (with a different
constant). Hence, the proof of Lemma 5.3 is complete under (5.19).

On the other hand, let us now assume (5.19) does not hold. That is, we suppose
that

|A| > c4|Cl|.(5.25)

We then claim that, for N ≥ c(γ, γ ′),∣∣{x ∈ A : |Cx(l) ∩ I | > c4l
d+1}∣∣ ≤ c4|A|.(5.26)

Indeed, we would otherwise have

|I | ≥ ∣∣{x ∈ A : |Cx(l) ∩ I | > c4l
d+1}∣∣c4l

d+1 (if (5.26) false)
> c2

4|A|ld+1

(5.25)
> c3

4l
d+1|Cl| (5.19)

>
4

5
ld+1|Cl| = 4

5

(
ld+1|Cl|
Ld+1

)
Ld+1,

contradicting the choice of I for N ≥ c(γ, γ ′), because ld+1|Cl |
Ld+1 only depends on

N,γ, γ ′ and tends to 1 as N → ∞. It follows that for N ≥ c(γ, γ ′),

c4|Cl|
(5.25)≤ |A| (5.26)≤ 1

1 − c4

∣∣{x ∈ A : |Cx(l) ∩ I | ≤ c4l
d+1}∣∣

(5.27)
(5.16)= 1

1 − c4

∣∣∣∣
{
x ∈ Cl :

1

8
ld+1 < |Cx(l) ∩ I | ≤ c4l

d+1
}∣∣∣∣.

Defining E ′ = {x ∈ Cl : 1
8 ld+1 < |Cx(l) ∩ I | ≤ c4l

d+1}, we apply the isoperimetric
inequality (5.11) of Lemma 5.2 with Cx(l) in place of [0,M]d+1 and Cx(l) ∩ I

in place of A for every x ∈ E ′ and thus obtain a projection πj(x) satisfying (5.24),
as in the previous case. We then define E ⊆ E ′ as the subset containing only those
x ∈ E ′ for which πj(x) in (5.24) is equal to the most frequently occurring π∗∗.
As a consequence, (5.14) holds. Moreover, (5.12) is clear by definition of E . And
finally, we have by (5.27), |E | ≥ 1

d+1 |E ′| ≥ c|Cl | ≥ c′(L
l
)d+1, which yields (5.13)

by (5.9). This completes the proof of Lemma 5.3. �

The last geometric lemma in this section is essentially a modification of
Lemma 5.3. It provides a similar result for B(α), 0 < dα < 1 instead of C(L).
The idea of the proof, illustrated in Figure 4, is to “pile up” approximately N1−dα

copies of B(α) into the Z-direction of E and to then apply the same arguments
with the isoperimetric inequality (5.11) as in the proof of Lemma 5.3 to the result-
ing set intersected with B∞(x, [N/4]).
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FIG. 4. An illustration of the set A′ of copies of A ⊆ Bl piled up in the (horizontal) Z-direction
[cf. (5.35)], used in the proof of Lemma 5.4. The circles are the points on the subgrid Hl in (5.31),
and the filled circles are the points contained in the set A′. Each copy of Bl has thickness M , defined
in (5.34), so that the larger box B∞(0, [N/4]) contains roughly N1−dα copies of Bl .

LEMMA 5.4 (d ≥ 1, 0 < γ < dα < 1, l = [Nγ ], N ≥ 1). For all N ≥ c(α, γ ),
whenever K ⊆ B(α) [cf. (1.7)] 1

3 -disconnects B(α), there exists a set E ⊆ B(α)(−l)

and projections π∗ and π∗∗ ∈ {π1, . . . , πd+1} such that

π∗(E) ⊆ π∗
(
B(α) ∩ πE([−[N/4], [N/4]]d+1 ∩ lZd+1)

)
,(5.28)

|π∗(E)| ≥ c′
(

N

l

)d

Ndα−1,(5.29)

for all x ∈ E : |π∗∗(K ∩ Cx(l))| ≥ c′′ld .(5.30)

PROOF. The proof is very similar to the one of Lemma 5.3. We choose a set
I ⊆ B(α) such that 1

3 |B(α)| ≤ |I | ≤ 2
3 |B(α)| and ∂B(α)(I ) ⊆ K . We then introduce

the subgrids of side-length l of [−[N/4], [N/4]]d ×Z and of B(α)(−l) as [cf. (2.3)]

Hl = πE

(
([−[N/4], [N/4]]d × Z) ∩ lZd+1) and

(5.31)
Bl = B(α)(−l) ∩ Hl ,

and set

A = {
x ∈ Bl : |Cx(l) ∩ I | > 1

6 ld+1}.
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Since the disjoint union
⋃

x∈Bl
Cx(l) contains all but at most cNdl points of B(α),

we then have
1
3 |B(α)| ≤ |I | ≤ 1

6 ld+1|Bl \ A| + ld+1|A| + cNdl

≤ 1
6 |B(α)| + ld+1|A| + cNdl,

hence (
1

6
− cNγ−dα

) |B(α)|
ld+1 ≤ |A|,

and thus for N ≥ c(α, γ ),

c|Bl | ≤ c|B(α)|
ld+1 ≤ |A|.(5.32)

Suppose now that in addition

|A| ≤ c5|Bl| with c3
5 = 1

2

(
1 + 3

4

)
.(5.33)

Then we define the set A′ ⊆ Hl by “piling up” adjoining copies of the set Bl ⊇ A
into the Z-direction. That is, we introduce the “thickness” M of Bl ,

M = sup
(u,v),(u′,v′)∈Bl

|v − v′| = 2
[ [(1/4)Ndα] − l

l

]
l,(5.34)

and define

A′ = ⋃
n∈Z

(
n(M + l)ed+1 + A

) ⊆ ⋃
n∈Z

(
n(M + l)ed+1 + Bl

) = Hl;(5.35)

cf. (5.31), Figure 4. Observe that B∞(0, [N/4])∩A′ contains no less than cN1−dα

and no more than c′N1−dα copies of A. With (5.32) and (5.33) it follows that for
N ≥ c(α, γ ),

c′
(

N

l

)d+1

≤ |B∞(0, [N/4]) ∩ A′| ≤ (1 − c′)
(

N

l

)d+1

.

For N ≥ c(γ ′), an application of the isoperimetric inequality (5.11) of Lemma 5.2
on the subgrid Hl defined in (5.31), with B∞(0, [N/4])∩Hl in place of [0,M]d+1

and B∞(0, [N/4]) ∩ A′ in place of A, hence yields an i ∈ {1, . . . , d + 1} such that

|πi(∂Hl ,i (A
′))| ≥ c

(
N

l

)d

.(5.36)

If i �= d + 1, then the set on the left-hand side of (5.36) is contained in the at
most cN1−dα translated copies of the set πi(∂Bl ,i (A)) intersecting B∞(0, [N/4])
[see (5.35) and Figure 4]. We then deduce from (5.36) that

|πi(∂Bl ,i (A))| ≥ c

(
N

l

)d

Ndα−1.(5.37)
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If i = d + 1, in (5.36), then we claim that

πd+1(∂Bl ,d+1(A)) ⊇ πd+1(∂Hl ,d+1(A
′)).(5.38)

Indeed, suppose some u ∈ Td
N does not belong to the left-hand side. Then the fiber

{x ∈ Bl : πd+1(x) = u} must either be disjoint from A or be a subset of A. Our
construction of A′ in (5.35) implies that the set {x ∈ Hl : πd+1(x) = u} is then
either disjoint from A′ or a subset of A′, as in the first and second horizontal lines
of Figure 4 [note that the translated copies of Bl in (5.35) adjoin each other on
the subgrid Hl]. But this precisely means that u is not included in the right-hand
side of (5.38). In particular, by (5.36) and (5.38), (5.37) holds also with i = d + 1
(even without the Ndα−1 on the right-hand side). Using (5.37), we can perform the
same construction as in the proof of Lemma 5.3 below (5.20) in order to obtain the
desired set E .

If, on the other hand, (5.33) does not hold, that is, if

|A| > c5|Bl|,
then the existence of the required set E follows from the argument below (5.25),
where (5.29) can be deduced from |E | ≥ c|Bl| ≥ c′(N/l)d+1Ndα−1 by applying
the estimate (5.9) to [cN1−dα] copies of E piled-up in a box. �

6. The large deviations estimate. Our task in this last section is to derive the
following form of the large deviations estimate (1.10):

THEOREM 6.1 (d ≥ 3). The estimate (1.10) holds with (cf. Figure 2)

f (α,β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d − 1 − dα

d − 1
, on (0,1/d) ×

(
0, d − 1 − dα

d − 1

)
,

d − 1 − 1

d − 1
, on [1/d,∞) ×

(
0, d − 1 − 1

d − 1

)
,(

(d − 1)2 − 1
)
(d − 1 − β),

on [1/d,∞) ×
[
d − 1 − 1

d − 1
, d − 1

)
,

0, otherwise.

(6.1)

Before we begin with the proof of Theorem 6.1, we examine its implications. With
the function f in (6.1), the lower bound exponents d(1−α−ϕ(α)) [in (1.4)] and ζ

[in (1.13)] are related via (1.14), as will be checked in Corollary 6.3. We therefore
have to justify the expression ∨d(1 − 2α)1{α<1/d} on the right-hand side of (1.14).
This is the aim of the next proposition.

PROPOSITION 6.2 (d ≥ 2, 0 < α < 1
d

). For some constant c6 > 0,

P N−dα

0
[
exp

{
c6N

d(1−2α)} ≤ T disc
N

] N→∞−→ 1.(6.2)
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PROOF. The idea is that, by our previous geometric estimates, any trajec-
tory disconnecting E must contain at least cNd points in a box of the form
x + B∞(0, [N/4]), x ∈ E. Hence, there must be two visited points within dis-
tance N from each other, such that the random walk X spends [cNd ] time units
between the visits to the two points. The probability of this event can be bounded
from above by standard large deviations estimates.

In detail: Lemma 4.1, applied with B(α) = B∞(0, [N/4]) (i.e., with α ≥ 1
d

),
shows that, for t ≥ 0, N ≥ c, the event {X([0, [t]]) disconnects E} is contained in
the event ⋃

x∈E
|xd+1|≤[t]+N

{
X([0, [t]]) 1

3 -disconnects x + B∞(0, [N/4])}.(6.3)

We now choose a set I ⊆ x + B∞(0, [N/4]) corresponding to 1
3 -disconnection of

x + B∞(0, [N/4]) by X([0, [t]]) [cf. (1.6)]. By the isoperimetric inequality (5.11)
of Lemma 5.2, applied with x + B∞(0, [N/4]) in place of [0,M]d+1 and I in
place of A, the event (6.3) is contained in

⋃
x∈E|xd+1|≤[t]+N

Ax([t]), where, for some

constant c7 > 0,

Ax([t]) = {∣∣X([0, [t]]) ∩ (
x + B∞(0, [N/4]))∣∣ ≥ c7N

d}.
We therefore have

P N−dα

0 [T disc
N ≤ t] ≤ P N−dα

0

[ ⋃
x∈E

|xd+1|≤[t]+N

Ax([t])
]

(6.4)
≤ cNd(t + N) sup

x∈E

P N−dα

0 [Ax([t])].

By the strong Markov property applied at HX
x+B∞(0,[N/4]), the entrance time of

x + B∞(0, [N/4]), and using translation invariance of X, we obtain

sup
x∈E

P N−dα

0 [Ax([t])]

≤ sup
x∈E

P N−dα

0
[
θ−1
HX

(x+B∞(0,[N/4]))
Ax([t])]

(Markov, transl. inv.)≤ sup
x : Ax([t])�0

P N−dα

0 [Ax([t])]

≤ P N−dα

0 [for some n ≥ c7N
d :πZ(Xn) ≤ N ].

Inserting this last inequality into (6.4) and using that N ≤ N−dαn
2(d+1)

for n ≥ c7N
d ,
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N ≥ c(α) (because d − dα > d − 1 ≥ 1), we deduce that, for N ≥ c(α),

P N−dα

0 [T disc
N ≤ t]

≤ cNd(t + N)P N−dα

0 [for some n ≥ c7N
d :πZ(Xn) ≤ N ]

(6.5)

≤ cNd(t + N)
∑

n≥c7Nd

P N−dα

0

[
πZ(Xn) ≤ N−dαn

2(d + 1)

]

= cNd(t + N)
∑

n≥c7Nd

P N−dα

0

[
πZ(Xn) − N−dαn

d + 1
< − N−dαn

2(d + 1)

]
.

Since (πZ(Xn) − N−dαn
d+1 )n≥0 is a P N−dα

0 -martingale with steps bounded by c,
Azuma’s inequality (cf. [2], page 85) implies that

P N−dα

0

[
πZ(Xn) − N−dαn

d + 1
< − N−dαn

2(d + 1)

]
≤ e−cN−2dαn.

Applying this estimate to (6.5) with tN = exp{c6N
d−2dα} we see that for N ≥

c(α),

P N−dα

0 [T disc
N ≤ exp{c6N

d−2dα}] ≤ cNd+2dα exp{c6N
d−2dα − c′Nd−2dα}.

Choosing the constant c6 > 0 sufficiently small, this yields (6.2) (recall that dα <

1 ≤ d
2 ). �

We can now check that Theorem 6.1 does have the desired implications on the
lower bounds on T disc

N .

COROLLARY 6.3 (d ≥ 3, α > 0, ε > 0). With ϕ defined in (1.5), one has

for α > 1, P N−dα

0 [N2d−ε ≤ T disc
N ] N→∞−→ 1,(6.6)

for α < 1, P N−dα

0
[
exp

{
Nd(1−α−ϕ(α))−ε} ≤ T disc

N

] N→∞−→ 1.(6.7)

PROOF. Since the function f of (6.1) satisfies f (α,β) > 0 for (α,β) ∈
(1,∞) × (0, d − 1), (6.6) follows immediately from Theorem 6.1 and (1.11).

By (1.12) and (6.2), (6.7) holds with ϕ defined for α ∈ (0,1) by (1.14). Let us
check that the expression for ϕ in (1.14) agrees with (1.5). We first treat the case
α ∈ [ 1

d
,1), for which f (α, ·) is illustrated on the right-hand side of Figure 2, below

Theorem 1.2. We have dα ≥ 1, f (α,β) = 0 for β ≥ d − 1 and the maximum of gα

[cf. (1.13)] on (0, d − 1) is attained at (see Figure 2)

β̄ = d − 1 − d − dα

(d − 1)2 ∈
[
d − 1 − 1

d − 1
, d − 1

)
∩ (dα − 1, d − 1).
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Hence, for α ∈ [ 1
d
,1) [cf. (1.13)],

ζ = sup
β>0

gα(β) = gα(β̄) = d

(
1 − α − 1 − α

(d − 1)2

)
,

and therefore ϕ(α) = 1−α
(d−1)2 , as required.

Turning to the case α ∈ (0, 1
d
), we refer to the left-hand side of Figure 2 for an

illustration of f . We now have dα − 1 < 0, f (α,β) = 0 for β > d − 1 − dα
d−1 and

hence

ζ = sup
β>0

gα(β)

= sup
β∈(0,d−1−dα/(d−1))

(
β ∧ d − 1 − dα

d − 1

)
= d

(
1 − 1

d
− α

d − 1

)
.

Therefore [cf. (1.14)], for α ∈ (0, 1
d
),

ϕ(α) = 1 − α −
((

1 − 1

d
− α

d − 1

)
∨ (1 − 2α)

)
.(6.8)

This expression is immediately seen to coincide with (1.5) for α ∈ (0, 1
d
) near 0

and 1
d

, and α∗ is precisely the value for which 1− 1
d
− α∗

d−1 = 1−2α∗, so that (6.8),
and hence (1.14), agrees with (1.5). �

Thanks to Corollary 6.3, the lower bounds on T disc
N of Theorem 1.1 will be es-

tablished once we show Theorem 6.1. Let us give a rough outline of the strategy
of the proof. In the previous section, we have shown that if K = X([0,D[Nβ ]])
1
3 -disconnects B(α), then there must be a wealth of subcubes of B(α) such
that X([0,D[Nβ ]]) contains a surface of points in every subcube (see Lemmas
5.3 and 5.4 for the precise statements and Figure 3 for an illustration). The crucial
upper bound on the probability of an event of this form is obtained in Lemma 6.5,
using Khaśminskii’s lemma to obtain an exponential tail estimate on the number of
points visited by X during a suitably defined excursion. This upper bound is then
applied in order to find the needed large deviations estimate of the form (1.10). We
begin by collecting the required estimates involving the Green function [cf. (2.25)].

LEMMA 6.4 (d ≥ 2, N,a ≥ 1, 100 ≤ a ≤ 4N , A ⊆ B ⊆ Sa).

P 0
x [HX

A < HX
Bc ] ≤

∑
y∈A gB(x, y)

infy∈A

∑
y′∈A gB(y, y′)

for x ∈ B.(6.9)

For any x, x′ ∈ Sa , one has

gSa (x, x′) ≤ c(1 ∨ |x − x′|∞)1−d exp
{
−c′ |x − x′|∞

a

}
.(6.10)
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If diam(A) ≤ a
100 [cf. (2.4)] and A ⊆ B−(a/10) [cf. (2.3)], then, for x, x′ ∈ A,

c|x − x′|1−d∞ ≤ gB(x, x′).(6.11)

PROOF. The estimate (6.9) follows from an application of the strong Markov
property at HX

A . The estimate (6.10) follows from the bound on the Green func-
tion of the simple random walk on Zd+1 killed when exiting the slab Zd ×
[−[a], [a]] in (2.13) of Sznitman [11]. For (6.11), we note that, by assumption,
B∞(x, a

10) ⊆ B . In particular, it follows from translation invariance that

gB(x, x′) ≥ gB∞(0,a/10)(0, x − x′).(6.12)

By assumption a
10 ≤ 2N

5 , so the right-hand side of (6.12) can be identified with
the corresponding Green function for the simple random walk on Zd+1, and (6.11)
follows from the estimate of Lawler [9], page 35, Proposition 1.5.9. �

We now introduce, for sets U , Ũ ⊆ E, the times (R̃n)n≥1 and (D̃n)n≥1 as the
times of return to U and departure from Ũ [cf. (2.24)] and denote with π∗ and π∗∗
elements of the set of projections {π1, . . . , πd+1}. The next lemma then provides a
control on an event of the form [cf. (2.3), (2.8)]

A
U,Ũ,l,M1,M2(6.13)

= ⋃
π∗,π∗∗

⋃
E⊆U(−l)

|y−y′|∞≥l for y,y′∈E ,

|π∗(E)|≥M1

⋂
y∈E

{∣∣π∗∗
(
X([0, D̃M2]) ∩ Cy(l)

)∣∣ ≥ cld
}
.

Our method does not produce a useful upper bound when d = 2 [note that when
d = 2, the right-hand side of (6.14) is greater than 1 for N ≥ c]. Although it is
possible to obtain a bound for d = 2 tending to 0 as N → ∞, using estimates on
the Green function in dimension 2, it does not seem to be possible to obtain an
exponential decay in N with this approach. Thus, the upper bound we have for
d = 2 brings little information on the large deviations problem (1.10).

LEMMA 6.5 (d ≥ 3, N, l, a,M1,M2 ≥ 1, 100 ≤ a ≤ 4N , 1 ≤ l ≤ a
100 ). Let U ,

Ũ ⊆ E be sets such that U ⊆ U(a/10) ⊆ Ũ ⊆ x∗ + Sa [cf. (2.2), (1.9)]. Then one
has the estimate

sup
x∈E

P 0
x [A

U,Ũ,l,M1,M2
] ≤ exp{c′M2 + c′M1 logN − c′′M1a

−1ld−1}(6.14)

[on the event defined in (6.13)].

PROOF. In order to abbreviate the notation, we denote the event in (6.13) by A

during the proof. Furthermore, by replacing E with a subset, we may assume that

|π∗(E)| = |E | = M1.(6.15)



DISCONNECTION 1481

Also, translation invariance allows us to set x∗ = 0.
The first step is to note that the number of possible choices of the set E in the

definition of A is not larger than

|U ||E | (6.15)≤ (cN)(d+1)M1 ≤ exp{cM1 logN}.
Next, we note that visits made by the random walk X to Cy(l), y ∈ E , can only
occur during the time intervals [R̃n, D̃n], n ≥ 1 (because E ⊆ U(−l)). From these
observations, we deduce that

sup
x∈E

P 0
x [A]

≤ cecM1 logN(6.16)

× sup
x,E ,π∗,π∗∗

P 0
x

[
M2∑
n=1

∑
y∈E

∣∣π∗∗
(
X([R̃n, D̃n]) ∩ Cy(l)

)∣∣ ≥ cM1l
d

]
,

where the supremum is taken over all x ∈ E, and all possible sets E and
projections π∗, π∗∗ entering the definition of the event A. By the exponential
Chebyshev inequality and the strong Markov property applied inductively at
R̃M2, R̃M2−1, . . . , R̃1, it follows from (6.16) that, for any r ≥ 1, supx∈E P 0

x [A] is
bounded by

cecM1 logN−crM1l
d

× sup
x,E ,π∗,π∗∗

E0
x

[
exp

{
M2∑
n=1

∑
y∈E

r
∣∣π∗∗

(
X([0, D̃1]) ∩ Cy(l)

)∣∣ ◦ θ
R̃n

}]

(6.17)
(Markov)≤ cecM1 logN−crM1l

d

× sup
E ,π∗,π∗∗

(
sup
x∈U

E0
x

[
exp

{∑
y∈E

r
∣∣π∗∗

(
X([0, D̃1]) ∩ Cy(l)

)∣∣}])M2

.

Before deriving an upper bound on this last expectation, we introduce the follow-
ing notational simplification: for any point z ∈ Cy(l), we denote its fiber in Cy(l)

of points of equal π∗∗-projection by Jz, or in other words, for z ∈ Cy(l),

Jz = {z′ ∈ Cy(l) :π∗∗(z′) = π∗∗(z)}.
The collection of all fibers in the box Cy(l) is denoted by

F(y) = {Jz : z ∈ Cy(l)},(6.18)

and the collection of all fibers by

F = ⋃
y∈E

F(y).(6.19)
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Using this notation, we have [cf. (2.22)]∑
y∈E

∣∣π∗∗
(
X([0, D̃1]) ∩ Cy(l)

)∣∣ = ∑
J∈F

1{HX
J <D̃1}.(6.20)

By the version of Khaśminskii’s lemma of (2.46) of Dembo and Sznitman [4] (see
also [8]), we see that for any x ∈ U and r ≥ 0,

E0
x

[
exp

{
r
∑
J∈F

1{HX
J <D̃1}

}]
≤ ∑

k≥0

rk

(
sup
x∈U

E0
x

[∑
J∈F

1{HX
J <D̃1}

])k

.(6.21)

Writing [cf. (6.18), (6.19)]∑
J∈F

1{HX
J <D̃1} = ∑

y∈E

∑
J∈F(y)

1{HX
J <D̃1},

for any x ∈ U , the strong Markov property applied at HX
Cy(l) yields

E0
x

[∑
J∈F

1{HX
J <D̃1}

]

= ∑
y∈E

E0
x

[
HX

Cy(l) < D̃1,
∑

J∈F(y)

(
1{HX

J <D̃1}
) ◦ θHX

Cy(l)

]
(6.22)

≤ ∑
y∈E

P 0
x

[
HX

Cy(l) < D̃1
]

sup
z∈Cy(l)

E0
z

[ ∑
J∈F(y)

1{HX
J <D̃1}

]
.

To bound the right-hand side of (6.22), we note that, for any z ∈ Cy(l) and k ∈
{0, . . . , l − 1}, at most c(1 ∨ k)d−1 of the fibers J ∈ F(y) are at | · |∞-distance
1 ∨ k from Jz and thus deduce that, for any z ∈ Cy(l),

E0
z

[ ∑
J∈F(y)

1{HX
J <D̃1}

]

(6.23)

≤ c

l−1∑
k=0

(1 ∨ k)d−1 sup
z′ : |π∗∗(z−z′)|∞=k

P 0
z [HX

Jz′ < D̃1].

For this last probability, we use the estimate (6.9), applied with A = Jz′ , B = Ũ

and x = z. With the help of (6.10) and the assumption that Ũ ⊆ Sa , the nu-
merator of the right-hand side of (6.9) can then be bounded from above by
clk1−d , while the denominator is trivially bounded from below by 1. We thus ob-
tain

sup
z′ : |π∗∗(z−z′)|=k

P 0
z [HX

Jz′ < D̃1] ≤ clk1−d .
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With (6.23), this yields

E0
z

[ ∑
J∈F(y)

1{HX
J <D̃1}

]
≤ cl2 for any z ∈ Cy(l).

Coming back to (6.22), we obtain

E0
x

[∑
J∈F

1{HX
J <D̃1}

]
≤ cl2

∑
y∈E

P 0
x

[
HX

Cy(l) < D̃1
]

for any x ∈ U.(6.24)

For this last sum, we proceed as before: Note that, by (6.15), the sum can be re-
garded as a sum over the set π∗(E), which is a subset of the d-dimensional lattice
π∗(E). Since moreover |y−y′|∞ ≥ l for all y, y′ ∈ E , there are at most c(1∨k)d−1

points in π∗(E) of | · |∞-distance between kl and (k+1)l from π∗(x). We therefore
have, for any x ∈ U ,∑

y∈E

P 0
x

[
HX

Cy(l) < D̃1
]

(6.25)

≤ c

∞∑
k=0

(1 ∨ k)d−1 sup
y∈E : |π∗(y−x)|≥kl

P 0
x

[
HX

Cy(l) < D̃1
]
.

In order to bound this last probability, we again use the estimate (6.9), this time
with A = Cy(l) and B = Ũ . By (6.10), our assumption that Ũ ⊆ Sa then allows
us to bound the numerator of the right-hand side of (6.9) from above by cld+1(1 ∨
lk)1−de−c′lk/a , while our assumptions l ≤ a

100 and Cy(l) ⊆ U ⊆ Ũ (−a/10) allow
us to use (6.11) and find the lower bound of cl2 on the denominator. We thus
have

sup
y∈E :|π∗(y−x)|≥lk

P 0
x

[
HX

Cx′ (l) < D̃1
] ≤ c(1 ∨ k)1−de−c′(lk/a).

With (6.25), this yields∑
y∈E

P 0
x

[
HX

Cy(l) < D̃1
] ≤ c

a

l
for any x ∈ U,

which we insert into (6.24) to obtain

sup
x∈U

E0
x

[∑
J∈F

1{HX
J <D̃1}

]
≤ c8al.

Choosing r = 1
2c8al

in (6.21), we infer that

E0
x

[
exp

{
1

2c8al

∑
J∈F

1{HX
J <D̃1}

}]
≤ 2 for any x ∈ U.
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Coming back to (6.17) with r as above and remembering (6.20), we deduce (6.14)
and thus complete the proof of Lemma 6.5. �

The remaining part of the proof of Theorem 6.1 is essentially an application of
Lemma 6.5 together with the geometric Lemmas 5.1–5.4 showing that the event
on the left-hand side of (1.10) is contained in a union of events of the form (6.13).
For α < 1

d
, all that remains to be done is to combine Lemma 5.5 with Lemma 6.5.

For α ≥ 1
d

, that is, for B(α) = B∞(0, [N/4]), we additionally use an upper bound
on the probability that the random walk X makes a certain number of excursions
between Cx∗(L) and (Cx∗(L)(L))c until time D[Nβ ] for x∗ ∈ B∞(0, [N/4]) and L

as in (5.1) (cf. Lemma 6.6) before we apply the geometric Lemmas 5.1 and 5.3
and the estimate (6.14) with U = Cx∗(L).

PROOF OF THEOREM 6.1—CASE α < 1
d

. In this case, we have to show (1.10)
with f illustrated on the left-hand side of Figure 2 (below Theorem 1.2) and
[Ndα∧1] = [Ndα]. Lemma 5.4 implies that, for l as in (5.1) and the event A·,·,·,·,·
defined in (6.13),

{
UB(α) ≤ D[Nβ ]

} ⊆ AS2[Ndα ],S4[Ndα ],l,cNd−1+dαl−d ,[Nβ ]
(def.)= A′

N.(6.26)

Lemma 6.5, applied with a = 4[Ndα] and x∗ = 0, yields

sup
x∈S2Ndα

P 0
x [A′

N ] ≤ exp{cNβ + cNd−1+dα−dγ logN − c′Nd−1−γ }.(6.27)

In view of (5.1), we have 0 < γ < dα, and provided d − 1 + dα − dγ < d − 1 − γ

and β < d − 1 − γ , that is, if

dα

d − 1
< γ < dα, β < d − 1 − γ,(6.28)

then (6.26) and (6.27) together show that

sup
x∈S2[Ndα ]

P 0
x

[
UB(α) ≤ D[Nβ ]

] ≤ exp{−cNd−1−γ }.(6.29)

For β ∈ (0, d − 1 − dα
d−1), d ≥ 3, the constraints (6.28) are satisfied by γ0 =

dα
d−1 + ε0(d,β) for ε0(d,β) > 0 sufficiently small. Moreover, d − 1 − γ0 =
d − 1 − dα

d−1 − ε0(d,β)
(6.1)= f (α,β) − ε0(d,β). Since we can make ε0(d,β) > 0

arbitrarily small, (6.29) thus shows (1.10) for the case α ∈ (0, 1
d
). This completes

the proof of Theorem 6.1 in the case α < 1
d

. �

PROOF OF THEOREM 6.1—CASE α ≥ 1
d

. Recall that in this case we have to
find an estimate of the form (1.10) with the function f illustrated on the right-hand
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side of Figure 2 (below Theorem 1.2) and with B(α) = B∞(0, [N/4]) [cf. (1.7)].
In order to apply Lemma 6.5 with U = Cx∗(L) ⊆ B(α), L as in (5.1), we consider

R̃x∗
n , D̃x∗

n , n ≥ 1, the successive returns to Cx∗(L)
(6.30)

and departures from Cx∗(L)(L) [cf. (2.2), (2.24)].

The following lemma, in the spirit of Dembo and Sznitman [4], provides an es-
timate on the number of excursions between Cx∗(L) and (Cx∗(L)(L))c occurring
during the [Nβ] excursions under consideration in (1.10).

LEMMA 6.6 (d ≥ 2, α ≥ 1
d

, β > 0, γ ′ ∈ (0,1), L = [Nγ ′ ], m,N ≥ 1). For

x ∈ S2N , x∗ ∈ B∞(0, [N/4]) and R̃x∗
m defined in (6.30),

P 0
x

[
R̃x∗

m ≤ D[Nβ ]
] ≤ c exp{cN1−dLd−1Nβ − c′m}.(6.31)

PROOF. We follow the proof of Lemma 2.3 by Dembo and Sznitman [4].
Since Cx∗(L) ⊆ S2N , visits made by X to Cx∗(L) can only occur during the time
intervals [Ri ,Di], i ≥ 1; cf. above (1.10). Let us denote the number of excursions
between Cx∗(L) and (Cx∗(L)(L))c performed by X during [Ri ,Di] by Ni , that
is,

Ni = |{n ≥ 1 :Ri ≤ R̃x∗
n ≤ Di}|, i ≥ 1.

Note that one then has Ni = N1 ◦ θRi
, i ≥ 1. For any λ > 0, x ∈ S2N ,

x∗ ∈ B∞(0, [N/4]), we apply the strong Markov property at R2 and deduce
that

P 0
x

[
R̃x∗

m ≤ D[Nβ ]
]

≤ P 0
x

[{
N1 ≥

[
m

2

]}
∪ θ−1

R2

{
N1 + · · · + N[Nβ ]−1 ≥

[m

2

]}]

≤ P 0
x

[
N1 ≥

[
m

2

]]
+ sup

x∈S2N : |xd+1|=2N

P 0
x

[[Nβ ]−1∑
i=1

Ni ≥
[
m

2

]]
.

With the strong Markov property applied inductively at R[Nβ ]−1,R[Nβ ]−2, . . . ,R1
to the second term on the right-hand side, one infers that

P 0
x

[
R̃x∗

m ≤ D[Nβ ]
]

(6.32)

≤ e−λ[m/2]
(
E0

x[eλN1] + sup
x∈S2N : |xd+1|=2N

E0
x[eλN1]([Nβ ]−1)

)
.

For any x ∈ S2N ,

E0
x[eλN1] = 1 + (eλ − 1)

∑
n≥0

eλnP 0
x [N1 > n].(6.33)
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Applying the strong Markov property and the invariance principle as in [4], (2.16)
and below, we find that

P 0
x [N1 > n] ≤ (1 − c)nP 0

x [N1 > 0].(6.34)

Choosing λ > 0 such that eλ(1 − c) < 1 with c as in (6.34), and coming back to
(6.33), we see that for any x ∈ S2N ,

E0
x[eλN1] ≤ 1 + c(λ)P 0

x [N1 > 0].(6.35)

If we consider |xd+1| = 2N , then we can apply the estimate (6.9) to P 0
x [N1 > 0] =

P 0
x [HX

Cx∗ (L) < D1] with A = Cx∗(L), B = S4N , a = 4N and then use the Green
function estimates (6.10) for the numerator and (6.11) for the denominator of the
right-hand side of (6.9), to obtain, for N ≥ c(γ ′),

P 0
x [N1 > 0] ≤ cLd−1N1−d .

With (6.35), this yields, for any x ∈ S2N with |xd+1| = 2N ,

E0
x[eλN1] ≤ 1 + c(λ)Ld−1N1−d .(6.36)

By (6.35), the first expectation on the right-hand side of (6.32) is bounded
by a constant and with (6.36), the second expectation is bounded by 1 +
c(λ)Ld−1N1−d . The estimate (6.31) follows and the proof of Lemma 6.6 is com-
plete. �

We proceed with the proof of Theorem 6.1 when α ≥ 1
d

. For any x ∈ S2N and
m ≥ 1, we find

P 0
x

[
UB∞(0,[N/4]) ≤ D[Nβ ]

]
≤ P 0

x

[
for some x∗ ∈ B∞(0, [N/4]) : R̃x∗

m ≤ D[Nβ ]
]

+ P 0
x

[
UB∞(0,[N/4]) ≤ D[Nβ ],(6.37)

for all x∗ ∈ B∞(0, [N/4]) : R̃x∗
m > D[Nβ ]

]
(def.)= P1 + P2.

Applying Lemma 6.6 to P1, we obtain

P1 ≤ cNd+1 sup
x∗∈B∞(0,[N/4])

P 0
x

[
R̃x∗

m ≤ D[Nβ ]
]

(6.38)
(6.31)≤ cNd+1 exp{cN1−dLd−1Nβ − c′m}.

In order to bound P2 in (6.37), we apply the geometric Lemmas 5.1 and 5.3. To-
gether, they imply, for N ≥ c(γ, γ ′), the following inclusions for the event A·,·,·,·,·
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defined in (6.13):{
UB∞(0,[N/4]) ≤ D[Nβ ], for all x∗ ∈ SN : R̃x∗

m > D[Nβ ]
}

(Lemma 5.1)⊆ ⋃
x∗∈B∞(0,[N/4]),

Cx∗ (L)⊆B∞(0,[N/4])

{
X([0, D̃x∗

m ]) 1
4 -disconnects Cx∗(L)

}
(6.39)

(Lemma 5.3)⊆ ⋃
x∗∈B∞(0,[N/4]),

Cx∗ (L)⊆B∞(0,[N/4])

ACx∗ (L),Cx∗ (L)(L),l,c(L/l)d ,m.

Since 1 ≤ l ≤ 2L
100 [cf. (5.1)] and Cx∗(L)(2L/10) ⊆ Cx∗(L)(L) ⊆ x∗ + S2L for x∗ ∈

B∞(0, [N/4]) and N ≥ c(γ, γ ′), we can apply Lemma 6.5 with a = 2L to obtain,
for P2 in (6.37),

P2
(6.39)≤ Nd+1 sup

x∗∈B∞(0,[N/4])
P 0

x

[
ACx∗ (L),Cx∗ (L)(L),l,c(L/l)d ,m

]
(Lemma 6.5, a=2L)≤ Nd+1 exp{cm + cLdl−d logN − c′Ld−1l−1}.

With (6.38) and (6.37), this estimate yields

sup
x∈S2N

P 0
x

[
UB∞(0,[N/4]) ≤ D[Nβ ]

]

≤ cNd+1 exp
{
cNβ−(d−1)(1−γ ′) − c′m

}
(6.40)

+ Nd+1 exp
{
cm + cNdγ ′−dγ logN − c′N(d−1)γ ′−γ }.

In view of (5.1), 0 < γ < γ ′ < 1, and provided β −(d −1)(1−γ ′) < (d −1)γ ′ −γ

and dγ ′ − dγ < (d − 1)γ ′ − γ , that is, if

0 < γ < γ ′ < 1, β < d − 1 − γ, γ ′ < (d − 1)γ,(6.41)

then the right-hand side of (6.40) is bounded from above by exp{−cN(d−1)γ ′−γ }
for mN = [c′′Nβ−(d−1)(1−γ ′)] and N ≥ c(γ, γ ′), for a large enough constant
c′′ > 0. Hence, for γ, γ ′ satisfying (6.41), one has, for N ≥ c(γ, γ ′),

sup
x∈S2N

P 0
x

[
UB∞(0,[N/4]) ≤ D[Nβ ]

] ≤ exp
{−cN(d−1)γ ′−γ }.(6.42)

For 0 < β < d − 1 − 1
d−1 , d ≥ 3, it is easy to check that the constraints (6.41)

are satisfied by γ1 = 1
d−1 − ε1(d,β)

2(d−1)
and γ ′

1 = 1 − ε1(d,β) for ε1(d,β) > 0 small

enough. Moreover, (d − 1)γ ′
1 − γ1 = d − 1 − 1

d−1 − cε1(d,β) = f (α,β) −
cε1(d,β). By (6.42), this is enough to show (1.10), since we can make ε1(d,β) > 0
arbitrarily small.
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If, on the other hand, d − 1 − 1
d−1 ≤ β < d − 1, the constraints (6.41) are sat-

isfied by γ2 = d − 1 − β − ε2(d,β)
2(d−1)

and γ ′
2 = (d − 1)(d − 1 − β) − ε2(d,β) for

ε2(d,β) > 0 sufficiently small and

(d − 1)γ ′
2 − γ2 = (

(d − 1)2 − 1
)
(d − 1 − β) − cε2(d,β)

(6.1)= f (α,β) − cε2(d,β),

which yields (1.10) for this range of β as well. This completes the proof of Theo-
rem 6.1 for α ≥ 1

d
and hence the proof of Theorem 6.1 altogether. �

REMARK 6.7. It is easy to see from Theorem 1.2 that the exponents in the
upper and lower bounds on T disc

N for α < 1 in (1.4) would match if one could
show that the large deviations estimate (1.10) holds with the function f ∗ defined
in (1.15). It may therefore be instructive to modify (1.10) by replacing the time
UB(α) by U, defined as

U = inf
{
n ≥ 0 :X([0, n]) ⊇ Td

N × {0}}.
One can then show that f ∗ is indeed the correct exponent of the corresponding
large deviations problem, in the following sense: For any α, β > 0, 0 < ξ1 <

f ∗(α,β) < ξ2, one has

lim
N→∞

1

Nξ1
log sup

x∈S2[Ndα∧1]
P 0

x

[
U ≤ D[Nβ′ ]

]
< 0 for any 0 < β ′ < β,(6.43)

as well as

lim
N→∞

1

Nξ2
log inf

x∈S2[Ndα∧1]
P 0

x

[
U ≤ D[Nβ′ ]

] = 0 for any β ′ > β.(6.44)

To show (6.43), one notes that standard estimates on one-dimensional random
walk imply that the expected amount of time spent by the random walk X in
Td

N × {0} during one excursion is of order Ndα∧1. With this information and
the observation that P 0· [U ≤ D[Nβ′ ] ] ≤ P 0· [|X([0,D[Nβ′ ]]) ∩ Td

N × {0}| ≥ Nd ],
one can apply Khaśminskii’s lemma as in the proof of Lemma 6.5 to find the
claimed upper bound. For (6.44), one can follow a similar route as in the deriva-
tion of the upper bounds on T disc

N . One can first establish Lemma 3.5 and hence
the estimate (3.26) with ∞ replaced by D1, and then show that for S̄· de-
fined in (3.7) and aN as in (3.32), P 0· [S̄[c1aN ] ≤ D1] ≥ (1 − cN−dα∧1)c1aN ≥
c exp{−c′Nd−(dα∧1)(logN)2}, where the first inequality follows essentially from
standard estimates on one-dimensional random walk. This is enough for (6.44)
with β < d − (dα ∧ 1). For β ≥ d − (dα ∧ 1), one uses again that the expected
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number of visits to Td
N × {0} during one excursion is of order Ndα∧1, and finds

that P 0· [S̄[c1aN ] < D[Nβ′ ]] → 1 as N → ∞ for any β ′ > β ≥ d − (dα ∧ 1). Using
(3.26) for the second inequality, one deduces that for N ≥ c(β ′),

P 0·
[
CV

Td
N

> [c1aN ]|S̄[c1aN ] < D[Nβ′ ]
] ≤ 2P 0·

[
CV

Td
N

> [c1aN ]] ≤ 2

N10 ,

hence

P 0·
[
U ≤ D[Nβ′ ]

] ≥ P 0·
[
CV

Td
N

≤ [c1aN ]|S̄[c1aN ] < D[Nβ′ ]
]
P 0·

[
S̄[c1aN ] < D[Nβ′ ]

]
→ 1,

thus (6.44) for β ≥ d − (dα ∧ 1). Note that (6.44) and {U ≤ D[Nβ′ ]} ⊆ {UB(α) ≤
D[Nβ′ ]} together imply that, for any function f in the estimate (1.10), one has
f (α,β ′) ≤ f ∗(α,β) for any α, β > 0, β ′ > β , so that f (α,β) ≤ f ∗(α,β) when-
ever f (α, ·) is right-continuous at β .
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