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ANALYTIC CROSSING PROBABILITIES FOR CERTAIN BARRIERS
BY BROWNIAN MOTION

BY NABIL KAHALE

ESCP-EAP

We calculate crossing probabilities and one-sided last exit time densities
for a class of moving barriers on an interval [0, T ] via Schwartz distributions.
We derive crossing probabilities and first hitting time densities for another
class of barriers on [0, T ] by proving a Schwartz distribution version of the
method of images. Analytic expressions for crossing probabilities and related
densities are given for new explicit and semi-explicit barriers.

1. Introduction. Let Wt be a standard Brownian motion and g a continuous
function on an interval [0, T ]. For any real number u, consider the first hitting time

τ(u) =
{

inf{t ∈ [0, T ) :u + Wt = g(t)}, if such t exists,
T , otherwise.

(1)

Define the boundary-crossing probability with respect to g as P(τ(0) < T ). The
calculation of boundary-crossing probabilities or other functionals of the first hit-
ting time density arises in several areas such as statistical testing [7, 23], the
valuation of barrier options [9, 14, 24] and default modeling [2, 11]. Closed-
form formulae for boundary-crossing probabilities or first time hitting densities
are known for few barriers other than the well-known case of linear boundaries.
For quadratic boundaries, analytic relations [10, 25] between the first hitting time
density and Airy functions have been established. First hitting times for square-
root boundaries have been studied in [1, 7, 26]. Analytic expressions involving
hypergeometric functions are given in [17] for densities of the first hitting times
inf{t ≥ 0 :Wt ≥ a + b

√
c + t} and inf{t ≥ 0 : |Wt | ≥ b

√
c + t}. Using the method

of images [4, 5], crossing probabilities and first hitting time densities have been
calculated for a class of moving barriers via σ -finite measures. The method of im-
ages is studied in detail in [15], Chapter I. Using the well-known result that tW1/t

is a Brownian motion, a correspondence has been established [15], Chapter I, be-
tween the method of images and the so-called method of weighted likelihood func-
tions [22, 23] (see also [12], Section 4.3). A relation between the densities of the
last exit time and the first hitting time for the time-reversed boundary is shown
in [25].
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This paper provides crossing probabilities for new moving barriers. Our ap-
proach is inspired from the reflection principle (see, e.g., [21], page 105) that
shows that a constant barrier-crossing probability is twice the probability that WT

is beyond the barrier. The reflection principle can be easily generalized as follows.
If g(0) > 0 and A is a Borel subset of [g(T ),+∞) such that the probability that a
Brownian motion starting at g(t) at time t belongs to A at time T is a constant c

independent of t , then P(τ(0) < T ) = P(WT ∈ A)/c. Theorem 2.5 gives a further
generalization of the reflection principle by showing that the crossing probability
for certain moving barriers can be retrieved from the density of WT via Schwartz
distributions. The probabilistic basis for the proof of Theorem 2.5 is closely related
to Fortet’s equation ([8], page 217),

1√
T

N ′
(

u − v√
T

)
= E

(
1√

T − τ(u)
N ′

(
g(τ(u)) − v√

T − τ(u)

))

valid for u ≤ g(0) and v > g(T ), where N(x) = (2π)−1/2 ∫ x
−∞ exp(−u2/2) du.

Fortet’s equation has been used to establish integral equations [18] and numerical
approximations (see [2] and references therein) for the first hitting time density. To
our knowledge, though, it has not been previously applied to establish closed-form
formulae for curved boundary crossing probabilities. Section 3 gives an analytic
expression for the one-sided last exit time density for the barriers considered in
Theorem 2.5 under an additional smoothness condition. In Section 4, we show
through time-inversion that results in Sections 2 and 3 yield hitting probabilities
and first crossing-time densities for certain boundaries on [T ,+∞). Section 5 gen-
eralizes our results to two-sided boundaries. Section 6 establishes a Schwartz dis-
tribution version of the method of images by building upon our proof techniques.
Finally, Section 7 contains concluding remarks. The classical and the Schwartz
distribution versions of the method of images allow the calculation of the cross-
ing probability and of the first hitting time density for a class of barriers which is,
to our knowledge, unrelated to the one obtained via Theorem 2.5. Several exam-
ples illustrate our results. Except for one-sided and double-sided linear barriers,
where crossing probabilities and related densities are known or can easily be de-
rived through classical tools, the results in our examples are new, to the best of our
knowledge. In particular, we give simple explicit formulae for boundary-crossing
probabilities and the one-sided last exit time densities when g(t) = a + b

√
T − t

and, under suitable conditions on a and b, when g(t) = a −
√

(T − t) ln( b
T −t

).

2. Crossing probabilities. Define the function H from R
2 to R

+ by

H(u, v) = P
(
τ(u) < T ∧ u + WT > v

)
.(2)

If μ is a Schwartz distribution or a σ -finite measure and u ∈ R, let

U(u, t;μ) =
⎧⎨
⎩

∫
N

(
u − v√
T − t

)
dμ(v), if 0 ≤ t < T ,

0, otherwise.
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A technical difficulty often encountered in this paper is the interchanging of
Schwartz distributions and integration in the measure-theoretic sense, which is
valid if certain conditions are met, as shown in Lemma 2.1, but may lead to erro-
neous conclusions if they are not, as shown in Example 3.

LEMMA 2.1. Let m1 be a finite measure on R, m2 a Schwartz distribution
on R with compact support K , and φ(t, v) a measurable function on R

2. Assume
there exists an open set V containing K and a sequence αk such that, for any

k ≥ 0, ∂k

∂vk φ(t, v) exists and is bounded in absolute value by αk for (t, v) ∈ R × V .
Then:

1. The function v 	→ ∫
φ(t, v) dm1(t) is C∞ on V .

2. The function t 	→ ∫
φ(t, v) dm2(v) is bounded and measurable on R.

3. ∫ (∫
φ(t, v) dm2(v)

)
dm1(t) =

∫ (∫
φ(t, v) dm1(t)

)
dm2(v).(3)

PROOF. Using the Lebesgue dominated convergence theorem, it can be
shown by induction on k that ∂k

∂vk

∫
φ(t, v) dm1(t) exists for v ∈ V and equals∫

∂k

∂vk φ(t, v) dm1(t). Hence the first assertion.

Since m2 is of finite order and | ∂k

∂vk φ(t, v)| ≤ αk on R × V , the function
t 	→ ∫

φ(t, v) dm2(v) is bounded on R. To show it is measurable, consider a se-
quence ψn of C∞ functions with compact support that converges, in the Schwartz
distribution sense, to m2. The sequence ψn can be chosen so that there exists
a compact K ′ ⊂ V containing the support of ψn for all n. Thus, for any t ,∫

φ(t, v)ψn(v) dv → ∫
φ(t, v) dm2(v) as n → ∞. Since the function φ(t, v)ψn(v)

is bounded and measurable on R
2, the function t 	→ ∫

φ(t, v)ψn(v) dv is measur-
able on R for any n. Thus, the function t 	→ ∫

φ(t, v) dm2(v) is measurable on R

as limit of measurable functions.
We now show the third assertion. The measure-theoretic version of Fubini’s

theorem shows that∫ (∫
φ(t, v)ψn(v) dv

)
dm1(t) =

∫ (∫
φ(t, v) dm1(t)

)
ψn(v) dv.(4)

By the first assertion, the right-hand side of (4) goes to the right-hand side of (3) as
n goes to infinity. We prove the third assertion by showing that the left-hand side
of (4) goes to the left-hand side of (3) as n goes to infinity.

We say that a set E of C∞ functions on R is bounded if the supports of all
elements of E are contained in the same compact and if there exists a sequence
βk such that |ξ (k)(v)| ≤ βk for ξ ∈ E, v ∈ R and k ≥ 0. It is known [20], The-
orem V.26, that if a sequence of Schwartz distributions converges to a Schwartz
distribution, it converges uniformly on any bounded set. Let η be a C∞ func-
tion on R with a compact support contained in V and such that η(v) = 1 on an
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open set containing K ∪ K ′. Since the set E = {φ(t, .)η, t ∈ R} is a bounded set,∫
φ(t, v)ψn(v) dv converges uniformly to

∫
φ(t, v) dm2(v) as n → ∞. As a con-

sequence, the left-hand side of (4) converges to the left-hand side of (3) as n → ∞.
�

PROPOSITION 2.2. For 0 ≤ t < T , the function N(
v−g(t)√

T −t
) is C∞ with re-

spect to v. For any k ≥ 0 and any closed subset S of R − {g(T )}, ∂k

∂vk N(
v−g(t)√

T −t
) is

bounded for (t, v) ∈ [0, T ) × S.

PROOF. For 0 ≤ t < T , ∂k

∂vk N(
v−g(t)√

T −t
) = (T − t)−k/2N(k)(

v−g(t)√
T −t

), where N(k)

is the kth derivative of the normal function. Let ε > 0 be the minimum distance
between S and g(T ). Since g is continuous at T , there exists s ∈ [0, T ) such that
|g(t) − g(T )| < ε/2 for s ≤ t ≤ T . For v ∈ S and 0 ≤ t < s, ∂k

∂vk N(
v−g(t)√

T −t
) is

bounded by a constant independent of v and t since the function N(k) is bounded.
On the other hand, for v ∈ S and s ≤ t < T , |v − g(t)| ≥ ε/2. Since the function
xkN(k)(x) is bounded, | ∂k

∂vk N(
v−g(t)√

T −t
)| ≤ (

2|v−g(t)|
ε
√

T −t
)k|N(k)(

v−g(t)√
T −t

)| is also bounded
by a constant independent of v and t for v ∈ S and s ≤ t < T . �

PROPOSITION 2.3. If u ≤ g(0) and v ≥ g(T ), then H(u, v) = N(u−v√
T

).

PROOF. If u + WT > g(T ), then τ(u) < T a.s. since Wt is a.s. a continuous
function of t . Thus, for v ≥ g(T ),

P
(
τ(u) < T ∧ u + WT > v

) = P(u + WT > v)

= N

(
u − v√

T

)
. �

LEMMA 2.4. 1. For fixed u, the function H(u, ·) is C∞ on R − {g(T )}.
2. If ν is a Schwartz distribution with a compact support contained in R −

{g(T )} then, for any real number u,∫
H(u, v) dν(v) = E(U(g(τ(u)), τ (u);ν)).(5)

PROOF. Let m1 be the image measure of the random variable τ(u) and
φ(t, v) = N(

g(t)−v√
T −t

) if 0 ≤ t < T , and φ(t, v) = 0 otherwise. We can write

H(u, v) = P
(
τ(u) < T ∧ u + WT > v

)
= E

(
1τ(u)<T P

(
u + WT > v|Fτ(u)

))
= E

(
1τ(u)<T P

(
WT − Wτ(u) > v − g(τ(u))|Fτ(u)

))
(6)
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= E(φ(τ(u), v))

=
∫

φ(t, v) dm1(t).

The second equality follows from the tower law and the fourth one from the strong
Markov property. It follows from (6), Proposition 2.2 and Lemma 2.1 that H(u, v)

is C∞ with respect to v on any open subset V of R such that g(T ) /∈ V . Hence,
the function H(u, ·) is C∞ on R − {g(T )}.

We show the second assertion:∫
H(u, v) dν(v) =

∫ (∫
φ(t, v) dm1(t)

)
dν(v)

=
∫ (∫

φ(t, v) dν(v)

)
dm1(t)

=
∫

U(g(t), t;ν) dm1(t)

= E(U(g(τ(u)), τ (u);ν)).

The first equality follows from (6) and the second one from (3). �

THEOREM 2.5. Let μn be a sequence of Schwartz distributions with com-
pact supports contained in [g(T ),+∞) such that, for 0 ≤ t < T , the sequence
U(g(t), t;μn) → 1 as n → ∞ and, for some constant c, |U(w, t;μn)| ≤ c for all
n, 0 ≤ t < T and w ≤ g(t). Then, for u ≤ g(0), U(u,0;μn) → P(τ(u) < T ) as
n → ∞.

PROOF. Given n and ε > 0, consider the Schwartz distribution νn,ε such that∫
ψ(v)dνn,ε(v) = ∫

ψ(v+ε) dνn(v) for any C∞ function ψ with compact support
on R. The support of νn,ε is contained is (g(T ),+∞) and so, by (5),∫

H(u, v) dνn,ε(v) = E(U(g(τ(u)), τ (u);νn,ε)).(7)

But it follows from Proposition 2.3 that the left-hand side of (7) is equal to
U(u,0;νn,ε). On the other hand, U(x, t;νn,ε) = U(x − ε, t;νn). By letting ε go
to 0 and using the Lebesgue dominated convergence theorem, (7) becomes

U(u,0;νn) = E(U(g(τ(u)), τ (u);νn)).

By applying once again the Lebesgue dominated convergence theorem, it follows
that U(u,0;νn) → P(τ(u) < T ) as n → ∞. �

COROLLARY 2.6. Let μ be a Schwartz distribution with a compact sup-
port included in [g(T ),+∞) such that, for some constant c and 0 ≤ t <

T , U(g(t), t;μ) = 1 and |U(w, t;μ)| ≤ c if w ≤ g(t). Then P(τ(u) < T ) =
U(u,0;μ) for u ≤ g(0).
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COROLLARY 2.7. Let μ be a σ -finite measure on [g(T ),+∞) such that
U(g(t), t;μ) = 1 for 0 ≤ t < T . Then P(τ(u) < T ) = U(u,0;μ) for u ≤ g(0).

REMARK 2.8. Let 0 ≤ t < T . A simple time-change argument shows that, for
u ≤ g(t), the probability that a Brownian motion starting at u at time t hits the
barrier g between t and T is equal to limn→∞ U(u, t;μn).

3. One-sided last exit time densities. Define

λ = sup{t ∈ (0, T ] :Wt = g(t)}
and

σ = sup{t ∈ (0, T ] :Wt ≥ g(t)}.
Observe that

P(σ ≤ t) = P
(
λ ≤ t ∧ WT ≤ g(T )

)
.

Denote by

N2(x, y;ρ) =
∫ x

−∞

∫ y

−∞
1

2π

√
1 − ρ2

exp
(
−u2 + v2 − 2ρuv

2(1 − ρ2)

)
dudv

the cumulative bivariate normal probability distribution function.

THEOREM 3.1. Under the assumptions of Theorem 2.5, for 0 < t ≤ T ,

P(σ ≤ t) = N

(
g(t)√

t

)
− lim

n→∞

∫
N2

(
g(t)√

t
,− v√

T
;−

√
t

T

)
dμn(v).(8)

Furthermore, if g is C1 on an open subset I of [0, T ] and the sequence
U(g(t), t;μ′

n) is uniformly bounded and converges to a continuous function of
t as t ∈ I and n → ∞, then

d

dt
P (σ ≤ t) = 1

2
√

t
N ′

(
g(t)√

t

)
lim

n→∞U(g(t), t;μ′
n)(9)

for t ∈ I .

PROOF. Let t ∈ (0, T ). By Remark 2.8,

P
(
Wt ≤ g(t) ∧ λ > t

) =
∫ g(t)

−∞
1√
t
N ′

(
u√
t

)
lim

n→∞U(u, t;μn)du

= lim
n→∞

∫ g(t)

−∞
1√
t
N ′

(
u√
t

)
U(u, t;μn)du

= lim
n→∞

∫ (∫ g(t)

−∞
1√
t
N ′

(
u√
t

)
N

(
u − v√
T − t

)
du

)
dμn(v)

= lim
n→∞

∫
N2

(
g(t)√

t
,− v√

T
;−

√
t

T

)
dμn(v).
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The second equation follows from the Lebesgue dominated convergence theorem
and the third one from Lemma 2.1 with m1(du) = du

1+u2 , m2 = μn, V = R and

φ(u, v) = (1 + u2) 1√
t
N ′( u√

t
)N( u−v√

T −t
)1u<g(t). Since

P(σ ≤ t) = P
(
λ ≤ t ∧ Wt ≤ g(t)

)
= P

(
Wt ≤ g(t)

) − P
(
Wt ≤ g(t) ∧ λ > t

)
,

we conclude that (8) holds. On the other hand, since
∂N2

∂x
(x, y;ρ) = N ′(x)N

(
y − ρx√
1 − ρ2

)

and [19]
∂N2

∂ρ
(x, y;ρ) = 1√

1 − ρ2
N ′(x)N ′

(
y − ρx√
1 − ρ2

)
,

∂

∂t
N2

(
g(t)√

t
,− v√

T
;−

√
t

T

)

= N ′
(

g(t)√
t

)(
N

(
g(t) − v√

T − t

)
∂

∂t

(
g(t)√

t

)
(10)

− 1

2
√

t (T − t)
N ′

(
g(t) − v√

T − t

))
.

Let Jn(t) = ∫
N2(

g(t)√
t
,− v√

T
;−

√
t
T
) dμn(v). If [s, t] ⊂ I with s < t ,

Jn(t) − Jn(s) =
∫ t

s

(∫
∂

∂θ
N2

(
g(θ)√

θ
,− v√

T
;−

√
θ

T

)
dμn(v)

)
dθ.(11)

Equation (11) can be derived by applying Lemma 2.1 with m1(dθ) = 1s≤θ≤t dθ ,

m2 = μn, φ(θ, v) = 1s≤θ≤t
∂
∂θ

N2(
g(θ)√

θ
,− v√

T
;−

√
θ
T
) and V = R. Combining (10)

and (11) yields

Jn(t) − Jn(s)

=
∫ t

s
N ′

(
g(θ)√

θ

)(
U(g(θ), θ;μn)

∂

∂θ

(
g(θ)√

θ

)
− 1

2
√

θ
U(g(θ), θ;μ′

n)

)
dθ

and so, by the Lebesgue dominated convergence theorem,

lim
n→∞Jn(t) − Jn(s)

= N

(
g(t)√

t

)
− N

(
g(s)√

s

)
(12)

−
∫ t

s
N ′

(
g(θ)√

θ

)
lim

n→∞
1

2
√

θ
U(g(θ), θ;μ′

n) dθ.
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Equation (9) follows by combining (8) and (12). �

EXAMPLE 1. Let μn(v) = 2δa+bT +2be2b(v−a−bT )1{a+bT <v<n} for n ≥ 0 and
g(t) = a + bt . Then

U(u, t;μn) → N

(
u − g(T )√

T − t

)
+ e2b(u−g(t))N

(
u + g(T ) − 2g(t)√

T − t

)

as n goes to infinity. By Theorem 2.5,

P
(
τ(0) < T

) = N

(−a − bT√
T

)
+ e−2abN

(
bT − a√

T

)
(13)

if a ≥ 0. By Theorem 3.1, for 0 < t < T ,

d

dt
P (σ ≤ t) = 1√

t

(
N ′(b

√
T − t)√

T − t
+ bN

(
b
√

T − t
))

N ′
(

g(t)√
t

)
.

By symmetry,

d

dt
P (λ ≤ t)

= 1√
t

(
2N ′(b

√
T − t)√

T − t
+ b

(
N

(
b
√

T − t
) − N

(−b
√

T − t
)))

(14)

× N ′
(

g(t)√
t

)

for 0 < t < T . Note that (13) agrees with the well-known formula [27], Corol-
lary 7.2.2, for linear barriers crossing. When a = b = 0, (14) is identical to the
well-known first arcsine law [21], page 112.

EXAMPLE 2. μ = 1
N(b)

δa and g(t) = a + b
√

T − t . By Corollary 2.7

P
(
τ(0) < T

) = N

( −a√
T

)/
N(b),(15)

if a + b
√

T ≥ 0. By Theorem 3.1, for 0 < t < T and any values of a, b,

P(σ ≤ t) = N

(
g(t)√

t

)
− 1

N(b)
N2

(
g(t)√

t
,− a√

T
;−

√
t

T

)

and

d

dt
P (σ ≤ t) = N ′(b)

2N(b)
√

t (T − t)
N ′

(
g(t)√

t

)
.
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By symmetry,

P(λ > t)

= 1

N(b)
N2

(
g(t)√

t
,− a√

T
;−

√
t

T

)
+ 1

N(−b)
N2

(−g(t)√
t

,
a√
T

;−
√

t

T

)

and

d

dt
P (λ ≤ t) = N ′(b)

2N(b)N(−b)

1√
t (T − t)

N ′
(

g(t)√
t

)
(16)

for 0 < t < T . Equation (15) agrees with the well-known formula [21], page 105,
for constant barriers crossing when b = 0. Here again, (16) is identical to the first
arcsine law when a = b = 0.

EXAMPLE 3. μ = √
2πbδ′

a , where b ≥ T . The conditions of Corollary 2.6

hold for g(t) = a −
√

(T − t) ln( b
T −t

). Thus P(τ(0) < T ) = √
b/T exp(− a2

2T
) if

a ≥ √
T ln(b/T ). By Theorem 3.1, for any value of a and 0 < t < T ,

P(σ ≤ t) = N

(
g(t)√

t

)
−

√
b

T
exp

(
− a2

2T

)
N

(
g(t) − at/T√

t (1 − t/T )

)

and

d

dt
P (σ ≤ t) = 1

2

√
1

t (T − t)
ln

b

T − t
N ′

(
g(t)√

t

)
.

Observe that the function g∗(t) = a +
√

(T − t) ln( b
T −t

) does satisfy the equation
U(g∗(t), t;μ) = 1 but U(w, t;μ) is not bounded for 0 ≤ t < T and w ≤ g∗(t).
Thus, neither the conditions nor the conclusion of Corollary 2.6 hold for g∗.

EXAMPLE 4. More generally, consider the Hermite polynomial Hn defined
by

dn

dxn
exp(−x2/2) = (−1)nHn(x) exp(−x2/2).

Thus H0(x) = 1, H1(x) = x, H2(x) = x2 − 1 and Hn+1(x) = xHn(x) − H ′
n(x)

for n ≥ 0. Moreover, Hn has n distinct zeros, and two successive zeros of Hn

enclose a single zero of Hn−1. For n ≥ 1, let zn be the largest zero of Hn and
let μ = √

2πb δ
(n)
a , with b ≥ exp(z2

n/2)T n/2/Hn−1(zn). For 0 ≤ t < T , let x(t)

be the largest solution to the equation Hn−1(x) exp(−x2/2) = (T − t)n/2/b and
g(t) = a − √

T − tx(t), with g(T ) = a. By Corollary 2.6, if 0 ≤ g(0), which is
equivalent to the conditions

a ≥ zn

√
T and bT −n/2Hn−1

(
a√
T

)
exp

(
− a2

2T

)
≤ 1,
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then

P
(
τ(0) < T

) = bT −n/2Hn−1

(
a√
T

)
exp

(
− a2

2T

)
.

For any value of a and 0 < t < T ,

d

dt
P (σ ≤ t) = Hn(x(t))

2Hn−1(x(t))
√

t (T − t)
N ′

(
g(t)√

t

)
.

When n = 2, g(t) = a − √
T − tx(t), where x(t) is the largest solution to the

equation x exp(−x2/2) = (T − t)/b. The function g(t) is, up to a translation and
time-reversion, identical to the upper boundary of a symmetric band used in [13] as
a confidence region for Brownian motion. Whether our techniques could be used
to compute analytically the crossing probability for the two-sided band, which has
been approximated numerically in [13], is a question that deserves further investi-
gation. Note that when n = 2 or n = 3, the function g can be expressed in terms of
the Lambert function defined as the multivalued inverse of the function w 	→ wew .
This has already been observed in [13] when n = 2. Efficient algorithms for com-
puting the Lambert function can be found in [3].

4. Time-inversion. If Wt is a standard Brownian motion, then

Ŵt =
{

0, if t = 0,
tT −1WT 2/t , if t > 0,

is also ([21], page 21) a standard Brownian motion. By letting ĝ(t) = tT −1g(T 2/t)

and

σ̂ = inf{t ≥ T :Wt ≥ ĝ(t)},
it follows that

P
(∃t ≥ T :Wt = ĝ(t)

) = P
(∃t ∈ (0, T ] :Wt = g(t)

)
(17)

and, for t > T ,
d

dt
P (σ̂ ≤ t) = − d

dt
P (σ ≤ T 2/t)(18)

if the latter derivative exists.

EXAMPLE 5. It follows from Example 2, (17) and (18) that, for ĝ(t) =
at/T + b

√
t2/T − t ,

P
(∃t ≥ T :Wt = ĝ(t)

) = N

( −a√
T

)/
N(b)

if a + b
√

T > 0. For t > T and any values of a, b,

d

dt
P (σ̂ ≤ t) = N ′(b)

2N(b)t
√

t/T − 1
N ′

(
ĝ(t)√

t

)
.
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5. Two-sided boundaries. Theorems 2.5 and 3.1 can be extended to two-
sided boundaries as follows. Let g0 and g1 be two continuous functions on [0, T ]
such that g1(t) < g0(t) for 0 ≤ t ≤ T . Define

τ(u) = inf{t ∈ [0, T ) :u + Wt = g0(t) or u + Wt = g1(t)}
and

σ = sup{t ∈ (0, T ] :Wt ≥ g0(t) or Wt ≤ g1(t)}.
If μ is a Schwartz distribution or a σ -finite measure, u ∈ R and 0 ≤ t < T , let
U0(u, t;μ) = U(u, t;μ) and

U1(u, t;μ) =
∫

N

(
v − u√
T − t

)
dμ(v).

THEOREM 5.1. Let μ0,n (resp. μ1,n) be a sequence of Schwartz distributions
with compact supports contained in [g0(T ),+∞) (resp. (−∞, g1(T )]) such that,
for 0 ≤ t < T , w = g0(t) or w = g1(t),

1∑
i=0

Ui(w, t;μi,n) → 1

as n → ∞ and, for g1(t) ≤ w ≤ g0(t), i ∈ {0,1}, all n and some constant c′,
|Ui(w, t;μi,n)| ≤ c′. Then, for g1(0) ≤ u ≤ g0(0),

P
(
τ(u) < T

) = lim
n→∞

1∑
i=0

Ui(u, t;μi,n).

Furthermore, for 0 < t ≤ T ,

P(σ ≤ t)

= lim
n→∞

1∑
i=0

(−1)i
(
N

(
gi(t)√

t

)
−

∫
N2

(
gi(t)√

t
,− v√

T
;−

√
t

T

)
dμ0,n(v)

−
∫

N2

(
gi(t)√

t
,

v√
T

;
√

t

T

)
dμ1,n(v)

)
.

Finally, if gi is C1 on an open subset I of [0, T ], for i ∈ {0,1}, and the sequence
U(gi(t), t;μ′

0,n −μ′
1,n) is uniformly bounded and converges to a continuous func-

tion of t as t ∈ I and n → ∞, then

d

dt
P (σ ≤ t) =

1∑
i=0

(−1)i

2
√

t
N ′

(
gi(t)√

t

)
lim

n→∞U
(
gi(t), t;μ′

0,n − μ′
1,n

)

for t ∈ I .
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EXAMPLE 6. Let g0(t) = a and g1(t) = b for 0 ≤ t ≤ T , where b < a. Define
μ0,n = 2

∑n
j=0(−1)j δa+j (a−b) and μ1,n = 2

∑n
j=0(−1)j δb+j (b−a). Then

Ui(w, t;μi,n) = 2
n∑

j=0

(−1)jN

(
(−1)i(w − gi(0)) + j (b − a)√

T − t

)

is positive and upper-bounded by 1 for i ∈ {0,1} and b ≤ w ≤ a. If w = a or
w = b, then

1∑
i=0

Ui(w, t;μi,n) = 1 + 2(−1)nN

(
(n + 1)(b − a)√

T − t

)
→ 1

as n → ∞. If b < 0 < a, Theorem 5.1 yields the well-known formula (see,
e.g., [21], Exercise 3.15, page 111, for a direct derivation)

P
(
τ(0) < T

) = 2
∞∑

j=0

(−1)jN

(−a + j (b − a)√
T

)

+ 2
∞∑

j=0

(−1)jN

(
b + j (b − a)√

T

)
.

Furthermore, for 0 < t < T ,

d

dt
P (σ ≤ t) = 1√

2πt(T − t)

(
N ′

(
a√
t

)
+ N ′

(
b√
t

))

×
(

1 + 2
∞∑

j=1

(−1)j exp
(
−j2(a − b)2

2(T − t)

))
.

EXAMPLE 7. Let μ0 = c−1δa and μ1 = c−1δb, where b < a and 2N( b−a

2
√

T
) <

c < 1. For 0 ≤ t ≤ T , let g0(t) be the largest solution to the equation

N

(
w − a√
T − t

)
+ N

(
b − w√
T − t

)
= c,

and g1(t) = a + b − g0(t). If b < 0 < a, then, by Theorem 5.1,

P
(
τ(0) < T

) = c−1N

( −a√
T

)
+ c−1N

(
b√
T

)

and

d

dt
P (σ ≤ t) = 1

2c
√

t (T − t)

(
N ′

(
g0(t)√

t

)
+ N ′

(
g1(t)√

t

))

×
(
N ′

(
g0(t) − a√

T − t

)
− N ′

(
g0(t) − b√

T − t

))
.
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6. Schwartz distributions and the method of images. Let Bt , t ≥ 0, be a
Brownian motion and f a continuous function on an interval [0, T ′] such that
f (0) > 0. Define the first hitting time τ by

τ = inf{t ∈ [0, T ′) :Bt = f (t)}.
Fix a real number T ∈ (0, T ′] and let h be the function from R to R

+ defined by

h(u) = P(τ < T ∧ BT ≤ u).

For 0 ≤ t ≤ T , let g(t) = f (T − t) and Wt = BT −t − BT . Thus, Wt is a Brownian
motion [21], page 21, on [0, T ] and WT = −BT . As before, the random variable
τ(u) and the function H are defined via (1) and (2), respectively. The following
proposition shows formally that the probability that a Brownian motion starting at
u at time 0 and ending at 0 at time T hits g equals the probability that a Brownian
motion starting at 0 at time 0 and ending at u at time T hits f .

PROPOSITION 6.1. For u < g(0), h′(u) = − ∂H
∂v

(u,0).

PROOF. By Lemma 2.4, H(u, ·) has a first derivative with respect to v at v = 0
since g(T ) = f (0) > 0. Similarly, using the relation h(u) = E(1τ<T N(

u−f (τ)√
T −τ

)),

it can be shown that h is C∞ on R − {g(0)}. For ε > 0,

P
(
τ(u) < T ∧ 0 < u + WT ≤ ε

)
= P

(
τ(u) < T ∧ u − ε ≤ BT < u

)
(19)

≥ P(τ < T ∧ u − ε ≤ BT < u).

To show the second equation, we observe that if τ < T and u − ε ≤ BT < u, then
Bt = f (t) for some t ∈ (0, T ). Thus, WT −t + BT = g(T − t) and so WT −t + u >

g(T − t). Since u < g(0) and W is a.s. continuous on [0, T ], we conclude that,
a.s., Wt ′ + u = g(t ′) for some t ′ ∈ [T − t, T ). Hence τ(u) < T a.s. It follows from
(19) that H(u,0) − H(u, ε) ≥ h(u) − h(u − ε). By letting ε → 0, we conclude
that h′(u) ≤ − ∂H

∂v
(u,0).

Similarly,

P
(
τ(u) < T ∧ −ε < u + WT ≤ 0

)
= P

(
τ(u) < T ∧ u ≤ BT < u + ε

)
(20)

≤ P(τ < T ∧ u ≤ BT < u + ε).

We show the second equation by noting that if τ(u) < T and u ≤ BT < u + ε,
then u + Wt = g(t) for some t ∈ (0, T ). Thus, u + BT −t − BT = f (T − t) and
BT −t ≥ f (T − t). Since f (0) > 0, we conclude that, a.s., Bt ′ = f (t ′) for some
t ′ ∈ (0, T − t], and so τ < T . It follows from (20) that H(u,−ε) − H(u,0) ≤
h(u + ε) − h(u), and so h′(u) ≥ − ∂H

∂v
(u,0). Thus h′(u) = − ∂H

∂v
(u,0), as desired.

�
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THEOREM 6.2. Let μ be a Schwartz distribution with compact support con-

tained in the interval (f (0),+∞). Assume that
∫

exp(
2f (t)v−v2

2t
) dμ(v) = 1 for

t ∈ (0, T ′]. Then

P(τ < T ) = N

(−f (T )√
T

)
+ U(f (T ),0;μ).(21)

If f is C1 on an open subset I of [0, T ′], then, for T ∈ I ,

∂

∂T
P (τ < T ) = 1

2T 3/2

∫
vN ′

(
f (T ) − v√

T

)
dμ(v).(22)

PROOF. Consider the Schwartz distribution ν = δ′
0 − μ′. For 0 ≤ t < T ,

U(g(t), t;ν) = U
(
f (T − t), t; δ′

0 − μ′)
= 1√

T − t

(
N ′

(
f (T − t)√

T − t

)
−

∫
N ′

(
f (T − t) − v√

T − t

)
dμ(v)

)

= 0.

It follows from Lemma 2.4 that
∫

H(u, v) dν(v) = 0 for any real number u and so,
by Proposition 2.3,

∂H

∂v
(u,0) =

∫
∂H

∂v
(u, v) dμ(v)

= −
∫ 1√

T
N ′

(
u − v√

T

)
dμ(v)(23)

= −U(u,0;μ′).

Using Proposition 6.1, we conclude that h′(u) = U(u,0;μ′) for u < f (T ). Since
h is a continuous function of u and is C1 on (−∞, f (T )), it follows that, for
u < f (T ),

h(u) =
∫ u

−∞
h′(x) dx

=
∫ u

−∞

(∫ 1√
T

N ′
(

x − v√
T

)
dμ(v)

)
dx

(24)

=
∫ (∫ u

−∞
1√
T

N ′
(

x − v√
T

)
dx

)
dμ(v)

= U(u,0;μ).

The third equation follows from Lemma 2.1 with m1(dx) = dx
1+x2 , m2 = μ,

φ(x, v) = (1 + x2)N ′(x−v√
T

)1x<u and V = (f (0),+∞).
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We infer from (24) that P(τ < T ∧BT ≤ f (T )) = U(f (T ),0;μ). On the other
hand, since the events τ < T ∧ BT > f (T ) and BT > f (T ) coincide up to a neg-
ligible set, P(τ < T ∧ BT > f (T )) = N(−f (T )/

√
T ). This concludes the proof

of (21).
Assume now that f is C1 on an open subset I of [0, T ′] containing T . Then

∂

∂T
P (τ < T ) =

∫
∂

∂T

(
f (T ) − v√

T

)
N ′

(
f (T ) − v√

T

)
dμ(v)

− ∂

∂T

(
f (T )√

T

)
N ′

(
f (T )√

T

)

=
∫

∂

∂T

( −v√
T

)
N ′

(
f (T ) − v√

T

)
dμ(v)

= 1

2T 3/2

∫
vN ′

(
f (T ) − v√

T

)
dμ(v).

The first equality can be justified by fixing a real number s such that [s, T ] ⊂ I

and applying Lemma 2.1 with m1(dt) = 1s≤t≤T dt , m2 = μ, V = R and φ(t, v) =
1s≤t≤T

∂
∂t

N(
f (t)−v√

t
). �

EXAMPLE 8. μ = bδ′
a , where a > 0 and b ≥ a exp(1 − a2

2T ′ ). Let f (0) = a/2
and f (t) = a + ty(t)/a for 0 < t ≤ T ′, where y(t) is the smallest solution to
the equation y(t) exp(y(t)) = −a exp(−a2

2t
)/b. The function f can be easily ex-

pressed in terms of the Lambert function. By Theorem 6.2, it follows after some
calculations that, for 0 < T < T ′,

P(τ < T ) = N

(−f (T )√
T

)
+

√
T

a − f (T )
N ′

(
f (T )√

T

)

and
d

dT
P (τ < T ) = 1

2T 3/2

(
a − T

a − f (T )

)
N ′

(
f (T )√

T

)
.

7. Concluding remarks. We conclude with the following remarks:

1. Our results can be adapted to other Markov processes, including discrete-time
Markov chains.

2. The condition |U(w, t;μn)| ≤ c for all n, 0 ≤ t < T and w ≤ g(t) in Theo-
rem 2.5 can be relaxed as follows: |U(w, t;μn)| ≤ c for all n, s ≤ t < T and
w ≤ g(t), for some fixed s ∈ [0, T ).

3. Another approach to prove Theorem 2.5 is to show that U(u, t;μ) satisfies the
partial differential equation

∂U

∂t
+ 1

2

∂2U

∂u2 = 0
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and to use the martingale properties of U(Wt, t;μ).
4. The Schwartz distributions in our examples were essentially found by inspec-

tion. The questions of establishing necessary and sufficient conditions for the
existence of a sequence of Schwartz distributions satisfying the conditions of
Theorem 2.5 for a given function g, and determining such a sequence if it ex-
ists, are left for future research. A numerical method for calculating σ -finite
measures associated to a given boundary via the classical method of images
has been used in [6, 16] to approximate the first hitting time density in cases
where the exact density is not known or difficult to compute.

Acknowledgments. The author would like to thank Monique Jeanblanc, Eric
Séré and an anonymous referee for constructive comments.
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