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LARGE DEVIATIONS AND A KRAMERS’ TYPE LAW FOR
SELF-STABILIZING DIFFUSIONS

BY SAMUEL HERRMANN, PETER IMKELLER AND DIERK PEITHMANN

Ecole des Mines de Nancy and Humboldt Universität zu Berlin

We investigate exit times from domains of attraction for the motion of
a self-stabilized particle traveling in a geometric (potential type) landscape
and perturbed by Brownian noise of small amplitude. Self-stabilization is the
effect of including an ensemble-average attraction in addition to the usual
state-dependent drift, where the particle is supposed to be suspended in a
large population of identical ones. A Kramers’ type law for the particle’s exit
from the potential’s domains of attraction and a large deviations principle for
the self-stabilizing diffusion are proved. It turns out that the exit law for the
self-stabilizing diffusion coincides with the exit law of a potential diffusion
without self-stabilization and a drift component perturbed by average attrac-
tion. We show that self-stabilization may substantially delay the exit from
domains of attraction, and that the exit location may be completely different.

1. Introduction. We examine the motion of a particle subject to three sources
of forcing. First, it wanders in a landscape whose geometry is determined by a po-
tential. Second, its trajectories are perturbed by Brownian noise of a small ampli-
tude. The third source of forcing can be thought of as self-stabilization. Roughly,
it characterizes the influence of a large population of identical particles subject to
the same laws of motion. They act on the individual through an attractive potential
averaged over the whole population, which adds to the underlying potential drift.
More formally, denote by Xε

t the random position of the particle at time t . It is
governed by the d-dimensional SDE

dXε
t = V (Xε

t ) dt −
∫

Rd
�(Xε

t − x)duε
t (x) dt + √

ε dWt .(1.1)

In this equation, V denotes a vector field on R
d , which we think of as representing

a potential gradient, the first source of forcing. Without the other two sources the
motion of the particle would just amount to the dynamical system given by the
ODE

ẋ = V (x).(1.2)

The small stochastic perturbation by Brownian noise W of intensity ε accounts
for the second source of forcing. It is responsible for random behavior of Xε ,
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and allows for transitions between otherwise energetically unreachable domains
of attraction. The integral term involving the process’s own law uε

t introduces a
feature that we call self-stabilization. The distance between the particle’s instan-
taneous position Xε

t and a fixed point x in state space is weighed by means of a
so-called interaction function � and integrated in x against the law of Xε

t itself.
This effective additional drift can be seen as a measure for the average attractive
force exerted on the particle by an independent copy of itself through the attrac-
tion potential �. In effect, this forcing makes the diffusion inertial and stabilizes
its motion in certain regions of the state space.

Equations of the type (1.1) are obtained as mesoscopic limits of microsystems
of interacting particles, as the number of particles in an ensemble of identical ones
tends to infinity, and subject to the same first two sources of forcing, that is, the
force field V and the Brownian noise of intensity ε. Suppose we are given an
interaction function �, that is, for any two particles located at x and y in state
space the value �(x − y) expresses the force of mutual attraction. This attraction
can, for instance, be thought of as being generated by electromagnetic effects. The
dynamics of a particle system consisting of N such particles is described by the
stochastic differential equation

dX
i,N
t = V (X

i,N
t ) dt − 1

N

N∑
j=1

�(X
i,N
t − X

j,N
t ) dt + √

ε dWi
t ,

(1.3)
X

i,N
0 = xi

0, 1 ≤ i ≤ N.

Here the Wi are independent Brownian motions. The self-stabilizing effect we
are interested in originates in the global action of the system on the individual
particle motion in the large particle limit N → ∞. Under suitable assumptions,
in this limit the empirical measures 1

N

∑N
j=1 δ

X
j,N
t

can be shown to converge to

some law uε
t for each fixed time and noise intensity, and each individual particle’s

motion converges in probability to the solution of the diffusion equation

dXi
t = V (Xi

t ) dt −
∫

Rd
�(Xi

t − x)duε
t (x) dt + √

ε dWi
t .(1.4)

The aim of this paper is to extend the well-known Kramers–Eyring law of exit
from domains with noncritical boundaries by particles diffusing in potential land-
scapes with small Gaussian noise to systems (1.1) which include the described
self-stabilization effect. In the potential gradient case without interaction, in which
the individual particle’s motion is interpreted by the solution trajectories Zε of the
SDE

dZε
t = −∇U(Zε

t ) dt + √
ε dWt,(1.5)

Kramers’ law states that, in the small noise limit ε → 0, the asymptotic exit time
of Zε from a potential well of height H is of the order exp{2H

ε
}. See the begin-

ning of Section 4 for a precise formulation of this. We derive a similar statement
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for self-stabilizing diffusions. In particular we examine how self-stabilization adds
inertia to the individual particle’s motion, delaying exit times from domains of
attraction and altering exit locations. Mathematically, the natural framework for
such an analysis is large deviations theory for diffusions. Our key ingredient for
an understanding of the small noise asymptotics of the exit times proves to be
a large deviations principle for self-stabilizing diffusions (1.1). In the potential
gradient case, the rate function in the large deviations principle just minimizes
the energy needed to travel in the potential landscape. If the particle undergoes
self-stabilization, energy has to be minimized in a landscape which additionally
takes into account the potential of an attractive force that depends on the particle’s
distance from the corresponding deterministic path (1.2). Our main results (The-
orems 3.4 and 4.2, 4.3) state that the large deviations and the exit behavior of Xε

are governed by this modified rate function. The techniques we employ to relate
this time-inhomogeneous case to the classical time-homogeneous one stipulate the
assumption that the boundaries of the domains avoid critical points of the potential.

Interacting particle systems such as (1.3) have been studied from various points
of view. A survey about the general setting for interaction (under global Lipschitz
and boundedness assumptions) may be found in [14]. There the convergence of
the particle system to a self-stabilizing diffusion is described in the sense of a
McKean–Vlasov limit, and asymptotic independence of the particles, known under
the name propagation of chaos, as well as the link to Burgers’ equation are estab-
lished. Large deviations of the particle system from the McKean–Vlasov limit were
investigated by Dawson and Gärtner [4]. Further results about the convergence of
the empirical distribution of the particle system to the law of the self-stabilizing
diffusion may be found in [3] or [10].

McKean studies a class of Markov processes that contains the solution of
the limiting equation under global Lipschitz assumptions on the structure of
the interaction [11]. A strictly local form of interaction was investigated by
Stroock and Varadhan in simplifying its functional description to a Dirac mea-
sure [13]. Oelschläger studies the particular case where interaction is represented
by the derivative of the Dirac measure at zero [12]. Funaki addresses existence
and uniqueness for the martingale problem associated with self-stabilizing diffu-
sions [9].

The behavior of self-stabilizing diffusions, in particular the convergence to in-
variant measures, was studied by various authors under different assumptions on
the structure of the interaction; see, for example, [1, 2, 15, 16].

The material in this paper is organized as follows. In Section 2 we discuss ex-
istence and uniqueness of strong solutions to (1.1). Strong solvability is nontrivial
in our setting due to the self-stabilizing term, and is required for the subsequent
investigation of large deviations. In Section 3 we derive and analyze the rate func-
tion modified by self-interaction, and this way obtain a large deviations principle
for the diffusion (1.1). This proves to be the key ingredient for the analysis of exit
times and a derivation of a version of Kramers’ law for self-stabilizing diffusions
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in Section 4. We conclude with an illustration of our main results by discussing
some examples which emphasize the influence of self-stabilization on exit time
and exit location (Section 5).

2. Existence and uniqueness of a strong solution. The derivation of a large
deviations principle for the self-stabilizing diffusion (1.1) in the subsequent sec-
tion involves pathwise comparisons between diffusions in order to apply the usual
tools from large deviations theory, such as contraction principles and the concept of
exponential equivalence. Their applicability relies on strong existence and unique-
ness for (1.1), which is nontrivial in our situation since the solution process’s own
law appears in the equation. The interesting interaction term

∫
�(Xε

t − x)duε
t (x)

also adds a considerable amount of complexity to the mathematical treatment. It
depends on uε

t = P ◦ (Xε
t )

−1; thus classical existence and uniqueness results on
SDE as well as the classical results on large deviations for diffusions (Freidlin–
Wentzell theory) are not directly applicable. Consequently, the question of exis-
tence and uniqueness of solutions for (1.1) is an integral part in any discussion of
the self-stabilizing diffusion’s behavior, and will be addressed in this section.

We follow Benachour et al. [1] to design a recursive procedure in order to prove
the existence of the interaction drift b(t, x) = ∫

�(x − y)duε
t (y), the second drift

component of (1.1). More precisely, we shall construct a locally Lipschitz drift
term b(t, x) such that the classical SDE

dXε
t = V (Xε

t ) dt − b(t,Xε
t ) dt + √

ε dWt, t ≥ 0,(2.1)

admits a unique strong solution, which satisfies the additional condition

b(t, x) =
∫

Rd
�(x − y)duε

t (y) = E{�(x − Xε
t )}.(2.2)

In (2.1) W is a standard d-dimensional Brownian motion, and V : Rd → R
d mim-

ics the geometrical structure of a potential gradient. Of course, for (2.1) to make
sense, the drift b has to be well defined, that is, the integral of (2.2) has to be finite,
which depends upon certain moment conditions for Xε to be made precise later
on. Apart from these moment conditions, existence and uniqueness for (1.1) will
be understood in the sense that (2.1) and (2.2) hold with a unique b and a pathwise
unique process Xε .

For locally Lipschitz interaction functions of at most polynomial growth, Be-
nachour et al. [1] have proved the existence of strong solutions in the one-
dimensional situation, and in the absence of the vector field V . Since V forces
the diffusion to spend even more time in bounded sets due to its dissipativity for-
mulated below, it imposes no complications concerning questions of existence and
uniqueness. Our arguments rely on a modification of their construction.

Besides some Lipschitz type regularity conditions on the coefficients, we make
assumptions concerning the geometry of V and � which render the system (3.1)
dissipative in a suitable sense. All necessary conditions are summarized in the
following assumption.
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ASSUMPTION 2.1.

(i) The coefficients V and � are locally Lipschitz, that is, for each R > 0 there
exists KR > 0 s.t.

‖V (x) − V (y)‖ + ‖�(x) − �(y)‖ ≤ KR‖x − y‖(2.3)

for x, y ∈ BR(0) = {z ∈ R
d :‖z‖ < R}.

(ii) The interaction function � is rotationally invariant, that is, there exists an
increasing function φ : [0,∞) → [0,∞) with φ(0) = 0 such that

�(x) = x

‖x‖φ(‖x‖), x ∈ R
d .(2.4)

(iii) � grows at most polynomially: there exist K > 0 and r ∈ N such that

‖�(x) − �(y)‖ ≤ ‖x − y‖(K + ‖x‖r + ‖y‖r ), x, y ∈ R
d .(2.5)

(iv) V is continuously differentiable. Let DV (x) denote the Jacobian of V . We
assume that there exist KV > 0 and R0 > 0 such that

〈h,DV (x)h〉 ≤ −KV(2.6)

for h ∈ R
d s.t. ‖h‖ = 1 and x ∈ R

d s.t. ‖x‖ ≥ R0.

The conditions that make our diffusion dissipative are (2.4) and (2.6). Equa-
tion (2.4) means that the interaction is essentially not more complicated than in the
one-dimensional situation and has some important implications for the geometry
of the drift component E[�(x−Xε

t )] originating from self-interaction, namely that
it points back to the origin. The same holds true for V due to (2.6). In the gradient
case V = −∇U , −DV is the Hessian of U , and (2.6) means that its eigenvalues are
uniformly bounded from below (w.r.t. x) on neighborhoods of ∞. Equation (2.5)
is just a convenient way to combine polynomial growth and the local Lipschitz
assumption in one condition. In the following two lemmas we summarize a few
simple consequences of these assumptions.

LEMMA 2.2. There exist constants K,η,R1 > 0 such that the following hold
true:

(a) For all x, y ∈ R
d

〈x − y,V (x) − V (y)〉 ≤ K‖x − y‖2.(2.7)

(b) For x, y ∈ R
d such that ‖x − y‖ ≥ R1

〈x − y,V (x) − V (y)〉 ≤ −η‖x − y‖2.(2.8)

(c) For x ∈ R
d with ‖x‖ ≥ R1

〈x,V (x)〉 ≤ −η‖x‖2.(2.9)
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PROOF. Note first that, by continuity of DV , there exists K > 0 such that

〈h,DV (x)h〉 ≤ K

holds for all x and all h of norm 1. Moreover, for x, y ∈ R
d , x = y, we have

V (x) − V (y)

‖x − y‖ =
∫ 1

0
DV

(
y + t (x − y)

) x − y

‖x − y‖ dt,

and therefore〈
x − y

‖x − y‖ ,
V (x) − V (y)

‖x − y‖
〉
=

∫ 1

0
〈h,DV (y + t‖x − y‖h)h〉dt,(2.10)

where h := x−y
‖x−y‖ . Since the integrand is bounded by K , this proves (a).

For (b), observe that the proportion of the line connecting x and y that lies inside
BR0(0) is at most 2R0‖x−y‖ . Hence〈

x − y

‖x − y‖ ,
V (x) − V (y)

‖x − y‖
〉
≤ K

2R0

‖x − y‖ − KV

(
1 − 2R0

‖x − y‖
)
,

which yields (b).
Part (c) is shown in a similar way. Let x ∈ R

d with ‖x‖ > R0, and set y :=
R0

x
‖x‖ . Then the same argument shows the sharper bound

−KV ≥
〈

x − y

‖x − y‖ ,
V (x) − V (y)

‖x − y‖
〉
=

〈
x

‖x‖ ,
V (x) − V (y)

‖x‖ − R0

〉
,

since the line connecting x and y does not intersect BR0(0). Hence

〈x,V (x)〉 ≤ −KV ‖x‖(‖x‖ − R0) + ‖x‖‖V (y)‖,
which shows that (2.9) is satisfied if we set

R1 = max
{

2R0,4 sup
‖y‖=R0

‖V (y)‖
KV

}

and η = KV

4 . �

LEMMA 2.3. For all x, y, z ∈ R
d we have:

(a) ‖�(x − y)‖ ≤ 2K + (K + 2r+1)(‖x‖r+1 + ‖y‖r+1).
(b) ‖�(x − z) − �(y − z)‖ ≤ ‖x − y‖[K + 2r (‖x‖r + ‖y‖r + 2‖z‖r )].
(c) ‖�(x − y) − �(x − z)‖ ≤ K1‖y − z‖(1 + ‖x‖r )(1 + ‖y‖r + ‖z‖r ), where

K1 = max(K,2r+1).
(d) For all x, y ∈ R

d and n ∈ N

〈x‖x‖n − y‖y‖n,�(x − y)〉 ≥ 0.(2.11)
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PROOF. By (2.5) and since �(0) = 0 we have

‖�(x − y)‖ ≤ ‖x − y‖(K + ‖x − y‖r )

≤ K(‖x‖ + ‖y‖) + 2r+1(‖x‖r+1 + ‖y‖r+1)

≤ K(2 + ‖x‖r+1 + ‖y‖r+1) + 2r+1(‖x‖r+1 + ‖y‖r+1)

= 2K + (K + 2r+1)(‖x‖r+1 + ‖y‖r+1),

that is, (a) is proved. For (b), we use (2.5) again to see that

‖�(x − z) − �(y − z)‖ ≤ ‖x − y‖(K + ‖x − z‖r + ‖y − z‖r )

≤ ‖x − y‖[K + 2r (‖x‖r + ‖y‖r + 2‖z‖r )].
Property (c) follows from �(−x) = −�(x) by further exploiting (b) as follows.
We have

‖�(x − y) − �(x − z)‖ ≤ ‖y − z‖[K + 2r+1(‖x‖r + ‖y‖r + ‖z‖r )],
which obviously yields (c). Finally, (d) follows from a simple calculation and (2.4).
Obviously, (2.11) is equivalent to 〈x‖x‖n − y‖y‖n, x − y〉 ≥ 0. But this is an im-
mediate consequence of the Schwarz inequality. �

Let us now return to the construction of a solution to (1.1), that is, a solution
to the pair (2.1) and (2.2). The crucial property of these coupled equations is that
the drift b depends on (the law of) Xε and therefore also on V , ε and the ini-
tial condition x0. This means that a solution of (2.1) and (2.2) consists of a pair
(X,b), a continuous stochastic process X and a drift term b, that satisfies these
two equations.

Our construction of such a pair (X,b) shall focus on the existence of the in-
teraction drift b. It will be constructed as a fixed point in an appropriate function
space such that the corresponding solution of (2.1) fulfills (2.2). Let us first derive
some properties of b that follow from (2.2).

LEMMA 2.4. Let T > 0, and let (Xt)0≤t≤T be a stochastic process such that
sup0≤t≤T E[‖Xt‖r+1] < ∞. Then b(t, x) = E[�(x − Xt)] has the following prop-
erties:

(a) b is locally Lipschitz w.r.t. x ∈ R
d , and the Lipschitz constant is indepen-

dent of t ∈ [0, T ].
(b) 〈x − y, b(t, x) − b(t, y)〉 ≥ 0 for all x, y ∈ R

d , t ∈ [0, T ].
(c) b grows polynomially of order r + 1.

PROOF. Note first that y �→ �(x − y) grows polynomially of order r + 1 by
Lemma 2.3(a), so that b is well defined. Moreover, we have

‖b(t, x)‖ ≤ E[‖�(x − Xt)‖] ≤ 2K + (K + 2r+1)(‖x‖r+1 + E[‖Xt‖r+1]),
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which proves (c). For (a) observe that, by Lemma 2.3(b), we have for z ∈ R
d ,

x, y ∈ BR(0),

‖�(x − z) − �(y − z)‖ ≤ ‖x − y‖[K + 2r+1(Rr + ‖z‖r )].
Hence

‖b(t, x) − b(t, y)‖ ≤ E[‖�(x − Xt) − �(y − Xt)‖]
≤ ‖x − y‖[K + 2r+1(Rr + E[‖Xt‖r ])]

for x, y ∈ BR(0). Since sup0≤t≤T E[‖Xt‖r+1] < ∞, this implies (a).
In order to prove (b), fix t ∈ [0, T ], and let μ = P ◦ X−1

t . Then

〈x − y, b(t, x) − b(t, y)〉
=

∫ 〈
x − y,

x − u

‖x − u‖φ(‖x − u‖) − y − u

‖y − u‖φ(‖y − u‖)
〉
μ(du).

The integrand is nonnegative. Indeed, it equals

‖x − u‖φ(‖x − u‖) + ‖y − u‖φ(‖y − u‖) −
〈
y − u,

x − u

‖x − u‖φ(‖x − u‖)
〉

−
〈
x − u,

y − u

‖y − u‖φ(‖y − u‖)
〉

≥ ‖x − u‖φ(‖x − u‖) + ‖y − u‖φ(‖y − u‖) − ‖y − u‖φ(‖x − u‖)
− ‖x − u‖φ(‖y − u‖)

= (‖x − u‖ − ‖y − u‖)(φ(‖x − u‖) − φ(‖y − u‖)),
which is nonnegative since φ is increasing, so (b) is established. �

In the light of the preceding lemma it is reasonable to define a space of functions
that satisfy the above stated conditions, and to look for a candidate for the drift
function in this space. Let T > 0, and for a continuous function b : [0, T ] × R

d →
R

d define

‖b‖T := sup
t∈[0,T ]

sup
x∈Rd

‖b(t, x)‖
1 + ‖x‖2q

,(2.12)

where q ∈ N is a fixed constant such that 2q > r , the order of the polynomial
growth of the interaction function �. Furthermore, let

�T := {b : [0, T ] × R
d → R

d | ‖b‖T < ∞, x �→ b(t, x)
(2.13)

is locally Lipschitz, uniformly w.r.t. t}.
Lemma 2.4 shows that, besides being an element of �T , the drift of (2.1) must
satisfy the dissipativity condition

〈x − y, b(t, x) − b(t, y)〉 ≥ 0, x, y ∈ R
d .(2.14)
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Therefore, we define

�T := {b ∈ �T :b satisfies (2.14)}.(2.15)

It is obvious that ‖ · ‖T is indeed a norm on the vector space �T . The subset �T

will be the object of interest for our construction of the interaction drift in what
follows, that is, we shall construct the interaction drift as an element of �T for a
proper choice of the time horizon T .

Once we have constructed the drift, the diffusion X will simply be given as the
unique strong solution of (2.1) due to the following rather classical result about
strong solvability of SDEs. It ensures the existence of a unique strong solution
to (2.1) for a given drift b and is a consequence of Theorem 10.2.2 in [13], since
pathwise uniqueness, nonexplosion and weak solvability imply strong solvability.

PROPOSITION 2.5. Let β : R+ × R
d → R

d , (t, x) �→ β(t, x), be locally Lip-
schitz, uniformly w.r.t. t ∈ [0, T ] for each T > 0, and assume that

sup
0≤t≤T

‖β(t,0)‖ < ∞

for all T > 0. Moreover, suppose that there exists r0 > 0 such that

〈x,β(t, x)〉 ≤ 0 for ‖x‖ ≥ r0.

Then the SDE

dXt = β(t,Xt) dt + √
ε dWt

admits a unique strong and nonexploding solution for any random initial condi-
tion X0.

It is easily seen that the drift β(t, x) = V (x) − b(t, x) does indeed satisfy the
assumptions of Proposition 2.5 for any b ∈ �T . This is an immediate consequence
of (2.9) and (2.14).

According to Lemma 2.4, the geometric assumptions formulated in Assump-
tion 2.1 imply that the drift term b of the self-stabilizing diffusion (1.1) is an ele-
ment of �T , provided the moment condition stated there is satisfied. This moment
condition is crucial for our construction of the drift, which motivates the following
definition.

DEFINITION 2.6. Let T > 0. By a solution of (1.1) on the time interval [0, T ]
we mean a stochastic process (Xε

t )0≤t≤T that satisfies (2.1) and (2.2) on [0, T ] and

sup
0≤t≤T

E[‖Xt‖2q] < ∞.(2.16)

A solution of (1.1) on [0,∞) is by definition a solution on [0, T ] for each T > 0.
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To construct a solution of (1.1) on [0,∞), we proceed in two steps. In the first
and technically most demanding step, we construct a drift on a small time interval
[0, T ]. We shall define an operator 	 such that (2.2) translates into a fixed point
property for this operator. To ensure the existence of a fixed point, one needs con-
traction properties of 	 which shall turn out to depend on the time horizon T . This
way we obtain a drift defined on [0, T ] such that the associated solution X exists
up to time T . In a second step, we show that this solution’s moments are uniformly
bounded w.r.t. time, which guarantees nonexplosion and allows us to extend X to
the whole time axis.

To carry out this program, we start by comparing diffusions with different drift
terms.

LEMMA 2.7. For b1, b2 ∈ �T consider the associated diffusions

dYt = V (Yt ) dt − b1(t, Yt ) dt + √
ε dWt

and

dZt = V (Zt) dt − b2(t,Zt ) dt + √
ε dWt,

and assume Y0 = Z0. Then for t ≤ T

‖Yt − Zt‖ ≤ eKT ‖b1 − b2‖T

∫ t

0
(1 + ‖Zs‖2q) ds.

PROOF. Since Y − Z is governed by a (pathwise) ODE, we have

‖Yt − Zt‖ =
∫ t

0

〈
Ys − Zs

‖Ys − Zs‖ ,V (Ys) − V (Zs)

〉
ds

−
∫ t

0

〈
Ys − Zs

‖Ys − Zs‖ , b1(s, Ys) − b1(s,Zs)

〉
ds

+
∫ t

0

〈
Ys − Zs

‖Ys − Zs‖ , b2(s,Zs) − b1(s,Zs)

〉
ds.

The second integral in this decomposition is positive by definition of �T , so it can
be neglected. Furthermore, the first integral is bounded by K

∫ t
0 ‖Ys − Zs‖ds due

to the dissipativity condition (2.7) on V . The last integral is bounded by∫ t

0
‖b2(s,Zs) − b1(s,Zs)‖ds ≤ ‖b1 − b2‖T

∫ t

0
(1 + ‖Zs‖2q) ds.

Combining these estimates yields

‖Yt − Zt‖ ≤ K

∫ t

0
‖Ys − Zs‖ds + ‖b1 − b2‖T

∫ t

0
(1 + ‖Zs‖2q) ds.

Now an application of Gronwall’s lemma completes the proof. �
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The liberty of choice for the drift terms in Lemma 2.7 allows us to get bounds
on Y and its moments by making a particular one for Z. We consider the special
case of a linear drift term b(t, x) = λx.

LEMMA 2.8. Let λ ≥ K , and let Z be the solution of

dZt = V (Zt) dt − λZtdt + √
ε dWt .

Furthermore, assume that E(‖Z0‖2m) < ∞ for some m ∈ N, m ≥ 1.
Then for all t ≥ 0

E[‖Zt‖2m] ≤ 2mt‖V (0)‖R2m−1
1 exp

{
εm(d + 2m − 2)t

R2
1

}
if Z0 = 0 a.s.,

and

E[‖Zt‖2m] ≤ E[‖Z0‖2m] exp
{
εm(d + 2m − 2)t

(E[‖Z0‖2m])1/m

}

+ 2mt‖V (0)‖R2m−1
1 exp

{
εm(d + 2m − 2)t

R2
1

}
,

otherwise.

PROOF. By Itô’s formula we have for n ≥ 2

‖Zt‖n = ‖Z0‖n + Mn
t + n

∫ t

0
‖Zs‖n−2〈Zs,V (Zs)〉 − λ‖Zs‖n ds

(2.17)

+ ε

2
(dn + n2 − 2n)

∫ t

0
‖Zs‖n−2 ds,

where Mn is the local martingale Mn
t = n

√
ε

∫ t
0 〈Zs‖Zs‖n−2, dWs〉.

Since 〈x,V (x)〉 ≤ −η‖x‖2 for ‖x‖ > R1 according to (2.9), the first integrand
of (2.17) is negative if ‖Zs‖ > R1. If ‖Zs‖ ≤ R1, we use the global estimate
〈x,V (x)〉 ≤ K‖x‖2 +‖V (0)‖‖x‖, which follows from (2.7). We deduce that, since
λ ≥ K ,

‖Zs‖n−2〈Zs,V (Zs)〉 − λ‖Zs‖n ≤ (K − λ)‖Zs‖n + ‖V (0)‖‖Zs‖n−1

≤ ‖V (0)‖Rn−1
1 .

Thus,

‖Zt‖n ≤ ‖Z0‖n + Mn
t + n‖V (0)‖tRn−1

1 + ε

2
(dn + n2 − 2n)

∫ t

0
‖Zs‖n−2 ds.
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Using a localization argument and monotone convergence yields

E[‖Zt‖n] ≤ E[‖Z0‖n] + n‖V (0)‖tRn−1
1

(2.18)

+ ε

2
(dn + n2 − 2n)

∫ t

0
E[‖Zs‖n−2]ds.

We claim that this implies

E[‖Zt‖2m] ≤
m∑

j=0

E
[‖Z0‖2(m−j)](αmt)j

j !
(2.19)

+ 2m
‖V (0)‖

αm

R2m+1
1

m∑
j=1

(αmt)j

R
2j
1 j !

for all m ∈ N, m ≥ 1, where αm = εm(d + 2m − 2). Indeed, for m = 1 this is
evidently true by (2.18). The general case follows by induction. Assume (2.19)
holds true for m − 1. Then by (2.18)

E[‖Zt‖2m] ≤ E[‖Z0‖2m] + 2m‖V (0)‖tR2m−1
1

+ αm

∫ t

0

m∑
j=1

E
[‖Z0‖2(m−j)](αm−1s)

j−1

(j − 1)!

+ 2(m − 1)
‖V (0)‖
αm−1

R2m−1
1

m∑
j=2

(αm−1s)
j−1

R
2(j−1)
1 (j − 1)!

ds

≤ E[‖Z0‖2m] + 2m‖V (0)‖tR2m−1
1

+
m∑

j=1

αmE
[‖Z0‖2(m−j)]αj−1

m−1t
j

j !

+ 2m‖V (0)‖R2m−1
1

m∑
j=2

αm

α
j−2
m−1t

j

R
2(j−1)
1 j !

≤ 2m‖V (0)‖tR2m−1
1 +

m∑
j=0

E
[‖Z0‖2(m−j)]αj

mtj

j !

+ 2m‖V (0)‖R2m+1
1

m∑
j=2

α
j−1
m tj

R
2j
1 j !

=
m∑

j=0

E[‖Z0‖2(m−j)]α
j
mtj

j ! + 2m‖V (0)‖R2m+1
1

m∑
j=1

α
j−1
m tj

R
2j
1 j !

,
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and so (2.19) is established. Since E[‖Z0‖2(m−j)] ≤ (E[‖Z0‖2m])1−j/m for j ≤ m,
we may exploit (2.19) further to conclude that

E[‖Zt‖2m] ≤ E[‖Z0‖2m]
m∑

j=0

α
j
mtj

j !(E[‖Z0‖2m])j/m

+ 2mt‖V (0)‖R2m−1
1

m∑
j=1

α
j−1
m tj−1

R
2j−2
1 j !

≤ E[‖Z0‖2m] exp
{

αmt

(E[‖Z0‖2m])1/m

}

+ 2mt‖V (0)‖R2m−1
1 exp

{
αmt

R2
1

}
,

which is the announced bound if we identify the first term as zero in case Z0 = 0.
�

Let us define the mapping 	 on �T that will be a contraction under suitable
conditions. For b ∈ �T , denote by X(b) the solution of

dXt = V (Xt) dt − b(t,Xt ) dt + √
ε dWt,(2.20)

and let 	b(t, x) := E[�(x − X
(b)
t )]. By combining the two previous lemmas, we

obtain the following a priori bound on the moments of X(b).

LEMMA 2.9. If the initial datum of (2.20) satisfies E[‖X(b)
0 ‖2qn] < ∞ for

some n ∈ N, then for each T > 0 there exists k = k(n,T ) > 0 such that for all
b ∈ �T

sup
0≤t≤T

E
[∥∥X(b)

t

∥∥n] ≤ k
(
1 + T nenKT (‖b‖n

T + Kn)
)
.

PROOF. Let b1(t, x) := b(t, x) and b2(t, x) = Kx, and denote by Y , Z the
diffusions associated with b1, b2. By Lemma 2.7 we have for t ∈ [0, T ]

E[‖Yt‖n] ≤ 2n(E[‖Zt‖n] + E[‖Yt − Zt‖n])
≤ 2n

E[‖Zt‖n] + 2nenKT tn−1‖b1 − b2‖n
T E

[∫ t

0
(1 + ‖Zs‖2q)n ds

]
≤ 2n(1 + E[‖Zt‖2qn])

+ 2nenKT tn(‖b1‖T + ‖b2‖T )n sup
0≤s≤T

E[(1 + ‖Zs‖2q)n]

≤ 8n

(
1 + sup

0≤s≤T

E[‖Zs‖2qn]
)(

1 + tnenKT (‖b1‖n
T + ‖b2‖n

T )
)
.
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Due to the assumption E[‖X(b)
0 ‖2qn] < ∞, the constant k(n,T ) = 8n(1 +

sup0≤s≤T E[‖Zs‖2qn]) is finite by Lemma 2.8. Furthermore, we have ‖b2‖T ≤ K ,
that is, the lemma is proved. �

Now we are in a position to establish the local Lipschitz continuity of the op-
erator 	. The explicit expression for the Lipschitz constant shows that 	 will be a
contraction on a sufficiently small time interval.

LEMMA 2.10. Let b1, b2 ∈ �T , and denote by Y,Z the corresponding diffu-
sions as in Lemma 2.7. For i ∈ N let mi(T ) = sup0≤t≤T E[‖Yt‖i] and ni(T ) =
sup0≤t≤T E[‖Zt‖i].

There exists a constant k = k(m4q(T ), n4q(T )) such that

‖	b1 − 	b2‖T ≤ k
√

T eKT ‖b1 − b2‖T .

PROOF. From Lemma 2.3(c) and the Cauchy–Schwarz inequality follows that

‖	b1(t, x) − 	b2(t, x)‖
≤ E[‖�(x − Yt ) − �(x − Zt)‖]
≤ K1(1 + ‖x‖r )E[‖Yt − Zt‖(1 + ‖Yt‖r + ‖Zt‖r )]
≤ K1(1 + ‖x‖r )

√
E[‖Yt − Zt‖2]E[(1 + ‖Yt‖r + ‖Zt‖r )2],

where K1 = max(K,2r+1). By Lemma 2.7, since (1 + x)2 ≤ 2(1 + x2), we have

E[‖Yt − Zt‖2] ≤ e2KT ‖b1 − b2‖2
T E

[(∫ T

0
(1 + ‖Zs‖2q) ds

)2]

≤ e2KT ‖b1 − b2‖2
T

∫ T

0
E[(1 + ‖Zs‖2q)2]ds

≤ 2T e2KT ‖b1 − b2‖2
T

(
1 + sup

0≤s≤T

E[‖Zs‖4q]
)
.

Moreover, using the inequality (a + b)2 ≤ 2(a2 + b2), we deduce that

E[(1 + ‖Yt‖r + ‖Zt‖r )2] ≤ 2(1 + 2E[‖Yt‖2r + ‖Zt‖2r ])
≤ 10(1 + E[‖Yt‖4q + ‖Zt‖4q]),

where we exploited that 2q > r implies E[‖Yt‖2r ] ≤ 1 + E[‖Yt‖4q], and likewise
for the moment of Zt . By combining all these estimates, we find that

‖	b1(t, x) − 	b2(t, x)‖
1 + ‖x‖2q

≤ 2K1
√

5T eKT ‖b1 − b2‖T

1 + ‖x‖r

1 + ‖x‖2q
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×
(

1 + sup
0≤s≤T

E[‖Zs‖4q]
)1/2

(1 + E[‖Yt‖4q + ‖Zt‖4q])1/2.

Hence, if we set k := 4K1
√

5{(1 + n4q(T ))(1 + m4q(T ) + n4q(T ))}1/2, we may
conclude that

‖	b1 − 	b2‖T ≤ k
√

T eKT ‖b1 − b2‖T ,

that is, k is the desired constant. �

The next proposition shows that the restriction of 	 to a suitable subset of the
function space �T is a contractive mapping, which allows us to construct a solu-
tion on a small time interval.

PROPOSITION 2.11. For ν > 0 let �ν
T = {b ∈ �T :‖b‖T ≤ ν}. Assume that

the initial condition X0 satisfies E[‖X0‖2qn] < ∞ for some n ≥ 4q . There exists
ν0 > 0 such that for any ν ≥ ν0 there exists T = T (ν) > 0 such that the following
hold true:

(a) 	(�ν
T ) ⊂ �ν

T , and the Lipschitz constant of 	|�ν
T is less than 1

2 .
(b) There exists a strong solution to (2.1), (2.2) on [0, T ] which satisfies

sup
0≤t≤T

E
[∥∥X(b)

t

∥∥n] ≤ k
(
1 + T nenKT (νn + Kn)

)
,

where k = k(n,T ) is the constant introduced in Lemma 2.9.

PROOF. Let b ∈ �T , and let X = X(b) and mi(T ) = sup0≤t≤T E[‖Xt‖i] for
i ∈ N. By Lemma 2.9 the condition E[‖X0‖2qn] < ∞ implies mi(T ) < ∞ for
T > 0 and i ≤ n. Moreover, Lemma 2.3 shows that

‖	b(t, x)‖ ≤ 2K + (K + 2r+1)(‖x‖r+1 + E[‖X‖r+1])
≤ K̃(1 + ‖x‖r+1)(1 + E[‖Xt‖r+1]),

where K̃ = 2K + 2r+1. Consequently, by definition of ‖ · ‖T ,

‖	b‖T ≤ 2K̃
(
1 + mr+1(T )

)
, t ≤ T .(2.21)

By Lemma 2.9 there exists k = k(r + 1, T ) > 0 such that

mr+1(T ) ≤ k
(
1 + T r+1e(r+1)KT (‖b‖r+1

T + Kr+1)
)
.(2.22)

This inequality, together with (2.21), is the key for finding a suitable subset of
�T on which 	 is contractive. The r.h.s. of (2.22) converges to k as T → 0, and
this convergence is uniform w.r.t. b ∈ �ν

T for each ν > 0. The dependence of the
limiting constant k on T imposes no problem here; just fix k = k(r + 1, T0) > 0
for some T0 and use the fact that (2.22) is valid for all T ≤ T0, as the proof of
Lemma 2.9 shows.
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Thus, we may fix ν0 > 2K̃(1 + k) and deduce that for any ν > ν0 we can find
T0 = T0(ν) such that ‖b‖T ≤ ν implies ‖	b‖T ≤ ν for T ≤ T0. Moreover, by
Lemma 2.4, 	b satisfies all the conditions as required for it to belong to �T , that
is, 	 maps �ν

T into itself for all T ≤ T0. Additionally, the assumption n ≥ 4q

implies that m4q(T ) is uniformly bounded for all b in �ν
T , and Lemma 2.10 shows

that, by eventually decreasing T0, we can achieve that 	 is a contraction on �ν
T

with Lipschitz constant less than 1
2 , that is, (a) is established.

In order to prove (b), the existence of a strong solution on the time interval
[0, T ] for some T ≤ T0, we iterate the drift through 	. Let b0 ∈ �ν

T , and define

bi+1 := 	bi for i ∈ N0.

The contraction property of 	 yields ‖bi+1 − bi‖T ≤ 2−i‖b1 − b0‖T for all i, and
therefore

∞∑
n=0

‖bi+1 − bi‖T < ∞,

which entails that (bi) is a Cauchy sequence w.r.t. ‖ · ‖T . By definition of ‖ · ‖T ,
(bi) converges pointwise to a continuous function b = b(t, x) with ‖b‖T < ∞. It
remains to verify that the limit is again an element of �T . In order to see that it
is locally Lipschitz, let X(i) := X(bi). As in the proof of Lemma 2.4, we have for
x, y ∈ BR(0)

‖	bi(t, x) − 	bi(t, y)‖ ≤ E
[∥∥�(

x − X
(i)
t

) − �
(
y − X

(i)
t

)∥∥]
≤ ‖x − y‖[

K + 2r+1(
Rr + E

[∥∥X(i)
t

∥∥r ])]
.

Since ‖bi‖T ≤ ν for all i, (2.22) yields

sup
i∈N

sup
0≤t≤T

E
[∥∥X(i)

t

∥∥r] ≤ k
(
1 + T r+1e(r+1)KT (νr+1 + Kr+1)

)
.

Therefore, we may send i → ∞ to conclude that b is locally Lipschitz. b being
the pointwise limit of the bi , it inherits the polynomial growth property and the
dissipativity condition as stated in Lemma 2.4(b) and (c). (Notice that we may not
invoke Lemma 2.4 at this stage.)

It remains to show that the diffusion X = X(b) associated to b has the desired
properties. Note first that the existence of X is guaranteed by the classical result of
Proposition 2.5. Since 	b = b, which means that

b(t, x) = 	b(t, x) = E
[
�

(
x − X

(b)
t

)]
for t ∈ [0, T ] and x ∈ R

d , X is the diffusion with interaction drift b. The bounded-
ness of its moments is again a consequence of Lemma 2.9. �

Let us recall the essentials of the construction carried out so far. We have shown
the existence of a solution to (1.1) on a small time interval [0, T ]. For the moments
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of order n to be finite, one needs integrability of order 2qn for the initial condi-
tion. Moreover, the parameter n needs to be larger than or equal to 4q in order for
the fixed point argument of proposition 2.11 to work. Observe that the condition
n ≥ 4q appears first in this proposition, since this is the first time the process is
coupled to its own drift, while in all previous statements the finiteness of moments
is guaranteed by the comparison against the diffusion Z, which is governed by a
linear drift term. In order to find a solution that exists for all times, we need to
carefully extend the constructed pair (X,b) beyond the time horizon T . Although
nonexplosion and finiteness of moments would be guaranteed for all T by Propo-
sition 2.5 and Lemma 2.9, we have to take care of the fact that the drift itself is
defined only on the time interval [0, T ]. With sufficiently strong integrability as-
sumptions for X0 one could perform the same construction on the time intervals
[T ,2T ], [2T ,3T ] and so on, but one loses an integrability order 2q in each time
step of length T .

For that reason we need better control of the moments of X over the whole time
axis, which is achieved by the following a posteriori estimate.

PROPOSITION 2.12. Let m ∈ N, m ≥ 4q2, such that E[‖X0‖2m] < ∞. For
each n ∈ {1, . . . ,m} there exists a constant α = α(n) > 0 such that the following
holds true for all T > 0: if X solves (1.1) on [0, T ], then

sup
0≤t≤T

E[‖Xt‖2n] ≤ α(n).

PROOF. Fix T > 0, and assume that X solves (1.1) on [0, T ] (in the sense
of Definition 2.6). Then b(t, x) := E[�(x − Xt)] belongs to �T by Lemma 2.4,
and m ≥ 4q2 implies sup0≤t≤T E[‖Xt‖4q] < ∞ by Lemma 2.9. Let fn(t) =
E[‖Xt‖2n]. We proceed in several steps.

Step 1: Boundedness in L2. We know already (by Lemma 2.9) that

sup
0≤t≤T

f1(t) < ∞.

The only point is to show that the bound may be chosen independent of T . By Itô’s
formula we have

f1(t) = E[‖X0‖2] + εtd + 2
∫ t

0
E[〈Xs,V (Xs)〉]ds − 2

∫ t

0
E[〈Xs, b(s,Xs)〉]ds.

Let us estimate the last term that contains the interaction drift b. Note first
that 2q > r implies r + 2 ≤ 4q , so sup0≤t≤T E[‖Xt‖r+2] < ∞ as pointed out
at the beginning of the proof, and the Cauchy–Schwarz inequality yields that
E[〈Xt, b(t,Xt)〉] is finite for t ∈ [0, T ] since b grows polynomially of order r + 1.
By definition of b, we may take an independent copy X̃ of X, to write

2E[〈Xs, b(s,Xs)〉] = 2E[〈Xs,�(Xs − X̃s)〉]
= E[〈Xs,�(Xs − X̃s)〉] − E[〈X̃s,�(Xs − X̃s)〉]
= E[〈Xs − X̃s,�(Xs − X̃s)〉] ≥ 0
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where the last inequality is due to (2.4). In order to estimate the other integral, let
R ≥ R1. Using (2.9) and the local Lipschitz property of V , we see that

E[〈Xs,V (Xs)〉] ≤ −ηE
[‖Xs‖21{‖Xs‖>R}

]
+ E

[(
K‖Xs‖2 + ‖V (0)‖‖Xs‖)

1{‖Xs‖≤R}
]

≤ −ηE[‖Xs‖2] + (η + K)R2 + ‖V (0)‖R
= −ηf1(s) + R

(‖V (0)‖ + R(η + K)
)
.

Obviously, f1 is differentiable, and summing up these bounds yields

f ′
1(t) ≤ εd − 2ηf1(t) + 2R

(‖V (0)‖ + R(η + K)
)
.

Thus, there exists γ > 0 such that {t ∈ [0, T ] :f1(t) ≥ γ } ⊂ {t ∈ [0, T ] :f ′
1(t) ≤ 0},

which implies f1(t) ≤ f1(0)∨γ for all t ∈ [0, T ]. This is the claimed bound, since
γ is independent of T .

Step 2: Moment bound for the convolution. Let X̃ be an independent copy of X,
that is, a solution of (1.1) driven by a Brownian motion that is independent of W .
In this step we shall prove that E[‖Xt − X̃t‖2n] is uniformly bounded w.r.t. time.

Let R ≥ R1, and let τ = inf{t ≥ 0 :‖Xt − X̃t‖ ≥ R}, gn(t) = E[‖Xt −
X̃t‖2n1{t<τ }] and wn(t) = E[‖Xt∧τ − X̃τ∧t‖2n]. Then wn(t) = gn(t) + R2n

P(t ≥
τ). Furthermore, using the SDE (1.1) for both X and X̃, applying Itô’s formula to
the difference and taking expectations, we obtain for n ≥ 1

wn(t) = E[‖X0 − X̃0‖2n] + εn(d + 2n − 2)E

[∫ t∧τ

0
‖Xs − X̃s‖2n−2 ds

]
+ 2nE

[∫ t∧τ

0
‖Xs − X̃s‖2n−2〈Xs − X̃s,V (Xs) − V (X̃s)〉ds

]
− 2nE

[∫ t∧τ

0
‖Xs − X̃s‖2n−2〈Xs − X̃s, b(s,Xs) − b(s, X̃s)〉ds

]
.

The last term is negative by Lemma 2.4, which yields together with (2.7), (2.8)
and Hölder’s inequality

w′
n(t) ≤ εn(d + 2n − 2)E

[‖Xt − X̃t‖2n−21{t<τ }
]

+ 2nE
[‖Xt − X̃t‖2n−2〈Xt − X̃t , V (Xt) − V (X̃t )〉1{t<τ }

]
≤ εn(d + 2n − 2)gn−1(t)

+ 2n(K + η)E
[‖Xt − X̃t‖2n1{‖Xt−X̃t‖≤R1;τ>t}

]
− 2nηE

[‖Xt − X̃t‖2n1{t<τ }
]

≤ εn(d + 2n − 2)gn(t)
1−1/n + 2n(K + η)R2n

1 − 2nηgn(t).

As in the first step, there exists some constant δ > 0 such that {t ∈ [0, T ] :gn(t) >

δ} ⊂ {t ∈ [0, T ] :w′
n(t) < 0}. Since wn − gn is nondecreasing this implies gn(t) ≤
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gn(0) ∨ δ for all t ∈ [0, T ]. Moreover, δ depends only on the constants appearing
in the last inequality and is independent of the localization parameter R. Hence,
by monotone convergence, we have

E[‖Xt − X̃t‖2n] ≤ E[‖X0 − X̃0‖2n] ∨ δ, t ∈ [0, T ].
Step 3: Bound for the centered moments of X. In this step we shall prove that the

moments of Yt := Xt − E[Xt ] are uniformly bounded. We proceed by induction.
The second moments of X are uniformly bounded by the first step; so are those of
Y . Assume the moments of order 2n are uniformly bounded by γn > 0. If n + 1 ≤
m, we may invoke step 2, to find δn+1 > 0 such that E[‖Xt − X̃t‖2n+2] ≤ δn+1
for t ∈ [0, T ]. Now we make the following observation. If ξ , ξ̃ are independent,
real-valued copies of each other with E[ξ ] = 0, then

E[(ξ − ξ̃ )2n+2] = 2E[ξ2n+2] +
2n∑

k=2

(
2n + 2

k

)
(−1)kE[ξk]E[ξ2n+2−k],

and therefore

2E[ξ2n+2] ≤ E[(ξ − ξ̃ )2n+2] +
2n∑

k=2

(
2n + 2

k

)
|E[ξk]E[ξ2n+2−k]|

≤ E[(ξ − ξ̃ )2n+2] + 22n+2(1 + E[ξ2n])2.

Let us apply this to the components of Y , and denote them by Y 1, . . . , Y d . We
obtain for t ∈ [0, T ]

2E[‖Yt‖2n+2] ≤ 2dn+1
E

[
d∑

j=1

(Y
j
t )2n+2

]

≤ dn+1
d∑

j=1

E[(Xj
t − X̃

j
t )2n+2] + 22n+2(

1 + E[(Y j
t )2n])2

≤ dn+2(
E[‖Xt − X̃t‖2n+2] + 22n+2(1 + E[‖Yt‖2n])2)

≤ dn+2(
δn+1 + 22n+2(1 + γn)

2)
,

which is a uniform bound for the order 2(n + 1).
Step 4: Bound for the moments of X. In the fourth and final step, we prove the

announced uniform bound for the moments of X. It follows immediately from the
inequality

E[‖Xt‖2n] ≤ 22n(
E

[‖Xt − E[Xt ]‖2n] + ‖E[Xt ]‖2n)
.

The last term satisfies ‖E[Xt ]‖2n ≤ f1(t)
n, which is uniformly bounded according

to step 1, and the centered moments of order 2n are uniformly bounded by step 3
whenever n ≤ m. �
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The results concerning the existence of Xε are summarized in the following
theorem.

THEOREM 2.13. Let q := [ r
2 + 1], and let X0 be a random initial condition

such that E[‖X0‖8q2] < ∞. Then there exists a drift term b(t, x) = bε,X0(t, x)

such that (2.1) admits a unique strong solution Xε that satisfies (2.2), and Xε is
the unique strong solution of (1.1). Moreover, we have for all n ∈ N

sup
t≥0

E[‖Xε
t ‖2n] < ∞(2.23)

whenever E[‖Xε
0‖2n] < ∞. In particular, if X0 is deterministic, then Xε is

bounded in Lp(P ⊗ λ[0,T ]) for all p ≥ 1. λ is used as a symbol for Lebesgue
measure throughout.

PROOF. In a first step, we prove uniqueness on a small time interval. Let K̃ =
2K + 2r+1, and choose α(q) > 0 according to Proposition 2.12. By Proposition
2.11 there exist ν ≥ 2K̃(2 + α(q)), T = T (ν) > 0 and b ∈ �ν

T such that 	b = b,
that is, X = X(b) is a strong solution of (1.1) on [0, T ]. Assume Y is another so-
lution of (1.1) on [0, T ] starting at X0 such that m2q(T ) := sup0≤t≤T E[‖Yt‖2q] <

∞, and let c(t, x) = E[�(x − Yt )]. Then c ∈ �T by Lemma 2.4, and 	c = c.
Moreover, it follows from (2.21) and Proposition 2.12 that

‖c‖T ≤ 2K̃
(
2 + m2q(T )

) ≤ 2K̃
(
2 + α(q)

) ≤ ν,

that is, c ∈ �ν
T . Hence c is the unique fixed point of 	|�ν

T . Thus c = b, and Propo-
sition 2.5 yields X = Y.

In the second step, we show the existence of a unique solution on [0,∞). Let

U := sup
{
T > 0 : (1.1) admits a unique strong solution X on [0, T ],

sup
0≤t≤T

E[‖Xt‖2q] < ∞
}
.

By the first step we know that U > 0. Assume U < ∞. As in the first step, choose
α(4q2) > 0 according to Proposition 2.12, and then fix ν̃ ≥ 2K̃(2 + α(4q2)) and
T̃ = T̃ (ν̃) > 0 that satisfy Proposition 2.11. Let 0 < δ < min(U, T̃ /2), and fix T ∈
]U − δ,U [. There exists a unique strong solution X on [0, T ], and E[‖XT ‖8q2] <

∞ by Proposition 2.12. Now consider (1.1) on [T ,∞) with initial datum XT . As
in the first step, we may find a unique strong solution on [T ,T + T̃ ]. But this
is a contradiction since T + T̃ > U . Consequently, U = ∞, and (2.23) holds by
Proposition 2.12. �
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3. Large deviations. Let us now turn to the large deviations behavior of the
diffusion Xε given by the SDE (1.1), that is,

dXε
t = V (Xε

t ) dt −
∫

Rd
�(Xε

t − x)duε
t (x) dt + √

ε dWt, t ≥ 0,(3.1)

X0 = x0 ∈ R
d .

The heuristics underlying large deviations theory is to identify a deterministic path
around which the diffusion is concentrated with overwhelming probability, so that
the stochastic motion can be seen as a small random perturbation of this determin-
istic path. This means in particular that the law uε

t of Xε
t is close to some Dirac

mass if ε is small. We therefore proceed in two steps toward the aim of proving a
large deviations principle for Xε . In a first step we “guess” the deterministic limit
around which Xε is concentrated for small ε, and replace uε

t by its suspected limit,
that is, we approximate the law of Xε . This way we circumvent the difficulty of the
dependence on the law of Xε—the self-interaction term—and obtain a diffusion
which is defined by means of a classical SDE. We then prove in the second step
that this diffusion is exponentially equivalent to Xε , that is, it has the same large
deviations behavior. This involves pathwise comparisons.

3.1. Small noise asymptotics of the interaction drift. The limiting behavior of
the diffusion Xε can be guessed in the following way. As explained, the laws uε

t

should tend to a Dirac measure in the small noise limit, and since �(0) = 0 the
interaction term will vanish in the limiting equation. Therefore, the diffusion Xε is
a small random perturbation of the deterministic motion ψ , given as the solution
of the deterministic equation

ψ̇t = V (ψt), ψ0 = x0,(3.2)

and the large deviations principle will describe the asymptotic deviation of Xε

from this path. Much like in the case of gradient type systems, the dissipativity con-
dition (2.9) guarantees nonexplosion of ψ . Indeed, since d

dt
‖ψt‖2 = 2〈ψt, ψ̇t 〉 =

2〈ψt,V (ψt)〉, the derivative of ‖ψt‖2 is negative for large values of ‖ψt‖ by (2.9),
so ψ is bounded. In the sequel we shall write ψt(x0) if we want to stress the de-
pendence on the initial condition.

We have to control the diffusion’s deviation from this deterministic limit on a
finite time interval. An a priori estimate is provided by the following lemma, which
gives an L2-bound for this deviation. For notational convenience, we suppress the
ε-dependence of the diffusion in the sequel, but keep in mind that all processes
depend on ε.

LEMMA 3.1. Let Zt := Xt − ψt(x0). Then

E‖Zt‖2 ≤ εt de2Kt ,
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where K is the constant introduced in Lemma 2.2. In particular, Z → 0 as ε → 0
in Lp(P ⊗ λ[0,T ]) for all p ≥ 1 and T > 0. This convergence is locally uniform
w.r.t. the initial condition x0.

PROOF. By Itô’s formula we have

‖Zt‖2 = 2
√

ε

∫ t

0
〈Zs, dWs〉 − 2

∫ t

0

〈
Zs, b

ε,x0
(
s,Zs + ψs(x0)

)〉
ds

+ 2
∫ t

0

〈
Zs,V

(
Zs + ψs(x0)

) − V (ψs(x0))
〉
ds + εtd.

By Theorem 2.13 X and thus Z is integrable of all orders. In particular, Z is
square-integrable, so the stochastic integral in this equation is a martingale. Now
consider the second term containing the interaction drift bε,x0 . Let νs = P ◦ Z−1

s

denote the law of Zs . Since Z has finite moments of all orders, Lemma 2.3 im-
plies

∫ ∫ ‖〈z,�(z − y)〉‖νs(dy)νs(dz) < ∞. Thus, by Assumption 2.1(ii) about
the interaction function � and Fubini’s theorem,

2E
〈
Zs, b

ε,x0
(
s,Zs + ψs(x0)

)〉 = 2
∫

〈z,E[�(z + ψs(x0) − Xs)]〉νs(dz)

= 2
∫ ∫

〈z,�(z − y)〉νs(dy)νs(dz)

=
∫ ∫

〈z − y,�(z − y)〉νs(dy)νs(dz) ≥ 0.

Hence by the growth condition (2.7) for V

E‖Zt‖2 ≤ 2
∫ t

0
E

〈
Zs,V

(
Zs + ψs(x0)

) − V (ψs(x0))
〉
ds + εtd

≤ 2K

∫ t

0
E‖Zs‖2 ds + εtd,

and Gronwall’s lemma yields

E‖Zt‖2 ≤ εt de2Kt .

This is the claimed bound. For the Lp-convergence observe that this bound is
independent of the initial condition x0. Moreover, the argument of Proposition
2.12 shows that sup{E(‖Xt‖p) : 0 ≤ t ≤ T ,x0 ∈ L,0 < ε < ε0} < ∞ holds for
compact sets L and ε0 > 0. This implies that Z is bounded in Lp(P ⊗ λ[0,T ]) as
ε → 0, uniformly w.r.t. x0 ∈ L. Now the Lp-convergence follows from the Vitali
convergence theorem. �

COROLLARY 3.2. For any T > 0 we have

lim
ε→0

bε,x0(t, x) = �
(
x − ψt(x0)

)
,

uniformly w.r.t. t ∈ [0, T ] and w.r.t. x and x0 on compact subsets of R
d .
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PROOF. The growth condition on � and the Cauchy–Schwarz inequality yield∥∥bε(t, x) − �
(
x − ψt(x0)

)∥∥2

≤ E
[‖Xt − ψt(x0)‖(

K + ‖x − Xt‖r + ‖x − ψt(x0)‖r)]2

≤ E[‖Xt − ψt(x0)‖2]E[(
K + ‖x − Xt‖r + ‖x − ψt(x0)‖r)2]

.

The first expectation on the r.h.s. of this inequality tends to zero by Lemma 3.1.
Since X is bounded in L2r (P), uniformly w.r.t. x0 on compact sets, the claimed
convergence follows. �

In a next step we replace the diffusion’s law in (3.1) by its limit, the Dirac
measure in ψt(x0). Before doing so, let us introduce a slight generalization of X.

Theorem 2.13 implies that X is a time-inhomogeneous Markov process. The
diffusion X, starting at time s ≥ 0, is given as the unique solution of the stochastic
integral equation

Xt = Xs +
∫ t

s
[V (Xu) − bε,x0(u,Xu)]du + √

ε(Wt − Ws), t ≥ s.

By shifting the starting time back to the origin, this equation translates into

Xt+s = Xs +
∫ t

0
[V (Xu+s) − bε,x0(u + s,Xu+s)]du + √

εWs
t , t ≥ 0,

where Ws is the Brownian motion given by Ws
t = Wt+s − Ws , which is indepen-

dent of Xs . Since we are mainly interested in the law of X, we may replace Ws

by W .
For an initial condition ξ0 ∈ R

d and s ≥ 0, we denote by ξ s,ξ0 the unique solu-
tion of the equation

ξt = ξ0 +
∫ t

0
V (ξu) − bε,x0(u + s, ξu) du + √

εWt, t ≥ 0.(3.3)

Note that ξ0,x0 = X, and that ξ s,ξ0 has the same law as Xt+s , given that Xs = ξ0.
The interpretation of bε,x0 as an interaction drift is lost in this equation, since bε,x0

does not depend on ξ s,ξ0 .
Now recall that bε,x0(t, x) = E{�(x − Xε

t )}, which tends to �(x − ψt(x0)) by
Corollary 3.2. This motivates the definition of the following analogue of ξ s,ξ0 ,
in which uε

t is replaced by the Dirac measure in ψt(x0). We denote by Y s,y the
solution of the equation

Yt = y +
∫ t

0
V (Yu) − �

(
Yu − ψt+s(x0)

)
du + √

εWt, t ≥ 0.(3.4)

This equation is an SDE in the classical sense, and it admits a unique strong
solution by Proposition 2.5. Furthermore, it is known that Y s,y satisfies a large
deviations principle in the space

C0T = {f : [0, T ] → R
d |f is continuous},
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equipped with the topology of uniform convergence. This LDP describes the devi-
ations of Y s,y from the deterministic system ϕ̇t = V (ϕt ) − �(ϕt − ψt+s(x0)) with
ϕ0 = y. Observe that ϕ coincides with ψ(x0) in case y = x0, and that nonexplosion
of ϕ is ensured by the dissipativity properties of V and � as follows. By (2.4) we
have

d

dt
‖ϕt − ψt+s‖2 = 2〈ϕt − ψt+s, ϕ̇t − ψ̇t+s〉

= 2〈ϕt − ψt+s, V (ϕt ) − �(ϕt − ψt+s) − V (ψt+s)〉(3.5)

≤ 2〈ϕt − ψt+s, V (ϕt ) − V (ψt+s)〉.
Since the last expression is negative for large values of ‖ϕt − ψt+s‖ by (2.8), this
means that ϕt − ψt+s is bounded. But ψ is bounded, so ϕ is also bounded.

Let ρ0T (f, g) := sup0≤t≤T ‖f − g‖ (f,g ∈ C0T ) be the metric corresponding
to uniform topology, and denote by H 1

y the Cameron–Martin space of absolutely
continuous functions starting at y that possess square-integrable derivatives.

PROPOSITION 3.3. The family (Y s,y) satisfies a large deviations principle
with good rate function

I
s,y
0T (ϕ) =

⎧⎨⎩ 1
2

∫ T

0

∥∥ϕ̇t − V (ϕt ) + �
(
ϕt − ψt+s(x0)

)∥∥2
dt, if ϕ ∈ H 1

y ,

∞, otherwise .
(3.6)

More precisely, for any closed set F ⊂ C0T we have

lim sup
ε→0

ε log P(Y s,y ∈ F) ≤ − inf
φ∈F

I
s,y
0T (φ),

and for any open set G ⊂ C0T

lim inf
ε→0

ε log P(Y s,y ∈ G) ≥ − inf
φ∈G

I
s,y
0T (φ).

PROOF. Let a(t, y) := V (y) − �(y − ψt), and denote by F the function that
maps a path g ∈ C0T to the solution f of the ODE

ft = x0 +
∫ t

0
a(s, fs) ds + gt , 0 ≤ t ≤ T .

Fix g ∈ C0T , and let R > 0 such that the deterministic trajectory ψ(x0) as well as
f = F(g) stay in BR(0) up to time T . Note that nonexplosion of f is guaranteed
by dissipativity of a, much like in (3.5). Now observe that a is locally Lipschitz
with constant 2K2R on BR(0), uniformly w.r.t. t ∈ [0, T ]. Thus, we have for g̃ ∈
C0T , f̃ = F(g̃) such that f̃ does not leave BR(0) up to time T :

‖ft − f̃t‖ ≤ 2K2R

∫ t

0
‖fs − f̃s‖ds + ‖gt − g̃t‖,



KRAMERS’ TYPE LAW 1403

and Gronwall’s lemma yields

ρ0T (f, f̃ ) ≤ ρ0T (g, g̃)e2K2RT ,

that is, F is continuous. Indeed, the last inequality shows that we do not have
to presume that f̃ stays in BR(0), but that this is granted whenever ρ0T (g, g̃) is
sufficiently small.

Since F is continuous and F(
√

εW) = Y , we may invoke Schilder’s theorem
and the contraction principle, to deduce that Y satisfies a large deviations principle
with rate function

I0T (ϕ) = inf
{

1
2

∫ T

0
‖ġt‖2 dt :g ∈ H 1

y ,F (g) = ϕ

}
.

This proves the LDP for (Y s,y). �

Notice that the rate function of Y measures distances from the deterministic
solution ψ just as in the classical case without interaction, but the distance of ϕ

from ψ is weighted by the interaction between the two paths.
By means of the rate function, one can associate to Y s,y two functions that

determine the cost, respectively energy, of moving between points in the geometric
landscape induced by the vector field V . For t ≥ 0, the cost function

Cs(y, z, t) = inf
f ∈C0t :ft=z

I
s,y
0t (f ), y, z ∈ R

d,

determines the asymptotic cost for the diffusion Y s,y to move from y to z in time t ,
and the quasi-potential

Qs(y, z) = inf
t>0

Cs(y, z, t)

describes its cost of going from y to z eventually.

3.2. Large deviations principle for the self-stabilizing diffusion. We are now
in a position to prove large deviations principles for ξ and X by showing that ξ

and Y are close in the sense of large deviations.

THEOREM 3.4. For any ε > 0 let xε
0, ξ ε

0 ∈ R
d that converge to some x0 ∈ R

d ,
respectively y ∈ R

d , as ε → 0. Denote by Xε the solution of (3.1) starting at xε
0 . Let

s ≥ 0, and denote by ξε the solution of (3.3) starting in ξε
0 with time parameter s,

that is,

ξε
t = ξε

0 +
∫ t

0
V (ξε

u) − bε,x0(u + s, ξε
u) du + √

εWt, t ≥ 0,(3.7)

where bε,x0(t, x) = E[�(x − Xε
t )].

Then the diffusions (ξε)ε>0 satisfy on any time interval [0, T ] a large deviations
principle with good rate function (3.6).
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PROOF. We shall show that ξ := ξε is exponentially equivalent to Y := Y s,y

as defined by (3.4), which has the desired rate function; that is, we prove that for
any δ > 0 we have

lim sup
ε→0

ε log P
(
ρ0T (ξ, Y ) ≥ δ

) = −∞.(3.8)

Without loss of generality, we may choose R > 0 such that xε
0, y ∈ BR(0) and that

ψt(x0) does not leave BR(0) up to time s + T , and denote by σR the first time at
which ξ or Y exits from BR(0). Then for t ≤ σR

‖ξt − Yt‖ ≤ ‖ξ0 − y‖ +
∫ t

0
‖V (ξu) − V (Yu)‖du

(3.9)

+
∫ t

0

∥∥bε,xε
0 (u + s, ξu) − �

(
Yu − ψu+s(x0)

)∥∥du.

The first integral satisfies∫ t

0
‖V (ξu) − V (Yu)‖du ≤ KR

∫ t

0
‖ξu − Yu‖du, t ≤ σR,

due to the local Lipschitz assumption. Let us decompose the second integral. We
have ∥∥bε,xε

0 (u + s, ξu) − �
(
Yu − ψu+s(x0)

)∥∥
≤ ∥∥bε,xε

0 (u + s, ξu) − �
(
ξu − ψu+s(x

ε
0)

)∥∥
+ ∥∥�(

ξu − ψu+s(x
ε
0)

) − �
(
ξu − ψu+s(x0)

)∥∥
+ ∥∥�(

ξu − ψu+s(x0)
) − �

(
Yu − ψu+s(x0)

)∥∥.
Bounds for the second and third term in this decomposition are easily derived.
The last one is seen to be bounded by K2R‖ξu − Yu‖, since ξ , Y as well as ψ

are in BR(0) before time σR ∧ T . For the second term we also use the Lipschitz
condition to deduce that∥∥�(

ξu − ψu+s(x
ε
0)

) − �
(
ξu − ψu+s(x0)

)∥∥ ≤ K2R‖ψu+s(x
ε
0) − ψu+s(x0)‖.

As a consequence of the flow property for ψ this bound approaches 0 as ε → 0
uniformly w.r.t. u ∈ [0, T ].

By combining these bounds and applying Gronwall’s lemma, we find that

‖ξt − Yt‖
≤ exp{2K2Rt}

(
‖ξ0 − y‖ + K2R

∫ t

0
‖ψu+s(x

ε
0) − ψu+s(x0)‖du(3.10)

+
∫ t

0
‖bε,xε

0 (u + s, ξu) − �(ξu − ψu+s(x
ε
0))‖du

)
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for t ≤ σR . Since ξ is bounded before σR the r.h.s. of this inequality tends to zero
by Corollary 3.2.

The exponential equivalence follows from the LDP for Y as follows. Fix δ > 0,
and choose ε0 > 0 such that the r.h.s. of (3.10) is smaller than δ for ε ≤ ε0. Then
‖ξt −Yt‖ > δ implies that at least one of ξt or Yt is not in BR(0), and if ξt /∈ BR(0),
then Yt /∈ BR/2(0) if δ is small enough. Thus we can bound the distance of ξ and Y

by an exit probability of Y . For l > 0 let τl denote the diffusion Y ’s time of first
exit from Bl(0). Then, by Proposition 3.3,

lim sup
ε→0

ε log P
(
ρ0T (ξ, Y ) > δ

)
≤ lim sup

ε→0
ε log P(τR/2 ≤ T )(3.11)

≤ − inf
{
Cs(y, z, t) : |z| ≥ R

2
,0 ≤ t ≤ T

}
.

The latter expression approaches −∞ as R → ∞. �

Theorem 3.4 allows us to deduce two important corollaries. A particular choice
of parameters yields an LDP for X, and the ε-dependence of the initial conditions
permits us to conclude that the LDP holds uniformly on compact subsets, a fact
that is crucial for the proof of an exit law in the following section. The arguments
can be found in [7].

Let Px0(X ∈ ·) denote the law of the diffusion X starting at x0 ∈ R
d .

COROLLARY 3.5. Let L ⊂ R
d be a compact set. For any closed set F ⊂ C0T

we have

lim sup
ε→0

ε log sup
x0∈L

Px0(X ∈ F) ≤ − inf
x0∈L

inf
φ∈F

I
0,x0
0T (φ),

and for any open set G ⊂ C0T

lim inf
ε→0

ε log inf
x0∈L

Px0(X ∈ G) ≥ − sup
x0∈L

inf
φ∈G

I
0,x0
0T (φ).

PROOF. Choosing xε
0 = ξε

0 and s = 0 implies ξε = Xε in Theorem 3.4, which

shows that X satisfies an LDP with rate function I
0,x0
0T . Furthermore, this LDP

allows for ε-dependent initial conditions. This implies the uniformity of the LDP,
as pointed out in the proofs of Theorem 5.6.12 and Corollary 5.6.15 in [7]. Indeed,
the ε-dependence yields for all x0 ∈ R

d

lim sup
ε→0,y→x0

ε log Py(X ∈ F) ≤ − inf
φ∈F

I
0,x0
0T (φ),
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for otherwise one could find sequences εn > 0 and yn ∈ R
d such that εn → 0,

yn → x0 and

lim sup
n→∞

εn log Pyn(X ∈ F) > − inf
φ∈F

I
0,x0
0T (φ).

But this contradicts the LDP.
Now the uniformity of the upper large deviations bound follows exactly as

demonstrated in the proof of Corollary 5.6.15 in [7]. The lower bound is treated
similarly. �

The next corollary is just a consequence of the ε-dependent initial conditions in
the LDP for ξ .

COROLLARY 3.6. Let L ⊂ R
d be a compact set. For any closed set F ⊂ C0T

we have

lim sup
ε→0

ε log sup
x0∈L

P(ξ s,x0 ∈ F) ≤ − inf
x0∈L

inf
φ∈F

I
s,x0
0T (φ),

and for any open set G ⊂ C0T

lim inf
ε→0

ε log inf
x0∈L

P(ξ s,x0 ∈ G) ≥ − sup
x0∈L

inf
φ∈G

I
s,x0
0T (φ).

3.3. Exponential approximations under stability assumptions. The aim of this
subsection is to exploit the fact that the inhomogeneity of the diffusion Y s,y is weak
in the sense that its drift depends on time only through ψt+s(x0). If the dynamical
system ψ̇ = V (ψ) admits an asymptotically stable fixed point xstable that attracts
x0, then the drift of Y s,y becomes almost autonomous for large times, which in
turn may be used to estimate large deviations probabilities for ξ s,y . We make the
following assumption. It will also be in force in Section 4, where it will keep us
from formulating results on exits from domains with boundaries containing critical
points of DV , in particular saddle points in the potential case.

ASSUMPTION 3.7.

(i) Stability: there exists a stable equilibrium point xstable ∈ R
d of the dynam-

ical system

ψ̇ = V (ψ).

(ii) Convexity: the geometry induced by the vector field V is convex, that is,
the condition (2.6) for V holds globally:

〈h,DV (x)h〉 ≤ −KV(3.12)

for h ∈ R
d s.t. ‖h‖ = 1 and x ∈ R

d .
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Under this assumption it is natural to consider the limiting time-homogeneous
diffusion Y∞,y defined by

dY∞
t = V (Y∞

t ) dt − �(Y∞
t − xstable) dt + √

ε dWt, Y∞
0 = y.(3.13)

LEMMA 3.8. Let L ⊂ R
d be compact, and assume that xstable attracts all

y ∈ L, that is,

lim
t→∞ψt(y) = xstable ∀y ∈ L.

Then Y∞,y is an exponentially good approximation of Y s,y , that is, for any δ > 0
we have

lim
r→∞ lim sup

ε→0
ε log sup

y∈L,s≥r

P
(
ρ0T (Y s,y, Y∞,y) ≥ δ

) = −∞.

PROOF. We have

‖Y s,y
t − Y

∞,y
t ‖ ≤

∫ t

0
‖V (Y s,y

u ) − V (Y∞,y
u )‖du

+
∫ t

0

∥∥�(
Y s,y

u − ψs+u(y)
) − �(Y∞,y

u − xstable)
∥∥du.

Let σ
s,y
R be the first time at which Y s,y or Y∞,y exits from BR(0). For t ≤ σ

s,y
R ,

we may use the Lipschitz property of � and V , to find a constant cR > 0 s.t.

‖Y s,y
t − Y∞

t ‖ ≤ cR

∫ t

0
‖Y s,y

u − Y∞
u ‖du + cRTρ0T (ψs+·(y), xstable).

By assumption the second term converges to 0 as s → ∞, uniformly with respect
to y ∈ L since the flow is continuous with respect to the initial data. Hence, by
Gronwall’s lemma there exists some r = r(R, δ) > 0 such that for s ≥ r

sup
y∈L

sup
0≤t≤σ

s,y
R

‖Y s,y
t − Y∞

t ‖ < δ/2.

We deduce that

P
(
ρ0T (Y s,y, Y∞) ≥ δ/2

) ≤ P(τ
y
R/2 ≤ T ) ∀s ≥ r, y ∈ L,

where for l > 0 τ
y
l denotes the first exit time of Y∞,y from Bl(0). Sending

r,R → ∞ and appealing to the uniform LDP for Y∞,y finishes the proof, much as
the proof of Theorem 3.4. �

This exponential closeness of Y∞,y and Y s,y carries over to ξ s,y under the
aforementioned stability and convexity assumption, which enables us to sharpen
the exponential equivalence proved in Theorem 3.4. In order to establish this im-
provement, we need a preparatory lemma that strengthens Corollary 3.2 to uniform
convergence over the whole time axis. This uniformity is of crucial importance for
the proof of an exit law in the next section and depends substantially on the strong
convexity assumption (3.12).
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LEMMA 3.9. We have

lim
ε→0

bε,x0(t, x) = �
(
x − ψt(x0)

)
,

uniformly w.r.t. t ≥ 0 and w.r.t. x and x0 on compact subsets of R
d .

PROOF. Let f (t) := E(‖Zt‖2), where Zt = Xt − ψt(x0). In the proof of
Lemma 3.1 we have seen that

f ′(t) ≤ 2E
[〈
Zt,V

(
Zt + ψt(x0)

) − V (ψt(x0))
〉] + εd

≤ −2KV E(‖Zt‖2) + εd = −2KV f (t) + εd.

This means that {t ≥ 0 :f ′(t) < 0} ⊃ {t ≥ 0 :f (t) > εd
2KV

}. Recalling that f (0) =
0, this allows us to conclude that f is bounded by εd

2KV
. Now an appeal to the proof

of Corollary 3.2 finishes the argument. �

PROPOSITION 3.10. Let L ⊂ R
d be compact, and assume that xstable attracts

all y ∈ L. Then Y∞,y is an exponentially good approximation of ξ s,y , that is, for
any δ > 0 we have

lim
r→∞ lim sup

ε→0
ε log sup

y∈L,s≥r

P
(
ρ0T (ξ s,y, Y∞,y) ≥ δ

) = −∞.

PROOF. Recall the proof of Theorem 3.4. For y ∈ L and s ≥ 0 we have

‖ξ s,y
t − Y

s,y
t ‖

(3.14)

≤ exp{2K2Rt}
∫ t

0

∥∥bε,x0(u + s, ξu) − �
(
ξu − ψu+s(x0)

)∥∥du

for t ≤ σ
y,s
R , which denotes the first time that ξ

s,y
t or Y s,y exits from BR(0). By

Lemma 3.9, the integrand on the r.h.s. converges to zero as ε → 0, uniformly w.r.t.
s ≥ 0. Therefore, if we fix δ > 0, we may choose R = R(δ) sufficiently large and
ε0 > 0 such that for ε ≤ ε0, and all s ≥ 0

P
(
ρ0T (ξ s,y, Y s,y) > δ

) ≤ P(τ
s,y
R/2 < T )

≤ P(τ
∞,y
R/4 < T ) + P

(
ρ0T (Y∞,y, Y s,y) > R/4

)
,

where for l > 0, 0 ≤ s ≤ ∞, τ
s,y
l denotes the first exit time of the diffusion Y s,y

from the ball Bl(0). By the uniform LDP for Y∞,y and Lemma 3.8 the assertion
follows. �
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4. The exit problem. As a consequence of the large deviations principle, the
trajectories of the self-stabilizing diffusion are attracted to the deterministic dy-
namical system ψ̇ = V (ψ) as noise tends to 0. The probabilities of deviating from
ψ are exponentially small in ε, and the diffusion will certainly exit from a domain
within a certain time interval if the deterministic path ψ exits. The problem of
diffusion exit involves an analysis for the rare event that the diffusion leaves the
domain although the deterministic path stays inside, that is, it is concerned with an
exit which is triggered by noise only. Clearly, the time of such an exit should in-
crease as the noise intensity tends to zero. In this section we shall derive the precise
large deviations asymptotics of such exit times, that is, we shall give an analogue
of the well-known Kramers–Eyring law for time-homogeneous diffusions.

Let us briefly recall this law, a detailed presentation of which may be found in
Section 5.7 of [7]. For further classical results about the exit problem we refer to
[5, 6, 8] and [17].

A Brownian particle of intensity ε that wanders in a geometric landscape given
by a potential U is mathematically described by the classical time-homogeneous
SDE

dZε
t = −∇U(Zε

t ) dt + √
ε dWt, Zε

0 = x0 ∈ R
d .

If x∗ is a stable fixed point of the system ẋ = −∇U(x) that attracts the initial
condition x0 and τ ε denotes the exit time from the domain of attraction of x∗, then
the asymptotics of τ ε is described by the following two relations:

lim
ε→0

ε log E(τ ε) = Ū ,(4.1)

lim
ε→0

P
(
e(Ū−δ)/ε < τε < e(Ū+δ)/ε) = 1 ∀δ > 0.(4.2)

Here Ū denotes the energy required to exit from the domain of attraction of x∗.
This law may roughly be paraphrased by saying that τ ε behaves like exp Ū

ε
as

ε → 0.
Let us now return to the self-stabilizing diffusion Xε , defined by (3.1). In-

tuitively, exit times should increase compared to the classical case due to self-
stabilization and the inertia it entails. We shall show that this is indeed the case,
and prove a synonym of (4.1) and (4.2) for the self-stabilizing diffusion. Our ap-
proach follows the presentation in [7].

Let D be an open bounded domain in R
d in which Xε starts, that is, x0 ∈ D,

and denote by

τ ε
D = inf{t > 0 :Xε

t ∈ ∂D}
the first exit time from D. We make the following stability assumptions about D.
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ASSUMPTION 4.1.

(i) The unique equilibrium point in D of the dynamical system

ψ̇t = V (ψt)(4.3)

is stable and given by xstable ∈ D. As before, ψt(x0) denotes the solution starting
at x0. We assume that limt→∞ ψt(x0) = xstable.

(ii) The solutions of

φ̇t = V (φt ) − �(φt − xstable)(4.4)

satisfy

φ0 ∈ D �⇒ φt ∈ D ∀t > 0,

φ0 ∈ D �⇒ lim
t→∞φt = xstable.

The description of the exponential rate for the exit time of Itô diffusions with
homogeneous coefficients was first proved by Freidlin and Wentzell via an ex-
ploitation of the strong Markov property. The self-stabilizing diffusion Xε is also
Markovian, but it is inhomogeneous, which makes a direct application of the
Markov property difficult. However, the inhomogeneity is weak under the stability
Assumption 4.1. It implies that the law of Xε

t converges as time tends to infinity,
and large deviations probabilities for Xε may be approximated by those of Y∞
in the sense of Proposition 3.10. Since Y∞ is defined in terms of an autonomous
SDE, its exit behavior is accessible through classical results. The rate function that
describes the LDP for Y∞ is given by

I
∞,y
0T (ϕ) =

⎧⎨⎩ 1

2

∫ T

0
‖ϕ̇t − V (ϕt ) + �(ϕt − xstable)‖2 dt, if ϕ ∈ H 1

y ,

∞, otherwise.
(4.5)

The corresponding cost function and quasi-potential are defined in an obvious way
and denoted by C∞ and Q∞, respectively. The minimal energy required to connect
the stable equilibrium point xstable to the boundary of the domain is assumed to be
finite, that is,

Q∞ := inf
z∈∂D

Q∞(xstable, z) < ∞.

The following two theorems state our main result about the exponential rate of
the exit time and the exit location.

THEOREM 4.2. For all x0 ∈ D and all η > 0, we have

lim sup
ε→0

ε log
{
1 − Px0

(
e(Q∞−η)/ε < τε

D < e(Q∞+η)/ε)} ≤ −η/2(4.6)

and

lim
ε→0

ε log Ex0(τ
ε
D) = Q∞.(4.7)
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THEOREM 4.3. If N ⊂ ∂D is a closed set satisfying

inf
z∈N

Q∞(xstable, z) > Q∞,

then it does not see the exit point: for any x0 ∈ D

lim
ε→0

Px0(X
ε
τD

∈ N) = 0.

The rest of this section is devoted to the proof of these two theorems. In the
subsequent section, these results are illustrated by examples which show that the
attraction part of the drift term in a diffusion may completely change the behavior
of the paths, that is, the self-stabilizing diffusion stays in the domain for a longer
time than the classical one, and it typically exits at a different place.

4.1. Enlargement of the domain. The self-stabilizing diffusion lives in the
open, bounded domain D which is assumed to fulfill the previously stated sta-
bility conditions. In order to derive upper and lower bounds of exit probabilities,
we need to construct an enlargement of D that still enjoys the stability proper-
ties of Assumption 4.1(ii). This is possible because the family of solutions to the
dynamical system (4.4) defines a continuous flow.

For δ > 0 we denote by Dδ := {y ∈ R
d : dist(y,D) < δ} the open δ-neighbor-

hood of D. The flow φ is continuous, hence uniformly continuous on D due to
boundedness of D, and since the vector field is locally Lipschitz. Hence, if δ is
small enough, the trajectories φt(y) converge to xstable for y ∈ Dδ , that is, for each
neighborhood V ⊂ D of xstable there exists some T > 0 such that for y ∈ Dδ we
have φt(y) ∈ V for all t ≥ T . Moreover, the joint continuity of the flow implies
that, if we fix c > 0, we may choose δ = δ(c) > 0 such that

sup{dist(φt (y),D) : t ∈ [0, T ], y ∈ Dδ} < c.

Let

Oδ =
{
y ∈ R

d : sup
t∈[0,T ]

dist(φt (y),D) < c,φT (y) ∈ V

}
.

Then Oδ is a bounded open set which contains Dδ and satisfies Assumption 4.1(ii).
Indeed, if δ is small enough, the boundary of Oδ is not a characteristic boundary,
and

⋂
δ>0 Oδ = D.

4.2. Proof of the upper bound for the exit time. For the proof of the two main
results, we successively proceed in several steps and establish a series of prepara-
tory estimates that shall be combined afterward. In this subsection, we concentrate
on the upper bound for the exit time from D, and establish inequalities for the
probability of exceeding this bound and for the mean exit time.

In the sequel, we denote by Ps,y the law of the diffusion ξ s,y , defined by (3.3).
Recall that by the results of the previous section, ξ s,y satisfies a large deviations
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principle with rate function I s,y . The following continuity property of the associ-
ated cost function is the analogue of Lemma 5.7.8 in [7] for this inhomogeneous
diffusion. The proof is omitted.

LEMMA 4.4. For any δ > 0 and s ∈ [0,∞), there exists � > 0 such that

sup
x,y∈B�(xstable)

inf
t∈[0,1]C

s(x, y, t) < δ(4.8)

and

sup
(x,y)∈	

inf
t∈[0,1]C

s(x, y, t) < δ,(4.9)

where 	 = {(x, y) : infz∈∂D(‖y − z‖ + ‖x − z‖) ≤ �}.

Let us now present two preliminary lemmas on exit times of ξs,y . In slight
abuse of notation, we denote exit times of ξ s,y also by τ ε

D , which could formally
be justified by assuming to look solely at the coordinate process on path space and
switching between measures instead of processes. On the other hand, this notation
is convenient when having in mind that ξ s,y describes the law of Xε restarted at
time s, and that Xε may be recovered from ξ s,y for certain parameters.

LEMMA 4.5. For any η > 0 and � > 0 small enough, there exist T0 > 0, s0 >

0 and ε0 > 0 such that

inf
y∈B�(xstable)

Ps,y(τ
ε
D ≤ T0) ≥ e−(Q∞+η)/ε for all ε ≤ ε0 and s ≥ s0.

PROOF. Let � be given according to Lemma 4.4. The corresponding result
for the time-homogeneous diffusion Y∞,y is well known (see [7], Lemma 5.7.18),
and will be carried over to ξ s,y using the exponential approximation of Proposi-
tion 3.10. Let P∞,y denote the law of Y∞,y . The drift of Y∞,y is locally Lipschitz
by the assumptions on V and �, and we may assume w.l.o.g. that it is even globally
Lipschitz. Otherwise we change the drift outside a large domain containing D.

If δ > 0 is small enough such that the enlarged domain Oδ satisfies Assump-
tion 4.1(ii), Lemma 5.7.18 in [7] implies the existence of ε1 and T0 such that

inf
y∈B�(xstable)

P∞,y(τ
ε
Oδ ≤ T0) ≥ e−(Q

δ
∞+η/3)/ε for all ε ≤ ε1.(4.10)

Here Q
δ

∞ denotes the minimal energy

Q
δ

∞ = inf
z∈∂Oδ

Q∞(xstable, z).

The continuity of the cost function carries over to the quasi-potential, that is, there
exists some δ0 > 0 such that |Qδ

∞ − Q∞| ≤ η/3 for δ ≤ δ0.
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Now let us link the exit probabilities of Y∞,y and ξ s,y . We have for s ≥ 0

Ps,y(τ
ε
D ≤ T0)

≥ P
({ξ s,y exits from D before T0} ∩ {ρ0,T0(ξ

s,y, Y∞,y) ≤ δ})(4.11)

≥ P∞,y(τ
ε
Dδ ≤ T0) − P

(
ρ0,T0(ξ

s,y, Y∞) ≥ δ
)
.

Moreover, by the exponential approximation we may find ε2 > 0 and s0 > 0 such
that

sup
y∈B�(xstable)

P
(
ρ0,T0(ξ

s,y, Y∞) ≥ δ
) ≤ e−(Q

δ
∞+η/2)/ε ∀s ≥ s0, ε ≤ ε2.

Since Dδ ⊂ Oδ , we deduce that for ε ≤ ε0 = ε1 ∧ ε2 and s ≥ s0

inf
y∈B�(xstable)

Ps,y(τ
ε
D ≤ T0) ≥ e−(Q

δ
∞+η/3)/ε − e−(Q

δ
∞+η/2)/ε ≥ e−(Q

δ
∞+η)/ε. �

By similar arguments, we prove the exponential smallness of the probability of
too long exit times. Let �� = inf{t ≥ 0 : ξ s,y

t ∈ B�(xstable) ∪ ∂D}, where � is small
enough such that B�(xstable) is contained in the domain D.

LEMMA 4.6. For any � > 0 sufficiently small and for any K > 0 there exist
ε0 > 0, T1 > 0 and r > 0 such that

sup
y∈D,s≥r

Ps,y(�� > t) ≤ e−K/ε ∀t ≥ T1.

PROOF. As before, we use the fact that a similar result is already known for
Y∞,y . For δ > 0 small enough, let

�δ
� = inf{t ≥ 0 :Y∞

t ∈ B�−δ(xstable) ∪ ∂Oδ}.
By Lemma 5.7.19 in [7], there exist T1 > 0 and ε1 > 0 such that

sup
y∈D

P∞,y(�
δ
� > t) ≤ e−K/ε ∀t ≥ T1; ε ≤ ε1.

Now the assertion follows from

sup
y∈D

Ps,y(�� > T1) ≤ sup
y∈D

P∞,y(�
δ
� > T1) + sup

y∈D

P
(
ρ0,T1(ξ

s,y, Y∞,y) > δ
)
,

since the last term is exponentially negligible by Proposition 3.10. �

The previous two lemmas contain the essential large deviations bounds required
for the proof of the following upper bound for the exit time of Xε .
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PROPOSITION 4.7. For all x0 ∈ D and η > 0 we have

lim sup
ε→0

ε log Px0

(
τ ε
D ≥ e(Q∞+η)/ε) ≤ −η/2(4.12)

and

lim sup
ε→0

ε log Ex0[τ ε
D] ≤ Q∞.(4.13)

PROOF. The proof consists of a careful modification of the arguments used
in Theorem 5.7.11 in [7]. By Lemmas 4.5 and 4.6, there exist T̃ = T0 + T1 > 0,
ε0 > 0 and r0 > 0 such that for T ≥ T̃ , ε ≤ ε0 and r ≥ r0 we have

qr
T := inf

y∈D
Pr,y(τ

ε
D ≤ T )

≥ inf
y∈D

Pr,y(�� ≤ T1) inf
y∈B�(xstable),s≥r

Ps,y(τ
ε
D ≤ T0)(4.14)

≥ exp
{
−Q∞ + η/2

ε

}
=: q∞

T .

Moreover, by the Markov property of ξ s,y , we see that for k ∈ N

Px0

(
τ ε
D > 2(k + 1)T

) = [
1 − Px0

(
τ ε
D ≤ 2(k + 1)T |τ ε

D > 2kT
)]

× Px0(τ
ε
D > 2kT )

≤
[
1 − inf

y∈D
P2kT ,y(τ

ε
D ≤ 2T )

]
Px0(τ

ε
D > 2kT )

≤ (1 − q2kT
2T )Px0(τ

ε
D > 2kT ),

which by induction yields

Px0(τ
ε
D > 2kT ) ≤

k−1∏
i=0

(1 − q2iT
2T ).(4.15)

Let us estimate each term of the product separately. We have

1 − q2iT
2T = sup

y∈D

P2iT ,y(τ
ε
D > 2T )

≤ sup
y∈D

P2iT ,y(τ
ε
D > T ) sup

y∈D

P(2i+1)T ,y(τ
ε
D > T )

≤ sup
y∈D

P(2i+1)T ,y(τ
ε
D > T ).

By choosing T large enough, we may replace the product in (4.15) by a power.
Indeed, for T > max(T̃ , r0) we have (2i + 1)T ≥ r0 for all i ∈ N, which by (4.14)
results in the uniform upper bound

1 − q2iT
2T ≤ 1 − q

(2i+1)T
T ≤ 1 − q∞

T .



KRAMERS’ TYPE LAW 1415

By plugging this into (4.15), we obtain a “geometric” upper bound for the expected
exit time, namely

Ex0[τ ε
D] ≤ 2T

[
1 +

∞∑
k=1

sup
y∈D

Px0(τ
ε
D ≥ 2kT )

]

≤ 2T

[
1 +

∞∑
k=1

k−1∏
i=0

(1 − q2iT
2T )

]

≤ 2T

[
1 +

∞∑
k=1

(1 − q∞
T )k

]
= 2T

q∞
T

.

This proves the claimed asymptotics of the expected exit time. Furthermore, an
application of Chebyshev’s inequality shows that

Px0

(
τ ε
D ≥ e(Q∞+η)/ε) ≤ Ex0[τ ε

D]
e(Q∞+η)/ε

≤ 2T
e−(Q∞+η)/ε

q∞
T

= 2T e−η/2ε,

which is the asserted upper bound of the exit probability. �

4.3. Proof of the lower bound for the exit time. In order to establish the lower
bound of the exit time, we prove a preliminary lemma which estimates the prob-
ability to exit from the domain D \ B�(xstable) at the boundary of D. This proba-
bility is seen to be exponentially small since the diffusion is attracted to the stable
equilibrium point. Let us denote by S� the boundary of B�(xstable), and recall the
definition of the stopping time ��.

LEMMA 4.8. For any closed set N ⊂ ∂D and η > 0, there exist ε0 > 0, �0 > 0
and r0 > 0 such that

ε log sup
y∈S2�,s≥r

P(ξ
s,y
��

∈ N) ≤ − inf
z∈N

Q∞(xstable, z) + η

for all ε ≤ ε0, r ≥ r0 and � ≤ �0.

PROOF. For δ > 0 we define a subset Sδ of Dδ by setting

Sδ := Dδ \ {y ∈ R
d : dist(y,N) < δ}.

Furthermore, let

N δ := ∂Sδ ∩ {y ∈ R
d : dist(y,N) ≤ δ}.

Sδ contains the stable equilibrium point xstable, and as such it is unique in Sδ if δ

is small enough.
The proofs of Lemma 5.7.19 and Lemma 5.7.23 in [7] can be adapted to the

domain Sδ , since an exit of the limiting diffusion Y∞ from the domain Oδ defined



1416 S. HERRMANN, P. IMKELLER AND D. PEITHMANN

in Section 4.1 always requires an exit from Sδ . Hence, there exist ε1 > 0 and
�1 > 0 such that

ε log sup
y∈S2�

P∞,y(Y
∞
�δ

�
∈ N δ) ≤ − inf

z∈N δ
Q∞(xstable, z) + η

2

for ε ≤ ε1 and � ≤ �1, where �δ
� denotes the first exit time from the domain Sδ \

B�(xstable). By the continuity of the quasi-potential, we have

− inf
z∈N δ

Q∞(xstable, z) + η

2
≤ − inf

z∈N
Q∞(xstable, z) + η

if δ > 0 is small enough. Therefore, it is sufficient to link the result about the
limiting diffusion to the corresponding statement dealing with ξ s,y . By Lemma 4.6,
we can find T1 > 0, ε1 > 0 and r1 > 0 such that

ε log sup
y∈S2�,s≥r

Ps,y(�� > T1)

(4.16)
≤ − inf

z∈N
Q∞(xstable, z) + η

2
∀ε ≤ ε1, r ≥ r1.

If �� ≤ T1 and ρ0,T1(ξ
s,y, Y∞) ≤ δ, then {ξs,y

��
∈ N} is contained in {Y∞

�δ
�
∈ N δ}.

Thus,

P(ξ
s,y
��

∈ N) ≤ P(ξ
s,y
��

∈ N,�� < T1) + Ps,y(�� ≥ T1)

≤ P(Y
∞,y

�δ
�

∈ N δ) + P
(
ρ0,T1(ξ

s,y, Y∞,y) ≥ δ
)

+ Ps,y(�� ≥ T1).

By (4.16) and Proposition 3.10, the logarithmic asymptotics of the sum on the r.h.s.
is dominated by the first term, that is, the lemma is established. �

We are now in a position to establish the lower bound for the exit time which
complements Proposition 4.7 and completes the proof of Theorem 4.2.
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PROPOSITION 4.9. There exists η0 > 0 such that for any η ≤ η0

lim sup
ε→0

ε log Px0

[
τ ε
D < e(Q∞−η)/ε] ≤ −η/2(4.17)

and

lim inf
ε→0

ε log Ex0[τ ε
D] ≥ Q∞.(4.18)

PROOF. In a first step we apply Lemma 4.8 and an adaptation of Lemma 5.7.23
in [7]. The latter explains that the behavior of an Itô diffusion on small time in-
tervals is similar to the behavior of the martingale part, which in our situation is
simply given by

√
εWt . We find r0 > 0, T > 0 and ε0 > 0 such that for ε ≤ ε0

sup
y∈S2�,s≥r0

P(ξ
s,y
��

∈ ∂D) ≤ e−(Q∞−η/2)/ε,

sup
y∈D,s≥r0

P

(
sup

0≤t≤T

‖ξ s,y
t − y‖ ≥ �

)
≤ e−(Q∞−η/2)/ε.

In the sequel, we shall proceed as follows. First, we wait for a large period of
time r1 until the diffusion becomes “sufficiently homogeneous,” which is possible
thanks to the stability assumption. Since xstable attracts all solutions of the deter-
ministic system, we may find r1 ≥ r0 such that ψr(x0) ∈ B�(xstable) for r ≥ r1.
Second, after time r1, we employ the usual arguments for homogeneous diffu-
sions. Following [7], we recursively define two sequences of stopping times that
shall serve to track the diffusion’s excursions between the small ball B�(xstable)

around the equilibrium point and the larger sphere S2� = ∂B2�(xstable), before it
finally exits from the domain D.

Set ϑ0 = r1, and for m ≥ 0 let

τm = inf{t ≥ ϑm :Xε
t ∈ B� ∪ ∂D}
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and

ϑm+1 = inf{t > τm :Xε
t ∈ S2�}.

Let us decompose the event {τ ε
D ≤ kT + r1}. We have

Px0(τ
ε
D ≤ kT + r1) ≤ Px0

({τ ε
D ≤ r1} ∪ {Xε

r1
/∈ B2�(xstable)})

(4.19)
+ sup

y∈S2�,s≥r1

Ps,y(τ
ε
D ≤ kT ).

The first probability on the r.h.s. of this inequality tends to 0 as ε → 0. Indeed, by
the large deviations principle for Xε on the time interval [0, r1], there exist η0 > 0
and ε2 > 0 such that

ε log Px0

({τ ε
D ≤ r1} ∪ {Xε

r1
/∈ B2�(xstable)}) ≤ −η/2

for ε ≤ ε2 and η ≤ η0. For the second term in (4.19), we can observe two different
cases: either the diffusion exits from D during the first k exits from D \B�(xstable),
or the minimal time spent between two consecutive exits is smaller than T . This
reasoning leads to the bound

Ps,y(τ
ε
D ≤ kT ) ≤

k∑
m=0

Ps,y(τ
ε
D = τm) + Ps,y

(
min

1≤m≤k
(ϑm − τm−1) ≤ T

)
.

Let us now link these events to the probabilities presented at the beginning of the
proof. We have

sup
y∈S2�,s≥r1

Ps,y(τ
ε
D = τm) ≤ sup

y∈S2�,s≥r0

Ps,y(ξ
s,y
��

∈ ∂D)

and

sup
y∈S2�,s≥r1

Ps,y

(
(ϑm − τm−1) ≤ T

) ≤ sup
y∈S2�,s≥r0

Ps,y

(
sup

0≤t≤T

‖ξ s,y
t − y‖ ≥ �

)
,

which yields the bound

sup
y∈S2�,s≥r1

Ps,y(τ
ε
D ≤ kT ) ≤ (2k + 1)e−(Q∞−η/2)/ε.

Thus, by choosing k = �(e(Q∞−η)/ε − r1)/T � + 1, we obtain from (4.19)

Px0

(
τ ε
D ≤ e(Q∞−η)/ε) ≤ e−η/2ε + 5T −1e−η/2ε,

that is, (4.17) holds. Moreover, by using Chebyshev’s inequality, we obtain the
claimed lower bound for the expected exit time. Indeed, we have

Ex0(τ
ε
D) ≥ e(Q∞−η)/ε(1 − Px0

(
τ ε
D ≤ e(Q∞−η)/ε))

≥ e(Q∞−η)/ε(1 − (1 + 5T −1)e−η/2ε),
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which establishes (4.18). �

We end this section with the proof of Theorem 4.3 about the exit location.

PROOF OF THEOREM 4.3. We use arguments similar to the ones of the pre-
ceding proof. Let

Q∞(N) = inf
z∈N

Q∞(xstable, z),

and assume w.l.o.g. that Q∞(N) < ∞. Otherwise, we may replace Q∞(N) in the
following by some constant larger than Q∞. As in the preceding proof, we may
choose T > 0, r0 > 0 and ε0 > 0 such that

sup
y∈S2�,s≥r0

Ps,y(ξ
s,y
��

∈ ∂N) ≤ e−(Q∞(N)−η/2)/ε ∀ε ≤ ε0,

sup
y∈D,s≥r0

Ps,y

(
sup

0≤t≤T

‖ξ s,y
t − y‖ ≥ �

)
≤ e−(Q∞(N)−η/2)/ε ∀ε ≤ ε0.

It suffices to study the event A = {τ ε
D ≤ kT + r0} ∩ {Xε

τε
D

∈ N} for positive inte-
gers k. We see that

Px0(A) ≤ Px0

(
Xε

r0
/∈ B2�(xstable)

) + sup
y∈S2�,s≥r0

Ps,y(τ
ε
D ≤ kT )

≤ Px0

(
Xε

r0
/∈ B2�(xstable)

) +
k∑

m=0

Ps,y(τ
ε
D = τm, ξ

s,y

τ ε
D

∈ N)

+ Ps,y

(
min

1≤m≤k
(ϑm − τm−1) ≤ T

)
≤ Px0

(
Xε

r0
/∈ B2�(xstable)

) + (2k + 1)e−(Q∞(N)−η/2)/ε.

The choice k = �(e(Q∞(N)−η)/ε − r0)/T � + 1 yields

Px0(A) ≤ Px0

(
Xε

r0
/∈ B2�(xstable)

) + 5T −1e−η/2ε.

This implies that Px0(τ
ε
D ≤ e(Q∞(N)−η)/ε,Xε

τε
D

∈ N) → 0 as ε → 0. Now choose η

small enough such that Q∞(N) − η > Q∞ + η. Then Proposition 4.7 states that
the exit time of the domain D is smaller than e(Q∞+η)/ε with probability close to 1.
The combination of these two results implies Px0(X

ε
τε
D

∈ N) → 0 as ε → 0. �

5. The gradient case: examples. The structural assumption about �, namely
its rotational invariance as stated in (2.4), implies that � is always a potential gra-
dient. In fact, this assumption means that � is the gradient of the positive potential

A(x) =
∫ ‖x‖

0
φ(u)du.
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In this section, we make the additional assumption that the second drift component
given by the vector field V is also a potential gradient, which brings us back to
the very classical situation of gradient type time-homogeneous Itô diffusions. In
this situation, quasi-potentials and exponential exit rates may be computed rather
explicitly and allow for a good illustration of the effect of self-stabilization on the
asymptotics of exit times.

We assume from now on that V = −∇U is the gradient of a potential U on R
d .

Then the drift of the limiting diffusion Y∞ defined by (3.13) is also a potential
gradient, that is,

b(x) := V (x) − �(x − xstable) = −∇(
U(x) + A(x − xstable)

)
.

A simple consequence of Theorem 3.1 in [8] allows one to compute the quasi-
potential explicitly in this setting.

LEMMA 5.1. Assume that V = −∇U . Then for any z ∈ D,

Q∞(xstable, z) = 2
(
U(z) − U(xstable) + A(z − xstable)

)
.

In particular,

Q∞ = inf
z∈∂D

2
(
U(z) − U(xstable) + A(z − xstable)

)
.

Observe that the exit time for the self-stabilizing diffusion is strictly larger than
that of the classical diffusion defined by

dZε
t = V (Zε

t ) dt + √
ε dWt, Zε

0 = x0.

Indeed, by the theory of Freidlin and Wentzell,

lim
ε→0

ε log Ex0(τ
ε
D(Zε)) = inf

z∈∂D
2
(
U(z) − U(xstable)

)
(5.1)

< Q∞ = lim
ε→0

ε log Ex0(τ
ε
D(Xε)).(5.2)

The exit problem is in fact completely different if we compare the diffusions
with and without self-attraction. We have already seen that the exponential rate is
larger in the attraction case. Let us next see by some examples that the exit location
may change due to self-stabilization.

5.1. The general one-dimensional case. In this subsection we confine our-
selves to one-dimensional self-stabilizing diffusions. In dimension one, the struc-
tural assumptions concerning � and V are always granted, and we may study the
influence of self-stabilization on exit laws in a general setting. Let a < 0 < b,
and assume for simplicity that the unique stable equilibrium point is the origin 0.
Denote by U(x) = − ∫ x

0 V (u)du the potential that induces the drift V . As seen

before, the interaction drift is the gradient of the potential A(x) = ∫ |x|
0 φ(u)du.
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Since we are in the gradient situation, the exponential rate for the mean exit time
from the interval [a, b] can be computed explicitly.

If we denote by τx(X
ε) = inf{t ≥ 0 :Xε

t = x} the first passage time of the level x

for the process Xε and τI = τa ∧ τb, then the exit law of the classical diffusion Zε

(i.e., without self-stabilization) is described by

lim
ε→0

P0
(
e(Q∞

0 −η)/ε < τI (Z
ε) < e(Q∞

0 +η)/ε) = 1

and

lim
ε→0

ε log E0(τI (Z
ε)) = Q∞

0 ,

where Q∞
0 = 2 min(U(a),U(b)). Moreover, if we assume that U(a) < U(b), then

P0(τI (Z
ε) = τa(Z

ε)) → 1 as ε → 0.
The picture changes completely if we introduce self-stabilization. The quasi-

potential becomes

Q∞
1 = 2 min

(
U(a) + A(a),U(b) + A(b)

)
> Q∞

0 ,

so the mean exit time of Xε from the interval I is strictly larger compared to
that of Zε . This result corresponds to what intuition suggests: the process needs
more work and consequently more time to exit from a domain if it is attracted
by some law concentrated around the stable equilibrium point. Furthermore, if a

and b satisfy

A(b) − A(a) < U(a) − U(b),

we observe that P0(τI (X
ε) = τb(X

ε)) → 1, that is, the diffusion exits the inter-
val at the point b. Thus, we observe the somehow surprising behavior that self-
stabilization changes the exit location from the left to the right endpoint of the
interval. See Figure 1.

FIG. 1. Potentials U (left picture) and U + A (right picture).
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5.2. An example in the plane. In this subsection, we give another explicit ex-
ample in dimension two, in order to illustrate changes of exit locations in more
detail.

Let V = −∇U , where

U(x, y) = 6x2 + 1
2y2,

and let us examine the exit problem for the elliptic domain

D = {
(x, y) ∈ R

2 :x2 + 1
4y2 ≤ 1

}
.

The unique stable equilibrium point is the origin xstable = 0.
The asymptotic mean exit time of the diffusion Zε

t starting in 0 is given
by limε→0 ε log E0(τ

ε
D(Zε)) = 4, since the minimum of the potential on ∂D is

reached if y = ±2 and x = 0. Let us now focus on its exit location, and denote
N(x,y) = ∂D ∩ B�((x, y)). The diffusion exits asymptotically in the neighborhood
N(0,2) with probability close to 1/2 and in the neighborhood N(0,−2) with the same
probability.

Now we look how self-stabilization changes the picture. For the interaction
drift we choose �(x,y) = ∇A(x, y), with A(x, y) = 2x2 + 2y2. First, the self-
stabilizing diffusion Xε starting in 0 needs more time to exit from D, namely
limε→0 ε log E0(τ

ε
D(Xε)) = 16. More surprisingly, though, the exit location is

completely different. The diffusion exits asymptotically with probability close to
1/2 in the neighborhoods N(−1,0) and N(1,0), respectively.

Acknowledgment. We are very much indebted to an anonymous referee for
his correct reading and his useful remarks.

REFERENCES

[1] BENACHOUR, S., ROYNETTE, B., TALAY, D. and VALLOIS, P. (1998). Nonlinear self-
stabilizing processes. I. Existence, invariant probability, propagation of chaos. Stochastic
Process. Appl. 75 173–201. MR1632193

[2] BENACHOUR, S., ROYNETTE, B. and VALLOIS, P. (1998). Nonlinear self-stabilizing
processes. II. Convergence to invariant probability. Stochastic Process. Appl. 75 203–224.
MR1632197

http://www.ams.org/mathscinet-getitem?mr=1632193
http://www.ams.org/mathscinet-getitem?mr=1632197


KRAMERS’ TYPE LAW 1423

[3] GUILLIN, A., BOLLEY, F. and VILLANI, C. (2008). Quantitative concentration inequalities for
empirical measures on non-compact spaces. Probab. Theory Related Fields 137 541–593.
MR2280433

[4] DAWSON, D. A. and GÄRTNER, J. (1987). Large deviations from the McKean–Vlasov limit
for weakly interacting diffusions. Stochastics 20 247–308. MR0885876

[5] DAY, M. V. (1983). On the exponential exit law in the small parameter exit problem. Stochastics
8 297–323. MR0693886

[6] DAY, M. V. (1987). Recent progress on the small parameter exit problem. Stochastics 20 121–
150. MR0877726

[7] DEMBO, A. and ZEITOUNI, O. (1998). Large Deviations Techniques and Applications, 2nd
ed. Springer, New York. MR1619036

[8] FREIDLIN, M. and WENTZELL, A. (1998). Random Perturbations of Dynamical Systems, 2nd
ed. Springer, New York. MR1652127

[9] FUNAKI, T. (1984). A certain class of diffusion processes associated with nonlinear parabolic
equations. Z. Wahrsch. Verw. Gebiete 67 331–348. MR0762085

[10] MALRIEU, F. (2001). Logarithmic Sobolev inequalities for some nonlinear PDE’s. Stochastic
Process. Appl. 95 109–132. MR1847094

[11] MCKEAN, H. P., Jr. (1966). A class of Markov processes associated with nonlinear parabolic
equations. Proc. Natl. Acad. Sci. U.S.A. 56 1907–1911. MR0221595

[12] OELSCHLÄGER, K. (1985). A law of large numbers for moderately interacting diffusion
processes. Z. Wahrsch. Verw. Gebiete 69 279–322. MR0779460

[13] STROOCK, D. W. and VARADHAN, S. R. S. (1979). Multidimensional Diffusion Processes.
Springer, Berlin. MR0532498

[14] SZNITMAN, A.-S. (1991). Topics in propagation of chaos. École d’Été de Probabilités
de Saint-Flour XIX—1989. Lecture Notes in Math. 1464 165–251. Springer, Berlin.
MR1108185

[15] TAMURA, Y. (1984). On asymptotic behaviors of the solution of a nonlinear diffusion equation.
J. Fac. Sci. Univ. Tokyo Sect. IA Math. 31 195–221. MR0743525

[16] TAMURA, Y. (1987). Free energy and the convergence of distributions of diffusion processes
of McKean type. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 443–484. MR0914029

[17] WILLIAMS, M. (1982). Asymptotic exit time distributions. SIAM J. Appl. Math. 42 149–154.
MR0646755

ECOLE DES MINES DE NANCY

AND INSTITUT DE MATHÉMATIQUES ELIE CARTAN

BP 239
54506 VANDOEUVRE-LÈS-NANCY

FRANCE

E-MAIL: herrmann@iecn.u-nancy.fr

INSTITUT FÜR MATHEMATIK

HUMBOLDT-UNIVERSITÄT ZU BERLIN

UNTER DEN LINDEN 6
10099 BERLIN

GERMANY

E-MAIL: imkeller@mathematik.hu-berlin.de
peithman@mathematik.hu-berlin.de

http://www.ams.org/mathscinet-getitem?mr=2280433
http://www.ams.org/mathscinet-getitem?mr=0885876
http://www.ams.org/mathscinet-getitem?mr=0693886
http://www.ams.org/mathscinet-getitem?mr=0877726
http://www.ams.org/mathscinet-getitem?mr=1619036
http://www.ams.org/mathscinet-getitem?mr=1652127
http://www.ams.org/mathscinet-getitem?mr=0762085
http://www.ams.org/mathscinet-getitem?mr=1847094
http://www.ams.org/mathscinet-getitem?mr=0221595
http://www.ams.org/mathscinet-getitem?mr=0779460
http://www.ams.org/mathscinet-getitem?mr=0532498
http://www.ams.org/mathscinet-getitem?mr=1108185
http://www.ams.org/mathscinet-getitem?mr=0743525
http://www.ams.org/mathscinet-getitem?mr=0914029
http://www.ams.org/mathscinet-getitem?mr=0646755
mailto:herrmann@iecn.u-nancy.fr
mailto:imkeller@mathematik.hu-berlin.de
mailto:peithman@mathematik.hu-berlin.de

	Introduction
	Existence and uniqueness of a strong solution
	Large deviations
	Small noise asymptotics of the interaction drift
	Large deviations principle for the self-stabilizing diffusion
	Exponential approximations under stability assumptions

	The exit problem
	Enlargement of the domain
	Proof of the upper bound for the exit time
	Proof of the lower bound for the exit time

	The gradient case: examples
	The general one-dimensional case
	An example in the plane

	Acknowledgment
	References
	Author's Addresses

