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EFFICIENT RARE-EVENT SIMULATION FOR THE MAXIMUM OF
HEAVY-TAILED RANDOM WALKS1

BY JOSE BLANCHET AND PETER GLYNN

Harvard University and Stanford University

Let (Xn :n ≥ 0) be a sequence of i.i.d. r.v.’s with negative mean. Set
S0 = 0 and define Sn = X1 + · · · + Xn. We propose an importance sampling
algorithm to estimate the tail of M = max{Sn :n ≥ 0} that is strongly efficient
for both light and heavy-tailed increment distributions. Moreover, in the case
of heavy-tailed increments and under additional technical assumptions, our
estimator can be shown to have asymptotically vanishing relative variance
in the sense that its coefficient of variation vanishes as the tail parameter in-
creases. A key feature of our algorithm is that it is state-dependent. In the
presence of light tails, our procedure leads to Siegmund’s (1979) algorithm.
The rigorous analysis of efficiency requires new Lyapunov-type inequalities
that can be useful in the study of more general importance sampling algo-
rithms.

1. Introduction. In this paper we consider the problem of efficient simu-
lation of first-passage time probabilities for heavy-tailed random walks (r.w.’s).
More precisely, suppose that (Sn :n ≥ 0) is the r.w. generated by the sequence
of independent and identically distributed (i.i.d.) random variables (r.v.’s) X =
(Xn :n ≥ 1) (i.e., Sn = Sn−1 + Xn with S0 = 0). We assume that EXn < 0. De-
fine M = max{Sn :n ≥ 0} and τ(b) = inf{n ≥ 0 :Sn > b}. We are interested in
developing efficient simulation methodology to compute

P
(
τ(b) < ∞) = P(M > b),(1)

when b is large (i.e., the event {M > b} is rare) and X1 is heavy-tailed.
We say that an unbiased simulation estimator R(b) for P(M > b) is strongly

efficient if

sup
b>0

ER(b)2/P (M > b)2 < ∞.

Strong efficiency implies that the number of simulation runs required to esti-
mate P(M > b) to a given relative accuracy is bounded in b. A weaker cri-
terion is logarithmic efficiency, which implies that the number of replications
required to estimate P(M > b) with a given relative accuracy grows at rate
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o(| logP(M > b)|); see Asmussen and Glynn (2007), Juneja and Shahabuddin
(2006) or Bucklew (2004), Section 5.2, for a discussion of efficiency in rare-event
simulation. A strongly efficient estimator is said to exhibit asymptotically vanish-
ing relative error when ER(b)2 ∼ P(M > b)2 as b ↗ ∞ (or, equivalently, when
the coefficient of variation vanishes as b ↗ ∞).

In this paper we develop an implementable state-dependent importance sam-
pling algorithm that can be rigorously proved to possess asymptotically vanishing
relative error. By “state-dependent,” we mean that the importance sampling algo-
rithm generates the next increment of the random walk from a distribution that
depends on the walk’s current state (i.e., location). This is the first strongly effi-
cient algorithm that has been developed for estimating the tail of M in the presence
of general heavy-tailed increment distributions. Prior efficient algorithms require
the increment distribution to be of M/G/1 type with regularly varying or Weibull
type right tails.

A key idea is that our importance distribution is state-dependent. There is a long
history of applications of state-dependent importance sampling to simulation prob-
lems. Perhaps the first related contributions are those by Hammersley and Morton
(1954) and Rosenbluth and Rosenbluth (1955) in the context of molecular simu-
lation; see also the text by Liu (2001) for applications of sequential importance
sampling in various scientific contexts. However, a general framework for rigor-
ous analysis of these types of algorithms is still under development. In a sequence
of recent papers, Paul Dupuis and Hui Wang [see, e.g., Dupuis and Wang (2004)]
have proposed a general methodology that can be applied in the presence of large
deviations theory for light-tailed systems. Our paper contributes to this general
literature by developing Lyapunov-type inequalities (see Theorem 2) that are par-
ticularly useful for the analysis of state-dependent algorithms.

The general theory of importance sampling establishes that the theoretically
optimal importance distribution (having zero variance) involves sampling from the
conditional distribution of the random walk given {τ(b) < ∞}. Under this con-
ditional distribution, the random walk has increment distributions that are state-
dependent. However, we cannot implement this zero variance sampling scheme
because the state-dependent increment distribution requires explicit knowledge
of the function u∗(·) = P(τ(·) < ∞). Our approach involves using asymptotic
approximations for u∗(·) to obtain an implementable state-dependent change-of-
measure that closely approximates the true conditional distribution. In the current
G/G/1 setting, the asymptotic approximation for u∗(·) is

u∗(b) = P(M > b) ∼ 1

|EX|
∫ ∞
b

P (X > s)ds,(2)

as b ↗ ∞. An important step in our approach is to use (2) in order to construct a
function v(·) such that

Ev(b + X) − v(b) = o
(
P(X > b)

)
(3)
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as b ↗ ∞. Note that if v = u∗, the above difference vanishes. The above conver-
gence rate [namely, that associated with (3)] is a convenience in developing our
simulation algorithm, but is not necessary (see Proposition 3 and Theorem 3). We
show that a v(·) satisfying (3) can be constructed using (2) whenever X belongs to
the class S∗ of heavy-tailed distributions—which is slightly smaller than the class
of subexponential distributions but includes regularly varying, Weibull, lognormal
and many more distributions as special cases; see Assumption A in Section 3 for a
precise definition.

The problem that we address here is motivated by applications in queueing and
insurance. The distribution of M is of great interest in queueing theory as it co-
incides with the steady-state waiting time distribution of the single-server G/G/1
queue. In addition, the first passage time probability displayed in (1) is of cen-
tral interest in the context of insurance risk. In particular, such a first passage time
probability can be interpreted as the probability that an insurer receiving premiums
at a constant rate is eventually ruined when subject to a renewal arrival process of
i.i.d. claims. When the claim distribution is heavy-tailed, the resulting calculation
is exactly of the type discussed in this paper. Statistical evidence suggests that such
heavy-tailed distributions frequently arise in practice and are a convenient vehicle
for capturing many of the key stylized features that are present in observed claim
sizes [see, e.g., Embrechts, Klüppelberg and Mikosch (1997) and Adler, Feldman
and Taqqu (1998)].

The first efficient rare event simulation algorithm for the tail of M was suggested
by Siegmund (1976), who was motivated by the first passage time interpretation
displayed in (1) and its connection to one-sided sequential probability ratio tests in
the context of statistical sequential analysis. Siegmund’s algorithm applies only to
light-tailed r.w.’s and involves an importance distribution corresponding to a r.w.
with state-independent increments. Our proposed strongly efficient algorithm is
consistent with recent results of Bassamboo, Juneja and Zeevi (2006), who show
that no state independent efficient importance sampling algorithm for computing
(1) can exist in the (regularly varying) heavy-tailed setting. Another key feature
that is present in the light-tailed context is the ability to fully leverage the existing
theory of large deviations. A complicating factor in the heavy-tailed setting is that
the large deviations literature is not applicable to such problems. Asmussen, Bin-
swanger and Hojgaard (2000) provide a number of examples and counterexamples
to illustrate the additional difficulties that arise in the heavy-tailed environment.

As noted above, rare-event simulation algorithms for heavy-tailed distributions
have been previously developed in the context of the M/G/1 queue. The first
logarithmically efficient simulation algorithm for estimation of (1) was given in
Asmussen and Binswanger (1997) and was based on the idea of conditional Monte
Carlo (and not importance sampling). Logarithmic efficiency for their algorithm
was established for regularly varying tails and was shown to fail for Weibull-type
heavy tails. Subsequently, Asmussen, Binswanger and Hojgaard (2000) developed
simulation estimators for the M/G/1 queue based on importance sampling ideas
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that are provably logarithmically efficient for both regularly varying and Weibull-
type tails. Juneja and Shahabuddin (2002) also developed logarithmically efficient
importance sampling schemes based on a suitable twisting of the M/G/1 ser-
vice time distribution’s hazard rate. More recently, Asmussen and Kroese (2006)
proposed other logarithmically efficient importance sampling algorithms for the
M/G/1 queue that seem to have excellent performance in practice. In addition,
they developed a conditional Monte Carlo estimator that is strongly efficient for
both regularly varying tails and certain Weibull type heavy-tails. Dupuis, Leder
and Wang (2006) proposed a state-dependent importance sampling algorithm that
is strongly efficient for a regularly varying M/G/1 queue. All the above algo-
rithms take advantage of the fact that the ladder height distribution for the M/G/1
queue is explicitly known. In contrast, no such explicit computations are possi-
ble for the class of G/G/1 models considered here. This significantly complicates
both the development and the theoretical analysis of efficient rare-event algorithms
for this class of problems. Indeed, we developed our Lyapunov bounds largely in
order to provide a suitable verification tool for bounding the variances (as required
to establish strong efficiency) for the algorithm considered here. More recently,
Blanchet, Glynn and Liu (2007) have used this Lyapunov technique to study an
alternative importance sampling algorithm for the G/G/1 queue that is based on
mixture sampling (rather than on a Markovian importance sampler having a tran-
sition kernel based explicitly on the approximation v as is the case here). This
alternative algorithm, while typically simpler to implement than the approach de-
scribed here (because generating increments from a mixture distribution is usually
easier than the variate generation schemes required here), applies only to regularly
varying distributions (rather than the class S∗ covered by this paper’s algorithm).

The paper is organized as follows. Section 2 introduces a general technique
to study efficient state-dependent importance sampling algorithms for computing
first passage time probabilities of general state-space Markov chains and recov-
ers Siegmund’s algorithm as a direct application of the basic ideas underlying our
procedure. Section 3 introduces the precise technical assumptions under which
we develop our methodology and provides both the proof of strong efficiency for
our importance sampling estimator and establishes its asymptotically vanishing
relative error property. In Section 4 we discuss computational complexity issues
associated with our algorithm, leading us to a study of the number of variate gen-
erations required to terminate our procedure. Additional practical observations and
some results on simulation experiments are given in our final section.

2. Efficient importance samplers for exit probabilities. The problem of
computing the level crossing probability (1) can be viewed as a special case of
computing an exit probability. To be specific, let Y = (Yn :n ≥ 0) be a X-valued
Markov chain (with stationary transition probabilities) and let Py(·) and Ey(·)
be the probability distribution and expectation operator on the path-space of Y ,
conditional on Y0 = y. For B ⊆ X, let T = inf{n ≥ 0 :Yn ∈ B} be the exit time



RARE-EVENT SIMULATION OF HEAVY-TAILED RANDOM WALKS 1355

from Bc. For A ⊆ B , the probability u∗(y) = Py(YT ∈ A,T < ∞) is called an
“exit probability” (all the sets considered here are assumed measurable). Note that
the level crossing probability (1) is the special case in which Y is given by the
r.w. (Sn :n ≥ 0), X = [−∞,∞), B = {−∞} ∪ (b,∞), A = (b,∞) and y = 0.
Because of the translation invariance of r.w., studying this problem as b ↗ ∞ is
equivalent to fixing B = {−∞} ∪ [0,∞), A = (0,∞), setting y = −b and letting
b ↗ ∞. With B and A fixed in this way, our goal is to efficiently compute u∗(−b)

as b ↗ ∞. This reformulation of the problem will form the basis of our analysis
in the remainder of the paper.

The following result is easily proved [see, e.g., Meyn and Tweedie (1993)].

PROPOSITION 1. The function u∗ = (u∗(y) :y ∈ Bc) is the minimal nonnega-
tive solution to

u(y) =
∫
X

Py(Y1 ∈ dz)u(z), y ∈ Bc,

subject to the boundary conditions that u(z) = 1 for z ∈ A and u(z) = 0 for z ∈
B ∩ Ac.

As mentioned in the Introduction, the zero-variance importance distribution for
computing u∗(y) is that associated with the conditional distribution Py(·|YT ∈
A,T < ∞). Let Fn = σ(Y0, . . . , Yn) for n ≥ 0. Our next result characterizes this
conditional distribution.

THEOREM 1. Suppose that u∗(y) > 0 for y ∈ Bc. Then, for each nonnegative
FT -measurable r.v. �,

Ey[�|YT ∈ A,T < ∞] = E∗
y�,

where E∗
y(·) is the expectation operator under which Y is a Markov chain having

one-step transition kernel

P ∗(y, dz) = Py(Y1 ∈ dz)
u∗(z)
u∗(y)

,

for y ∈ Bc, z ∈ X.

PROOF. Note that I (T = n)� = λn(Y0, . . . , Yn) for some (measurable) func-
tion λn :Xn+1 → [0,∞). Therefore,

Ey[�;T = n,YT ∈ A,T < ∞]
u∗(y)

=
∫
Bc×···×Bc×A

λn(y, z1, . . . , zn)u
∗(zn)P (y, dz1) · · ·P(zn−1, dzn)

u∗(y)
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=
∫
Bc×···×Bc×A

λn(y, z1, . . . , zn)
P (y, dz1)u

∗(z1)

u∗(y)

P (z1, dz2)u
∗(z2)

u∗(z1)

× · · · × P(zn−2, dzn−1)u
∗(zn−1)

u∗(zn−2)

P (zn−1, dzn)u
∗(zn)

u∗(zn−1)

= E∗
y [�;T = n].

Summing over n, we conclude that

E[�|YT ∈ A,T < ∞] = E∗[�;T < ∞].
Letting � = 1 establishes that P ∗

y (T < ∞) = 1, proving the result. �

This theorem makes clear that the zero-variance importance sampling distribu-
tion for computing (1) corresponds to a random walk in which the increments have
a state-dependent distribution. The above result suggests that a good importance
sampling distribution can be obtained by simulating Y under transition dynamics
that closely approximate those induced by the zero-variance importance distribu-
tion’s transition kernel P ∗.

Suppose that Q is the Markov transition kernel chosen by the simulator to com-
pute the exit probability u∗(y) = Py(YT ∈ A,T < ∞) via importance sampling.
Assume that (Q(y, dz) : y, z ∈ Bc ∪ A) can be represented as

Q(y,dz) = r(y, z)−1Py(Y1 ∈ dz)I (y ∈ Bc, z ∈ Bc ∪ A)

+ δy(dz)I (y ∈ A,z ∈ A)

for some positive function r(·). Note that

Py(YT ∈ A,T = n)

= EQ
y

[
I (YT ∈ A,T = n)

T∏
j=1

r(Yj−1, Yj )

]
,

where E
Q
y (·) is the expectation operator under which Y evolves according to the

transition kernel Q, conditional on Y0 = y. Summing over n, we conclude that u∗
can be represented as

u∗(y) = EQ
y

[
I (T < ∞)

T∏
j=1

r(Yj−1, Yj )

]
.

An important step in any theoretical analysis of the estimator

R = I (T < ∞)

T∏
j=1

r(Yj−1, Yj )(4)

is to bound its variance. The variance, conditional on Y0 = y, is given by
s∗(y) − u∗(y)2, where s∗(y) = E

Q
y R2. Since only s∗(·) depends on the choice

of the importance distribution, we focus on bounding this quantity.
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THEOREM 2.

(i) The function s∗ = (s∗(y) :y ∈ Bc) is the minimal nonnegative solution to

s(y) = η(y) +
∫
Bc

K(y, dz)s(z),

for y ∈ Bc, where

η(y) =
∫
A

r(y, z)Py(Y1 ∈ dz),

K(y, dz) = r(y, z)Py(Y1 ∈ dz),

for y, z ∈ Bc.
(ii) The function s∗ is given by

s∗ =
∞∑

n=0

Knη,

where Kn(y, dz) = ∫
Bc Kn−1(y, dy1)K(y1, dz) for n ≥ 1, K0(y, dz) = δy(dz)

and (Knη)(y) = ∫
Bc Kn(y, dz)η(z).

(iii) Suppose that h = (h(y) :y ∈ Bc) is a finite-valued nonnegative function for
which

(Kh)(y) ≤ h(y) − η(y)(5)

for y ∈ Bc. Then, s∗(y) ≤ h(y) for y ∈ Bc.

PROOF. Part (ii) follows by expanding E
Q
y [R2I (T = n)] and summing over

n using Fubini’s theorem. Part (i) follows easily from (ii).
For part (iii), first note that Kh must be finite-valued by virtue of (5). Induction

based on applying Kn to both sides of (5) establishes that Knh is finite-valued
for n ≥ 1. By applying Knh to (5) and using the fact that Knh is finite-valued for
n ≥ 1, we conclude that Knη ≤ Knh−Kn+1h for n ≥ 0. Summing over 0 ≤ n ≤ m

and using the nonnegativity of h, we obtain the bound

m∑
n=0

Knη ≤ h − Km+1h ≤ h.

The result follows by sending n ↗ ∞ and using part (iii). �

We call the function h(·) a Lyapunov function and refer to bounds based on part
(iii) of Theorem 2 as Lyapunov bounds on the second moment.

Returning to the exit probability computations, suppose that v = (v(y) :y ∈ X)

is chosen by the simulator to be a good approximation to u∗ = (u∗(y) :y ∈ X).
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In view of Theorem 2 above, it is then natural to consider simulating Y via the
transition kernel

Q(y,dz) = P(y, dz)
v(z)

w(y)
(6)

(for y ∈ Bc, z ∈ Bc ∪ A), where w(y) is the normalization constant given by

w(y) =
∫
Bc∪A

P (y, dz)v(z)

(assumed to be finite). In this case, r(y, z) = w(y)/v(z). The following result pro-
vides a Lyapunov bound on the second moment s∗(·) that is specifically suited to
this setting.

PROPOSITION 2. Assume that w(y) > 0 for y ∈ Bc and suppose that there
exists a finite-valued function h :Bc ∪ A −→ [ε,∞) satisfying

w(y)

∫
v(z)h(z)P (y, dz) ≤ h(y)v(y)2,(7)

for y ∈ Bc. If h(z) ≥ 1 for z ∈ A and v(z) ≥ κ > 0 for z ∈ A, then s∗(y) ≤
ε−1κ−2v(y)2h(y).

PROOF. Put h̃(·) = κ−2h(·)v2(·) and note that (7) is equivalent to assuming
that

(Kh̃)(y) ≤ h̃(y) − κ−2w(y)

∫
A

P (y, dz)w(y)h(z)(8)

for y ∈ Bc. But

η(y) =
∫
A

P (y, dz)
w(y)

v(z)
≤

∫
A

κ−2P(y, dz)w(y)v(z)

≤ κ−2w(y)ε−1
∫
A

P (y, dz)v(z)h(z),

so that (8) implies that

(Kh̃)(y) ≤ h̃(y) − η(y)

for y ∈ Bc. We now apply part (iii) of Theorem 2 to complete the proof. �

Suppose that v(·) has been chosen by the simulator to be within a constant
multiple of u∗(·), as occurs whenever v(·) has the same asymptotic behavior as
u∗(·). In this case, it follows that the importance sampling algorithm based on
r(y, z) = w(y)/v(z) has bounded relative variance [i.e., the ratio of the variance
to the square of u∗(x)] across Bc whenever the function h of Proposition 2 can
be chosen to be bounded. On the other hand, if h grows at a suitable rate [e.g.,
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h(y) = | log(v(y))|1/2], the logarithmic efficiency of the importance sampler can
be assured.

To illustrate, consider the problem of estimating

u∗(−b) = P
(
τ(0) < ∞|S0 = −b

)
for b > 0 in the light-tailed setting. In particular, suppose that there exists a positive
root θ∗ of E[exp(θ∗X1)] = 1 for which E[X1 exp(θ∗X1)] < ∞. If X1 is nonlat-
tice, then it is known that

u∗(−b) ∼ c exp(−θ∗b)

for some positive constant c; see, for example, Asmussen (2003), page 365. The
natural choice for v is, of course, v(z) = exp(θ∗z), in which case w(z) = exp(θ∗z).
If we put h(y) = 1 for y ∈ R, Proposition 2 applies, yielding the bound

s∗(−b) ≤ exp(−2θ∗b).

Hence, this importance sampling algorithm [which is precisely the one proposed
by Siegmund (1976)] is strongly efficient.

3. Elements of our algorithm for heavy-tailed r.w.’s. We shall explore how
to adapt the ideas discussed in the previous sections to the case of a random walk
with heavy-tailed increment distributions. We need the following definitions. Set
X+ = max(X,0) and X− = max(−X,0).

DEFINITION 1. A nonnegative r.v. Z is said to be subexponential if

P(Z1 + Z2 > t) ∼ 2P(Z > t),

as t ↗ ∞ where Z1 and Z2 are independent copies of Z. A r.v. X is said to be
subexponential if X+ is subexponential.

DEFINITION 2. A nonnegative r.v. Z belongs to the family S∗ if

2EZP(Z > t) ∼
∫ t

0
P(Z > t − s)P (Z > s)ds

as t ↗ ∞. In addition, a r.v. X is in S∗ if X+ is in S∗.

DEFINITION 3. A r.v. X is said to possess a long tail if for every constant
a ∈ R

P(X > t + a) ∼ P(X > t)

as t ↗ ∞.
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It can be shown that if Z is in S∗, then it must be subexponential. Also, any
subexponential r.v. possesses a long tail. The class S∗ of random variables includes,
as particular cases, regularly varying, lognormal and Weibull-type distributions
among many others. For more on the specific properties of various types of heavy-
tailed distributions, see Embrechts, Klüppelberg and Mikosch (1997), Section 1.4.

The following assumption will be imposed throughout the rest of the paper.

ASSUMPTION A. Assume that X+
n belongs to S∗, that is,

2EX+
n P (Xn > t) ∼

∫ t

0
P(Xn > t − s)P (Xn > s)ds

as t ↗ ∞.

If X belongs to S∗, then both the distribution of X and its integrated tail∫ ∞
x

P (X > s)

EX+ ds

are subexponential [see Asmussen (2003), Section 10.9]. Under Assumption A, it
is known [see, e.g., Asmussen (2003), page 296] that

u∗(−b) = P
(
τ(0) < ∞|S0 = −b

) ∼ −1

EX

∫ ∞
b

P (X > t)dt(9)

as b ↗ ∞. The previous result is also known in the literature as the Pakes–
Veraberbeke theorem.

The natural strategy is to use this approximation to construct an appropriate im-
portance sampling transition kernel Q(x,dy) [defined in (6)] by means of a func-
tion v(·) that mimics the behavior of u∗(·). An important estimate in the efficiency
analysis of our importance sampling scheme involves the behavior of v(y)−w(y)

as y ↘ −∞, where w(y) = Ev(y + X). As we indicated earlier, if one selects
v = u∗, then the difference v(y) − w(y) vanishes. Thus, it is natural to expect that
the asymptotic behavior of this difference will play an important role in the perfor-
mance of the importance sampling estimator. As we shall see, in order to guarantee
strong efficiency of the importance sampling estimator, it suffices to select v(·) so
that v(y) − w(y) = o(P (X > −y)) as y ↘ −∞.

Recent estimates by Borovkov and Borovkov (2001) under regularly varying
or semiexponential assumptions provide asymptotics to u∗(y) that hold with an
error of order o(P (X > −y)) as y ↘ −∞. Under these assumptions, Borovkov
and Borovkov (2001) add an additional term to (9) of order O(P (X > −y)) to the
approximation (9) which yields an error rate o(P (X > −y)) as y ↘ −∞.

Given the form of (9), it may be surprising at first sight that making use only of
approximation (9) and assuming only that the distribution of X belongs to the class
S∗ one can easily construct v(·) that actually achieves an error of order o(P (X >

−y)) for the difference v(y) − w(y) as y ↘ −∞. In fact, as we shall prove in
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our next proposition, v(−t) can be defined as the tail probability of a nonnegative
random variable Z such that

P(Z > t) = min
[
−(EX)−1

∫ ∞
t

P (X > s)ds,1
]

(10)

for t > 0 [this may imply P(Z = 0) > 0]. Then, we write v(y) = P(Z > −y) for
all y ∈ R. Note that if we could pick u∗ = v, this would correspond to choosing
Z = M . Given our representation for v(·) as a tail probability, we can write

w(y) = E[v(y + X)] = P(X + Z > −y).

The next result shows that this choice of v(·) has the indicated convergence rate for
the difference v(y) − w(y). However, for the purpose of our efficiency analysis, it
is the second part of the following result, namely, inequality (11), which we shall
invoke.

PROPOSITION 3. Under Assumption A,

w(y) − v(y) = o
(
P(X > −y)

)
as y ↘ −∞. Consequently, for each γ ∈ (0,1), there exists a∗(γ ) ∈ (−∞,0] such
that, for all y ≤ a∗(γ ),

−γ ≤ v(y)2 − w(y)2

P(X > −y)w(y)
.(11)

PROOF. We must show that

P(X + Z > t) − P(Z > t) = o
(
P(X > t)

)
as t ↗ ∞. Note that

P(X + Z > t) = P(X + Z > t,Z > t) + P(X + Z > t,Z ≤ t)

= P(Z > t) − P(X + Z ≤ t,Z > t)

+ P(X + Z > t,Z ≤ t).

First, we will show that, as t ↗ ∞,

P(X + Z > t,Z ≤ t) ∼ P(X > t)EX−/(−EX).

Let y0 = inf{t ∈ R :P(Z > t) < 1}. Then,

P(X + Z > t,Z ≤ t)

= −1

EX

∫ t

y0

P(X > t − s)P (X > s)ds + P(X > t − y0)P (Z = y0).
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We now analyze the integral on the right-hand side of the previous display:∫ t

y0

P(X > t − s)P (X > s)ds

=
∫ t−y0

0
P(X > t − y0 − s)P (X > s + y0) ds

=
∫ t−y0

0
P(X > t − y0 − s)P (X > s)ds

+
∫ t−y0

0
P(X > t − y0 − s)[P(X > s + y0) − P(X > s)]ds.

Let us define by I1 and I2 the two last integrals on the right-hand side of the display
above. Then, assumption A yields

I1 =
∫ t−y0

0
P(X > t − y0 − s)P (X > s)ds

∼ 2P(X > t)EX+ as t ↗ ∞.

Now, for the integral I2, we have

I2 =
∫ t−y0

0
P(X > t − y0 − s) d

∫ s+y0

s
P (X > u)du

= −
∫ t−y0

0

∫ t−s

t−y0−s
P (X > u)duP (X ∈ ds)

+ P(X > 0)

∫ t

t−y0

P(X > u)du − P(X > t − y0)

∫ y0

0
P(X > u)du.

Note that

P(X > t − s)y0 ≤
∫ t−s

t−y0−s
P (X > u)du

= t

∫ 1+y0/t

1
P(X > ut − s − y0) du

≤ P(X > t − s − y0)y0.

Hence, by virtue of Assumption A, we have that, as t ↗ ∞,∫ t−y0

0

∫ t−s

t−y0−s
P (X > u)duP (X ∈ ds) ∼ P(X > t)y0P(X > 0).

Similarly, we obtain that

P(X > 0)

∫ t

t−y0

P(X > u)du ∼ P(X > t)y0P(X > 0)
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as t ↗ ∞, which yields

I2 ∼ −P(X > t)

∫ y0

0
P(X > s)ds.

Combining these estimates, we obtain

P(X + Z > t,Z ≤ t)

∼ (I1 + I2)/(−EX) + P(X > t − y0)P (Z = y0)

∼ 2P(X > t)EX+/(−EX) − P(X > t)

∫ y0

0
P(X > s)ds/(−EX)

+ P(X > t − y0)P (Z = y0).

Since

P(Z = y0) = 1 − 1

(−EX)

∫ ∞
y0

P(X > s)ds,

we have

P(X + Z > t;Z ≤ t)

∼ P(X > t)[2EX+ + (−EX) − EX+]/(−EX)

= P(X > t)EX−/(−EX).

On the other hand,

P(X + Z ≤ t,Z > t) = − 1

EX

∫ ∞
t

P (X ≤ t − s)P (X > s)ds

= − 1

EX

∫ 0

−∞
P(X ≤ s)P (X > t − s) ds

∼ P(X > t)EX−/(−EX)

as t ↗ ∞. This yields the proof of the result. �

The constant a∗ that characterizes the region where inequality (11) holds will
play an important role in the construction of our algorithm. The bound (11) indi-
cates that on the region (−∞, a∗] the approximation to the zero-variance change-
of-measure based on v(·) is good enough to control the variance of the likelihood
ratio in our simulations. Finding a∗ can be done numerically or analytically de-
pending on the problem at hand. For implementation, the simulator can choose
any value of γ (for instance, γ = 1/2) or optimize the asymptotic upper bound
that we shall obtain in Theorem 3, which we now are ready to state and prove.

Consider the importance sampling change-of-measure generated by

Qa∗(y, dz) = P(y + X ∈ z + dz)v(z + a∗)
w(y + a∗)

(12)
= P(y + X ∈ z + dz|Z + X ≥ −y − a∗).
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Then, we will show that the corresponding estimator defined as

R = I
(
τ(0) < ∞) τ(0)∏

j=1

w(Sk−1 + a∗)
v(Sk + a∗)

(13)

has bounded relative variance as S0 = y ↘ −∞.

THEOREM 3. Suppose that Assumption A is in force. Fix γ ∈ (0,1) and select
a∗ = a∗(γ ) ∈ (−∞,0] as in (11). Then,

E
Qa∗
y R2 ≤ (1 − γ )−1κ(a∗)−2v(y + a∗)2,

where κ(a∗) = infz≥0[v(z + a∗)] = P(Z > −a∗). Consequently,

sup
b>0

E
Qa∗−b [R(b)2]/P (M > b)2 < ∞.

PROOF. Define

h(y) = I (y + a∗ ≤ 0) + (1 − γ )I (y + a∗ > 0).

We wish to apply Proposition 2 so we must satisfy bound (7), which in our case
can be written as

w(y + a∗)−1Ev(X + y + a∗)h(X + y) ≤
(

v(y + a∗)
w(y + a∗)

)2

,(14)

for all y ≤ 0. Here we have used the fact that h(y) = 1 for y ≤ 0. Using the inter-
pretation of v(·) as a tail probability, we note that the bound (14) can be expressed,
for all y ≤ 0, as

E
(
h(X + y) − 1|X + Z > −y − a∗

) ≤ v(y + a∗)2 − w(y + a∗)2

w(y + a∗)2 .

Observe that

h(X + y) − 1 = −γ I (X ≥ −y − a∗).

Therefore, it suffices to verify that, for all y ≤ 0,

−γP (X > −y − a∗|X + Z ≥ −y − a∗)

≤ v(y + a∗)2 − w(y + a∗)2

w(y + a∗)2 .

However, it follows since Z ≥ 0 and using the fact that w(y) = P(X + Z ≥ −y),
that the previous inequality holds if and only if, for all y ≤ 0,

−γ ≤ v(y + a∗)2 − w(y + a∗)2

P(X > −y − a∗)w(y + a∗)
,
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which is true by definition of a∗. The conclusion of the result follows directly from
Propositions 2 and 3, the fact that P(M > b) ∼ v(−b + a∗) as b ↗ ∞ and that the
ratio P(M > b)/v(−b + a∗) is bounded as a function of b on compact sets. �

Our approach to the study of the issue of asymptotically vanishing relative er-
ror will involve taking advantage of extreme value theory; see, for instance, Em-
brechts, Klüppelberg and Mikosch (1997), Section 3.3. We say that X1 belongs to
the domain of attraction of H [denoted by X1 ∈ MDA(H)] if H is nondegenerate
and there exists a sequence of constants cn ≥ 0 and dn ∈ R (for n ≥ 1) such that

c−1
n

(
max(X1, . . . ,Xn) − dn

) �⇒ H

as n ↗ ∞. The random variable H must follow a so-called extreme value distrib-
ution which, due to the Fisher–Tippett theorem [see Embrechts, Klüppelberg and
Mikosch (1997), page 121], can be of only three types. Only the cases when H has
Frechet distribution, given by

�α(x) = exp(−x−α)I (x > 0), α > 0,

or when H follows a Gumbel distribution described via

�(x) = exp(− exp(−x))

are of interest to us. The class MDA(�α) is precisely the class of regularly varying
distributions with index α > 0 [i.e., P(X > x) = x−αL(x), where L(·) is slowly
varying at infinity], whereas MDA(�) contains other commonly used heavy-tailed
distributions, such as log-normal and Weibull. The normalization constants in the
definition of H (i.e., the cn’s and dn’s) depend on the so-called auxiliary function,
which is defined via

ξ(x) =
∫ ∞
x P (X1 > t)dt

P (X1 > x)
.

The following result of Asmussen and Kluppelberg (1996) provides some as-
ymptotic properties of the zero-variance change-of-measure as b ↗ ∞. These
properties will be useful in verifying that our estimator possesses asymptotically
vanishing relative variance as b ↗ ∞.

THEOREM 4 [Asmussen and Kluppelberg (1996)]. Assume either that X1 is
regularly varying with index α > 1 or that assumption A holds and X1 ∈ MDA(�).
Then, given S0 = −b < 0 and τ(0) < ∞,(

Sτ(0)−1

ξ(b)
,
τ (0)

ξ(b)
,
Sτ(0)

ξ(b)

)
�⇒ (V ,V/|EX|, T )

as b ↗ ∞, where V and T are a pair of random variables with joint distribution
P(V > x,T > y) = P(H > x + y).
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With the previous result in hand, we now can sharpen the conclusion of The-
orem 3 to obtain asymptotically vanishing relative error. The next result provides
theoretical justification for the empirical performance discovered in the numerical
experiments shown in Section 5, in which the accuracy for a given number of runs
is seen to improve when b gets larger.

THEOREM 5. Assume either that X1 is regularly varying with index α > 1 or
that assumption A holds and X1 ∈ MDA(�). Then, one can choose γ (b) ↘ 0 and
−a∗(b) ↗ ∞ as b ↗ ∞ such that the estimator provided by Algorithm 1 [defined
as R in (13)] satisfies

lim
b−→∞

E
Q∗
−bR2

P(M > b)2 = 1.

PROOF. Under the stated assumptions, ξ(b) ↗ ∞ as b ↗ ∞ [see Asmussen
and Kluppelberg (1996)]. Furthermore, because both X1 and Z are long tailed, it
follows that, for any constant c > 0, ξ(b + c) ∼ ξ(b) as b ↗ ∞. We start by noting
that

E
Q∗
−bR2 = E−b

(
I
(
τ(0) < ∞) τ(0)∏

j=1

w(Sk−1 + a∗)
v(Sk + a∗)

)

= P(M > b)w(−b + a∗)

× E−b

(
τ(0)−1∏
j=1

w(Sk + a∗)
v(Sk + a∗)

1

v(Sτ(0) + a∗)

∣∣∣τ(0) < ∞
)
.

The Cauchy–Schwarz inequality implies that

E−b

(
τ(0)−1∏
j=1

w(Sk + a∗)
v(Sk + a∗)

1

v(Sτ(0) + a∗)

∣∣∣τ(0) < ∞
)

≤ E−b

(
τ(0)−1∏
j=1

w(Sk + a∗)2

v(Sk + a∗)2

∣∣∣τ(0) < ∞
)1/2

(15)

× E−b

(
1

v(Sτ(0) + a∗)2

∣∣∣τ(0) < ∞
)1/2

.

Consider the first term in (15), which involves the ratios w(Sk + a∗)2/v(Sk + a∗)2.
We can again use a Lyapunov argument as the one introduced in the proof of
Theorem 3. In fact, a completely analogous argument as the one given there shows
that, for each γ ∈ (0,1), there exists a value of a∗ < 0 for which

E−y

(
τ(0)−1∏
j=0

w(Sk + a∗)2

v(Sk + a∗)2

∣∣∣τ(0) < ∞
)

≤ 1

1 − γ
.
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In fact, one just chooses a∗ < 0 for which the inequality

−γ ≤ v(y + a∗)2 − w(y + a∗)2

P(X > −y − a∗)w(y + a∗)
u∗(y)P (X > −y − a∗)
w(y + a∗)P (X > −y)

(16)

= v(y + a∗)2 − w(y + a∗)2

P(X > −y − a∗)w(y + a∗)
u∗(y)ξ(−y − a∗)v(y + a∗)

v(y)ξ(−y)w(y + a∗)
holds uniformly in y ≤ 0. In view of Proposition 3, it suffices to analyze the ratio
ξ(−y)/ξ(−y − a∗). But because ξ(b) ↗ ∞ as b ↗ ∞ and ξ(b + c) ∼ ξ(b) as
b ↗ ∞, it follows that

sup
y≤0

sup
a≤0

ξ(−y)/ξ(−y − a) < ∞,

which is more than what is needed to guarantee that inequality (16) holds for a∗ <

0 sufficiently negative.
With a∗ selected as above, observe that

E−b

(
1

v(Sτ(0) + a∗)2

∣∣∣τ(0) < ∞
)

(17)

≤ P−b

(
Sτ(0) ≥ −a∗|τ(0) < ∞) + P−b(Sτ(0) ≤ −a∗|τ(0) < ∞)

P (Z > −a∗)2 .

By virtue of Theorem 4, we have that the right-hand side of (17) converges to 1 as
b ↗ ∞. We may therefore conclude that, given γ ∈ (0,1), there exists a selection
of a∗ > 0 for which

limb→∞
E

Q∗
−bR2

P(M > b)2 ≤ 1

1 − γ
.

Since γ > 0 is arbitrary, we obtain the result by sending γ ↘ 0 and (possibly) also
sending a∗(γ ) ↘ −∞ at a sufficiently slow rate. �

REMARK. Although the previous result is intended only to provide a theoreti-
cal justification for the numerical performance found in our experiments, one can,
in principle, find a computable constant a∗ < ∞ for which

limb→∞
E

Q∗
−bR2

P(M > b)2 ≤ 1

1 − γ
.

This is clear from display (16) in the proof of Theorem 5. Note that everything in
the left-hand side of (16) can, in principle, be evaluated, except of course u∗(y).
However, it suffices to find a computable bound for u∗(y)/v(y), which can be
obtained in many different ways, one of them through the use of the Lyapunov in-
equalities. Indeed, note that Theorem 3 and the fact that E

Q∗
−bR2 ≥ u∗(−b)2 (which

follows by the Cauchy–Schwarz inequality) could be used to obtain a computable
upper bound for supy≤0 u∗(y)/v(y).
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4. The algorithm and complexity analysis. Recall that Z is the nonnegative
r.v. for which

P(Z > t) = min
[
−(EX)−1

∫ ∞
t

P (X > s)ds,1
]
.

The function v(·) is then defined through the relation v(t) = P(Z > −t) and w(·)
is given by w(y) = P(X + Z > −y). We assume that v and w are either available
in closed form or can be easily computed numerically. Note that in the conventional
light-tailed setting, the sampler suggested through large deviations approximations
to v (and hence, to w) can often be implemented via “exponentially twisting” the
increment distribution. Actual implementation of an importance sampler based on
exponential twisting requires that the moment generating function be computable
either in closed form or through a cheap numerical calculation, and that the correct
twisting parameter (usually as characterized through a root of the gradient of the
log moment generating function) be easily computable. Our assumptions on v and
w can be viewed as the heavy-tailed analog to this requirement in the light-tailed
case.

For fixed γ ∈ (0,1), set a∗ = a∗(γ ) ≤ 0 satisfying (11). We wish to estimate

u∗(−b) = P
(
τ(0) < ∞|S0 = −b

)
,

for b > 0. Our proposed algorithm proceeds as follows.

ALGORITHM 1.

STEP 1. Initialize s = −b, R = 1.
STEP 2. Set y ←− s, generate a random variable Y with law

P(Y ∈ t + dt) = P(X ∈ t + dt |X + Z > −y − a∗),

and update s ←− y + Y ,

R ←− w(y + a∗)v(s + a∗)−1R

= P(Z + X > −y − a∗)P (Z > −s − a∗)−1R.

STEP 3. If s > 0 then return R and STOP, otherwise, go to STEP 2.

Theorem 3 implies that the above algorithm is strongly efficient, in the sense
that the number of simulation runs required to estimate P(M > b) to a given rel-
ative accuracy is bounded in b. Within the rare-event simulation community, this
statistical notion (and its close relative logarithmic efficiency) is the commonly
accepted standard that a good algorithm should achieve.

However, a more demanding notion is to study the computational complexity
of the algorithm. Roughly speaking, the goal is to show that the number of float-
ing point operations required to compute P(M > b) to a given relative accuracy
increases at a slower rate than that associated with the use of crude Monte Carlo.
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[Note that it is typically unrealistic to expect that the number of floating point op-
erations can be uniformly bounded over b, because the number of r.v.’s required
to generate the random object I (M > b) is increasing in b in expectation]. In our
current setting, the required number of floating point operations is determined by
the number of simulation runs required to estimate P(M > b) to a given relative
accuracy multiplied by the expected number of floating point operations per run.
Since Theorem 3 has already established the boundedness of the number of simu-
lation runs, the key issue then becomes estimating the expected number of floating
point operations per run (as a function of b).

Note that a complete analysis of this issue is impossible without having a model
for floating point arithmetic that attaches different costs to such computations as
special function evaluations (e.g., numerically evaluating the exponential func-
tion), generating uniform random variates and performing comparison operations.
In addition, such a complexity analysis requires explicit specification of the nu-
merical effort involved in evaluating v and w, both in the case in which closed
forms are available and (even more critically) in the setting in which a numeri-
cal integration scheme is used to compute w. These issues arise even in the set-
ting of light-tailed rare-event simulation, in which the algorithm typically depends
on exponential twisting. In particular, the issue of numerical computation of the
log moment generating function, its gradient and the associated roots would be a
necessary element in a complete complexity analysis of a light-tailed rare-event
simulation algorithm.

While a complete complexity analysis is no doubt a worthwhile undertaking,
we present here a simplified analysis of what we believe reflect the key pragmatic
complexity issues. We take the point of view that the expected number of floating
point operations per run is roughly proportional to the total number of uniform ran-
dom variables generated per run. The expected number of uniform random num-
bers required per run is obtained as the product of the number of steps needed by
the importance sampler (having transition kernel Qa∗) to cross level 0 from −b,
multiplied by the typical number of uniform random variables required to generate
each increment of the random walk as governed by the kernel Qa∗ . We shall argue,
later in this section, that the expected number of steps needed by our importance
sampler (having transition kernel Qa∗ ) to cross level 0 from initial position −b

grows linearly in b; see Proposition 4. The question of how many uniform ran-
dom variates are required, on average, per increment of Qa∗ is very specific to the
precise form of the distribution of X and to the ingenuity employed in developing
a variate generation scheme for simulating from Qa∗ ’s increment distribution. To
illustrate this point, we provide an acceptance-rejection algorithm later in this sec-
tion that uses a bounded (in expectation) number of uniform random variates per
increment simulated (that is bounded both in b and the position x of the sampler)
whenever X has a regularly varying continuous density (assuming that there ex-
ists a variate generation scheme that generates X using a finite—in expectation—
number of uniforms). It follows that the total number of uniform random variates
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required per simulation run grows at a linear rate in b. On the other hand, for crude
Monte Carlo, the number of simulations runs required to compute P(M > b) to a
given relative accuracy scales in proportion to 1/P (M > b). Because the paths on
which M < b take an infinite number of steps to generate, the expected number
of floating point operations required per run is infinite. [If the simulation is termi-
nated after t steps with t chosen so as to produce an estimator bias of a small (and
given) magnitude relative to P(M > b), both t and the number of steps increase
linearly in b.] Thus, our importance sampler provides a substantial improvement
in computational complexity relative to crude Monte Carlo.

The following result (whose proof is given at the end of the section) provides
sufficient conditions to ensure that Algorithm 1 terminates in at most O(b) steps,
given S0 = −b.

PROPOSITION 4. Assume that E(X
p
1 ;X1 > 0) < ∞ for some p > 1 and that

Assumption A is in place. Then

E
Qa∗−b τ (0) = O(b)

as b ↗ ∞.

In order to complete our complexity analysis, it is important to observe that the
execution of STEP 2 of the algorithm involves a one dimensional rare-event type
simulation problem. We have assumed that v(·) and w(·) can be easily evaluated.
Nevertheless, it could be the case that finding explicitly the distribution of Y in
STEP 2 could be difficult or numerically expensive. We shall argue that the vari-
ates in STEP 2 can be simulated through a suitable acceptance/rejection scheme.
Note, however, that one has to design the scheme in such a way that the acceptance
probability remains uniformly bounded (in y) away from zero. By doing this, the
generation of the random walk increments in STEP 2 under the importance sam-
pling distribution has uniformly bounded complexity as b ↗ ∞. Consequently,
given Proposition 4, the expected number of variates required to run Algorithm 1
will be of order O(b) as b ↗ ∞.

Typically, acceptance/rejection schemes, such as those indicated in the previous
paragraph, although not complicated, must be designed based on specific charac-
teristics of the problem at hand. Assume that X has a continuous density fX(·).
STEP 2 of Algorithm 1 requires sampling a r.v. Y with density fY (·) defined, for
b ≥ 0, as

fY (z;b) = v(−b + z)fX(z)/w(−b).

The objective is to find an easy way to simulate r.v. Z̃ with computable density
fZ̃(z;b) such that, for all z ∈ R,

fY (z;b) ≤ pacc(b)−1fZ̃(z;b),(18)
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where the acceptance probability, pacc(b), satisfies infb≥0 pacc(b) > 0.
In order to illustrate the construction of fZ̃(·), let us assume that fX(·) is regu-

larly varying. We pick θ ∈ (0,1) and define

c(b) = P(X ≤ b − θb)
P (Z > θb)

P (Z > b)
+ P(X > b − θb)

P (Z > b)
,

λ0(b) = c(b)−1P(X ≤ b − θb)P (Z > θb)/P (Z > b),

λ1(b) = c(b)−1P(X > b − θb)/P (Z > b).

Then, the mixture density

fZ̃(z;b) = λ0(b)
fX(z)I (z ≤ b − θb)

P (X ≤ b − θb)

+ λ1(b)
fX(z)

P (X > b − θb)
I (z > b − θb)

satisfies

fY (z;b) ≤ mc(b)fZ̃(z;b),

where

m ≥ sup
b≥0

[P(Z > b)/P (Z + X > b)].

The acceptance probability using fZ̃(z;b) as proposal is [mc(b)]−1. Using ele-
mentary properties of regularly varying functions, it follows that infb≥0[c(b) ×
m]−1 > 0.

We conclude the section with a proof of Proposition 4.

LEMMA 1. Suppose that Assumption A is in force and that E(X
p
1 ;X1 > 0) <

∞ for some p > 1. Then there exists t0 > 0 and ε > 0 such that, for all t ≥ t0,

E[X|X + Z > t] ≥ ε.

PROOF. The assumptions imply that X1 and Z must be subexponential. In
particular, it follows that P(X + Z > t) ∼ P(Z > t) as t ↗ ∞. Thus, it suffices to
show that

limt−→∞
(−E[X−;X + Z > t]

P(Z > t)
+ E[X+;X + Z > t]

P(Z > t)

)
> 0.(19)

The Bounded Convergence Theorem implies that

−E[X−;X + Z > t]
P(Z > t)

=
∫ 0

−∞
s
P (Z > t − s)

P (Z > t)
P (X ∈ ds) −→ −EX−
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as t ↗ ∞. On the other hand, we have that

E[X+;X + Z > t]
= E[X;X + Z > t;X ≥ 0]
= E

∫ ∞
0

I (X + Z > t;X ≥ 0;X ≥ s) ds

=
∫ ∞

0
P(X + Z > t;X ≥ s) ds

=
∫ t−y0

0
P(X + Z > t;X ≥ s) ds + P(Z > t − y0)(−EX),

where y0 = inf{t ∈ R : P(Z > t) < 1}. Now,∫ t−y0

0
P(X + Z > t;X ≥ s) ds

=
∫ t−y0

0
P(X + Z > t; s ≤ X ≤ t − y0) ds

+ (t − y0)P (X > t − y0).

The first integral in the right-hand side of the previous display is greater or equal
to ∫ t−y0

0
P(Z > t − s)P (s ≤ X ≤ t − y0) ds ∼ P(Z > t)EX+.

On the other hand, it follows that

tP (X > t) ≥
∫ 2t

t
P (X > s)ds

= [P(Z > t) − P(Z > 2t)](−EX).

Observe that if E(X
p
1 ;X1 > 0) < ∞ for some p > 0, then there exists δ > 0 such

that the map t −→ tδP (Z > t) is eventually decreasing. Therefore,

limt−→∞P(Z > 2t)/P (Z > t) ≤ (1/2)δ < 1.(20)

Putting all the previous estimates together (and using the fact that Z has a long
tail), we obtain that the limit in (19) is greater or equal to

−EX− − EX + EX+ − (
1 − (1/2)δ

)
EX

= −(
1 − (1/2)δ

)
EX > 0,

which is more than we need in order conclude the proof of the lemma. �
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Finally, we provide the proof of Proposition 4.

PROOF OF PROPOSITION 4. It follows from Lemma 1 and Chebyshev’s in-
equality that there exists a < 0 and ε > 0 such that

sup
y≤a

E(X|X + Z > −y − a) > ε.(21)

Now, set τ(a) = inf{n ≥ 1 :Sn > a}. It follows from (21) then that on {τ(a) > n},
there exists ε > 0 such that

EQa∗ (Sn+1|Sn) − Sn > ε

and, therefore [letting min(n, τ (0)) � n ∧ τ(0)], it is not hard to see that Mn =
Sn∧τ(0) − (n ∧ τ(a))ε is a submartingale (under Qa∗ ). In particular, we obtain that

εE
Qa∗
y [n ∧ τ(a)] ≤ E

Qa∗
y Sn∧τ(a) − y ≤ −y.

Finally, the monotone convergence theorem yields

E
Qa∗
y τ (a) ≤ |y|/ε.

On the other hand, we have that

sup
y∈[a,0]

E
Qa∗
y τ (a) ≤ 1 − 1

ε
sup

a≤y≤0
E[X + y;X + y ≤ a|X + Z > −y − a∗] < ∞.

Therefore, it follows from a geometric trials argument that

E
Qa∗−b τ (0)

≤ E
Qa∗−b τ (a) +

[
sup

a≤y≤0
P(X > −a|X + Z > −y − a∗)

]−1

sup
y∈[a,0]

E
Qa∗
y τ (a)

≤ b · m
for some m ∈ (0,∞), which yields the proof of the result. �

5. Empirical validation. We first consider a class of models for which other
provably efficient algorithms have been developed. This permits a direct compu-
tational comparison of our algorithm against other existing methods. In particular,
we shall consider here an M/G/1 queue with traffic intensity ρ = 1/2 and with
Pareto service times having tail P(V > t) = (1 + t)−2.5 (we use V to denote a
generic service time). As noted in the Introduction, two existing competing algo-
rithms for this class of models are the ones proposed by Asmussen and Kroese
(2006) (AK) and Dupuis, Leder and Wang (2006) (DLW). AK’s procedure was
designed to deal with regularly varying and Weibull-type service times, whereas
DLW’s works only for regularly varying distributions. There is only one other al-
gorithm that can be shown to be strongly efficient for a single-server G/G/1 queue
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with arbitrary renewal arrivals, due to Blanchet, Glynn and Liu (2007) (BGL). It
should be noted that it requires regularly varying service times, and hence, does
not cover the range of G/G/1 models covered by this paper’s algorithm. The
BGL procedure does not exploit the representation of the steady-state distribution
of the G/G/1 queue in terms of the maximum of a random walk, but instead takes
advantage of the regenerative ratio representation for the steady-state distribution.

We have also added a computational comparison against a more refined imple-
mentation of the algorithm introduced in this paper, which takes advantage of the
exponential inter-arrival times to help speed up the time it takes for the random
walk to hit the target set. This refined implementation can be found in Blanchet
and Li (2006) (BL), and relies on the fact that, for an M/G/1 queue, the distribu-
tion of the ladder heights can be computed explicitly. We therefore can apply the
algorithm of the current paper to a first-passage time problem involving a strictly
increasing random walk that is killed at a geometric time, thereby basically run-
ning the algorithm at the level of ladder epochs (and saving the computer time
associated with generating the transitions between ladder epochs that occurs in the
algorithm described in this paper).

Table 1, based on 10,000 samples, compares the performance of our algorithm
(which is denoted in the table below by BG) against the AK, DLW and BGL proce-
dures. In our algorithm, we chose a∗ = 10 and carefully implemented a numerical
integration routine in order to compute w(·); v(·) can be evaluated in closed form
in terms of an incomplete gamma function. The sampling of each of the increments
was done using an acceptance rejection procedure similar to the one explained in
Section 4 right after display (18).

Perhaps not surprisingly, given that a closely related variant of our estimator (in
which a∗ can increase with b) exhibits asymptotically vanishing relative error (as
indicated by Theorem 5), one can see that the coefficient of variation displayed for
BG and BL diminishes as the level increases. As indicated above, the advantage of
the BL implementation over the algorithm discussed here (BG) is that BG requires
O(b) variate generations per replication of the estimator, whereas the requirement
is O(1) as b ↗ ∞ for BL—of course, such speed up relies heavily on the assump-
tion of Poisson arrivals. It should be noted that the AK and DLW algorithms also
require O(1) variates per replication for their estimators, and enjoy relatively sim-
ple implementations, particularly for the case of the AK estimator. Finally, we note
that the BGL procedure also takes O(b) variate generations per replication of the
estimator.

We conclude this section with a problem instance for which BG is the only
currently available procedure for efficient tail estimation. In particular, consider a
G/G/1 queue with deterministic inter-arrival times equal to 1 and a service time
tail distribution given by

P(V > t) = exp(−2t1/2).
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TABLE 1
Numerical estimates for u(S0) with Pareto tails and ρ = 1/2

[Estimation]
[Std. error]
[Conf. interval] S0 = −102 S0 = −103 S0 = −104

v(S0) 9.663e − 03 3.151e − 05 9.996e − 07
AK 5.995e − 04

7.395e − 06
[5.850e − 04,

6.140e − 04]

3.145e − 05
2.186e − 07
[3.102e − 05,

3.188e − 05]

9.980e − 07
6.945e − 09

[9.844e − 07,

1.012e − 06]
BG 5.485e − 04

2.984e − 06
[5.427e − 04,

5.543e − 04]

3.146e − 05
9.725e − 08
[3.126e − 05,

3.165e − 05]

9.980e − 07
2.073e − 09

[9.939e − 07,

1.002e − 06]
BL 9.750e − 04

4.363e − 06
[9.664e − 04,

9.836e − 04]

3.162e − 05
1.982e − 07
[3.123e − 05,

3.201e − 05]

9.980e − 07
4.511e − 09

[9.892e − 07,

1.007e − 06]
BGL 1.022e − 03

3.835e − 05
[9.468e − 04,

1.097e − 03]

3.167e − 05
1.598e − 06
[2.854e − 05,

3.480e − 05]

1.128e − 06
7.280e − 08

[9.853e − 07,

1.271e − 06]
DLW 1.046e − 03

5.195e − 06
[1.036e − 03,

1.056e − 03]

3.163e − 05
1.694e − 07
[3.130e − 05,

3.196e − 05]

9.905e − 07
2.993e − 09

[9.846e − 07,

9.964e − 07]

The increment Xn has a distribution given by X = V − 1 so that

EX =
∫ ∞

0
exp(−2t1/2) dt − 1

= 1/2 − 1 = −1/2,

which implies that the traffic intensity is ρ = 1/2.
To run the algorithm, we selected a∗ = −10. We also tried a∗ = −5 and −55.

For a∗ = −5, the sample coefficient of variation was slightly lower than the one
that we display below, but not too much. For a∗ = −55, we obtained sample coef-
ficients of variation no larger than 100. In both cases, the corresponding pointwise
estimates were very consistent with those displayed below.

The most interesting part of the implementation involves Step 2, namely, sam-
pling from the r.v. Y with law

P(Y ∈ t + dt) = P(X ∈ t + dt |X + Z > β).

For this step we use an acceptance/rejection procedure. Again, we make sure that
the acceptance probability remains uniformly bounded away from zero over as
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β ↗ ∞. Let m = �β1/2� and note that

P(X ∈ t + dt |X + Z > β)

= 1

w(−β)
fX(t)P (Z > β − t)

≤ fX(t)I (−1 ≤ t < 0)
P (Z > β)

w(−β)

+
m−1∑
k=0

fX(t)I
(
kβ1/2 ≤ t ≤ (k + 1)β1/2)P(Z > β − (k + 1)b1/2)

w(−β)

+ fX(t)I (mβ1/2 ≤ t ≤ β)
P (Z > 0)

w(−β)
+ fX(t)I (t ≥ β)

1

w(−β)
.

Using the dominating density induced by the expression in the right-hand side, we
have that Step 2 can be performed in O(β1/2) operations [hence, a single sample
path generated by the proposed algorithm takes at most O(b3/2) operations].

Table 2 illustrates the performance of the algorithm. BG is the estimator based
on our importance sampling scheme using 20,000 replications. In order to validate
the implementation of the algorithm, we constructed, for S0 = −10, a crude Monte
Carlo estimator based on 500,000 replications. The estimator was obtained using
the regenerative ratio formula [see Asmussen (2003), page 268, equation (1.6)].
An approximate 95% confidence interval for u(−10) based on these 500,000 sam-
ples is [1.862e−02,2.179e−02] (the point estimate was 2.020e−02). It is worth
noting that the width of our importance sampling confidence interval is about 1/2
of that produced by crude Monte Carlo, with 25 times fewer samples [for a prob-
ability that is just moderately small, as is the case of u(−10)]. We did not apply
crude Monte Carlo at the other values of S0, because of the prohibitive amount of
computation required.

The column CV reports the estimated coefficient of variation of our estimator,
that is, the (estimated) standard deviation divided by the sample mean.

TABLE 2
Numerical estimates for u(S0) with Weibull tails and ρ = 1/2

S0 v(S0) BG CV 95% Conf. interval

−10 1.004e − 02 1.942e − 02 3.68 [1.857e − 02,2.027e − 02]
−50 9.577e − 06 1.783e − 05 2.40 [1.724e − 05,1.842e − 05]

−250 5.666e − 13 7.076e − 13 2.39 [6.842e − 13,7.310e − 13]
−500 1.655e − 18 1.897e − 18 3.79 [1.797e − 18,1.997e − 18]
−650 3.584e − 21 3.971e − 21 2.83 [3.815e − 21,4.127e − 21]
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