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TWO SUFFICIENT CONDITIONS FOR POISSON
APPROXIMATIONS IN THE FERROMAGNETIC ISING MODEL

BY DAVID COUPIER

Université Lille 1

A d-dimensional ferromagnetic Ising model on a lattice torus is consid-
ered. As the size of the lattice tends to infinity, two conditions ensuring a
Poisson approximation for the distribution of the number of occurrences in
the lattice of any given local configuration are suggested. The proof builds
on the Stein–Chen method. The rate of the Poisson approximation and the
speed of convergence to it are defined and make sense for the model. Thus,
the two sufficient conditions are traduced in terms of the magnetic field and
the pair potential. In particular, the Poisson approximation holds even if both
potentials diverge.

1. Introduction. Suppose {Iα}α∈� is a finite family of indicator random vari-
ables, with the properties that the probabilities P(Iα = 1) are small and that there is
not too much dependence between the Iα’s. Then, “the law of small numbers” says
the sum

∑
α∈� Iα should have approximately a Poisson distribution. The “birthday

problem” and its variants (see Chen [5]), the theory of random graphs (see Bol-
lobás [3] for a general reference or the famous paper of Erdös and Rényi [11])
and the study of words in long DNA sequences (see, e.g., Schbath [18]) are exam-
ples in which a law of small numbers takes place. As the situation studied in this
paper, these examples can be viewed as problems of increasing size (i.e., the car-
dinality of � tends to infinity) in which the sum

∑
α∈� Iα has a Poisson limit. Two

methods are often used for proving Poisson approximations; the moment method
(see [3], page 25) and the Stein–Chen method (see Arratia, Goldstein and Gor-
don [1], Barbour, Holst and Janson [2] for a very complete reference, or [5] for
the original paper of Chen). The second one offers two main advantages. Only the
first two moments need to be computed and a bound of the rate of convergence
is obtained. However, the Stein–Chen method requires to restrict our attention to
variables which satisfy the FKG inequality [14]. This is the case of spins of a
ferromagnetic Ising model.

Let us consider a lattice graph in dimension d ≥ 1, with periodic boundary
conditions (lattice torus). The vertex set is Vn = {0, . . . , n − 1}d . The integer n

will be called the size of the lattice. The edge set, denoted by En, will be specified
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by defining the set of neighbors V(x) of a given vertex x:

V(x) = {y �= x ∈ Vn,‖y − x‖p ≤ ρ},(1)

where the substraction is taken componentwise modulo n, ‖ · ‖p stands for the
Lp norm in R

d (1 ≤ p ≤ ∞), and ρ is a fixed parameter. For instance, the square
lattice is obtained for p = ρ = 1. Replacing the L1 norm by the L∞ norm adds the
diagonals. From now on, all operations on vertices will be understood modulo n. In
particular, each vertex of the lattice has the same number of neighbors; we denote
by V this number.

A configuration is a mapping from the vertex set Vn to the state space {−1,+1}.
Their set is denoted by Xn = {−1,+1}Vn and called the configuration set. The
Ising model is classically defined as follows (see, e.g., Georgii [16] and Malyshev
and Minlos [17]).

DEFINITION 1.1. Let Gn = (Vn,En) be the undirected graph structure with
finite vertex set Vn and edge set En. Let a and b be two reals. The Ising model with
parameters a and b is the probability measure μa,b on Xn = {−1,+1}Vn defined
by: ∀σ ∈ Xn,

μa,b(σ ) = 1

Za,b

exp

(
a

∑
x∈Vn

σ (x) + b
∑

{x,y}∈En

σ (x)σ (y)

)
,(2)

where the normalizing constant Za,b is such that
∑

σ∈Xn
μa,b(σ ) = 1.

Following the definition of Malyshev and Minlos ([17], page 2), the measure
μa,b defined above is a Gibbs measure associated to potentials a and b. Expecta-
tions relative to μa,b will be denoted by Ea,b.

In the classical presentation of statistical physics, the elements of Xn are spin
configurations; each vertex of Vn is an atom whose spin is either positive or nega-
tive. Here, we shall simply talk about positive or negative vertices instead of posi-
tive or negative spins and we shall merely denote by + and − the states +1 and −1.
The parameters a and b are, respectively, the magnetic field and the pair potential.
The model remaining unchanged by swapping positive and negative vertices and
replacing a by −a, we chose to study only negative values of the magnetic field a.
Moreover, throughout the paper, the pair potential b will be supposed nonnegative.

Many laws of small numbers have been already proved for the Ising model.
They are obtained in two different contexts; the low temperature case (i.e., b large
enough) and the large magnetic field case. Chazottes and Redig [4] have obtained a
Poisson law for the number of occurrences of large cylindrical events. Their result
concerns the low temperature case and is based on an argument of disagreement
percolation. Fernández, Ferrari and Garcia [12] have established the asymptotic
Poisson distribution of contours in the nearest-neighbor Ising model at low tem-
perature and zero magnetic field. In the same context, Ferrari and Picco [13] have
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applied the Stein–Chen method to obtain bounds on the total variation distance
between the law of large contours and a Poisson process. Ganesh et al. [15] have
studied the Ising model for positive and fixed values of b. Provided the magnetic
field a tends to infinity, they proved that the distribution of the number of negative
vertices is approximately Poisson. In Coupier [6], we have generalized this result
to (deterministic) objects more elaborated than a single vertex, called the local
configurations; but the parameter b was still fixed.

Our goal is to extend these Poisson approximations to values of the pair poten-
tial b not necessarily bounded. In particular, we establish a law of small numbers
in the case where both magnetic field a and pair potential b diverge. Moreover,
compared with the previous articles, the results of this paper offer two advantages.
First, the roles of the rate of the Poisson approximation and the speed of con-
vergence to it are conceptually clearer. Second, the method of the proof is more
elementary and simple than those of the previous references; it does not require
the need of auxiliary birth-and-death processes as in [12] and [13], or of activity
expansions as in [15].

Pattern recognition and image denoising problems motivate the study realized
in this paper. Indeed, Desolneux, Moisan and Morel (see [9] and [10]) describe
and detect the geometric structures of an image through the notion of “meaningful
events.” Their method is based on the link between the perception threshold of
a given visual structure and its probability of appearance in a random image. In
Coupier, Desolneux and Ycart [7], a Poisson approximation for the probability
of appearance of any local pattern is computed in the case of independent pixels.
This result leads to a denoising algorithm for gray-level images. However, the
structures created by the noise are generally more irregular (with a large perimeter)
than the natural ones of an image. This remark justifies our interest for Poisson
approximations in probabilistic models with dependent pixels, as the Ising model.

We are interested in the occurrences in the graph Gn of a fixed local configura-
tion η (see Section 2 for a precise definition and Figure 1 for an example). Such a
configuration is called “local” in the sense that the vertex set on which it is defined
is fixed and does not depend on n. Its number of occurrences in Gn is denoted by

FIG. 1. A local configuration η with k(η) = |V+(η)| = 10 positive vertices and a perimeter γ (η)

equal to 58, in dimension d = 2 and on a ball of radius r = 2 (with ρ = 1 and relative to the L∞
norm).
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Xn(η). A local configuration η is determined by its set of positive vertices V+(η)

whose cardinality and perimeter are respectively denoted by k(η) and γ (η). As
the size n of the lattice tends to infinity, the potentials a = a(n) and b = b(n)

depend on n. The case where a(n) tends to −∞ corresponds to rare positive ver-
tices among a majority of negative ones. In order to simplify formulas, the Gibbs
measure μa(n),b(n) will be merely denoted by μa,b.

A natural idea consists in regarding both potentials a(n) and b(n) through the
same quantity: the weight of the local configuration η

Wn(η) = exp
(
2a(n)k(η) − 2b(n)γ (η)

)
.

Actually, the weight Wn(η) represents the probabilistic cost associated to a given
occurrence of η and, consequently, the product ndWn(η) (where nd is the cardi-
nality of Vn) corresponds to the expected number of occurrences of η in the whole
graph Gn. Hence, in order to obtain a Poisson approximation for the random vari-
able Xn(η) it is needed that the weight Wn(η) tends to 0 at the rate n−d . Therefore,
throughout this paper, the potentials a(n) and b(n) will satisfy the homogeneity re-
lation

ndWn(η) = λ,(3)

where λ is a positive constant. Two other parameters naturally take place in our
study: the probability gap 	n(η) and the maximality probability 
n(η). When the
first one tends to 0, the vertices surrounding a given occurrence of η are all nega-
tive. A null limit for the second one means if somewhere in the graph the vertices
corresponding to the set V+(η) are positive, then locally they are the only ones. The
fact that the probability gap 	n(η) and the maximality probability 
n(η) tend to 0
is denoted by (H1). We denote by (H2) the following (interpreted) hypothesis: “the
probability for a given configuration ζ ∈ {−,+}V , V ⊂ Vn, to occur is bounded by
its weight Wn(ζ ).” Our main result (Theorem 3.1) describes the asymptotic be-
havior of the number of occurrences of η in the lattice. Added to the necessary
condition (3), the two hypotheses (H1) and (H2) imply the total variation distance
between the distribution of the random variable Xn(η) and the Poisson distribution
with parameter λ satisfies

dTV(L(Xn(η)),P (λ)) = O(max{	n(η),
n(η)}).
The proof is based on the Stein–Chen method. Lemma 4.1 reduces the proof to
a sum of increasing random indicators Xn(η). Since the Gibbs measure μa,b de-
fined in (2) satisfies the FKG inequality (because the pair potential b is positive),
this method is applied to the random variable Xn(η) and produces Lemma 4.5.
Then, bounds on the first two moments of Xn(η) (Lemmas 4.2 and 4.6) allow to
conclude.

Finally, Theorem 3.1 is completed by a second result (Proposition 3.2) which
traduces the two hypotheses (H1) and (H2) in terms of magnetic field a(n) and
pair potential b(n).
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The paper is organized as follows. The notion of local configuration η is defined
in Section 2. Its number of positive vertices k(η), its perimeter γ (η) and its weight
Wn(η) are also introduced. The use of the local energy of η (Definition 2.1) allows
to write the conditional probability for η to occur in the graph in terms of weights
(Lemma 2.2). Lemma 2.4 is the main result of Section 2. It provides lower and
upper bounds for this conditional probability on which the estimates of the first
two moments of Xn(η) are based. In Section 3, Theorem 3.1 and hypotheses (H1)

and (H2) are introduced and discussed. Thus, Proposition 3.2 is illustrated by two
examples. Finally, Section 4, in which the sum Xn(η) is defined, is devoted to the
proof of Theorem 3.1.

2. Conditional probability of a local configuration. Let us start with some
notation and definitions. Given ζ ∈ Xn = {−,+}Vn and V ⊂ Vn, we denote by ζV

the natural projection of ζ over {−,+}V . If U and V are two disjoint subsets of Vn,
then ζUζ ′

V is the configuration on U ∪ V which is equal to ζ on U and ζ ′ on V .
Let us denote by δV the neighborhood of V [corresponding to (1)]:

δV = {
y ∈ Vn \ V,∃x ∈ V, {x, y} ∈ En

}
,

and by V the union of the two disjoint sets V and δV . Moreover, |V | denotes
the cardinality of V and F (V ) the σ -algebra generated by the configurations of
{−,+}V .

As usual, the graph distance dist is defined as the minimal length of a path
between two vertices. We shall denote by B(x, r) the ball of center x and radius r :

B(x, r) = {y ∈ Vn;dist(x, y) ≤ r}.
In the case of balls, B(x, r) = B(x, r + 1). In order to avoid unpleasant situations,
like self-overlapping balls, we will always assume that n > 2ρr . If n and n′ are
both larger than 2ρr , the balls B(x, r) in Gn and Gn′ are isomorphic. Two prop-
erties of the balls B(x, r) will be crucial in what follows. The first one is that two
balls with the same radius are translates of each other:

B(x + y, r) = y + B(x, r).

The second one is that for n > 2ρr , the cardinality of B(x, r) depends only on r

and neither on x nor on n: it will be denoted by β(r). The same is true for the
number of edges {y, z} ∈ En with y, z ∈ B(x, r), which will be denoted by α(r).

Let r be a positive integer, and consider a fixed ball with radius r , say B(0, r).
We denote by Cr = {−,+}B(0,r) the set of configurations on that ball. Elements
of Cr will be called local configurations of radius r , or merely local configurations
whenever the radius r will be fixed. Of course, there exists only a finite number
of such configurations (precisely 2β(r)). See Figure 1 for an example. Throughout
this paper, the radius r will be constant, that is, it will not depend on the size n.
Hence, defining local configurations on balls of radius r serves only to ensure that
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studied objects are “local.” In what follows, η, η′ will denote local configurations
of radius r .

A local configuration η ∈ Cr is determined by its subset V+(η) ⊂ B(0, r) of
positive vertices:

V+(η) = {x ∈ B(0, r), η(x) = +}.
The cardinality of this set will be denoted by k(η) and its complementary set in
B(0, r), that is, the set of negative vertices of η, by V−(η). Moreover, the geometry
(in the sense of the graph structure) of the set V+(η) needs to be described. Let us
define the perimeter γ (η) of the local configuration η by the formula

γ (η) = V|V+(η)| − 2
∣∣{{x, y} ∈ V+(η) × V+(η), {x, y} ∈ En

}∣∣,
where V is the number of neighbors of a vertex. In other words, γ (η) counts the
pairs of neighboring vertices x and y of B(0, r) having opposite spins (under η)
and those such that x ∈ B(0, r), y ∈ δB(0, r) and η(x) = +. Finally, we denote by
Wn(η) and call the weight of the local configuration η the following quantity:

Wn(η) = exp
(
2a(n)k(η) − 2b(n)γ (η)

)
.

Since a(n) < 0 and b(n) ≥ 0, the weight Wn(η) satisfies 0 < Wn(η) ≤ 1. That of
the local configuration having only negative vertices, denoted by η0 and called the
null local configuration, is equal to 1. If η �= η0, then k(η) ≥ 1 and γ (η) ≥ V . It
follows that

Wn(η) ≤ exp
(
2a(n) − 2b(n)V

)
.

Actually, the weight Wn(η) represents the probabilistic cost associated to the pres-
ence of η on a given ball. Lemma 2.4 will give a rigorous sense to this idea.

Remark that the notation k(·), γ (·) and Wn(·) can be naturally extended to any
configuration ζ ∈ {−,+}V , V ⊂ Vn. Furthermore, the configuration of {−,+}V
having no positive vertex will be said to be null and denoted by ζ 0.

Let η ∈ Cr . For each vertex x ∈ Vn, denote by ηx the translation of η onto the
ball B(x, r) (up to periodic boundary conditions):

∀y ∈ Vn dist(0, y) ≤ r ⇒ ηx(x + y) = η(y).

In particular, V+(ηx) = x +V+(η). So, η and ηx have the same number of positive
vertices and the same perimeter. So do their weights. Let us denote by I

η
x the

indicator function defined on Xn as follows: I
η
x (σ ) is 1 if the restriction of the

configuration σ ∈ Xn to the ball B(x, r) is ηx and 0 otherwise. Finally, let us
define the random variable Xn(η) which counts the number of copies of the local
configuration η in Gn:

Xn(η) = ∑
x∈Vn

I η
x .

Due to periodicity, this sum consists of nd indicator functions I
η
x , which have

the same distribution. Hence, in order to understand the behavior of the random
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variable Xn(η) it suffices to study that of one of the random indicators I
η
x . This is

the reason why the rest of this section is devoted to the study of the probability for
η (or ηx) to occur on a ball B(x, r) knowing what happens on its neighborhood:

μa,b

(
Iη
x = 1|σδB(x,r)

)
.(4)

Besides, let us remark that the expected number of occurrences of the local con-
figuration η in the graph can be expressed as the following expectation:

Ea,b[Xn(η)] = Ea,b[ndIη
x ]

(5)
= Ea,b

[
ndμa,b

(
Iη
x = 1|F (δB)

)]
,

where x is a given vertex and B denotes merely the ball B(x, r). Here, μa,b(I
η
x =

1|F (δB)) represents a F (δB)-measurable random variable and, for any configu-
ration σ of {−,+}δB , μa,b(I

η
x = 1|F (δB))(σ ) is equal to the conditional proba-

bility μa,b(I
η
x = 1|σ).

Lemma 2.4 provides inequalities between the conditional probability (4) and
the weight Wn(η). A way to link these two quantities consists in using the local
energy of η. Let us start with the following definition.

DEFINITION 2.1. Let V ⊂ Vn and ζ ∈ {−,+}V . The local energy HV (ζ ) of
the configuration ζ on the set V is defined by

HV (ζ ) = a(n)
∑
y∈V

ζ(y) + b(n)
∑

{y,z}∈En

(y∈V )∨(z∈V )

ζ(y)ζ(z),

where (y ∈ V ) ∨ (z ∈ V ) means at least one of the two vertices y and z belongs to
V (the other might belong to its neighborhood δV ).

Let us fix a vertex x and denote by B the ball B(x, r). On the one hand, remark
that for any σ ∈ {−,+}δB the local energy HB(ηxσ ) on B of the configuration
which is equal to ηx on B and σ on δB gives an explicit formula of the conditional
probability μa,b(I

η
x = 1|σ):

μa,b(I
η
x = 1|σ) = exp(HB(ηxσ ))∑

η′∈Cr
exp(HB(η′

xσ ))
.(6)

On the other hand, the exponential of the local energy of η can be expressed as a
function of the weight Wn(η). Indeed, HB(ηxσ ) is equal to

a(n)
(
2k(η) − β(r)

) + b(n)

( ∑
{y,z}∈En

y,z∈B

ηx(y)ηx(z) + ∑
{y,z}∈En

y∈B,z∈δB

ηx(y)σ (z)

)
.(7)

Let {y, z} be an edge such that y ∈ B and ηx(y) = +. Assume z ∈ B . If ηx(z) = −,
the edge {y, z} is counted by the perimeter γ (η), whereas if ηx(z) = +, it is not.
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In the case where z /∈ B (i.e., z ∈ δB), the edge {y, z} is consistently counted by
γ (η). In other words, the following equality holds:

2γ (η) = α(r) − ∑
{y,z}∈En

y,z∈B

ηx(y)ηx(z) + ∑
{y,z}∈En

y∈B,z∈δB

(
1 + ηx(y)

)
.(8)

So, the perimeter γ (η) can be inserted in the expression of HB(ηxσ ) given by (7)
and we get

exp(HB(ηxσ ))

= Wn(η) exp

(
−a(n)β(r)(9)

+ b(n)

(
α(r) + ∑

{y,z}∈En

y∈B,z∈δB

1 + ηx(y)
(
1 + σ(z)

)))
.

Remark that the previous identity remains valid replacing the ball B with any given
set V and the configuration ηxσ with any given ζ ∈ {−,+}V .

Using the previous relations, an alternate expression of the conditional proba-
bility μa,b(I

η
x = 1|σ) is obtained.

LEMMA 2.2. Let x ∈ Vn and B = B(x, r). Then, for any η ∈ Cr and σ ∈
{−,+}Vn\B ,

μa,b(I
η
x = 1|σδB) = Wn(ηxσδB)∑

η′∈Cr
Wn(η′

xσδB)
.(10)

PROOF. Let η be a local configuration of radius r and σ ∈ {−,+}Vn\B . Let us
denote by D the set δB ∪ δB: a vertex y belonging to D satisfies r < dist(x, y) ≤
r + 2. Adding terms which only depend on the configuration σ to the right-hand
side of (6) does not change the equality:

μa,b(I
η
x = 1|σδB) = exp(HB(ηxσD))∑

η′∈Cr
exp(HB(η′

xσD))
.(11)

Let η′ ∈ Cr . Applying relation (9) to the configuration η′
xσD , we get

exp(HB(η′
xσD))

= Wn(η
′
xσδB) exp

(
−a(n)β(r + 1)

+ b(n)

(
α(r + 1) + ∑

{y,z}∈En

y∈B,z∈δB

1 + σD(y)
(
1 + σD(z)

)))
.
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Finally, it suffices to remark that the latter exponential does not depend on η′
x and

to simplify the right-hand side of (11). �

Let V and V ′ be two disjoint subsets of vertices. The following relations:

k(ζ ζ ′) = k(ζ ) + k(ζ ′) and γ (ζ ζ ′) ≤ γ (ζ ) + γ (ζ ′)

are true whatever the configurations ζ ∈ {−,+}V and ζ ′ ∈ {−,+}V ′
. The connec-

tion between ζ ∈ {−,+}V and ζ ′ ∈ {−,+}V ′
, denoted by conn(ζ, ζ ′), is defined

by

conn(ζ, ζ ′) = ∣∣{{y, z} ∈ En,y ∈ V, z ∈ V ′ and ζ(y) = ζ ′(z) = +}∣∣.
This quantity allows to link the perimeters of the configurations ζ ζ ′, ζ and ζ ′
together:

γ (ζ ζ ′) + 2 conn(ζ, ζ ′) = γ (ζ ) + γ (ζ ′),

and as a consequence their weights:

Wn(ζζ ′) exp(−4b(n) conn(ζ, ζ ′)) = Wn(ζ )Wn(ζ
′).(12)

In particular, if the connection conn(ζ, ζ ′) is null, then the weight Wn(ζζ ′) is equal
to the product Wn(ζ )Wn(ζ

′). This is the case when V ∩ V ′ = ∅.
Let B = B(x, r) and η be a local configuration of radius r . Assume the set of

positive vertices of η satisfies V+(η) ⊂ B(0, r − 1); such a local configuration is
said to be clean. Then, the connection conn(ηx, σ ) is null and Wn(ηxσ ) is equal
to the product Wn(η)Wn(σ). This is the case also for the null configuration σ 0;
Wn(ηxσ

0) = Wn(η)Wn(σ
0) = Wn(η).

Let us define the probability gap of η and denote by 	n(η) the quantity below:

	n(η) = max
σ∈δB

σ �=σ 0

Wn(ηxσ )

Wn(η)
.

Since the weights of a configuration and its translates are equal, the probability
gap 	n(η) does not depend on the ball B = B(x, r) (nor on δB). It only depends
on the local configuration η and on the potentials a(n) and b(n). Moreover, 	n(η)

satisfies the following inequalities:

LEMMA 2.3. Let η ∈ Cr . Then, the probability gap 	n(η) satisfies

exp
(
2a(n) − 2b(n)V

) ≤ 	n(η) ≤ exp(2a(n)).(13)

In particular, for all η′ ∈ Cr , η′ �= η0:

Wn(η
′) ≤ 	n(η).
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PROOF. Let η ∈ Cr and as usual denote by B the ball B(x, r). Since a(n) < 0
and b(n) ≥ 0, the weight Wn(ηxσ ) is a decreasing function of parameters k(ηxσ )

and γ (ηxσ ). If σ and σ ′ are two configurations of {−,+}δB , different from σ 0,
such that V+(σ ) ⊂ V+(σ ′) and k(σ ) = k(σ ′) − 1, then the perimeter γ (ηxσ ) is
not necessarily smaller than γ (ηxσ

′). However, the following statement based on
the convexity of balls on which the local configurations are defined is true: for
all configuration σ ∈ {−,+}δB , σ �= σ 0, there exists a configuration σmin(σ ) ∈
{−,+}δB satisfying

k(σmin(σ )) = 1, V+(σmin(σ )) ⊂ V+(σ ) and γ (ηxσmin(σ )) ≤ γ (ηxσ ).

As a consequence, the maximum of Wn(ηxσ ) is obtained among the configurations
σ ∈ {−,+}δB having only one positive vertex; k(σ ) = 1 and γ (σ ) = V . For such
a configuration σ ,

Wn(ηxσ )

Wn(η)
= exp

(
2a(n) − 2b(n)

(
γ (ηxσ ) − γ (η)

))
= exp

(
2a(n) − 2b(n)

(
V − 2 conn(ηx, σ )

))
≥ exp

(
2a(n) − 2b(n)V

)
.

The lower bound of (13) follows. The upper bound is also a consequence of the
convexity of the ball B: the perimeter γ (ηxσ ), σ �= σ 0, is necessarily as large as
γ (ηxσ

0). In other words, the difference γ (ηxσ ) − γ (η) is positive.
Finally, we have already seen that the weight of a configuration η′ ∈ Cr , dif-

ferent from η0, is bounded by exp(2a(n) − 2b(n)V). So, it is bounded by 	n(η).
�

For example, the probability gap of a clean local configuration is equal to the
lower bound given by (13), that is, exp(2a(n) − 2b(n)V). Indeed, if η is clean, the
connection conn(ηx, ·) is null and the equalities of the previous proof allow us to
conclude.

Lemma 2.4 is the main result of this section. It provides lower and upper bounds
for the conditional probability μa,b(I

η
x = 1|σ) depending on the weight Wn(η) and

the probability gap 	n(η):

LEMMA 2.4. Let η be a local configuration of radius r and let x be a vertex.
Let us denote by B the ball B(x, r). Then, for all configuration σ ∈ {−,+}δB ,

μa,b(I
η
x = 1|σ) ≥ Wn(η)1σ=σ 0

(
1 − |Cr |	n(η)

)
(14)

and

μa,b(I
η
x = 1|σ) ≤ Wn(η)

(
1 + 1σ �=σ 0

	n(η)

Wn(σ)

)
.(15)
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Under the hypotheses of Theorem 3.1, the probability gap 	n(η) tends to 0
and the probability of the indicator 1σ=σ 0 tends to 1. Henceforth, relations (14)
and (15) mean the weight Wn(η) constitutes a good estimate for the probability
μa,b(I

η
x = 1).

Before proving Lemma 2.4, let us explain why the results of this section do
not hold when the pair potential is negative. If b(n) < 0, the condition a(n) −
b(n)V ≤ 0 (which ensures that the weight of a local configuration is smaller than 1)
implies the weight Wn(η) and the probability gap 	n(η) are both bounded by
exp(2a(n) − 2b(n)V). In particular, we lose the inequality Wn(η

′) ≤ 	n(η) of
Lemma 2.3 and therefore the lower bound of Lemma 2.4.

PROOF OF LEMMA 2.4. Let η ∈ Cr and x ∈ Vn. Let σ be a configuration of
{−,+}δB . If σ = σ 0, then Lemma 2.2 implies that

μa,b(I
η
x = 1|σ 0) = Wn(ηxσ

0)∑
η′∈Cr

Wn(η′
xσ

0)

= Wn(η)∑
η′∈Cr

Wn(η′)

= Wn(η)

1 + ∑
η′ �=η0 Wn(η′)

≤ Wn(η),

whereas, if σ �= σ 0,

μa,b(I
η
x = 1|σ) = Wn(η)

Wn(ηxσ )

Wn(η)

1∑
η′∈Cr

Wn(η′
xσ )

≤ Wn(η)	n(η)
1

Wn(η0
xσ )

≤ Wn(η)
	n(η)

Wn(σ)
.

The upper bound (15) is deduced from the above inequalities. The lower bound is
also based on Lemma 2.2. Indeed,

μa,b(I
η
x = 1|σ) ≥ 1σ=σ 0

Wn(ηxσ
0)∑

η′∈Cr
Wn(η′

xσ
0)

≥ 1σ=σ 0
Wn(η)

1 + ∑
η′ �=η0 Wn(η′)

.

Now, the weight of a local configuration η′ �= η0 satisfies Wn(η
′) ≤ 	n(η) (see

Lemma 2.3). Hence, we can write

μa,b(I
η
x = 1|σ) ≥ 1σ=σ 0

Wn(η)

1 + |Cr |	n(η)
.
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Finally, the lower bound (14) is obtained using the classical inequality

∀u > −1
1

1 + u
≥ 1 − u. �

3. Poisson approximation. This section is devoted to the main result of the
paper, that is, Theorem 3.1. Let us introduce two hypotheses (H1) and (H2) that
will be sufficient to prove Theorem 3.1.

For any given local configuration η, let us define the subset Cr (η) of Cr by

Cr (η) = {η′ ∈ Cr , V+(η′) ⊃ V+(η)}.
Each element of C∗

r (η) = Cr (η) \ {η} has at least k(η) + 1 positive vertices. Thus,
we denote by 
n(η) and we call the maximality probability the following quantity:


n(η) = max
η′∈C∗

r (η)

Wn(η
′)

Wn(η)
.

The necessary condition ndWn(η) = λ, for some constant λ > 0, forces the weight
Wn(η) to tend to 0 and therefore the local configuration η to be different from η0.
Thus, using the inequality γ (η) ≤ Vk(η), we deduce that the probabilistic cost
associated to a single positive vertex, that is,

exp
(
2a(n) − 2b(n)V

)
,

is bounded by Wn(η)1/k(η) and tends to 0 as n tends to infinity. Actually, The-
orem 3.1 requires stronger hypotheses. First, if the vertices corresponding to
x + V+(η) are positive, then the other ones belonging to B(x, r) and those be-
longing to the neighborhood δB(x, r) must be negative. This fact results in

(H1) : lim
n→+∞ max{	n(η),
n(η)} = 0.

For V ⊂ Vn and ζ ∈ {−,+}V , the indicator function I
ζ
V is defined as follows:

I
ζ
V (σ ) is 1 if the restriction of the configuration σ ∈ Xn to V is ζ and 0 otherwise.

Theorem 3.1 needs a control of the probability of the event I
ζ
V = 1. Let (H2) be

the following hypothesis:

(H2) :
∀V ⊂ Vn,∃N(V ) ∈ N,∃C = C(|V |) > 0,∀ζ ∈ {−,+}V ,

∀n ≥ N(V ),μa,b(I
ζ
V = 1) ≤ CWn(ζ ).

Here, C = C(|V |) means that C depends on the set V only through its cardinality.
Before introducing our main result, let us recall some classical notations. If

μ and ν are two probability distributions, the total variation distance between
μ and ν is

dTV(μ, ν) = sup
A

|μ(A) − ν(A)|,
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where the supremum is taken over all measurable sets. The probability distribu-
tion of a random variable X is denoted by L(X) and that of Poisson distribution
with parameter λ by P (λ). Moreover, if f (n) and g(n) are two positive functions,
notation f (n) = O(g(n)) means that there exists a constant C > 0 such that, for
all n, f (n) ≤ Cg(n).

Theorem 3.1 states that the asymptotic behavior of Xn(η) is Poissonian and
defines the speed of convergence in terms of total variation distance.

THEOREM 3.1. Let η be a local configuration of radius r . Assume that the
magnetic field a(n) is negative, the pair potential b(n) is nonnegative and they
satisfy

ndWn(η) = λ,

for some constant λ > 0. Furthermore, if the hypotheses (H1) and (H2) are sat-
isfied, then the total variation distance between the distribution of Xn(η) and the
Poisson distribution with parameter λ is such that:

dTV(L(Xn(η)),P (λ)) = O(max{	n(η),
n(η)}).

Now, some comments are needed. First, this result generalizes the Poisson ap-
proximation given in [6] (Theorem 1.3). When the pair potential b(n) = b > 0 is
fixed, the product nd exp(2a(n)k(η)) becomes constant. Denote by λ′ this quan-
tity. Then, the limit distribution for Xn(η) is the Poisson distribution with para-
meter λ = λ′ exp(−2b(n)γ (η)). Furthermore, the probability gap 	n(η) and the
maximality probability 
n(η) are of order exp(2a(n)) and consequently,

dTV(L(Xn(η)),P (λ′ exp(−2b(n)γ (η)))) = O
(
n−d/k(η)).

We believe that max{	n(η),
n(η)} is the real speed at which the total variation
distance between L(Xn(η)) and P (λ) tends to zero. Indeed, it seems to be true
for the upper bound given by Lemma 4.5 (for more details, see Chapter 3 of [2]).
Moreover, this has been proved by Ganesh et al. [15] in the case where the local
configuration η represents a single positive vertex [with k(η) = 1, γ (η) = V] and
the pair potential is fixed.

Under the hypotheses (H1) and (H2), the expectation of Xn(η) satisfies

ndWn(η)
(
1 − O(	n(η))

) ≤ Ea,b[Xn(η)] ≤ ndWn(η)
(
1 + O(	n(η))

)
[see relations (20) and (21) of the next section]. In particular, if the product
ndWn(η) tends to 0 (resp. +∞), the same is true for Ea,b[Xn(η)]. Actually, a bet-
ter result can be easily deduced from Theorem 3.1: if the product ndWn(η) tends to
0 (resp. +∞), then the probability μa,b(Xn(η) > 0) tends to 0 (resp. 1). Roughly
speaking, if Wn(η) is small compared to n−d , then asymptotically, there is no
occurrence of η in Gn. If Wn(η) is large compared to n−d , then at least one oc-
currence of η can be found in the graph, with probability tending to 1. Using the
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vocabulary of the random graph theory, this means that the quantity n−d is the
threshold function for Wn(η) of the property Xn(η) > 0. A straight proof of this
statement can be found in [8]. A result similar to (actually weaker than) Theo-
rem 3.1 can be proved without using the Stein–Chen method. Under the same
hypotheses, the distribution of Xn(η) converges weakly to P (λ), as n tends to in-
finity. The proof of this result is based on the moment method (see [3], page 25)
and Lemma 2.4; see the ideas developed in the proof of Lemma 4.6 for details.

Replacing Proposition 4.4 with the Stein–Chen formulation of [1], it seems the
estimates given by Lemma 2.4 should apply to systems formed by “animals” in-
teracting only by volume exclusions (as in [12] and [13]).

Finally, as has been suggested by an anonymous referee, Theorem 3.1 can be
extended to some nonlocal configurations whose cardinalities diverge suitably with
the size of the lattice.

The rest of this section is devoted to translating the hypotheses of Theorem 3.1
in terms of magnetic field a(n) and pair potential b(n).

PROPOSITION 3.2. Let η be a local configuration of radius r . Assume that
the magnetic field a(n) is negative, the pair potential b(n) is nonnegative and they
satisfy

ndWn(η) = λ,

for some constant λ > 0. Then the two conditions a(n) + 2Vb(n) ≤ 0, for n large
enough, and

lim
n→+∞a(n) + Vb(n) = −∞

imply respectively the two hypotheses (H2) and (H1).

The limit a(n) + Vb(n) → −∞ forces the magnetic field a(n) to tend to −∞.
Proposition 3.2 and Theorem 3.1 state that a(n) → −∞ is the main condition
bearing on the magnetic field a(n) in order to expect a Poisson approximation.
Rare positive vertices among a majority of negative ones constitutes the global
context in which our Poisson approximations take place. Conditions bearing on the
pair potential b(n) are much larger. Here are two examples of couples (a(n), b(n))

satisfying the conditions of Proposition 3.2 and so the hypotheses of Theorem 3.1.

EXAMPLE 3.3. Assume the potentials a(n) < 0 and b(n) ≥ 0 are such that
ndWn(η) = λ, for some λ > 0, and

lim
n→+∞a(n) = −∞ and lim

n→+∞
b(n)

a(n)
= 0.

Then, conditions of Proposition 3.2 are satisfied. Indeed, the quantity

a(n) + Vb(n) = a(n)

(
1 + V

b(n)

a(n)

)
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tends to −∞, so does a(n) + 2Vb(n). The pair potential b(n) is allowed to tend
to +∞ [but slower than |a(n)|] or to be bounded.

EXAMPLE 3.4. Assume the potentials a(n) and b(n) satisfy

a(n) = 1

2k(η) + γ (η)/V
log

(
λ

nd

)
,

b(n) = −a(n)

2V
= −1

4Vk(η) + 2γ (η)
log

(
λ

nd

)
,

where λ is a positive constant. The rate at which the pair potential b(n) tends
to infinity is the same as |a(n)|. It is easy to check that the magnetic field a(n)

is negative, b(n) is nonnegative, the product ndWn(η) is equal to λ, the quantity
a(n) + 2Vb(n) is null and a(n) + Vb(n) = a(n)/2 tends to −∞. In other words,
conditions of Proposition 3.2 are satisfied.

Let us end this section by proving Proposition 3.2.

PROOF OF PROPOSITION 3.2. Let η be a local configuration of radius r . As-
sume that potentials a(n) and b(n) satisfy conditions of Proposition 3.2.

First, let us prove (H1) is satisfied. The study of the probability gap has been
already done; 	n(η) ≤ exp(2a(n)). Hence, the limit a(n) + Vb(n) → −∞ forces
the magnetic field a(n) to tend to −∞ and 	n(η) to 0. Now, let us bound the
maximality probability 
n(η). Let η′ ∈ C∗

r (η). Although the set of positive vertices
of η′ contains that of η, the perimeter γ (η′) is not necessarily larger than γ (η):
roughly, V+(η) may have holes. However, the inequality

γ (η′) ≥ γ (η) − (
k(η′) − k(η)

)
V

holds. Hence, the ratio Wn(η
′) divided by Wn(η) is bounded:

Wn(η
′)

Wn(η)
= exp

(
2a(n)

(
k(η′) − k(η)

) − 2b(n)
(
γ (η′) − γ (η)

))
≤ exp

((
2a(n) + 2Vb(n)

)(
k(η′) − k(η)

))
.

Then the limit a(n) + Vb(n) → −∞ implies the maximality gap satisfies


n(η) = max
η′∈C∗

r (η)

Wn(η
′)

Wn(η)

≤ exp
(
2a(n) + 2Vb(n)

)
and tends to 0 as n tends to infinity.

It remains to prove that (H2) holds. Let V be a set of vertices and let ζ be a
configuration of {−,+}V . Let us start with writing

μa,b(I
ζ
V = 1) = ∑

σ∈{−,+}δV
μa,b(I

ζ
V = Iσ

δV = 1).
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Let σ and ω be two configurations respectively defined on δV and δV . Thanks to
Lemma 2.2 and relation (12), we get

μa,b(I
ζσ

V
= 1|Iω

δV
= 1) = Wn(ζσω)∑

ϑ∈{−,+}V Wn(ϑω)

≤ Wn(ζσω)

Wn(ω)

≤ Wn(ζσ) exp(4b(n) conn(ζσ,ω))

≤ Wn(ζσ) exp(4b(n) conn(σ,ω)).

Moreover, the weight of the configuration ζσ can be expressed as

Wn(ζσ) = Wn(ζ ) exp
(
2a(n)k(σ ) − 2b(n)

(
γ (ζσ ) − γ (ζ )

))
= Wn(ζ ) exp

(
2a(n)k(σ ) − 2b(n)

(
γ (σ ) − 2 conn(ζ, σ )

))
.

Combining the previous relations, we deduce the following inequality:

μa,b(I
ζσ

V
= 1|Iω

δV
= 1)

≤ Wn(ζ ) exp
(
2a(n)k(σ ) − 2b(n)

(
γ (σ ) − 2 conn(ζ, σ ) − 2 conn(σ,ω)

))
.

A way to obtain an upper bound for the above conditional probability which does
not depend on ω consists in using the inequality

conn(ζ, σ ) + conn(σ,ω) ≤ Vk(σ ).

As a consequence,

μa,b(I
ζσ

V
= 1|Iω

δV
= 1) ≤ Wn(ζ ) exp

((
2a(n) + 4Vb(n)

)
k(σ ) − 2b(n)γ (σ )

)
≤ Wn(ζ ),

whenever a(n) + 2Vb(n) is negative. Then, the probability μa,b(I
ζσ

V
= 1) is

bounded by the weight Wn(ζ ) and finally we get

μa,b(I
ζ
V = 1) ≤ 2|δV |Wn(ζ ).

Observe that the constant C(V ) = 2V|V | ≥ 2|δV | is suitable and depends on the
set V only through its cardinality. �

4. Proof of Theorem 3.1. This section is devoted to the proof of Theorem 3.1,
whose layout is essentially the same as the one of the proof of Theorem 1.3 of
[6] [i.e., in the case b(n) = b > 0]. Let η be a local configuration of radius r .
Throughout this section, we shall suppose the magnetic field a(n) is negative, the
pair potential b(n) is nonnegative and they satisfy

ndWn(η) = λ,



1342 D. COUPIER

for some constant λ > 0.
For all vertex x, the indicator random variable I

η

x is defined by

I
η

x = ∑
η′∈Cr (η)

I η′
x ,

where Cr (η) is formed by the local configurations of radius r whose set of positive
vertices contains that of η. Thus, we denote by Xn(η) the sum of these indicators
over x ∈ Vn:

Xn(η) = ∑
x∈Vn

I
η

x

(16)
= Xn(η) + ∑

η′∈C∗
r (η)

Xn(η
′),

whose expectation Ea,b[Xn(η)] will be simply denoted by λn. Finally, in order to
simplify formulas, the maximum of the probability gap 	n(η) and the maximality
probability 
n(η) will be merely denoted by Mn(η):

Mn(η) = max{	n(η),
n(η)}.
The proof of Theorem 3.1 is organized as follows. The total variation distance
between L(Xn(η)) and P (λ) is bounded by

dTV(L(Xn(η)),L(Xn(η))) + dTV(L(Xn(η)),P (λn)) + dTV(P (λn),P (λ)).

We are going to prove that each term of the above sum is of order O(Mn(η)).
The first and the last ones are respectively dealt with using Lemmas 4.1 and 4.3.
Applied to the family of indicators {Iη

x, x ∈ Vn}, the Stein–Chen method gives an
upper bound for the second term (Lemma 4.5). Finally, Lemma 4.6 implies that
this upper bound is a O(Mn(η)).

As the maximality probability 
n(η) tends to 0, the occurrences of local con-
figurations of C∗

r (η) = Cr (η) \ {η} have vanishing probability. Hence, the random
variables Xn(η) and Xn(η) (resp. their expectations E[Xn(η)] and λn) will be as-
ymptotically equal.

LEMMA 4.1. The total variation distance between the distributions of Xn(η)

and Xn(η) satisfies

dTV(L(Xn(η)),L(Xn(η))) = O(Mn(η)).(17)

Furthermore, the following inequalities hold:

Ea,b[Xn(η)] ≤ λn ≤ Ea,b[Xn(η)] + |C∗
r (η)|λC(B)
n(η),(18)

where C(B) denotes the constant of the hypothesis (H2) corresponding to a ball
of radius r .
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PROOF. The total variation distance between two probability distributions μ

and ν can be written as

dTV(μ, ν) = inf{P(X �= Y),L(X) = μ and L(Y ) = ν}.
Using this characterization and the identity (16), it follows that

dTV(L(Xn(η)),L(Xn(η))) ≤ μa,b

(
Xn(η) �= Xn(η)

)
≤ μa,b

(
Xn(η) > Xn(η)

)
≤ μa,b

( ∑
η′∈C∗

r (η)

Xn(η
′) > 0

)
.

The above sum is an integer-valued variable. So, its probability of being positive
is bounded by its expectation. Hence,

dTV(L(Xn(η)),L(Xn(η))) ≤ ∑
η′∈C∗

r (η)

Ea,b[Xn(η
′)].

Let η′ ∈ C∗
r (η). The hypothesis (H2) allows to control the expectation of η′ with

the maximality probability 
n(η):

Ea,b[Xn(η
′)] = ndμa,b(I

η′
x = 1)

≤ ndC(B)Wn(η
′)

≤ λC(B)
Wn(η

′)
Wn(η)

≤ λC(B)
n(η).

Finally, we get

dTV(L(Xn(η)),L(Xn(η))) ≤ |C∗
r (η)|λC(B)
n(η)

and (17) follows. Relation (18) is an immediate consequence of the previous in-
equalities and the identity (16). �

Lemmas 2.4 and 4.1 state that the expectation of Xn(η), that is, λn, is close to
that of Xn(η), which is itself close to λ.

LEMMA 4.2. There exists a constant K(r) > 0 such that

λ
(
1 − K(r)Mn(η)

) ≤ λn ≤ λ
(
1 + K(r)Mn(η)

)
.(19)

The constant K(r) depends on the radius r and on the parameters of the model
(i.e., ρ, p and the dimension d).
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PROOF OF LEMMA 4.2. Let x ∈ Vn and denote by B the ball B(x, r). First,
note that the indicator 1σ �=σ 0 occurring in Lemma 2.4 can be expressed as the
following sum: ∑

σ �=σ 0

Iσ
δB,

where σ 0 represents the null configuration of {−,+}δB . So, the upper bound (15)
implies

Ea,b[Xn(η)] = Ea,b

[
ndμa,b

(
Iη
x = 1|F (δB)

)]
≤ λ

(
1 + 	n(η)

∑
σ �=σ 0

Ea,b[Iσ
δB]

Wn(σ)

)
.

Let C(δB) be the constant of the hypothesis (H2) corresponding to the neighbor-
hood of a ball of radius r . Then,

Ea,b[Iσ
δB] ≤ C(δB)Wn(σ).

Hence, we obtain an upper bound for Ea,b[Xn(η)]:
Ea,b[Xn(η)] ≤ λ

(
1 + 	n(η)2δBC(δB)

)
.(20)

Let us deal with the lower bound. It has been already said (Lemma 2.3) that the
weight of a configuration σ different from σ 0 is smaller than the probability gap
	n(η). As a consequence,

Ea,b

[ ∑
σ �=σ 0

Iσ
δB

]
≤ ∑

σ �=σ 0

C(δB)Wn(σ)

≤ 2δBC(δB)	n(η).

Next, we deduce from the lower bound (14):

Ea,b[Xn(η)] = Ea,b

[
ndμa,b

(
Iη
x = 1|F (δB)

)]
≥ λ

(
1 − |Cr |	n(η)

)(
1 − Ea,b

[ ∑
σ �=σ 0

Iσ
δB

])

(21)
≥ λ

(
1 − |Cr |	n(η)

)(
1 − 2δBC(δB)	n(η)

)
≥ λ

(
1 − 	n(η)

(|Cr | + 2δBC(δB)
))

.

Finally, combining the inequalities between the expectation of Xn(η) and λn given
by relation (18) and the inequalities between the expectation of Xn(η) and λ given
by (20) and (21), we conclude with

K(r) = max{|Cr | + 2δBC(δB), |C∗
r (η)|C(B) + 2δBC(δB)}. �
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The total variation distance between two probability distributions on the set of
integers can be expressed as

dTV(μ, ν) = 1
2

∑
m≥1

|μ(m) − ν(m)|.

Using this characterization, relation (19) between λn and λ and hypothesis (H1),
it is possible to bound the total variation distance between P (λn) and P (λ).
This result is very similar to Lemma 4.2 of [6]. So, it will not be proved
here.

LEMMA 4.3. The total variation distance between the Poisson distributions
with parameters λn and λ satisfies

dTV(P (λn),P (λ)) = O(Mn(η)).

There remains to bound the total variation distance between L(Xn(η)) and
P (λn). This is based on the Stein–Chen method and particularly on Corol-
lary 2.C.4, page 26 of [2] which is described below (Proposition 4.4). Let {Ii}i∈I

be a family of random indicators with expectations πi . Let us denote

Z = ∑
i∈I

Ii and θ = ∑
i∈I

πi.

The random variables {Ii}i∈I are positively related if for each i, there exist random
variables {Jj,i}j∈I defined on the same probability space such that

L(Jj,i , j ∈ I ) = L(Ij , j ∈ I |Ii = 1)

and, for all j �= i, Jj,i ≥ Ij .

PROPOSITION 4.4. If the random variables {Ii}i∈I are positively related, then

dTV(L(Z),P (θ)) ≤ 1 − e−θ

θ

(
Var(Z) − θ + 2

∑
i∈I

π2
i

)
.

Proposition 4.4 can be applied to our context. First, observe there is a nat-
ural partial ordering on the configuration set Xn = {−,+}Vn defined by σ ≤ σ ′
if σ(x) ≤ σ ′(x) for all vertices x ∈ Vn. A function f :Xn → R is increas-
ing if f (σ) ≤ f (σ ′) whenever σ ≤ σ ′. By construction, the indicators I

η

x are
increasing functions. Furthermore, for a positive value of the pair potential
b(n), the Gibbs measure μa,b defined by (2) satisfies the FKG inequality, that
is,

Ea,b[fg] ≥ Ea,b[f ]Ea,b[g],(22)

for all increasing functions f and g on Xn; see, for instance, Section 3 of [14].
Then, Theorem 2.G, page 29 of [2] implies that the increasing random indica-
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tors I
η

x , x ∈ Vn, are positively related. Replacing Ii with I
η

x , Z with Xn(η) and θ

with λn, Proposition 4.4 produces the following result.

LEMMA 4.5. The following inequality holds:

dTV(L(Xn(η)),P (λn))
(23)

≤ 1

λn

(
Vara,b[Xn(η)] − λn + 2

∑
x∈Vn

Ea,b[Iη

x]2

)
.

The last term of the above bound is equal to the ratio λ2
n divided by nd :

∑
x∈Vn

Ea,b[Iη

x]2 = λ2
n

nd
.

So, it tends to 0 as n tends to infinity. Hence, the bound (23) indicates that, as
n → +∞, the distance to the Poisson approximation is essentially the difference
between the variance and the expectation of Xn(η). This difference can be written
as M2(Xn(η)) + λ2

n where M2(Xn(η)) denotes the second moment of the random
variable Xn(η):

M2(Xn(η)) = Ea,b

[
Xn(η)

(
Xn(η) − 1

)]
.

The quantity λ2
n is controlled by Lemma 4.2, and the second moment Xn(η) by the

following result.

LEMMA 4.6. The second moment of the random variable Xn(η) satisfies

M2(Xn(η)) = λ2 + O(Mn(η)).

We deduce from Lemma 4.5 that

dTV(L(Xn(η)),P (λn)) ≤ 1

λn

(
M2(Xn(η)) + λ2

n

(
2

nd
− 1

))
.

Thus, combining inequalities given by Lemmas 4.2 and 4.6, it follows that

dTV(L(Xn(η)),P (λn)) = O
(
Mn(η) + n−d)

.

We conclude using λn−d = Wn(η) ≤ 	n(η) ≤ Mn(η).
Let us finish the proof of Theorem 3.1 by proving Lemma 4.6.

PROOF OF LEMMA 4.5. The variable Xn(η) counts the number of copies
in the graph Gn of local configurations belonging to Cr (η). So, the quantity



POISSON APPROXIMATIONS FOR THE ISING MODEL 1347

M2(Xn(η)) can be interpreted as the expected number of ordered couples of copies
of elements of Cr (η):

M2(Xn(η)) = ∑
k≥2

μa,b

(
Xn(η) = k

) k!
(k − 2)!

= Ea,b

[ ∑
(x1,x2)∈V 2

n

I
η

x1
× I

η

x2

]
.

Let (x1, x2) be a couple of vertices. From now on, two cases must be distinguished:
either the distance between x1 and x2 is smaller than 2r + 3 or not. The meaning
of this distinction will be revealed later. However, we can already remark that the
number of couples (x1, x2) such that dist(x1, x2) ≤ 2r + 3 is bounded by β(2r +
3)nd . Indeed, there are nd possibilities for the first vertex x1 and no more than
β(2r +3) possibilities for the second one since it belongs to the ball B(x1,2r +3).
As for the number of couples (x1, x2) such that dist(x1, x2) > 2r + 3, it is merely
bounded by n2d .

Each indicator I
η

x is defined as the sum of I
η′
x , η′ ∈ Cr (η). So, the second mo-

ment M2(Xn(η)) can be expressed as

∑
η1,η2

∈Cr (η)

(
Ea,b

[ ∑
(x1,x2)∈V 2

n

dist(x1,x2)≤2r+3

Iη1
x1

× Iη2
x2

]
+ Ea,b

[ ∑
(x1,x2)∈V 2

n

dist(x1,x2)>2r+3

Iη1
x1

× Iη2
x2

])

where the above expectations will be respectively denoted by E≤(η1, η2) and
E>(η1, η2). We are going to prove the three following statements from which
Lemma 4.6 follows:

∀(η1, η2) ∈ Cr (η)2 E≤(η1, η2) = O(Mn(η));(24)

E>(η,η) = λ2 + O(Mn(η));(25)

∀(η1, η2) ∈ Cr (η)2 \ {(η, η)} E>(η1, η2) = O(Mn(η)).(26)

Let (x1, x2) be a couple of vertices such that dist(x1, x2) ≤ 2r + 3 and let η1,
η2 be two local configurations of Cr (η). The balls B(x1, r) and B(x2, r) are both
included in the large ball B(x1,3r + 3). The intuition is that if η1 and η2 occur on
B(x1, r) and B(x2, r), then locally [i.e., in the ball B(x1,3r + 3)] at least k(η) + 1
positive vertices are present. This has a vanishing probability. So as to lighten
formulas, let us denote by B the ball B(x1, r) and by R the set of vertices y such
that r < dist(x1, y) ≤ 3r + 3. The event I

η1
x1 = I

η2
x2 = 1 implies( ⋃

η′∈C∗
r (η)

⋃
σ∈{−,+}R

I
η′
B = Iσ

R = 1

)
∪

( ⋃
σ∈{−,+}R\{σ 0}

I
η
B = Iσ

R = 1

)
,
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where σ 0 represents the null configuration of {−,+}R . First, remark that upper
bound of Lemma 2.4 can be extended from {−,+}δB to {−,+}R . For all η′ ∈
Cr (η) and σ ∈ {−,+}R ,

μa,b(I
η′
B = 1|σ) ≤ Wn(η

′)
(
1σ=σ 0 + 1σ �=σ 0

	n(η
′)

Wn(σ )

)
.(27)

Let us consider η′ ∈ C∗
r (η) and σ ∈ {−,+}R . Relation (27) implies

μa,b(I
η′
B = Iσ

R = 1) = μa,b(I
η′
B = 1|Iσ

R = 1)μa,b(I
σ
R = 1)

≤ Wn(η
′)

(
1 + 	n(η

′)
Wn(σ )

)
μa,b(I

σ
R = 1)

≤ Wn(η
′)

(
1 + C(R)	n(η

′)
)
,

where C(R) is the constant of (H2) associated to the set R. Thus, using

	n(η
′) ≤ exp(2a(n)) ≤ 1

and η′ ∈ C∗
r (η), it follows that

μa,b(I
η′
B = Iσ

R = 1) ≤ Wn(η)
(
1 + C(R)

)

n(η).

Now, if the configuration σ belonging to {−,+}R is different from σ 0, then

μa,b(I
η
B = Iσ

R = 1) = μa,b(I
η
B = 1|Iσ

R = 1)μa,b(I
σ
R = 1)

≤ Wn(η)
	n(η)

Wn(σ)
μa,b(I

σ
R = 1)

≤ Wn(η)C(R)	n(η).

In conclusion, we obtain an explicit bound for E≤(η1, η2):

E≤(η1, η2) ≤ β(2r + 3)λ
(|C∗

r (η)|2|R|(1 + C(R)
)

n(η) + 2|R|C(R)	n(η)

)
,

from which relation (24) follows.
Let (x1, x2) be a couple of vertices such that dist(x1, x2) > 2r + 3 and let η1,

η2 be two local configurations of Cr (η). Here, denote respectively by B1 and B2
the balls B(x1, r) and B(x2, r). Since the distance between x1 and x2 is larger
than 2r + 3, no vertex of B1 can be a neighbor of a vertex of B2 [actually,
dist(x1, x2) > 2r + 1 suffices]. The Gibbs measure μa,b yields a Markov ran-
dom field with respect to neighborhoods defined in (1) (see, e.g., [17], Lemma 3,
page 7). As a consequence,

μa,b(I
η1
x1

= Iη2
x2

= 1) = Ea,b

[
μa,b

(
Iη1
x1

= Iη2
x2

= 1|F (δB1 ∪ δB2)
)]

= Ea,b

[ 2∏
i=1

μa,b

(
Iηi
xi

= 1|F (δB1 ∪ δB2)
)]

(28)

= Ea,b

[ 2∏
i=1

μa,b

(
Iηi
xi

= 1|F (δBi)
)]

.
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In a first time, assume that η1 = η2 = η. Let σ be a configuration of Xn. Thanks
to Lemma 2.4, we can write

2∏
i=1

μa,b(I
η
xi

= 1|σδBi
)

≤ Wn(η)2
(

1 + 	n(η)

(
1

Wn(σδB1)
+ 1

Wn(σδB2)

)

+ 	n(η)2.

(
1

Wn(σδB1)Wn(σδB2)

))
.

The reason for which the distance between vertices x1 and x2 is assumed larger
than 2r +3 is the following: no vertex of δB1 can be a neighbor of a vertex of δB2.
So, the product Wn(σδB1)Wn(σδB2) is equal to the weight Wn(σδB1∪δB2). Hence,
the inequality 	n(η) ≤ 1 and relation (28) imply that the probability μa,b(I

η
x1 =

I
η
x2 = 1) is bounded by

Wn(η)2

(
1 + 	n(η)

∑
σ∈Xn

(
1

Wn(σδB1)
+ 1

Wn(σδB2)
+ 1

Wn(σδB1∪δB2)

)
μa,b(σ )

)
.

Let C(δB) and C(2δB) be the constants of (H2) respectively associated to the sets
δB1 (or δB2) and δB1 ∪ δB2. Then, a new upper bound for the quantity μa,b(I

η
x1 =

I
η
x2 = 1) is obtained:

Wn(η)2(
1 + 	n(η)

(
2|δB1|C(δB) + 2|δB2|C(δB) + 2|δB1|+|δB2|C(2δB)

))
.

Finally, the term E>(η,η) satisfies the inequality

E>(η,η) ≤ n2dWn(η)2(
1 + O(	n(η))

)
and (25) is proved.

Assume at least one of the two local configurations η1, η2 ∈ Cr (η) is different
from η. It remains to prove that E>(η1, η2) is of order Mn(η). Techniques used in
the previous case allow us to write

2∏
i=1

μa,b

(
Iηi
xi

= 1|F (δBi)
) = O(Wn(η1)Wn(η2)).

Since this upper bound does not depend on the configuration on δB1 ∪ δB2, we
deduce from (28):

μa,b(I
η1
x1

= Iη2
x2

= 1) = O(Wn(η1)Wn(η2)).

Now, if the local configuration ηi , for i = 1,2, is different from η, then its
weight Wn(ηi) is smaller than Wn(η)
n(η). So, 
n(η) ≤ 1 for n large enough
and (η1, η2) �= (η, η) imply that the product Wn(η1)Wn(η2) is bounded by
Wn(η)2
n(η) and consequently (26) is proved. �
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