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CARD SHUFFLING AND DIOPHANTINE APPROXIMATION
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California at Berkeley and Microsoft Research, and Microsoft Research

The “overlapping-cycles shuffle” mixes a deck of n cards by moving
either the nth card or the (n−k)th card to the top of the deck, with probability
half each. We determine the spectral gap for the location of a single card,
which, as a function of k and n, has surprising behavior. For example, suppose
k is the closest integer to αn for a fixed real α ∈ (0,1). Then for rational α the
spectral gap is �(n−2), while for poorly approximable irrational numbers α,
such as the reciprocal of the golden ratio, the spectral gap is �(n−3/2).

1. Introduction. The overlapping-cycles shuffle has two positive integer pa-
rameters n and k ∈ [1, n), and mixes a deck of n cards by flipping a fair coin to
decide whether to move the nth card or the (n − k)th card to the top of the deck.
The case where k = 1 was first studied by Hildebrand [6], who showed that the
shuffle mixes within O(n3 logn) time, and Wilson [8] who showed that it takes
at least (1 − o(1))/(8π2)n3 logn shuffles to mix. Jonasson [7] first studied the
overlapping-cycles shuffle that we consider here, obtaining a lower bound of order
n3/k2 logn, but for this shuffle there was no matching upper bound, and indeed
there cannot be one, since, as Jonasson showed, when k = n/2 the shuffle takes at
least order n2 time to mix.

We would like to understand the mixing time of this overlapping-cycle shuffle,
but the behavior is sufficiently complicated that we settle for the more modest goal
of understanding how a single card behaves under this shuffle, and in particular,
what the spectral gap is for the Markov chain induced by a single card. The behav-
ior of the spectral gap is a surprisingly complicated function of n and k (see Fig-
ures 1 and 2), which depends to a great extent on the Diophantine approximations
of k/n. For example, suppose α is a fixed number between 0 and 1, and k = �αn�,
that is, the closest integer to αn. Then the inverse spectral gap (also known as the
relaxation time) is of order n2 when α is rational, but when α is a badly approx-
imable irrational number, such as the golden ratio minus 1, the relaxation time is
of order n3/2.
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FIG. 1. The relaxation time as a function of n and k, for 1 ≤ k < n ≤ 200.

1.1. Heuristics. Before giving more precise results below, we start with a
heuristic discussion of why the relaxation time of a single card should fluctuate
between order n2 and order n3/2 (when k is of order n) according to the Diophan-
tine approximations of k/n. We mention that Jonasson [7] already understood that
the relaxation time is of order n2 when k/n is near a simple rational, but conjec-
tured that the relaxation time is of order n logn for typical k.

Suppose that the ♠A was initially at the top of the deck. Where will it be after t

steps? Denote by s the number of visits of the ♠A to location 1 (after time 0), by s̃

the number of times it jumped from location n − k to 1, and by � its final location,
which we assume to be less than n − k for simplicity. Clearly, s = O(t/n) and
s̃ = s/2 ± O(

√
s ). We get another approximate identity by noting that the card

progresses at exactly unit speed from 1 to n − k and then either jumps to 1 or
moves at approximately speed 1/2 from n − k to n. There are random fluctuations
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FIG. 2. Shown here is the inverse spectral gap for the position of the ♠A for the n, k shuffle; the
left picture plots the inverse gap as a function of k/n when n = 200 and k is varied from 1 to 199,
while the right picture is for n = 1000 with k varying between 1 and 999. There are spikes when k/n

is well approximated by a simple rational number, and these spikes become more pronounced for
larger n, with more of them visible. The predicted locations and heights of the peaks are shown in the
n = 1000 picture. At the tops of the spikes the inverse spectral gap is �(n2), except for the spike at
0
1 where it is �(n3). At the low-lying areas between the spikes, the inverse spectral gap is �(n3/2).

in how long the traversal from position n − k to n takes. We then have

t = � − 1 + (n − k)s + 2k(s − s̃) ± �
(√

2k(s − s̃)
)
.

But it is likely that s − s̃ ≈ t/(2n), and we assumed k is of order n, so this error
term is ±�(

√
t ). Thus, we may rewrite this in the form

� = k(2̃s − s) − sn + t ± �
(√

t
)
.

In other words, at time t , the location � ∈ {1, . . . , n} of the ♠A is in one of

2̃s − s = ±�
(√

s
) = ±�

(√
t/n

)
intervals Ij of length �(

√
t ) each; these intervals are centered at the first

�(
√

t/n ) multiples ±jk of k modulo n. A necessary condition for mixing is
that these intervals cover most of {1, . . . , n}, which requires n = �(t/

√
n ), that

is, t must be at least of order n3/2. If the multiples {jk : |j | ≤ �(
√

t/n )} of k

are close to uniformly distributed modulo n, and t > Cn3/2, then the intervals
{Ij : |j | ≤ �(

√
t/n )} cover most of {1, . . . , n}. This happens when, for example,

n/k is close to the golden ratio 1+√
5

2 , so in this case one might expect the relax-
ation time to be of order n3/2. On the other hand, if k/n is very close to a simple
rational p/q , then there are only q distinct intervals Ij of length �(

√
t ) each; for

these intervals to cover most of {1, . . . , n}, the time t must be at least of order
(n/q)2.

1.2. Statement of results. We define gap(n, k) to be the spectral gap of a single
card when the deck is shuffled according to the overlapping-cycles shuffle with
parameters n and k.
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THEOREM 1. Suppose that p and q are integers such that 0 < p/q < 1 and
gcd(p, q) = 1. Then for fixed p and q , when n is large enough and k = �p

q
n�, the

spectral gap is

gap(n, k) = (
1 + o(1)

)π2pq

2n2 ×
{

1, if p ≡ q mod 2,
4, if p 
≡ q mod 2.

It is interesting to consider the spectral gap when n is large but then held fixed
while k is varied, as in Figure 2. We prove the following bounds:

THEOREM 2.

(i) For any k ∈ [1, n), we have gap(n, k) ≤ (2π2 + o(1))n−3/2.
(ii) For any k ∈ [1, n), we have gap(n, k) ≥ (4π2 + o(1))n−3.

(iii) For almost all values of k ∈ [1, n), we have that gap(n, k) is of order n−3/2.
More precisely, when n is large enough, for any δ > 0, for all but δ2/3n values of
k ∈ [1, n), we have gap(n, k) ≥ (π2/16 + o(1))δn−3/2.

Here the o(1) terms tend to 0 as n → ∞ independent of k or δ.

The lower bound is tight, but as discussed in the open problem section, the upper
bound can almost certainly be improved by a factor of

√
3.

As the reader may have noticed already, the spikes in Figure 2 are actually
shaped like narrow bells. These bells are shown more explicitly in Figure 3. Our
next theorem characterizes the shape and width of these bells, by giving the spec-
tral gap when k is close to but not exactly �(p/q)n�.

THEOREM 3. Suppose that p and q are integers such that 0 < p/q ≤ 1 and
gcd(p, q) = 1. Then for fixed p and q , when n is large enough and

|k − (p/q)n| ≤ n3/4 × (constant depending on p and q),

then the spectral gap is

gap(n, k) = (
1 + o(1)

)π2pq

2n2

(
1 + q

p

|k − (p/q)n|2
n

)

×
{

1, if p ≡ q mod 2,
4, if p 
≡ q mod 2.

When p/q = 0, the spectral gap is instead (1 + o(1))2π2(k + k2)/n3, provided
k ≤ (n/2)2/3.

Therefore, for each rational p/q 
= 0, the spectral gap ranges from order 1/n2

to order 1/n3/2 when k/n is in a n−1/4-neighborhood of p/q .
For any given k and n, the spectral gap may be determined by the rational k/n or

perhaps by a nearby rational with smaller numerator and denominator. This leaves
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FIG. 3. These plots show the same data from Figure 2 for the inverse spectral gap when n = 1000.
On the left a specific bell curve is plotted on top of the spike at k/n = 1/3, and on the right such bell
curves are plotted for all the simple fractions, including 0

1 and 1
1 .

the question, for a given k and n, assuming n is large, how can we estimate the
spectral gap? As Figure 3 indicates, the inverse spectral gap is determined by the
rational whose bell is largest at k/n.

Let us define

γ (n, k,m) = π2

2n2

(
m2k

n
+ 4n

∥∥∥∥m(n − k)

2n

∥∥∥∥2)
,

(1)
γ (n, k) = min

m∈Z,m
=0
γ (n, k,m),

where ‖x‖ is the number-theoretic norm ‖x‖ = dist(x,Z).
Our main theorem on the spectral gap, from which the previous theorems can

be derived as corollaries, is the following:

THEOREM 4. For all large enough n, for any k such that 1 ≤ k ≤ n − 1, the
spectral gap is

gap(n, k) = (
1 + o(1)

)
γ (n, k),

where the o(1) goes to zero uniformly for the full range of k, when n is large.

This is a curious expression: there are terms in the min that do not correspond
to eigenvalues, and there are eigenvalues that are not associated with terms in the
min, but the sufficiently small terms do correspond to the eigenvalues with mod-
ulus sufficiently close to 1. Because the convergence holds uniformly for the full
range of k, we can derive the previous theorems simply by studying γ (n, k). For
example, we have the following:

PROOF OF THEOREM 1. The min is achieved at m = q when p ≡ q mod 2,
and m = 2q when p 
≡ q mod 2. �

An interesting consequence of Theorem 4 is the following:
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THEOREM 5. For α ∈ (0,1), we have

lim inf
n→∞ γ (n, �αn�)n3/2 ≤ 2π2√α/

√
5,

and this bound is tight for a dense set of α’s.

PROOF. Any irrational number x has infinitely many rational approximations
p/q for which |x − p/q| < 1/(

√
5q2), that is, ‖qx‖ < 1/(

√
5q) (see Hardy and

Wright [5], Section 11.8). Even for rational x, there are still infinitely many inte-
gers q for which ‖qx‖ < 1/(

√
5q). Let us set x = (1 − α)/2 and consider such an

integer q for which q2 ≥ 1/α. We have, for n ≥ q2,

γ (n, �αn�, q) = π2

2n2

(
q2(

α + O(1/n)
) + 4n‖q[(1 − α)/2] + O(q/n)‖2)

≤ π2

2n3/2

(
q2α

n1/2 + 4n1/2

5q2 + O(1)

n1/2

)
.

The optimal choice of n is n = �5q4α/4� > q2, for which we get

γ (n, �αn�, q)n3/2 ≤ π2

2

(
4
√

α√
5

+ o(1)

)
,

where the o(1) tends to 0 as q → ∞, whence

lim inf
n→∞ γ (n, �αn�)n3/2 ≤ 2π2√α√

5
.

There is a dense set of α’s with continued fraction expansion that is eventu-
ally all 1’s—these α’s can be obtained from the golden ratio φ by the Möbius
transformation (aφ + b)/(cφ + d), where a, b, c, d ∈ Z and ad − bc = 1 ([5],
Section 10.11). For these α’s, for any δ > 0, there are only finitely many rational
approximations p/q for which ‖qx‖ < (1 − δ)/(

√
5q) ([5], Section 11.8), and so

in the above calculations “≤” may be replaced with = (1 + o(1))×, and so the
above bound is tight. �

As the proof of the preceding theorem indicates, for a given k and n, the optimal
choice of m for γ (n, k,m) will be the denominator of a rational approximation
p/q to (1 − k/n)/2. If p/q is not a continued fraction convergent, then there
is a continued fraction convergent pj/qj which both more closely approximates
(1 − k/n)/2 and has smaller denominator qj < q , so γ (n, k, qj ) < γ (n, k, q). The
best qj will never be larger than O(n1/4), but it could be much smaller if k/n has
a particularly good rational approximation.

REMARK. Diaconis and Saloff-Coste [2, 3] analyzed the mixing times of two
related shuffles. Goel [4] and Jonasson [7] analyzed a variant in which one of the
bottom k cards is placed at the top of the deck.
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ROADMAP. In Section 2 we review the characteristic polynomial for this
Markov chain and make some preliminary observations about the approximate
locations of the eigenvalues. There are many eigenvalues that are almost on the
unit circle. Then in Section 3 we prove Theorem 4 characterizing the spectral gap.
Using Theorem 4, we calculate in Section 4 the spectral gap for extremal and for
typical values of k, proving Theorem 2. In Section 5 we deduce Theorem 3 for the
case when k/n is well approximated by a simple rational.

2. Eigenvalues for a single card. The Markov chain for a single card is as
follows: A card in position i ∈ [1, n − k − 1] moves to position i + 1. The card in
position n − k moves to one of {1, n − k + 1}, each with probability 1

2 . A card in
position i ∈ {n− k + 1, n− 1} moves to one of {i, i + 1}, and the card in position n

moves to one of {1, n}, again each with probability 1
2 . Since most of the transition

matrix is zero, it is easy to verify that its characteristic polynomial is

λn−k(λ − 1/2)k − (λ − 1/2)k/2 − 2−k−1,

and therefore, its eigenvalues satisfy

2λn−k − 1 = (2λ − 1)−k.(2)

This equation for the eigenvalues first appeared in Jonasson’s analysis [7], Sec-
tion 4.1.2.

PROPOSITION 6. The spectral gap for the position of a single card is positive.

PROOF. Note that if |z| ≥ 1, then |2z − 1| ≥ 1, with equality iff z = 1. Thus,
if |λ| ≥ 1, then the LHS of (2) is outside the unit circle and the RHS inside, and
equality is possible iff λ = 1. Since the derivative of (2λn−k − 1)(2λ − 1)k − 1 at
λ = 1 is 2n, the λ = 1 eigenvalue has multiplicity 1. �

There are actually two reasons that we call the shuffle the overlapping-cycles
shuffle. The first is that the cards are shuffled according to one of the two cyclic
permutations (n,n − 1, . . . ,1) and (n − k,n − k − 1, . . . ,1). The other reason is
that the eigenvalues for the position of a single card form two overlapping cycles,
as can be seen from Figure 4. To see this, note that if λ is sufficiently far inside the
unit circle, then λn−k ≈ 0 and the LHS of (2) is approximately −1, so that

λ ≈ (−1)1/k + 1

2
,

where (−1)1/k is any kth root of −1 (sufficiently far from 1). If |λ| ≈ 1 but λ is
sufficiently far from 1, then (2λ − 1)−k ≈ 0, so that (2) gives

λ ≈ (1/2)1/(n−k)(1)1/(n−k),

where (1)1/(n−k) is any (n − k)th root of 1 (sufficiently far from 1). The most
interesting range is where λ ≈ 1, that is, where the two cycles overlap, and as we
shall see in the next section, it is these eigenvalues that will ultimately determine
the spectral gap of the Markov chain for a single card.
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FIG. 4. Eigenvalues of the 50–20 shuffle. In general, the eigenvalues will be close to the unit circle
near the (n − k)th roots of unity, or near the circle of radius 1/2 centered at 1/2. Only eigenvalues
close to 1 will be much closer to the unit circle than distance 1/n.

3. Spectral gap for a single card. We proceed to analyze the eigenvalues
using equation (2) when n is large. For an eigenvalue λ of the overlapping cycles
shuffle with parameters n and k, we shall define ε, a and b to satisfy

λ = exp[−ε + iπa] where −1 < a ≤ 1, and
(3)

λn−k = exp[−(n − k)ε + iπb] where −1 < b ≤ 1.

At this point we restrict our attention to eigenvalues for which ε = o(1/n). We
shall see that there are always eigenvalues for which ε = O(n−3/2), and for some
values of n and k there are eigenvalues with much smaller ε. We start with a lemma
showing that such eigenvalues satisfy λ ≈ 1 and λn−k ≈ 1, and derive successively
more precise estimates of λ.

LEMMA 7. With the notation (3), for any eigenvalue λ for which ε = o(1/n),
we have a = o(1) and b = o(1).

PROOF. We have |2λ − 1| ≥ 1 − 2ε + c(a), where c(a) > 0 for a 
= 0 is a
positive constant depending on a. Then

|2λn−k| − 1 ≤ |2λn−k − 1| = |2λ − 1|−k ≤ (
1 − 2ε + c(a)

)−k
.

When ε = o(1) and a = �(1), it follows that |λn−k| < 1 − c̃(a), where c̃(a) is a
positive constant depending on a, which contradicts ε = o(1/n).

We also have |2λn−k − 1| > 1 − nε + c(b) where c(b) > 0 is as above. Thus,

|2λ| − 1 ≤ |2λ − 1| = |2λn−k − 1|−1/k <
(
1 − nε + c(b)

)−1/k
.
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When ε = o(1/n) and b = �(1), it follows that |λ| < 1 − c̄(b)/k, where c̄(b) is a
positive constant depending on b, which contradicts ε = o(1/n). �

LEMMA 8. With the notation (3), for any eigenvalue λ for which ε = o(1/n),

|aπ | ≤
√

2nε/k + O((nε/k)3/2),

|bπ | ≤ √
2nε + O((nε)3/2).

PROOF. Let z = e−x+iθ where x and θ are real and x > 0. By the triangle
inequality, 1

2 + |z − 1
2 | ≥ |z| ≥ 1 − x, so

|2z − 1| ≥ 1 − 2x.(4)

But by the law of cosines,

|2z − 1|2 = 1 + 4|z|2 − 4|z| cos θ

= 1 + 4 − 8x + O(x2) − 4
(
1 − x + O(x2)

)(
1 − θ2/2 + O(θ4)

)
(5)

= 1 − 4x + 2θ2 + O(x2) + O(xθ2) + O(θ4).

From (2), using (4) with z = λ, we get

|2λn−k − 1|2 = |(2λ − 1)−k|2 ≤ (1 − 2ε)−2k = 1 + 4kε + O(n2ε2),(6)

and using (5) with z = λn−k , we get

|2λn−k − 1|2 = 1 − 4(n − k)ε + O(n2ε2) + 2b2π2(
1 + O(nε) + O(b2)

)
,(7)

and upon combining (6) with (7), we get

4nε + O(n2ε2) ≥ 2b2π2(
1 + O(nε) + O(b2)

)
.

Hence, taking square roots,
√

2nε × (
1 + O(nε)

) ≥ |bπ |(1 + O(nε) + O(b2)
)
.

Since ε = o(1/n), and b2 = o(1) by Lemma 7, we learn b = O(
√

nε ), and hence,

|bπ | ≤ √
2nε × (

1 + O(nε)
)
.

From (2), using (4) with z = λn−k , we get

|2λ − 1|2 = |2λn−k − 1|−2/k

≤ (
1 − 2(n − k)ε

)−2/k

(8)

= 1 + 4(n − k)ε

k
+ O((nε/k)2),

and using (5) with z = λ, we get

|2λ − 1|2 = 1 − 4ε + O(ε2) + 2a2π2(
1 + O(ε) + O(a2)

)
,(9)
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and upon combining (8) with (9), we get

4nε/k + O((nε/k)2) + O(ε2) ≥ 2a2π2(
1 + O(ε) + O(a2)

)
.

Hence, taking square roots,√
2nε/k × (

1 + O(nε/k)
) ≥ |aπ |(1 + O(ε) + O(a2)

)
.

Since ε = o(1/n), and a2 = o(1) by Lemma 7, we learn |a| = O(
√

nε/k ), and
hence,

|aπ | ≤
√

2nε/k × (
1 + O(nε/k)

)
. �

LEMMA 9. With the notation (3), for any eigenvalue λ for which ε = o(1/n),
we can write

λ = exp
[
πim/n − π2

2n

(
k(m/n)2 + (

m(1 − k/n) mod 2
)2)

(10)

+ O(n1/2ε3/2)

]

for some integer m = O(n3/2ε1/2/k1/2) = o(n/k1/2), where mod 2 is interpreted
so that −1 < ∗ mod 2 ≤ 1.

PROOF. We apply the following expansion for z ≈ 0:

2ez − 1 = exp[2z − z2 + O(z3)].(11)

By Lemma 8, we know that eigenvalues λ for which ε = o(1/n) satisfy
| logλn−k| = O(

√
nε ), so

2λn−k − 1 = exp[−2(n − k)ε + 2bπi + b2π2 + O((nε)3/2)].
Lemma 8 also tells us | logλ| ≤ O(

√
εn/k ), so

2λ − 1 = exp[−2ε + 2aπi + a2π2 + O((εn/k)3/2)],
(2λ − 1)−k = exp[2kε − ka2πi − ka2π2 + O((εn)3/2/k1/2)].

For any eigenvalue λ, by (2), these expansions are equal:

−2(n − k)ε + 2bπi + b2π2

(12)
≡ 2kε − ka2πi − ka2π2 + O((nε)3/2) mod 2πi.

Comparing the real parts of (12), we obtain

−2nε + b2π2 = −ka2π2 + O((nε)3/2)

ε = π2

2n
(ka2 + b2) + O(n1/2ε3/2).(13)
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Comparing the imaginary parts of (12), we obtain

b ≡ −ka + O((nε)3/2) mod 1.

Of course, from (3) it is obvious that

b ≡ (n − k)a mod 2.

Subtracting these two relations, we obtain

0 ≡ na + O((nε)3/2) mod 1.

Since na is very close to an integer, we define

m = �na� = O(n3/2ε1/2/k1/2) = o(n/k1/2).

Then

a = m/n + O(ε3/2n1/2),

b = [m(1 − k/n) + O(ε3/2n3/2)] mod 2,

where mod 2 is interpreted so that −1 < ∗ mod 2 ≤ 1. We have then that

λ = exp[aπi − ε]

= exp
[
πim/n − π2

2n

(
k(m/n)2 + (

m(1 − k/n) mod 2
)2) + O(n1/2ε3/2)

]
.

This estimate is valid for any eigenvalue λ for which ε = o(1/n). �

LEMMA 10. If m is an integer such that |m| = o(n/
√

k ) and |m(1−k/n) mod
2| = o(1), then there is an eigenvalue of the form given in equation (10).

PROOF. Let us define

b′ = m(1 − k/n) mod 2 with −1 < b′ ≤ 1,

X = π2

2n

(
k(m/n)2 + b′2)

,

λ(z) = exp[πim/n − X + z],
f (z) = (

2λ(z) − 1
)k(2λ(z)n−k − 1

) − 1.

Our aim is to show that there is some choice of z ∈ C such that f (z) = 0 and |z| =
O(n1/2X3/2). Of course, if f (z) = 0, then λ(z) is an eigenvalue. Our hypotheses
imply X = o(1/n), so |z| = o(X), ε = (1 + o(1))X, and |z| = O(n1/2ε3/2), so the
existence of such a z will prove the lemma.

Since

λ(z)n−k = exp[πib′ − (n − k)(X − z)],
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the expansion (11) together with |πb′| ≤ √
2nX = o(1) imply that whenever |z| =

O(X) we have

2λ(z)n−k − 1 = exp[2πib′ − 2(n − k)(X − z) + π2b′2 + O(n3/2X3/2)].
The expansion (11) together with |πm/n| ≤ √

2nX/k = o(1) imply

2λ(z) − 1 = exp[2πim/n − 2(X − z) + π2(m/n)2 + O((Xn/k)3/2)].
Thus, modulo 2πi,

log
(
1 + f (z)

) ≡ k[2πim/n − 2(X − z) + π2(m/n)2 + O((Xn/k)3/2)]
+ [2πib′ − 2(n − k)(X − z) + π2b′2 + O(n3/2X3/2)]

= 2π ikm/n + π2k(m/n)2 + 2πib′ − 2n(X − z) + π2b′2

+ O(n3/2X3/2)

= 2nz + 2π ikm/n + 2πib′ + O(n3/2X3/2)

≡ 2nz + O(n3/2X3/2) (mod 2πi),

whence

f (z) = 2nz + O(n3/2X3/2).

By considering z’s for which |z| is a large enough constant times n1/2X3/2 [but still
within the constraint |z| = O(X)], we may apply Rouché’s theorem (see [1], Sec-
tion 4.5.2) to deduce that there is a z for which |z| = O(n1/2X3/2) and f (z) = 0.

�

Recall the definition of γ (n, k) from equation (1). We are now ready to prove
Theorem 4, that is, that the spectral gap is gap(n, k) = (1 + o(1))γ (n, k). We ac-
tually show a bit more, that gap(n, k) = γ (n, k) + O(n1/2γ (n, k)3/2).

PROOF OF THEOREM 4. Recall the definition

γ (n, k,m) := π2

2n

(
k(m/n)2 + (

m(1 − k/n) mod 2
)2)

,

which is the subexpression corresponding to ε (ignoring the error terms) in equa-
tion (10).

For any real numbers α and N ≥ 1, there is an integer m so that 1 ≤ m ≤ N and
mα is within 1/(�N�+ 1) ≤ 1/N of an integer (see [5], Section 3.8, Theorem 36).
For our purposes, we are interested in α = 1

2(1 − k/n) and N = 21/2n1/2/k1/4.
Then there is a positive integer m ≤ N for which

γ (n, k,m) ≤ π2

2n

(
k(N/n)2 + (2/N)2) = 2π2k1/2

n2 ≤ 2π2n−3/2.
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Let m̃ denote the positive integer minimizing γ (n, k, m̃), that is, γ (n, k, m̃) =
γ (n, k). We have

π2

2n
k(m̃/n)2 ≤ γ (n, k, m̃) ≤ 2π2k1/2

n2 ,

so |m̃| ≤ 2n1/2k−1/4 = o(n/k1/2), and similarly,

π2

2n

(
m̃(1 − k/n) mod 2

)2 ≤ γ (n, k, m̃) ≤ 2π2k1/2

n2 ,

so |m̃(1 − k/n) mod 2| ≤ 2k1/4n−1/2 = o(1). Since m̃ satisfies the hypotheses of
Lemma 10, it gives us an eigenvalue λ for which ε = (1 + o(1))γ (n, k, m̃) = (1 +
o(1))γ (n, k).

Since γ (n, k) ≤ 2π2n−3/2, this proves Theorem 2 part (i).
Therefore, any eigenvalue λ which achieves the spectral gap will satisfy ε =

o(1/n), so we can use Lemma 9 to express it according to equation (10) for some
integer m = m∗. The spectral gap is then (1 + o(1))γ (n, k,m∗). We claim further
that m∗ 
= 0, since otherwise λ = exp[O(n1/2ε3/2)], so ε = O(n1/2ε3/2) = o(ε),
so ε = 0 and λ = 1, which by Proposition 6 is not the eigenvalue achieving the
spectral gap. Since there is an eigenvalue for which ε = (1 + o(1))γ (n, k) ≤
(1+o(1))γ (n, k,m∗), we conclude that the spectral gap is in fact (1+o(1))γ (n, k).

�

4. Spectral gap for extremal and typical values of k. Recall that the upper
bound on the spectral gap [Theorem 2 part (i)] was shown in the proof of Theo-
rem 4. We proceed to prove the lower bound.

PROOF OF THEOREM 2 PART (ii). If for some nonzero k and m we have
γ (n, k,m) ≤ 4π2n−3, then

π2

2n
k(m/n)2 ≤ γ (n, k,m) ≤ 4π2n−3,

and so km2 ≤ 8. Similarly,

π2

2n

(
m(1 − k/n) mod 2

)2 ≤ γ (n, k,m) ≤ 4π2n−3,

so |m(1 − k/n) mod 2| ≤ √
8/n. Since k ≤ 8, for n ≥ 11 this implies that |m| 
= 1,

and hence, m = ±2 and k ≤ 2. Then for n ≥ 11,

γ (n, k,m) = π2

2n

(
k(2/n)2 + (2k/n)2) = 2π2

n3 (k + k2),

and our assumption implies k = 1 and γ (n, k,m) = 4π2n−3. Thus, whenever
n ≥ 11 we have γ (n, k) ≥ 4π2n−3, and so the result follows from Theorem 4.

�
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We now prove the last part of Theorem 2 which pertains to “typical” values of k.

PROOF OF THEOREM 2 PART (iii). We will show that for any n ≥ 1 and any
δ > 0, for all but 4δ2/3n values of k, we have γ (n, k) ≥ (π2/2)δn−3/2.

Let us start by assuming k ≥ δ2/3n. If m ≥ δ1/6n1/4, then

γ (n, k,m) ≥ π2m2k

2n3 ≥ π2δ

2n3/2 .

We also have

γ (n, k,m) ≥ π2

2n

(
m(1 − k/n) mod 2

)2 = π2

2n3 (mk∗ mod 2n)2,

where k∗ = n− k and mod denotes the centered mod. If k∗ is a uniformly random
integer from the range 1 ≤ k∗ ≤ 2n, then mk∗ mod 2n is uniformly distributed
among the multiples of gcd(m,2n). For any x with 0 < x ≤ n, there are(

2
⌈

x

gcd(m,2n)

⌉
− 1

)
gcd(m,2n) ≤ 2x + gcd(m,2n)

values of k∗ (1 ≤ k∗ ≤ 2n) for which |mk∗ mod 2n| < x, and a fortiori at most
x + 1

2 gcd(m,2n) values of k∗ (1 ≤ k∗ ≤ n − 1) for which |mk∗ mod 2n| < x.
Upon taking x = δ1/2n3/4, and summing over 1 ≤ m < δ1/6n1/4, we find that there
are at most

�δ1/6n1/4�∑
m=1

(
x + 1

2
gcd(m,2n)

)
≤ δ2/3n + (δ1/6n1/4)(δ1/6n1/4 + 1)

4

values of k ≥ δ2/3n and m < δ1/6n1/4 for which γ (n, k,m) < (π2/2)δn−3/2. Thus,
there are at most

2δ2/3n + 1
4δ1/3n1/2 + 1

4δ1/6n1/4(14)

values of k for which γ (n, k) < (π2/2)δn−3/2.
If δ2/3n ≤ 1

4 , then the bound (14) is less than one, so there are 0 ≤ 4δ2/3n values
of k for which γ (n, k) < (π2/2)δn−3/2. If δ2/3n ≥ 1

4 , then the bound (14) is <

4δ2/3n. �

5. The narrow bells near simple rational k/n. Let us suppose that k/n is
well approximated by a simple rational p/q where 0 ≤ p/q ≤ 1 and gcd(p, q) = 1.
Our aim here is to prove Theorem 3, which assumes that p and q are held fixed
while n → ∞.

PROOF OF THEOREM 3. Let c be defined by k = (p/q)n + cn3/4. Recall

γ (n, k,m) = π2

2n2

(
m2k/n + n

(
m(1 − k/n) mod 2

)2)
.
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Consider the term

n
(
m(1 − k/n) mod 2

)2 = n
(
m

(
1 − p/q − cn−1/4)

mod 2
)2

.

As we saw in the proof of Theorem 1, if c = 0, this term is minimized at m = Aq ,
where

A =
{

1, if p ≡ q mod 2,
2, if p 
≡ q mod 2.

When m is divisible by Aq and mcn−1/4 ≤ 1 we have

γ (n, k,m) = π2

2n2 m2(k/n + c2n1/2).(15)

If m is not divisible by Aq , then mcn−1/4 would have to be as large as (1 −
o(1))2/(Aq) before the second term of γ (n, k,m) would be smaller than O(1/n).
But for m this large, we have

γ (n, k,m) ≥ π2

2n2

k

n

4n1/2

A2q2c2(16)

on account of the first term.
If c is small enough for the first term of (15) to be nonnegligible, then (16) is

order 1/n and thus irrelevant to computation of γ (n, k). If the first term of (15)
is negligible, then we may compare (15) to (16), and we find that (15) determines
γ (n, k), provided

A2q2c2 ≤ k

n

4

A2q2c2 ,

c ≤ (4k/n)1/4

Aq
.

If p 
= 0 and c ≤ (4p/q)1/4/(Aq), we obtain

γ (n, k) = (
1 + o(1)

) π2

2n2 A2q2(p/q + c2n1/2).

When p = 0 we instead obtain

γ (n, k) = (
1 + o(1)

)2π2

n3 (k + k2)

for k ≤ (n/2)2/3. �
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FIG. 5. Shown here is the relaxation time for the position of the ♠A for the overlapping-cycles
shuffle with parameters n = 1000 and k, together with a lower envelope on this function coming from
a hypothetical bound γ (n, k) ≤ (2π2/

√
3 + o(1))k1/2n−2.

6. Open problems.

1. We would like to understand the mixing time of the overlapping-cycles shuffle
as a Markov chain on the symmetric group. Is it within a factor of O(logn) of
the relaxation time of a single card?

2. For all large n there is a k of the form k = n − (2/31/4 + o(1))n1/4 such
that γ (n, k) = (2π2/

√
3 + o(1))n−3/2. In fact, it appears that for each real

α ∈ (0,1] there is a k of the form k = (α + o(1))n for which γ (n, k) =
(2π2/

√
3 + o(1))k1/2n−2. Furthermore, it appears that γ (n, k) can be no

larger than this, as is illustrated in Figure 5. Does the inequality gap(n, k) ≤
(2π2/

√
3 + o(1))k1/2n−2 hold?
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