
The Annals of Applied Probability
2008, Vol. 18, No. 3, 909–928
DOI: 10.1214/07-AAP473
© Institute of Mathematical Statistics, 2008

SLOW CONVERGENCE IN BOOTSTRAP PERCOLATION

BY JANKO GRAVNER1 AND ALEXANDER E. HOLROYD2

University of California, Davis and University of British Columbia

In the bootstrap percolation model, sites in an L × L square are
initially infected independently with probability p. At subsequent steps,
a healthy site becomes infected if it has at least two infected neighbors. As
(L,p) → (∞,0), the probability that the entire square is eventually infected
is known to undergo a phase transition in the parameter p logL, occurring
asymptotically at λ = π2/18 [Probab. Theory Related Fields 125 (2003)
195–224]. We prove that the discrepancy between the critical parameter and
its limit λ is at least �((logL)−1/2). In contrast, the critical window has
width only �((logL)−1). For the so-called modified model, we prove rigor-
ous explicit bounds which imply, for example, that the relative discrepancy
is at least 1% even when L = 103000. Our results shed some light on the
observed differences between simulations and rigorous asymptotics.

1. Introduction. The standard bootstrap percolation model on the square lat-
tice Z

2 is defined as follows. For any set K ⊆ Z
2, we define

B(K) := K ∪ {
x ∈ Z

2 : #{y ∈ K :‖x − y‖1 = 1} ≥ 2
}

and

〈K〉 := lim
t→∞B t (K),

where B t denotes the t th iterate of the function B. The set 〈K〉 is the final set of
infected sites if we start with K infected.

Now, fix p ∈ (0,1) and let W be a random subset of Z
2 in which each site

is included independently with probability p; more formally, let P = Pp be the

product measure with parameter p on � = {0,1}Z
2

and define the random vari-
able W = W(ω) := {x ∈ Z

2 :ω(x) = 1} for ω ∈ �. We say that a set K ⊆ Z
2 is

internally spanned if 〈K ∩ W 〉 ⊇ K . For L ≥ 1, we define the square R(L) :=
{1, . . . ,L}2 ⊂ Z

2. The main object of interest is the function

I (L) = I (L,p) := Pp

(
R(L) is internally spanned

)
.
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A central result is the following, from [15], which refines earlier results in [3,
20].

THEOREM (Phase transition, [15]). Consider the standard bootstrap percola-
tion model. As L → ∞ and p → 0 simultaneously, we have

if lim inf p logL > λ then I (L,p) → 1;
(1)

if lim sup p logL < λ then I (L,p) → 0,

where λ := π2/18.

Surprisingly, predictions for the asymptotic threshold λ based on simulation
differ greatly from the rigorous result. For example, in [2], the estimate λ =
0.245 ± 0.015 is reported (based on simulation of squares up to size L = 28800),
whereas, in fact, λ = π2/18 = 0.548311 . . . . This apparent discrepancy between
theory and experiment has been investigated using partly nonrigorous methods in
[9, 10, 19]. Our aim is to provide some rigorous understanding of the phenomenon.
Our main result is the following strengthening of the first assertion in (1).

THEOREM 1 (Slow convergence). Consider the standard bootstrap percola-
tion model. There exists c > 0 such that, if L → ∞ and p → 0 simultaneously in
such a way that

p logL > λ − c√
logL

,

where λ = π2/18, then

I (L,p) → 1.

(The condition in Theorem 1 may be equivalently expressed as p logL >

λ − c′√p, for a different constant c′.) Thus, the convergence of the critical value
of the parameter p logL to its limit λ is very slow, with an asymptotic discrepancy
of at least c/

√
logL. (In order to halve the latter quantity, L must be raised to the

4th power.)
On the other hand, the window over which I changes from near 0 to near

1 is much smaller—roughly constant/ logL. The precise statement depends on
whether we vary p or L, as follows.

For fixed L, and α ∈ (0,1), define pα = pα(L) := sup{p : I (L,p) ≤ α}. Since
I (L,p) is continuous and strictly increasing in p, we have that pα is the unique
value such that I (L,pα) = α. The following was proven in [6], using a general
result from [12].
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THEOREM (p-window, [6]). Consider the standard bootstrap percolation
model. For any fixed ε ∈ (0,1/2), we have

p1−ε logL − pε logL = O

(
log logL

logL

)
(2)

= O(p1/2 logp−1
1/2) as L → ∞.

More precise estimates on the size of the window are available if we instead
vary L. An upper bound was proven in [3]. Here, we use similar methods to obtain
matching upper and lower bounds. Since I (L,p) is not necessarily monotone in
L, we define, for fixed p and α ∈ (0,1), Lα = Lα(p) := min{L : I (L,p) ≥ α} and
Lα = Lα(p) := max{L : I (L,p) ≤ α}. Thus, the interval [Lε,L1−ε] contains all
of those L for which I (L,p) ∈ [ε,1 − ε].

THEOREM 2 (L-window). Consider the standard bootstrap percolation
model. For any fixed ε ∈ (0,1/5), we have

p logL1−ε − p logLε = �(p) = �(1/logL1/2) as p → 0.

Indeed, for p sufficiently small (depending on ε), we have

p logL1−ε − p logLε ∈ [C−p,C+p],
where C± = C±(ε) = (1/2 ± o(1)) log ε−1 as ε → 0.

The modified bootstrap percolation model is a variant of the standard model in
which we replace the update rule B with

BM(K) := K ∪ {
x ∈ Z

2 : {x + ei, x − ei} ∩ K �= ∅ for each of i = 1,2
}

[here, e1 := (1,0) and e2 := (0,1) are the standard basis vectors] and define 〈·〉M,
internally spanned, and IM(L,p) accordingly. We sometimes omit the subscript
M when it is clear that we are referring to the modified model.

THEOREM (Phase transition, modified model, [15]). For the modified boot-
strap percolation model, (1) holds with threshold λM := π2/6.

THEOREM 3 (Modified model). Theorem 2 and (2) also hold for the modified
model.

In place of Theorem 1, we establish the following stronger version with an ex-
plicit error bound.

THEOREM 4 (Explicit bound). For the modified model, if p ≤ 1/10 and

p logL ≥ λM −
√

2p + η(p) then IM(L,p) ≥ 1/2,

where λM = π2/6 and η(p) := 1.8p logp−1 + 2p.
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One may deduce rigorous numerical bounds such as the following.

COROLLARY 5. Consider the modified model. We have p1/2 logL < 0.98λM
when L = 10500, and p1/2 logL < 0.99λM when L = 103000.

PROOF. Take, respectively, p = 0.0014 and p = 0.0002356 in Theorem 4.
�

Remarks. Aside from their mathematical interest, bootstrap percolation mod-
els have been applied to a variety of physical problems (see, e.g., [1]) and as tools
in the study of other models (e.g., [8, 11, 13]).

Several interesting attempts have been made to understand the discrepancy be-
tween simulation results (e.g., those of [2]) and the rigorous results in [15]; see, for
example, [1, 9, 10, 19]. The present work is believed to be the first fully rigorous
progress in this direction. In [19], it is estimated that p1/2 logL may become close
to λ = π2/18 only beyond about L = 1020 (the data given in [2] support a similar
conclusion). Current simulations extend only to about L = 105. A length scale of
about L = 1010 is relevant to some physical applications. Thus, it is important to
understand this issue in more detail.

In particular, it would be of interest to determine the asymptotic behavior of, say,
λ−p1/2 logL as L → ∞. Theorem 1 gives only a lower bound of �((logL)−1/2).
In [19], simulation data are fitted to p1/2 logL = π2/18−0.45(logL)−0.2. In [10],
computer calculations, together with a heuristic argument, lead to the estimate
p1/2 logL = π2/6−3.67(logL)−0.333 for the modified model. Since 0.2 and 0.333
are less than 1/2, these findings appear consistent with Theorem 1.

The phenomenon of a critical window whose width is asymptotically much
smaller than its distance from a limiting value has been proven in other settings, in-
cluding integer partitioning problems [7], but contrasts with more familiar models
such as random graphs [18].

Outline of proofs. The idea behind the phase transition result (1) from [15] is
as follows. We expect the square R(L) to be internally spanned if and only if it
contains at least one internally spanned square of side B � 1/p since, with high
probability, this will grow indefinitely in the presence of a random background of
density p. Such a square is sometimes called a nucleation center or critical droplet.
Therefore, the critical regime should be roughly at L2I (B) ≈ 1, that is, logL ≈
(− log I (B))/2, and we need to estimate I (B). First, consider the modified model.
One way for R(B) to be internally spanned is for every square with its bottom
left corner at (1,1) to have at least one adjacent occupied site on each its top and
right faces—then, every such square will be internally spanned [we can think of
an infected square growing from R(1) to R(B)]. A straightforward computation
shows that the probability of this event is approximately exp[−2λM/p], where
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λM = π2/6. This argument proves the first inequality in (1) for the modified model.
(The second inequality requires a much more delicate argument; see [15].)

In order to prove the slow convergence result for the modified model, Theo-
rem 4, we consider other ways for a square to be internally spanned. One way is for
every site along the main diagonal to be occupied. For a square of size A < p1/2,
the latter event has higher probability than the event in the previous paragraph be-
cause the probability of growing by one additional row and column is p versus
approximately (Ap)2. Therefore, let A = p−1/2/2 and suppose that R(A) is in-
ternally spanned by this mechanism, while each square from R(A) to R(B) has
occupied sites on its faces as before. By comparing the two growth mechanisms,
we see that, compared with the previous argument, this increases the lower bound
on I (B) by a factor of least [p/(Ap)2]A = exp[Cp−1/2]. This argument therefore
proves the analogue of Theorem 1 for the modified model. Theorem 4 is proved by
a refinement of these ideas (see, in particular, Lemmas 15 and 17). The coefficient√

2 of
√

p seems to be the best that can be achieved by this method.
The above argument cannot work for the standard bootstrap percolation model.

This is because an internally spanned square can grow from a face whenever there
is an occupied site within distance 2. Thus, each additional occupied site can allow
growth by two rows or two columns, so we do not achieve sufficient saving by
considering occupied sites along the diagonal. Instead, we consider another mech-
anism. Rather than a growing square, we consider a growing rectangle which may
change shape when it encounters vacant rows or columns. (Figure 1 illustrates the
main idea.) We may describe such growth by means of the path traced by the rec-
tangle’s top right corner. As noted in [15], the probability of such a growth path
becomes much smaller if it deviates far from the main diagonal (which corresponds
to a growing square). However, it turns out that if the deviations are of scale only
p−1/2, then the “entropy factor” (the number of possible deviations) outweighs the
“energy cost” (the reduction in probability for each path). This argument yields
Theorem 1.

Notation. The following notation and terminology will be used throughout.
For integers a, b, c, d , we denote the rectangle R(a, b; c, d) := ([a, c] × [b, d]) ∩
Z

2 and write, for convenience, R(m,n) = R(1,1;m,n) and R(n) = R(n,n). The
long side of a rectangle is long(R(a, b; c, d)) = max{c−a +1, d −b+1}. A copy
of a set K ⊆ Z

2 is an image under an isometry of Z
2. A site x ∈ Z

2 is occupied if
x ∈ W . A set of sites is vacant if it contains no occupied site.

It will sometimes be convenient to write

q = q(p) := − log(1 − p)

and

f (z) := − log(1 − e−z)
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so that, for any K ⊂ Z
2,

Pp(K is not vacant) = 1 − (1 − p)|K| = exp−f (|K|q).

Note that q ≥ p, and q ∼ p as p → 0. The function f is positive, decreasing and
convex on (0,∞).

In Section 3, we will also have occasion to consider the functions

β(u) := u + √
u(4 − 3u)

2
and g(z) := − logβ(1 − e−z).

The thresholds λ,λM arise from the integrals
∫ ∞

0
f = λM = π2

6
and

∫ ∞
0

g = λ = π2

18
(3)

(see [15], also [4, 17]).

2. Critical window. In this section, we present a proof of Theorem 2, together
with the extension to the modified model claimed in Theorem 3. The following
lemma from [3] is useful.

LEMMA 6. Let R be a rectangle and consider the standard or modified model.
If R is internally spanned, then, for every positive integer k ≤ long(R), there exists
an internally spanned rectangle T ⊆ R with long(T ) ∈ [k,2k].

PROOF. See [3]. �

LEMMA 7 (Comparison). Consider the standard or modified model. For inte-
gers L ≥ � ≥ 2 and any p ∈ (0,1), we have:

(i)

I (L) ≥ (
1 − e−I (�)(L/�−1)2)

(1 − 2L2e−p�);
(ii)

(
1 − 2�2e−p(�/4−1))I (L) ≤ I (�)

(
2L

� − 1

)2
.

PROOF OF LEMMA 7(I). Let m = �L/�� and consider the m2 disjoint squares

Sk = R(�) + k�, k ∈ {0, . . . ,m − 1}d .

Let E be the event that at least one of the Sk is internally spanned and let F be
the event that every copy of R(1, �) in R(L) is nonvacant. It is straightforward to
see that if E and F both occur, then R(L) is internally spanned. Hence, using the
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Harris–FKG inequality (see, e.g., [14]),

I (L) ≥ P(E)P(F ) ≥ (
1 − (

1 − I (�)
)m2)(

1 − 2L2(1 − p)�
)

≥ (
1 − e−I (�)(L/�−1)2)

(1 − 2L2e−p�). �

PROOF OF LEMMA 7(II). Let s = ��/2� and m = �L/s�, and consider the m2

overlapping squares

Sk = R(�) + ks ∧ (L − �,L − �), k ∈ {0, . . . ,m − 1}2,

where ∧ denotes coordinatewise minimum. Note that
⋃

k Sk = R(L) and that the
overlap between two adjacent squares has width at least s. It follows that any rec-
tangle T ⊆ R(L) with long(T ) ≤ s lies entirely within one of the Sk . Hence, using
Lemma 6,

I (L) ≤ P

(
∃ i.s. T ⊆ R(L) with long(T ) ∈

[⌊ s

2

⌋
, s

])

≤ P

[⋃
k

{
∃ i.s. T ⊆ Sk with long(T ) ∈

[⌊ s

2

⌋
, s

]}]
(4)

≤ m2
P

(
∃ i.s. T ⊆ R(�) with long(T ) ∈

[⌊ s

2

⌋
, s

])
.

On the other hand, considering the event that every copy of R(1, � s
2�) in R(�)

contains at least one occupied site and using the argument from the proof of part (i),
we have

I (�) ≥ P

(
∃ i.s. T ⊆ R(�) with long(T ) ∈

[⌊ s

2

⌋
, s

])
(1 − 2�2e−ps).

Combining this with (4) yields the result. �

PROOF OF THEOREM 2. It follows from (1) that for any α ∈ (0,1), we have

p logLα(p), p logLα(p) → λ as p → 0.(5)

Therefore, once the first equality is proved, the second follows immediately. To
prove the first equality, we will use Lemma 7 to derive upper and lower bounds on
p logL1−ε − p logLε .

For the upper bound, we fix ε and use Lemma 7(i) with L = L1−ε(p) and � =
Lε(p), noting that I (L,p) ≤ 1−ε and I (�,p) ≥ ε. By (5), for p sufficiently small
(depending on ε), we have 1 − 2L2e−p� ≥ 1 − ε2, so we obtain, for p sufficiently
small,

1 − ε ≥ (
1 − e−ε(L1−ε/Lε−1)2)

(1 − ε2).
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Rearranging gives

L1−ε

Lε

≤ 1 +
√

1

ε
log

1 + ε

ε
,

hence

p logL1−ε − p logLε ≤ C+p,

where C+ = log
(
1+

√
ε−1 log(ε−1 + 1)

)
satisfies C+ < ∞ for all ε > 0 and C+ ≤

(1
2 + o(1)) log ε−1 as ε → 0.

For the lower bound, we fix ε and use Lemma 7(ii) with L = L1−ε(p) + 1 and
� = Lε(p) − 1, noting that I (L,p) > 1 − ε and I (�,p) < ε. By (5), we have
2�2e−p(�/4−1) = o(1) as p → 0, so we obtain

(
1 − o(1)

)
(1 − ε) ≤ ε

(
2(L1−ε + 1)

Lε − 2

)2

.

Rearranging gives

L1−ε + 1

Lε − 2
≥
√

(1 − ε)(1 − o(1))

4ε

as p → 0. For p sufficiently small, we obtain

p logL1−ε − p logLε ≥ C−p

for any C−(ε) < log
√

(1 − ε)/(4ε). Thus, we may take C− > 0 for all ε < 1/5
and C− ≥ (1

2 − o(1)) log ε−1 as ε → 0. �

3. Slow convergence. The main step in proving Theorem 1 will be the fol-
lowing.

PROPOSITION 8 (Nucleation centers). Consider the standard bootstrap per-
colation model. There exist p0 > 0 and c ∈ (0,∞) such that, for all p < p0 and
B ≥ 2p−1,

I (B,p) ≥ exp
[−2λ/p + c/

√
p
]
,

where λ = π2/18.

PROOF OF THEOREM 1. First, suppose that (L,p) → (∞,0) in such a way
that for some c1,

p logL > λ − c1/
√

logL.

Then, for L sufficiently large, we have, in particular, p logL > λ/2, so 1/
√

logL

<
√

2p/λ and hence

p logL > λ − c2
√

p,(6)
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where c2 = c1
√

2/λ.
Therefore, it is enough to prove that for some c2 > 0, if (L,p) → (∞,0) sat-

isfy (6), then I (L,p) → 1. Furthermore, we may assume that we have equal-
ity in (6) since, if not, we may find (for p sufficiently small) p′ < p such that
p′ logL = λ − c2

√
p′ and then I (L,p) ≥ I (L,p′) → 1. Therefore, let

L = exp
[
λ/p − c2/

√
p
]

and B = �p−3�.
Using Lemma 7(i),

I (L) ≥ (
1 − e−I (B)(L/B−1)2)

(1 − 2L2e−pB).(7)

The above definitions of L and B easily imply that L2e−pB → 0 as p → 0, while,
by Proposition 8,

log[I (B)(L/B − 1)2]
≤ −2λ/p + c/

√
p + 2

(
λ/p − c2/

√
p
)+ O(logp−1) → 0

as p → 0, provided 2c2 > c. Inequality (7) then gives I (L,p) → 1, as required.
�

In order to prove Proposition 8, we consider various ways for R(B) to be inter-
nally spanned. The simplest way involves symmetric growth starting from a corner.
We say that a sequence of events A1,A2, . . . ,Ak has a double gap if there is a con-
secutive pair Ai,Ai+1 neither of which occur. For integers 2 ≤ a ≤ b, let Db

a be
the event that

{R(1, i; i − 2, i) is not vacant}i=a+1,...,b has no double gaps and

{R(i,1; i, i − 2) is not vacant}i=a+1,...,b has no double gaps.

See Figure 1(i). Note that if R(a) is internally spanned and Db
a occurs, then R(s, t)

is internally spanned for some s, t ∈ {b−1, b}. Indeed, it is easily seen that we may
find a sequence of internally spanned rectangles R(i, j) with |i − j | ≤ 2, starting
with R(a) and ending with R(s, t), with the width or the height increasing by 1 or
2 at each step.

We will also consider the following alternative growth mechanism. For positive
integers a ≤ b − 4, let Jb

a be the event that

R(1, a + 1;a − 1, a + 1) is not vacant,

R(a + 1,1;a + 1, a − 1) is not vacant,

{R(i,1; i, a + 1) is not vacant}i=a+2,...,b−1 has no double gaps,

(b,1;b, a + 1) is not vacant,

R(1, a + 2;b − 1, a + 3) is vacant,

(b, a + 3) is occupied,
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(i) (ii)

FIG. 1. Two possible mechanisms for growth from R(a) to R(b). (i) The event Db
a : no two con-

secutive strips are vacant. (ii) The event Jb
a : the grey strips are nonvacant, the hatched region is

vacant, the black site is occupied and the horizontal/vertical arrows indicate no two consecutive
vacant columns/rows, respectively.

{R(1, i;b, i) is not vacant}i=a+4,...,b−1 has no double gaps and

R(1, b;b, b) is not vacant.

See Figure 1(ii). Note, again, that if R(a) is internally spanned and Jb
a occurs,

then R(b) is internally spanned. In this case, vertical growth is stopped by the two
vacant rows, and there is a sequence of horizontally growing, internally spanned
rectangles, followed by vertical growth after the occupied site (b, a +3) is encoun-
tered.

Now, fix a positive integer B . For positive integers (ai, bi)i=1,...,m satisfying
2 ≤ a1 ≤ b1 ≤ a2 ≤ · · · ≤ bm ≤ B and bi − ai ≤ 4 ∀i, define the event

E(a1, b1, . . . , am, bm) := Da1
2 ∩

(
m⋂

i=1

Jbi
ai

)
∩
(

m−1⋂
i=1

D
ai+1
bi

)
∩ DB−1

bm

∩ {(1,1), (2,2), (B,1), (1,B) are occupied}.
LEMMA 9 (Properties of E ).

(i) The various events appearing in the above definition of E(a1, . . . , bm) are
independent.

(ii) If E(a1, . . . , bm) occurs, then R(B) is internally spanned.
(iii) For different choices of a1, . . . , bm, the events E(a1, . . . , bm) are disjoint.

PROOF. Property (i) is clear from the definitions of the D and J events. Prop-
erty (ii) follows from the earlier remarks on these events: indeed, the squares
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R(2),R(b1), . . . ,R(bm),R(B) are all internally spanned. To see (iii), fix a con-
figuration and consider sequentially examining the rows R(1, i; i − 2, i) for
i = 3,4,5, . . . . The presence of two consecutive vacant rows signals an event Jb

a

and determines the value of a. If we then follow the upper vacant row to the right
until an occupied site is encountered, we discover the corresponding value of b.

�

We will obtain a lower bound on the probability that R(B) is internally spanned
by bounding the probability of each event E (for certain choices of the ai, bi) and
bounding the number of possible choices.

We start by estimating the probability of Db
a , for which we need the following

slight refinement of a result from [15] (see [5] for a much more precise result in
the same direction). Recall the function β defined in the Introduction.

PROPOSITION 10 (Double gaps). For independent events A1, . . . ,Ak whose
probabilities ui := P(Ai) form an increasing or decreasing sequence, the proba-
bility that there are no double gaps is at least

∏k
i=1 β(ui).

LEMMA 11. For 0 ≤ u ≤ v ≤ 1, we have uβ(v) + (1 − u)v ≥ β(u)β(v).

PROOF. The function h(u, v) := uβ(v) + (1 − u)v − β(u)β(v) satisfies
h(v, v) = 0, so it suffices to show that h is decreasing in u for u ≤ v. But
we have ∂h/∂u = β(v) − v − β ′(u)β(v) ≤ 0, by the elementary computations
β ′(u) ≥ β ′(v) ≥ (β(v) − v)/β(v). �

PROOF OF PROPOSITION 10. Without loss of generality, suppose the proba-
bilities ui are decreasing. Let ak be the probability that the sequence A1, . . . ,Ak

has no double gaps. Then a0 = a1 = 1, and by conditioning on the last two
events we obtain ak = ukak−1 + (1 − uk)uk−1ak−2. The result follows by induc-
tion, using Lemma 11 as follows: ak ≥ [ukβ(uk−1)+ (1 −uk)uk−1]∏k−2

i=1 β(ui) ≥∏k
i=1 β(ui). �

Recall the function g from the Introduction and write, for a ≤ b,

Gb
a = Gb

a(p) := exp

[
−

b−1∑
i=a

g(iq)

]
.

LEMMA 12 (Diagonal growth).

Pp(Db
a ) ≥ (Gb−1

a−1)
2.

PROOF. This follows immediately from Proposition 10 and the definitions of
Db

a and g. �

Next, we estimate the relative cost of a J-event.
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LEMMA 13 (Deviation cost). Fix positive constants c− < c+. For any p ∈
(0,1/2) and a ≤ b − 4 satisfying a, b ∈ [c−/p, c+/p], we have

Pp(Jb
a)

(Gb−1
a−1)

2
≥ Cpe−C′p(b−a)2

,

where C,C′ ∈ (0,∞) depend only on c±.

PROOF. From the definition of Jb
a and Proposition 10, we obtain

Pp(Jb
a) ≥ [1 − (1 − p)a]4(1 − p)2bp exp[−(b − a)g(aq) − (b − a)g(bq)].

Note that g is decreasing and that (1 − p)k is bounded away from 0 and 1 for
k ∈ [c−/p, c+/p], so we deduce

Pp(Jb
a) ≥ Cp exp[−2(b − a)g(aq)].(8)

Also, we have

(Gb−1
a−1)

2 = exp

[
−2

b−2∑
i=a−1

g(iq)

]
≤ exp[−2(b − a)g(bq)].(9)

Now, g(aq)−g(bq) ≤ (bq −aq)maxz∈[aq,bq] |g′(z)|, but the ratio q/p is bounded
for p < 1/2, hence g′ is uniformly bounded over the relevant interval and we
obtain g(aq)−g(bq) ≤ C ′(b−a)p. Therefore, dividing (8) by (9) gives the result.

�

PROOF OF PROPOSITION 8. Let m = �Mp−1/2�, where M < 1/4 is a con-
stant to be chosen later. Suppose that integers (ai, bi)i=1,...,m and B satisfy

p−1 < a1 ≤ b1 ≤ a2 ≤ · · · ≤ bm < 2p−1 ≤ B,
(10)

bi − ai ∈ [4,p−1/2] ∀i.

Let C,C′ be the constants from Lemma 13 corresponding to c− = 1 and c+ = 2.
Then, from the definition of the event E , together with Lemmas 9(i), 12 and 13,
we obtain

Pp[E(a1, . . . , bm)] ≥ p4[Cpe−C′p(p−1/2)2]m exp

[
−2

B−1∑
i=1

g(iq)

]

(11)
= p4(C′′p)m(GB

1 )2

for C′′ a fixed constant. Now, since mp−1/2 < p−1/4, the number of possible
choices of (ai, bi)i=1,...,m satisfying (10) is at least( �p−1 − mp−1/2�

m

)
(p−1/2 − 4)m ≥ (p−1/2)m

mm
(p−1/2/2)m

(12)

=
(

1

4pM

)m
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for p sufficiently small.
By Lemma 9(ii), (iii) we may multiply (11) and (12) to give, for p sufficiently

small and all B > 2p−1,

I (B) ≥ p4
(

C′′

4M

)m

(GB
1 )2.

Now, choose M = C′′/8 (recall that C′′ was an absolute constant) so that
C′′/(4M) = 2. Also, note that since g is decreasing,

− logGB
1 =

B−1∑
i=1

g(iq) ≤ q−1
∫ Bq

0
g ≤ p−1

∫ ∞
0

g = p−1λ.

Hence, for p sufficiently small,

I (B) ≥ p42Mp−1/2/2 exp[−2p−1λ] ≥ exp[−2p−1λ + cp−1/2],
as required. �

4. Explicit bound for the modified model. In this section, we prove The-
orem 4. Since we always refer to the modified model, we sometimes omit the
subscript M in IM.

PROPOSITION 14 (Nucleation centers). Consider the modified model. For any
p ≤ 1/10 and any B ≥ √

2/p, we have

IM(B) ≥ exp
[−2λM/q + 2

√
2/p − logp−1 − 3.2

]
,

where λM = π2/6.

LEMMA 15 (Diagonal spanning). For the modified model, we have, for any
positive integer a and any p ∈ (0,1),

IM(a) ≥ 1
2(2p − p2)a.

PROOF. Note that for a ≥ 2, the square R(a) is internally spanned, provided
that (1,1) is occupied and R(2,2;a, a) is internally spanned or, alternatively, pro-
vided that (1, a) is occupied and R(2,1;a, a − 1) is internally spanned. Hence,

I (a) ≥ pI (a − 1) + (1 − p)pI (a − 1) = (2p − p2)I (a − 1).

The result follows by induction. �

Define

Fb
a = Fb

a (p) :=
b−1∏
j=a

(
1 − (1 − p)j

)= exp

[
−

b−1∑
i=a

f (iq)

]
.
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LEMMA 16 (Growth). Let a ≤ b be integers and let p ∈ (0,1). For the stan-
dard or modified model, we have

I (b) ≥ I (a)(F b
a )2.

PROOF. Let F be the event that each of the strips

R(j + 1,1; j + 1, j), j = a, a + 1, . . . , b,

R(1, j + 1; j, j + 1), j = a, a + 1, . . . , b,

is nonvacant. It is easily seen that if R(a) is internally spanned and F occurs, then
R(b) is internally spanned. Hence,

I (b) ≥ P
({R(a) is i.s.} ∩ F

)= I (a)P(F ) = I (a)(F b
a )2. �

We next note some elementary bounds. We have

p ≤ q ≤ p + p2,(13)

where the second inequality holds provided p < 1/2. The function Fb
a satisfies

exp
[
−1

q

∫ (b−1)q

(a−1)q
f

]
≤ Fb

a ≤ exp
[
−1

q

∫ bq

aq
f

]
(14)

since f is decreasing.
Also, note the inequalities

log ε−1 ≤ f (ε) ≤ log ε−1 + ε,(15)

e−K ≤ f (K) ≤ e−K + e−2K,(16)

where the fourth inequality holds provided K > 1/2. (The inequalities are useful
when ε � 1 � K .) Hence,

ε log ε−1 + ε ≤
∫ ε

0
f ≤ ε log ε−1 + ε + 1

2ε2,(17)

e−K ≤
∫ ∞
K

f ≤ e−K + 1
2e−2K,(18)

where the fourth inequality holds provided K > 1/2.

PROOF OF PROPOSITION 14. Fix p < 1/10 and let A ≤ B be positive integers
(later, we will take A ≈ √

2/p).
By Lemmas 15 and 16, we have

I (B) ≥ 1
2(2p − p2)A(FB

A )2,
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so, using (14), (3) and (17) and rearranging,

log I (B) ≥ − log 2 + A log(2p − p2) − 2

q

∫ ∞
(A−1)q

f

≥ − log 2 + A log(2p − p2)

− 2

q

(
λM − (A − 1)q log[(A − 1)q]−1 − (A − 1)q

)

= −2λM

q
+ 2(A − 1) log

e
√

2

(A − 1)
√

p

+ 2(A − 1) log
p

q
+ A log

(
1 − p

2

)
+ logp,

where we have written (2p − p2) = 2p(1 − p/2). By (13), for p < 1/2, we have
log(p/q) ≥ log[p/(p + p2)] = − log(1 + p) ≥ −p and log(1 − p/2) ≥ −p/2 −
p2/4, so we obtain

log I (B) ≥ −2λM

q
+ 2(A − 1) log

e
√

2

(A − 1)
√

p

− 2(A − 1)p − A(p/2 + p2/4) + logp.

Now, let

A = ⌈√
2/p

⌉
,

to give, for p ≤ 1/10 and B ≥ A,

log I (B)

≥ −2λM

q
+ 2

(√
2/p − 1

) · 1

− 2
√

2/pp − (√
2/p + 1

)
(p/2 + p2/4) + logp

≥ −2λM

q
+ 2

√
2√
p

− logp−1 − 3.2.

Note the nontrivial cancellation between terms in p−1/2 logp−1 implicit in the
simplification of the first logarithm, resulting from the choice of A. �

The following variant of Lemma 7(i) allows for better control of the error terms.

LEMMA 17 (Scanning estimate). Let b, �,m be positive integers with mb < �

and let p ∈ (0,1). For the standard or modified model, we have

I (�) ≥ (
1 − e−m2I (b))(F �

b F �
�−mb)

2(1 − (1 − p)�−mb)�.
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PROOF. Consider the m2 disjoint squares

Sk := R(b) + bk, k ∈ {0, . . . ,m − 1}2,

and let

{0, . . . ,m − 1}2 = {k(1), k(2), . . . , k(m2)}
be the lexicographic ordering of the set on the left-hand side. For i = 1, . . . ,m2

define the event

Ji = {
Sk(i) is internally spanned

}
and let Fi be the event that each of the strips

R(�) ∩ [bk(i) + R(j + 1,1; j + 1, j)], j = b, b + 1, . . . ,

R(�) ∩ [bk(i) + R(1, j + 1; j, j + 1)], j = b, b + 1, . . . ,

that is nonempty is nonvacant. See Figure 2. Also, define the event

E = {〈W ∩ R(�)〉 ⊇ R(mb + 1,mb + 1;�, �)}.
It is straightforward to see that for any i, if Ji and Fi occur, then E occurs. Fur-
thermore, for each i, the event Fi is independent of the events J1, . . . , Ji .

Hence, we have

P(E) ≥ P

[
m2⋃
i=1

(JC
1 ∩ · · · ∩ JC

i−1 ∩ Ji ∩ Fi)

]

=
m2∑
i=1

P(JC
1 ∩ · · · ∩ JC

i−1 ∩ Ji)P(Fi)

(19)
≥ P(J1 ∪ · · · ∪ Jm2)min

i
P(Fi)

≥ (
1 − e−m2I (b))(F �

b )2(1 − (1 − p)�−mb)�.
To conclude, let H be the event that each of the strips

R(j, j − 1; j, �), j = mb, . . . ,2,1,

R(j − 1, j ;�, j), j = mb, . . . ,2,1,

is nonvacant. Using the Harris–FKG inequality, we have I (�) ≥ P(E ∩ H) ≥
P(E)P(H) ≥ P(E)(F �

�−mb)
2 and combining this with (19) gives the result. �

PROOF OF THEOREM 4. Fix p ≤ 10, let B ≥ √
2/p and take L and m such

that L ≥ mB . We use Lemma 17 to derive a lower bound for I (L). We obtain

I (L) ≥ (
1 − e−m2I (B))(F∞

B F∞
L−mB)2e−Lf ([L−mB]q).(20)
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FIG. 2. An illustration of the proof of Lemma 17. Here, m = 4 and the first internally spanned
subsquare is Sk(7) = S(2,1). The arrows indicate the event F7.

Consider the first factor above. Take

m =
⌈

exp
(

λM

q
−

√
2√
p

+ 1

2
logp−1 + 1.8

)⌉
.(21)

Proposition 14 then implies log(m2I (B)) ≥ 0.4 and therefore

1 − e−m2I (B) ≥ 1 − e−e0.4
.

Turning to the other factors in (20), we have, by (14),

(F∞
B F∞

L−mB)2e−Lf ([L−mB]q)

≥ exp
(
−2

q

∫ ∞
(B−1)q

f − 2

q

∫ ∞
(L−mB−1)q

f − Lf ([L − mb]q)

)

≥ 1 − 2

q

∫ ∞
(B−1)q

f − 2

q

∫ ∞
(L−mB−1)q

f − Lf ([L − mb]q).

We now set

B = 1 +
⌈

3 + logq−1

q

⌉
and L = mB + 4cq−2(22)

for any c ≥ 1. (The latter is simply a convenient way to express L ≥ mB + 4q−2.)
It is straightforward to check that for p ≤ 1/10, we have (L − mB − 1)q > (B −
1)q > 1/2, so we may use (16), (18) to bound the above terms as follows:

2

q

∫ ∞
(B−1)q

f − 2

q

∫ ∞
(L−mB−1)q

f ≤ 4

q

(
e−(B−1)q + e−2(B−1)q)

≤ 4e−3 + 4e−6
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and

Lf ([L − mB]q) ≤ 2Le−(L−mB)q ≤ 2(e2/q2q−2 + 4cq−2 + 1)e−4c/q

≤ 2(e2/q2q−2 + 4q−2 + 1)e−4/q ≤ e−2

since m ≤ e2/q and B ≤ 2q−2 for p ≤ 1/10. Hence, returning to (20), for the given
choices of B,L, we have

I (L) ≥ (1 − e−e0.4
)(1 − 4e−3 − 4e−6 − e−2) > 1/2.

From (22), we have shown that I (L,p) > 1/2, provided p ≤ 1/10 and

p logL ≥ p log(mB + 4q−2)
(23)

= p logm + p logB + p log
(

1 + 4q−2

mB

)
.

Finally, we need to find upper bounds for the terms appearing on the right of (23).
By (21), we have

p logm ≤ λM
p

q
−
√

2p + 1

2
p logp−1 + 1.8p + p log

m

m − 1
.

But, for p ≤ 1/10, we have p log(m/(m − 1)) = −p log(1 − 1/m) ≤ 2p/m ≤
2pe−1/p ≤ 0.001p, while p/q ≤ p/(p + p2/2) ≤ 1 − 0.47p, so

p logm ≤ λM −
√

2p + 1
2p logp−1 + 1.03p.

By (22), we have

p logB ≤ p log
(

2 + 3

q
+ logq−1

q

)

≤ p log(2.6p−1.3) = 0.96p + 1.3p logp−1.

Since 4q−2 > B and m ≥ e1/p for p ≤ 1/10, we have

p log
(

1 + 4q−2

mB

)
≤ pe−1/p ≤ 0.001p.

Hence, the right-hand side of (23) is at most

λM −
√

2p + 1.8p logp−1 + 2p,

as required. �
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5. Open problems.

(i) Prove a complementary bound to Theorem 1. For example, do there exist
γ, c ∈ (0,∞) such that (L,p) → (∞,0) with p logL < λ − c(logL)−γ implies
I → 0?

(ii) Prove matching upper and lower bounds, for example, involving inequali-
ties of the form p logL ≶ λ− c(logL)γ±ε , or even p logL ≶ λ− (c ± ε)F (L) for
some elementary function F .

(iii) Extend the results to other bootstrap percolation models for which sharp
thresholds are known to exist—currently those in [16, 17].

(iv) Identify more precisely the width of the critical window as p varies. Is it
the case that p1−ε logL − pε logL = �(1/ logL) as L → ∞?
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