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Fluid limit techniques have become a central tool to analyze queueing
networks over the last decade, with applications to performance analysis, sim-
ulation and optimization.

In this paper, some of these techniques are extended to a general class
of skip-free Markov chains. As in the case of queueing models, a fluid ap-
proximation is obtained by scaling time, space and the initial condition by a
large constant. The resulting fluid limit is the solution of an ordinary differ-
ential equation (ODE) in “most” of the state space. Stability and finer ergodic
properties for the stochastic model then follow from stability of the set of
fluid limits. Moreover, similarly to the queueing context where fluid mod-
els are routinely used to design control policies, the structure of the limiting
ODE in this general setting provides an understanding of the dynamics of the
Markov chain. These results are illustrated through application to Markov
chain Monte Carlo methods.

The use of ordinary differential equations (ODE) to analyze Markov chains was
first suggested by Kurtz (1970). This idea was later refined by Newell (1982),
who introduced the so-called fluid approximations with applications to queue-
ing networks. Since the 1990s, fluid models have been used to address delay in
complex networks [Cruz (1991)] and bottleneck analysis [Chen and Mandelbaum
(1991)]. The latter work followed an already extensive research program on dif-
fusion approximations for networks [see Harrison (2000), Whitt (2002), Chen and
Yao (2001) and the references therein].

The purpose of this paper is to extend fluid limit techniques to a general class
of discrete-time Markov chains {�k} on a d-dimensional Euclidean state space X.
Recall that a Markov chain is called skip-free if the increments (�k+1 − �k) are
uniformly bounded in norm by a deterministic constant for each k and each initial
condition. For example, Markov chain models of queueing systems are typically
skip-free. Here, we consider a relaxation of this assumption in which the incre-
ments are assumed to be bounded in an Lp-sense. Consequently, we find that the

Received June 2006; revised May 2007.
1Supported in part by the National Research Agency (ANR) under the program “ANR-05-BLAN-

0299.”
AMS 2000 subject classifications. 60J10, 65C05.
Key words and phrases. Markov chain, fluid limit, subgeometric ergodicity, state-dependent drift

criteria, Markov chain Monte Carlo, Metropolis–Hastings algorithms.

664

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/07-AAP471
http://www.imstat.org
http://www.ams.org/msc/


THE ODE METHOD FOR MARKOV CHAIN STABILITY 665

chain can be represented by the additive noise model

�k+1 = �k +�(�k)+ εk+1,(1)

where {εk} is a martingale increment sequence w.r.t. the natural filtration of the
process {�k} and �: X → X is bounded. Associated with this chain, we consider
the sequence of continuous-time processes

ηα
r (t;x)

def= r−1��tr1+α�, ηα
r (t;0) = r−1�0 = x,

(2)
r ≥ 0, α ≥ 0, x ∈ X,

obtained by interpolating and scaling the Markov chain in space and time. A fluid
limit is obtained as a subsequential weak limit of a sequence {ηα

rn
(·;xn)}, where

{rn} and {xn} are two sequences such that limn→∞ rn = ∞ and limn→∞ xn = x.
The set of all such limits is called the fluid limit model. In queueing network appli-
cations, a fluid limit is easy to interpret in terms of mean flows; in most situations,
it is a solution of a deterministic set of equations depending on network charac-
teristics as well as the control policy [see, e.g., Chen and Mandelbaum (1991),
Dai (1995), Dai and Meyn (1995), Chen and Yao (2001), Meyn (2007)]. The exis-
tence of limits and the continuity of the fluid limit model may be established under
general conditions on the increments (see Theorem 1.2).

The fact that stability of the fluid limit model implies stability of the stochastic
network was established in a limited setting in Malyšev and Menc’šikov (1979).
This was extended to a very broad class of multiclass networks by Dai (1995).
A key step in the proof of these results is a multi-step state-dependent version
of Foster’s criterion introduced in Malyšev and Menc’šikov (1979) for countable
state space models, later extended to general state space models in Meyn and
Tweedie (1993, 1994). The main result of Dai (1995) only established positive re-
currence. Moments and rates of convergence to stationarity of the Markovian net-
work model were obtained in Dai and Meyn (1995), based on an extension of Meyn
and Tweedie (1994) using the subgeometric f -ergodic theorem in Tuominen and
Tweedie (1994) [recently extended and simplified in work of Douc et al. (2004)].
Converse theorems have appeared in Dai and Weiss (1996), Dai (1996), Meyn
(1995) that show that, under rather strong conditions, instability of the fluid model
implies transience of the stochastic network. The counterexamples in Gamarnik
and Hasenbein (2005), Dai et al. (2004) show that some additional conditions are
necessary to obtain a converse.

Under general conditions, including the generalized skip-free assumption, a
fluid limit η is a weak solution (in a sense given below) to the homogeneous ODE

μ̇ = h(μ).(3)

The vector field h is defined as a radial limit of the function � appearing in (1)
under appropriate renormalization.
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Provided that the increments {εk} in the decomposition (1) are tight in Lp , sta-
bility of the fluid limit model implies finite moments in steady state, as well as
polynomial rates of convergence to stationarity; see Theorem 1.4.

One advantage of the ODE approach over the usual Foster–Lyapunov approach
to stability is that the ODE model provides insight into Markov chain dynamics.
In the queueing context, the ODE model has many other applications, such as
simulation variance reduction [Henderson et al. (2003)] and optimization [Chen
and Meyn (1999)].

The remainder of the paper is organized as follows. Section 1.1 contains nota-
tion and assumptions, along with a construction of the fluid limit model. The main
result is contained in Section 1.2, where it is shown that stability of the fluid limit
model implies the existence of polynomial moments as well as polynomial rates
of convergence to stationarity [known as (f, r)-ergodicity].

Fluid limits are characterized in Section 1.3. Proposition 1.5 provides conditions
that guarantee that a fluid limit coincides with the weak solutions of the ODE (3).

These results are applied to establish (f, r)-ergodicity of the random walk
Metropolis–Hastings algorithm for superexponential densities in Section 2.1 and
subexponential densities in Section 2.2. In Examples 2 and 4, the fluid limit model
is stable and any fluid limit is a weak solution of the ODE (3), yet some fluid limits
are nondeterministic.

The conclusions contain proposed extensions, including diffusion limits of the
form obtained in Harrison (2000), Whitt (2002), Chen and Yao (2001) and appli-
cation of ODE methods for variance reduction in simulation and MCMC.

1. Assumptions and statement of the results.

1.1. Fluid limit: definitions. We consider a Markov chain �
def= {�k}k≥0 on

a d-dimensional Euclidean space X equipped with its Borel sigma-field X. We
denote by {Fk}k≥0 the natural filtration. The distribution of � is specified by its
initial state �0 = x ∈ X and its transition kernel P . We write Px for the distribution
of the chain conditional on the initial state �0 = x and Ex for the corresponding
expectation.

Denote by C(R+,X) the space of continuous X-valued functions on the infinite
time interval [0,∞). We equip C(R+,X) with the local uniform topology. Denote
by D(R+,X) the space of X-valued right-continuous functions with left limits on
the infinite time interval [0,∞), hereafter càdlàg functions. This space is endowed
with the Skorokhod topology. For 0 < T < +∞, denote by C([0, T ],X) (resp.
D([0, T ],X)) the space of X-valued continuous functions (resp. càdlàg functions)
defined on [0, T ], equipped with the uniform (resp. Skorokhod) topology.

For x ∈ X, α ≥ 0 and r > 0, consider the interpolated process

ηα
r (t;x)

def= r−1��tr1+α�, ηα
r (t;0) = r−1�0 = x,(4)
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where �·� stands for the lower integer part. Denote by Qα
r;x the image probability

on D(R+,X) of Px by ηα
r (·;x). In words, the renormalized process is obtained by

scaling the Markov chain in space, time and initial condition. This is made precise
in the following definition.

DEFINITION 1.1 (α-fluid limit). Let α ≥ 0 and x ∈ X. A probability measure
Qα

x on D(R+,X) is said to be an α-fluid limit if there exist sequences of scaling
factors {rn} ⊂ R+ and initial states {xn} ⊂ X satisfying limn→∞ rn = +∞ and
limn→∞ xn = x such that {Qα

rn;xn
} converges weakly to Qα

x on D(R+,X) (denoted
Qα

rn;xn
⇒ Qα

x ).

The set {Qα
x , x ∈ X} of all such limits is referred to as the α-fluid limit model. An

α-fluid limit Qα
x is said to be deterministic if there exists a function g ∈ D(R+,X)

such that Qα
x = δg , the Dirac mass at g.

Assume that Ex[|�1|] < ∞ for all x ∈ X, where | · | denotes the Euclidean norm,
and consider the decomposition

�k = �k−1 +�(�k−1) + εk, k ≥ 1,(5)

where

�(x)
def= Ex[�1 − �0] = Ex[�1] − x for all x ∈ X,(6)

εk
def= �k − E[�k|Fk−1] for all k ≥ 1.(7)

In the sequel, we assume the following.

B1. There exists p > 1 such that limK→∞ supx∈X Ex[|ε1|p1{|ε1| ≥ K}] = 0.

B2. There exists β ∈ [0,1 ∧ (p − 1)) such that N(β,�)
def= supx∈X{(1 + |x|β) ×

|�(x)|} < ∞.

THEOREM 1.2. Assume B1 and B2. Then, for all 0 ≤ α ≤ β and any se-
quences {rn} ⊂ R+ and {xn} ⊂ X such that limn→∞ rn = +∞ and limn→∞ xn =
x, there exists a probability measure Qα

x on C(R+,X) and subsequences {rnj
} ⊆

{rn} and {xnj
} ⊆ {xn} such that Qα

rnj
;xnj

⇒ Qα
x . Furthermore, for all 0 ≤ α < β ,

the α-fluid limits are trivial in the sense that Qα
x = δg with g(t) ≡ x.

Note that for any x ∈ X and 0 ≤ α ≤ β , we have Qα
x (η, η(0) = x) = 1, showing

that x is the initial point of the fluid limit.

1.2. Stability of fluid limits and Markov chain stability. There are several no-
tions of stability that have appeared in the literature [see Meyn (2001), Theorem 3]
and the surrounding discussion. We adopt the notion of stability introduced in
Stolyar (1995).
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DEFINITION 1.3 (Stability). The α-fluid limit model is said to be stable if
there exist T > 0 and ρ < 1 such that for any x ∈ X with |x| = 1,

Qα
x

(
η ∈ D(R+,X), inf

0≤t≤T
|η(t)| ≤ ρ

)
= 1.(8)

Let f : X →[1,∞) and L
f∞ denote the vector space of all measurable functions

g on X such that supx∈X |g(x)|/f (x) is finite. L
f∞ equipped with the norm |g|f def=

supx∈X |g(x)|/f (x) is a Banach space.
Denote by ‖ · ‖f the f -total variation norm, defined for any finite signed mea-

sure ν as ‖ν‖f = sup|g|≤f |ν(g)|.
We recall some basic definitions related to Markov chains on general state

space; see Meyn and Tweedie (1993) for an in-depth presentation. A chain
is said to be phi-irreducible if there exists a σ -finite measure φ such that∑

n≥0 P n(x,A) > 0 for all x ∈ X whenever φ(A) > 0. A set C ∈ X is νm-small
if there exist a nontrivial measure νm and a positive integer m such that such that
P m(x, ·) ≥ 1C(x)νm(·). Petite sets are a generalization of small sets: a set C is said
to be petite if there exists a distribution a on the positive integers and a distribution
ν such that

∑
n≥0 a(n)P n(x, ·) ≥ 1C(x)ν(·). Finally, an aperiodic chain is a chain

such that the greatest common divisor of the set

{m,Cis νm-small and νm = δmν for some δm > 0},
is one, for some small set C. For a phi-irreducible aperiodic chain, the petite sets
are small [Meyn and Tweedie (1993), Proposition 5.5.7].

Let {r(n)}n∈N be a sequence of positive real numbers. An aperiodic phi-
irreducible positive Harris chain with stationary distribution π is called
(f, r)-ergodic if

lim
n→∞ r(n)‖P n(x, ·)− π‖f = 0

for all x ∈ X. If P is positive Harris recurrent with invariant probability π , then the

fundamental kernel Z is defined as Z
def= (Id − P + �)−1, where the kernel � is

�(x, ·) ≡ π(·) for all x ∈ X and Id is the identity kernel. For any measurable func-
tion g on X, the function ĝ = Zg is a solution to the Poisson equation, whenever
the inverse is well defined [see Meyn and Tweedie (1993)].

The following theorem may be seen as an extension of [Dai and Meyn (1995),
Theorem 5.5], which relates the stability of the fluid limit to the (f, r)-ergodicity
of the original chain.

THEOREM 1.4. Let {�k}k∈N be a phi-irreducible and aperiodic Markov chain
such that compact sets are petite. Assume B1 and B2 and that the β-fluid limit
model is stable. Then, for any 1 ≤ q ≤ (1 + β)−1p,
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(i) the Markov chain {�k}k∈N is (f (q), r(q))-ergodic with f (q)(x)
def= 1 +

|x|p−q(1+β) and r(q)(n) = nq−1;

(ii) the fundamental kernel Z is a bounded linear transformation from L
f (q)

∞ to

L
f (q−1)

∞ .

1.3. Characterization of the fluid limits. Theorem 1.4 relates the ergodicity of
the Markov chain to the stability of the fluid limit and raises the question: how
can we determine if the β-fluid model is stable? To answer this question, we first
characterize the set of fluid limits.

In addition to assumptions B1–B2, we require conditions on the limiting behav-
ior of the function �.

B3. There exist an open cone O ⊆ X \ {0} and a continuous function �∞ : O → X
such that, for any compact subset H ⊆ O,

lim
r→+∞ sup

x∈H

∣∣rβ |x|β�(rx) −�∞(x)
∣∣ = 0,

where β is given by B2.

The easy situation is when O = X \ {0}, in which case the radial limit
limr→∞ rβ |x|β�(rx) exists for x �= 0. Though this condition is met in examples
of interest, there are several situations for which the radial limits do not exist for
directions belonging to some low-dimensional manifolds of the unit sphere. Let h

be given by

h(x)
def= |x|−β�∞(x).(9)

A function μ : I → X (where I ⊂ R+ is an interval which can be open or closed,
bounded or unbounded) is said to be a solution of the ODE (3) on I with initial
condition x if μ is continuously differentiable on I for all t ∈ I , μ(t) ∈ O, μ(0) =
x and μ̇(t) = h ◦μ(t). The following theorem shows that the fluid limits restricted
to O evolve deterministically and, more precisely, that their supports on O belong
to the flow of the ODE.

PROPOSITION 1.5. Assume B1, B2 and B3. For any 0 ≤ s ≤ t , define

A(s, t)
def= {η ∈ C(R+,X) :η(u) ∈ O for all u ∈ [s, t]}.(10)

Then, for any x ∈ X and any β-fluid limit Q
β
x , on A(s, t),

sup
s≤u≤t

∣∣∣∣η(u)− η(s)−
∫ u

s
h ◦ η(v) dv

∣∣∣∣ = 0, Qβ
x -a.s.

Under very weak additional conditions, one may assume that the solutions of
the ODE (3) with initial condition x ∈ O exist and are unique on a nonvanishing
interval [0, Tx]. In such a case, Proposition 1.5 provides a handy description of the
fluid limit.
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B4. Assume that for all x ∈ O, there exists Tx > 0 such that the ODE (3) with
initial condition x has a unique solution, denoted μ(·;x) on an interval [0, Tx].

Assumption B4 is satisfied if �∞ is locally Lipschitz on O; in such a case, h is
locally Lipschitz on O and it then follows from classical results on the existence
of solutions of the ODE [see, e.g., Verhulst (1996)] that for any x ∈ O, there exists
Tx > 0 such that, on the interval [0, Tx], the ODE (3) has a unique solution μ

with initial condition μ(0) = x. In addition, if the ODE (3) has two solutions,
μ1 and μ2, on an interval I which satisfy μ1(t0) = μ2(t0) = x0 for some t0 ∈ I ,
then μ1(t) = μ2(t) for any t ∈ I .

An elementary application of Proposition 1.5 shows that under this additional
assumption, a fluid limit starting at x0 ∈ O coincides with the solution of the ODE
(3) with initial condition x0 on a nonvanishing interval.

THEOREM 1.6. Assume B1–B4. Let x ∈ O. There then exists Tx > 0 such that
Q

β
x = δμ(·;x) on D([0, Tx],X).

As a corollary of Theorem 1.6, we have the following.

COROLLARY 1.7. Assume that O = X \ {0} in B3. Then all β-fluid limits are
deterministic and solve the ODE (3). Furthermore, for any ε > 0 and x ∈ X,
and any sequences {rn} ⊂ R+ and {xn} ⊂ X such that limn→∞ rn = +∞ and
limn→∞ xn = x,

lim
n

Prnxn

(
sup

0≤t≤Tx

|ηβ
rn

(t;xn)− μ(t;x)| ≥ ε

)
= 0.

Hence, the fluid limit depends only on the initial value x and does not depend
upon the choice of the sequences {rn} and {xn}.

The last step is to relate the stability of the fluid limit [see (8)] to the behav-
ior of the solutions of the ODE, when such solutions are well defined. From the
discussion above, we may deduce a first elementary stability condition. Assume
that B3 holds with O = X \ {0}. In this case, the fluid limit model is stable if there
exist ρ < 1 and T < ∞ such that, for any |x| = 1, inf[0,T ] |μ(·;x)| < ρ, that is, the
solutions of the ODE enter a sphere of radius ρ < 1 before a given time T .

THEOREM 1.8. Let {�k}k∈N be a phi-irreducible and aperiodic Markov chain
such that compact sets are petite. Let ρ, 0 < ρ < 1 and T > 0. Assume that B1–B4
hold with O = X \ {0}. Assume, in addition, that for any x satisfying |x| = 1, the
solution μ(·;x) is such that inf[0,T∧Tx ] |μ(·;x)| ≤ ρ. Then, the β-fluid limit model
is stable and the conclusions of Theorem 1.4 hold.

When B3 holds for a strict subset of the state space O � X \ {0}, the situation is
more difficult because some fluid limits are not solutions of the ODE. Regardless,
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under general assumptions, stability of the ODE implies stability of the fluid limit
model.

THEOREM 1.9. Let {�k}k∈N be a phi-irreducible and aperiodic Markov chain
such that compact sets are petite. Assume that B1–B4 hold with O � X \ {0}. As-
sume, in addition, that:

(i) there exists T0 > 0 such that for any x, |x| = 1, and for any β-fluid
limit Q

β
x ,

Qβ
x

(
η :η([0, T0])∩ O �= ∅

) = 1;(11)

(ii) for any K > 0, there exist TK > 0 and 0 < ρK < 1 such that for any x ∈ O,
|x| ≤ K ,

inf[0,TK∧Tx ]
|μ(·;x)| ≤ ρK;(12)

(iii) for any compact set H ⊂ O and any K ,

�H
def= {μ(t;x) :x ∈ H, t ∈ [0, Tx ∧ TK ]}

is a compact subset of O.

Then, the β-fluid model is stable and the conclusions of Theorem 1.4 hold.

Condition (i) implies that each β-fluid limit reaches the set O in a finite time.
When the initial condition x �= 0 does belongs to O, this condition is automatically
fulfilled. When x does not belong to O, this condition typically requires that there
is a force driving the chain into O. The verification of this property generally re-
quires some problem-dependent and sometimes intricate constructions (see, e.g.,
Example 2). Condition (ii) implies that the solution μ(·;x) of the ODE with initial
point x ∈ O reaches a ball inside the unit sphere before approaching the singularity.
This also means that the singular set is repulsive for the solution of the ODE.

2. The ODE method for the Metropolis–Hastings algorithm. The Metro-
polis–Hastings (MH) algorithm [see Robert and Casella (2004) and the references
therein] is a popular computational method for generating samples from virtually
any distribution π . In particular, there is no need for the normalizing constant to
be known and the space X = Rd (for some integer d) on which it is defined can
be high-dimensional. The method consists of simulating an ergodic Markov chain
{�k}k≥0 on X with transition probability P such that π is the stationary distribution
for this chain, that is, πP = π .

The MH algorithm requires the choice of a proposal kernel q . In order to sim-
plify the discussion, we will here assume that π and q admit densities with re-
spect to the Lebesgue measure λLeb, denoted (with an abuse of notation) π and
q hereafter. We denote by Q the probability defined by Q(A) = ∫

A q(y)λLeb(dy).
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The role of the kernel q consists of proposing potential transitions for the Markov
chain {�k}. Given that the chain is currently at x, a candidate y is accepted with
probability α(x, y), defined as α(x, y) = 1 ∧ π(y)

π(x)
q(y,x)
q(x,y)

. Otherwise it is rejected
and the Markov chain stays at its current location x. The transition kernel P of this
Markov chain takes the form, for x ∈ X and A ∈ B(X),

P(x,A) =
∫
A−x

α(x, x + y)q(x, x + y)λLeb(dy)

(13)
+ 1A(x)

∫
X−x

{1 − α(x, x + y)}q(x, x + y)λLeb(dy),

where A − x
def= {y ∈ X, x + y ∈ A}. The Markov chain P is reversible with re-

spect to π and therefore admits π as invariant distribution. For the purpose of
illustration, we focus on the symmetric increments random walk MH algorithm
(hereafter SRWM), in which q(x, y) = q(y − x) for some symmetric distribu-
tion q on X. Under these assumptions, the acceptance probability simplifies to
α(x, y) = 1 ∧ [π(y)/π(x)]. For any measurable function W : X → X,

Ex[W(�1)] −W(x) =
∫

Ax

{W(x + y) −W(x)}q(y)λLeb(dy)

+
∫

Rx

{W(x + y)−W(x)}π(x + y)

π(x)
q(y)λLeb(dy),

where Ax
def= {y ∈ X, π(x + y) ≥ π(x)} is the acceptance region (moves toward

x+Ax are accepted with probability one) and Rx
def= X\Ax is the potential rejection

region. From Roberts and Tweedie (1996), Theorem 2.2, we obtain the following
basic result.

THEOREM 2.1. Suppose that the target density π is positive and continuous
and that q is bounded away from zero, that is, there exist δq > 0 and εq > 0 such
that q(x) ≥ εq for |x| ≤ δq . Then, the random-walk-based Metropolis algorithm
on {X,X} is λLeb-irreducible, aperiodic and every nonempty bounded set is small.

In the sequel, we assume that q has a moment of order p > 1. To apply the
results presented in Section 1, we must first compute �(x) = Ex[�1] − x, that
is, to set W(x) = x in the previous formula. Since q is symmetric and therefore
zero-mean, the previous reduces to

�(x) =
∫

Rx

y

(
π(x + y)

π(x)
− 1

)
q(y)λLeb(dy).(14)

Note that, for any x ∈ X, |ε1| ≤ |�1 − �0| + mPx -a.s., where m = ∫ |y|q(y) ×
λLeb(dy). Therefore, for any K > 0,

Ex[|ε1|p1{|ε1| ≥ K}] ≤ 2pEx[(|�1 −�0|p + mp)1{|�1 − �0| ≥ K −m}]
≤ 2p

∫
|y|p1{|y| ≥ K −m}q(y)λLeb(dy),
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showing that assumption B1 is satisfied as soon as the increment distribution has a
bounded pth moment. Because, on the set Rx , π(x +y) ≤ π(x), we similarly have
|�(x)| ≤ ∫ |y|q(y)λLeb(dy) showing, that B2 is satisfied with β = 0; nevertheless,
in some examples, for β = 0, �∞ can be zero and the fluid limit model is unstable.
In these cases, it is necessary to use larger β (see Section 2.2).

2.1. Superexponential target densities. In this section, we focus on target den-

sities π on X which are superexponential. Define n(x)
def= x/|x|.

DEFINITION 2.2 (Superexponential p.d.f.). A probability density function π

is said to be superexponential if π is positive, has continuous first derivatives and

lim|x|→∞〈n(x), �(x)〉 = −∞, where �(x)
def= ∇ logπ(x).

The condition implies that for any H > 0, there exists R > 0 such that

π(x + an(x))

π(x)
≤ exp(−aH) for |x| ≥ R,a ≥ 0,(15)

that is, π(x) is at least exponentially decaying along any ray with the rate H tend-
ing to infinity as |x| goes to infinity. It also implies that for x large enough, the

contour manifold Cx
def= {y ∈ X, π(x+y) = π(x)} can be parameterized by the unit

sphere S since each ray meets Cx at exactly one point. In addition, for sufficiently
large |x|, the acceptance region Ax is the set enclosed by the contour manifold Cx

(see Figure 1). Denote by A �B the symmetric difference of the sets A and B .

DEFINITION 2.3 (q-radial limit). We say that the family of rejection regions
{Rrx, r ≥ 0, x ∈ O} has q-radial limits over the open cone O ⊆ X \ {0} if there
exists a collection of sets {R∞,x, x ∈ O} such that, for any compact subset H ⊆ O,
limr→∞ supx∈H Q(Rrx � R∞,x) = 0.

FIG. 1.
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PROPOSITION 2.4. Assume that the target density π is super-exponential. As-
sume, in addition, that the family {Rrx, r ≥ 0, x ∈ O} has a q-radial limit over an
open cone O ⊆ X\{0}. Then, for any compact set H ⊂ O, limr→∞ supx∈H |�(rx)−
�∞(x)| = 0, where �∞(x)

def= −∫
R∞,x

yq(y)λLeb(dy).

The proof is postponed to Section 5.1. The definition of the limiting field �∞
becomes simple when the rejection region radially converges to a half-space.

DEFINITION 2.5 (q-regularity in the tails). We say that the target density
π is q-regular in the tails over O if the family {Rrx, r ≥ 0, x ∈ O} has q-radial
limits over an open cone O ⊆ X \ {0} and there exists a continuous function
�∞ : X \ {0}→ X such that, for all x ∈ O,

Q
(
R∞,x � {y ∈ X, 〈y, �∞(x)〉 < 0}) = 0.(16)

Regularity in the tails holds with �∞(x) = limr→∞ n(�(rx)) when the curvature at
0 of the contour manifold Crx goes to zero as r →∞; nevertheless, this condition
may still hold in situations where there exists a sequence {xn} with lim |xn| = ∞
such that the curvature of the contour manifolds Cxn at zero can grow to infinity
(see Examples 1 and 2). Assume that

q(x) = det−1/2(�)q0(�
−1/2x),(17)

where � is a positive definite matrix and q0 is a rotationally invariant distribution,
that is, q0(Ux) = q0(x) for any unitary matrix U , and is such that∫

X
y2

1q0(y)λLeb(dy) < ∞.

PROPOSITION 2.6. Assume that the target density π is super-exponential and
q-regular in the tails over the open cone O ⊆ X \ {0}. Then, the SRWM algorithm
with proposal q given in (17) satisfies assumption B3 on O with

�∞(x) = m1(q0)
��∞(x)

|√��∞(x)| ,(18)

where �∞ is defined in (16) and m1(q0)
def= ∫

X y11{y1≥0}q0(y)λLeb(dy) > 0, where
y = (y1, . . . , yd).

The proof is given in Section 5.1. If � = Id and �∞(x) = limr→∞ n(�(rx)),
then the ODE may be seen as a version of steepest ascent algorithm to maximize
logπ . It may appear that convergence would be faster if m1(q0) is increased. While
it is true for the ODE, we cannot reach such a positive conclusion for the algorithm
itself because we do not control the fluctuation of the algorithm around its limit.
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2.1.1. Regular case. The tail regularity condition and the definition of the
ODE limit are more transparent in a class of models which are very natural in
many statistical contexts, namely, the exponential family. Following Roberts and
Tweedie (1996), define the class P as consisting of those everywhere positive den-
sities with continuous second derivatives π satisfying

π(x) ∝ g(x) exp{−p(x)},(19)

where:

• g is a positive function slowly varying at infinity, that is, for any K > 0,

lim sup
|x|→∞

inf|y|≤K

g(x + y)

g(x)
= lim sup

|x|→∞
sup

|y|≤K

g(x + y)

g(x)
= 1;(20)

• p is a positive polynomial in X of even order m and lim|x|→∞ pm(x) = +∞,
where pm denotes the polynomial consisting only of the p’s mth order terms.

PROPOSITION 2.7. Assume that π ∈ P and let q be given by (17). Then, π is
super-exponential, q-regular in the tails over X\{0} with �∞(x) =−n[∇pm(n(x))].
For any x ∈ X \ {0}, there exists Tx > 0 such that the ODE μ̇ = �∞(μ) with
initial condition x and �∞ given by (18) has a unique solution on [0, Tx)

and limt→T −
x

μ(t;x) = 0. In addition, the fluid limit Q0
x is deterministic on

D([0, Tx],X), with support function μ(·;x).

The proof is skipped for brevity [see Fort et al. (2006)]. Because all the solutions
of the initial value problem μ̇ = −m1(q0)

√
�n[√�∇pm(n(μ))], μ(0) = x are

zero after a fixed amount of time T for any initial condition on the unit sphere,
we may apply Theorem 1.8. We have, from Theorem 2.1 and Theorem 1.8, the
following.

FIG. 2. Contour curves of the target densities (21) (left panel) and (26) with δ = 0.4 (right panel).



676 G. FORT, S. MEYN, E. MOULINES AND P. PRIOURET

FIG. 3. Grey lines: �; Black lines: �∞ for the target densities (21) (left panel) and (26) with
δ = 0.4 (right panel).

THEOREM 2.8. Consider the SRWM Markov chain with target distribution
π ∈ P and increment distribution q having a moment of order p > 1 and satis-
fying (17). Then, for any 1 ≤ u ≤ p, the SRWM Markov chain is (fu, ru)-ergodic
with

fu(x) = 1 + |x|p−u, ru(t) ∼ tu−1.

FIG. 4. Dotted lines: trajectories of the interpolated process (2) for the random walk Metropo-
lis–Hastings (SRWM) algorithm for a set of initial conditions on the unit sphere in (0,π/2) for the
target densities (21) (left panel) and (26) (right panel); Solid lines: flow of the associated ODE.
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FIG. 5. Contour plot of the target densities (22) (left panel) and (27) (right panel).

EXAMPLE 1. To illustrate our findings, consider the target density, borrowed
from Jarner and Hansen (2000), Example 5.3,

π(x1, x2) ∝ (1 + x2
1 + x2

2 + x8
1x2

2) exp
(−(x2

1 + x2
2)

)
.(21)

The contour curves are illustrated in Figure 2. They are almost circular except from
some small wedges by the x-axis. Due to the wedges, the curvature of the contour
manifold at (x,0) is (x6 − 1)/x and therefore tends to infinity along the x-axis
[Jarner and Hansen (2000)]. Since π ∈ P , Proposition 2.7 shows that π is super-
exponential, regular in the tails and �∞(x) = −n(x). Taking q ∼ N (0, σ 2Id),
�∞(x) = −σn(x)/

√
2π and the (Carathéodory) solution of the initial value

problem μ̇ = �∞(μ), μ(0) = x is given by μ(t;x) = (|x| − σ t/
√

2π)1{σ t ≤√
2π |x|}x/|x|. Along the sequence {xk

def= (k,±k−4)}k≥1, the normed gradi-
ent n[�(xk)] converges to (0,±1), showing that whereas �∞ is the radial limit
of the normed gradient n[�] (i.e., for any u ∈ S, limλ→∞ n[�(λu)] = �∞(u)),
lim sup|x|→∞ |n[�(x)]− �∞(x)| = 2. Therefore, the normed gradient n[�(x)] does
not have a limit as |x| → ∞ along the x-axis. Nevertheless, the fluid limit exists
and is extremely simple to determine. Hence, the ergodicity of the SRWM sampler
with target distribution (21) may be established [note that for this example, the
theory developed in Roberts and Tweedie (1996) and in Jarner and Hansen (2000)
does not apply]. The functions � and �∞ are displayed in Figure 3. The flow
of the initial value problem μ̇ = �∞(μ) for a set of initial conditions on the unit
sphere in (0, π/2) is displayed in Figure 4.

2.1.2. Irregular case. We give an example for which, in Proposition 2.4, O �
X \ {0}.

EXAMPLE 2. In this example [also borrowed from Jarner and Hansen (2000)],
we consider the mixture of two Gaussian distributions on R2. For some a2 > 1 and
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FIG. 6. Grey lines: �; Black lines: �∞ for the target density (22) (left panel) and (27) (right
panel).

0 < α < 1, set

π(x) ∝ α exp(−(1/2)x′�−1
1 x)+ (1 − α) exp(−(1/2)x′�−1

2 x),(22)

where �−1
1

def= diag(a2,1) and �−1
2

def= diag(1, a2). The contour curves for π with
a = 4 are illustrated in Figure 5. We see that the contour curves have some sharp
bends along the diagonals that do not disappear in the limit, even though the con-
tour curves of the two components of the mixtures are smooth ellipses. Equa-

FIG. 7. Dotted lines: interpolated process for a set of initial conditions on the unit sphere for the
target density (22) (left panel) and (27) (right panel); Solid lines: flow of the initial value problem
μ̇ = h(μ) with h(x) = |x|−β�∞(x); β = 0 and �∞ are given by Lemma 2.9 (left panel) and β,�∞
are given by Lemma 2.16 (right panel).
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tion (51) of Jarner and Hansen (2000), indeed shows that the curvature of the con-
tour curve on the diagonal tends to infinity. As shown in the following lemma,
however, this target density is regular in the tails over O = X \ {x = (x1, x2) ∈
R2, |x1| = |x2|} (and not over X \ {0}). More precisely, we have the following.

LEMMA 2.9. For any ε > 0, there exist M and K such that

sup
|x|≥K,||x1|−|x2||≥M

|�(x) −�∞(x)| ≤ ε,(23)

where �∞(x)
def= −∫

1R∞,x (y)yq(y)λLeb(dy) with R∞,x
def= {y, 〈y,�−1

2 x〉 ≥ 0} if

|x1| > |x2| and R∞,x
def= {y, 〈y,�−1

1 x〉 ≥ 0} otherwise.

The proof is postponed to Section 5.2. Since q satisfies (17), when � = Id,
for any x ∈ O, we have either �∞(x) = −cqn(�−1

2 x) if |x1| > |x2| or �∞(x) =
−cqn(�−1

1 x) if |x1| < |x2|, where cq is a constant depending on the increment
distribution q . This is illustrated in Figure 6, which displays the functions � and
�∞ and shows that these two functions are asymptotically close outside a band
along the main diagonal. The flows of the initial value problem μ̇ = �∞(μ) for a
set of initial conditions in (0, π/2) are displayed in Figure 7.

We now prove that Theorem 1.9 applies. Conditions B1–B2 hold, as discussed
above. Condition B3 results from Lemma 2.9. It remains to prove that B4 and
conditions (i)–(iii) are verified. The proof of condition (i) is certainly the most
difficult to check in this example.

FIG. 8. Dotted lines: trajectories of the interpolated process (2) for the SRWM with target density
(22) (left panel) and (27) (right panel) and initial condition (1/

√
2,1/

√
2); Solid lines: flow of the

associated ODE.
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PROPOSITION 2.10. Consider the SRWM Markov chain with target distri-
bution given by (22). Assume that q is rotationally invariant and with compact
support. Then, B4 as well as conditions (i), (ii) and (iii) of Theorem 1.9 hold.

A detailed proof is provided in Section 5.2. Note that the fluid limit model
is not deterministic in this example: for x on the diagonal in X, the support of
the fluid limit Q0

x consists of two trajectories, each of which are solutions of the
ODE. This is illustrated in Figure 8. By Theorem 1.9 and the discussion above, we
may conclude that if the increment distribution q is compactly supported, then the
SRWM Markov chain with target distribution π given by (22) is (fu, rs)-ergodic
with fu(x) = 1 + |x|u and rs(t) ∼ t s for any u ≥ 0 and s ≥ 0.

2.2. Subexponential density. In this section, we focus on target densities π on
X which are subexponential. We assume that q satisfies (17) and has moment of
order p ≥ 2. This section is organized as above: we start with the regular case
(Example 3) and then consider the irregular case (Example 4).

DEFINITION 2.11 (Subexponential p.d.f.). A probability density function π

is said to be subexponential if π is positive with continuous first derivatives,
〈n(x), n(�(x))〉 < 0 for all sufficiently large x and lim|x|→∞ |�(x)| = 0.

The condition implies that for any R < ∞, lim|x|→∞ sup|y|≤R π(x+y)/π(x) =
1, which implies that lim|x|→∞ |�(x)| = 0. Subexponential target densities pro-
vide examples that require the use of positive β in the normalization to obtain a
nontrivial fluid limit model.

The condition 〈n(x), n(�(x))〉 < 0 for all sufficiently large |x| implies that for
ε small enough, the contour manifold Cε can be parameterized by the unit sphere
(see the discussion above) and that for sufficiently large |x|, the acceptance region
Ax is the set enclosed by the contour manifold Cx (see Figure 1).

DEFINITION 2.12 [q-regularity in the tails (subexponential)]. We say that π

is q-regular in the tails over an open cone O ⊆ X \ {0} if there exists a continuous
function �∞ : O → X and β ∈ (0,1) such that, for any compact set H ⊂ O and any
K > 0,

lim
r→∞ sup

x∈H

∫
Rrx∩{y,|y|≤K}

∣∣∣∣rβ |x|β
{
π(rx + y)

π(rx)
− 1

}
− 〈�∞(x), y〉

∣∣∣∣q(y)λLeb(dy) = 0,

lim
r→∞ sup

x∈H
Q

(
Rrx � {y, 〈�∞(x), y〉 ≥ 0}) = 0.

PROPOSITION 2.13. Assume that the target density π is subexponential and
q-regular in the tails over an open cone O ⊆ X\ {0} and that q satisfies (17). Then,
for any compact set H ⊂ O, limr→∞ supx∈H |rβ |x|β�(rx)−�∞(x)| = 0 with

�∞(x)
def=

∫
{y,〈�∞(x),y〉≥0}

y〈�∞(x), y〉q(y)λLeb(dy) = m2(q0)��∞(x),
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where m2(q0)
def= ∫

X y2
11{y1≥0}q0(y)λLeb(dy) > 0.

The proof is similar to Proposition 2.4 and is omitted for brevity. Once again, if
the curvature of the contour curve goes to zero at infinity, then �∞(x) is, for large
x, asymptotically colinear to n[∇ logπ(x)]. However, whereas |∇ logπ(x)| → 0
as |x| → ∞, the renormalization prevents �∞(x) from vanishing at ∞; on the
contrary, it converges radially to a constant along each ray. As above, the tail regu-
larity condition may still hold, even when the curvature goes to infinity; see Exam-
ple 3. As above, the subexponential tail regularity condition and the definition of
the ODE limit are more transparent in the Weibullian family. Mimicking the con-
struction above, define, for δ > 0, the class Pδ as consisting of those everywhere
positive densities with continuous second derivatives π satisfying

π(x) ∝ g(x) exp{−pδ(x)},(24)

where g is a positive function slowly varying at infinity [see (20)] and p is a posi-
tive polynomial in X of even order m with lim|x|→∞ pm(x) =+∞.

PROPOSITION 2.14. Assume that π ∈ Pδ for some 0 < δ < 1/m and let q be
given by (17). Then, π is subexponential and q-regular in the tails with β = 1−mδ

and �∞(x) = −δpδ−1
m (n(x))∇pm(n(x)). For any x ∈ X \ {0}, there exists Tx > 0

such that the ODE μ̇ = h(μ) with initial condition x and h given by

h(x) =−δ|x|−(1−mδ)m2(q0)p
δ−1
m (n(x))�∇pm(n(x))(25)

has a unique solution on [0, Tx) and limt→T −
x

μ(t;x) = 0. In addition, the fluid

limit Q
β
x is deterministic on D([0, Tx],X), with support function μ(·;x).

We may apply Theorem 1.8. From Theorem 2.1 and Proposition 2.14 we have
the following.

THEOREM 2.15. Consider the SRWM Markov chain with target distribution
π on Pδ and increment distribution q having a moment of order p ≥ 2 and sat-
isfying (17). Then, for any 1 ≤ u ≤ p/(2 − mδ), the SRWM Markov chain is
(fu, ru)-ergodic with

fu(x) = 1 + |x|p−u(2−mδ), ru(t) ∼ tu−1.

EXAMPLE 3. Consider the subexponential Weibullian family derived from
Example 1,

π(x1, x2) ∝ (1 + x2
1 + x2

2 + x8
1x2

2)δ exp
(−(x2

1 + x2
2)δ

)
.(26)

The contour curves are displayed in Figure 2. Since π ∈ Pδ , Proposition 2.14
shows that π is subexponential and regular in the tails with β = 1 − 2δ
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and �∞(x) = −2δn(x). Taking q ∼ N (0, σ 2Id), �∞(x) = −σ 2δn(x) and the
(Carathéodory) solutions of the initial value problem μ̇ = |μ|−(1−2δ)�∞(μ),
μ(0) = x are given by μ(t;x) = [|x|2(1−δ) − 2σ 2δ(1 − δ)t]0.5(1−δ)−1

n(x) ×
1|x|2(1−δ)−2σ 2δ(1−δ)t≥0. Here, again, the gradient �(x) (even properly normalized)
does not have a limit as |x| → ∞ along the x-axis, but the fluid limit model is
simple to determine. Hence, the ergodicity of the SRWM sampler with target dis-
tribution (26) may be established [note that for this example, the theory developed
in Fort and Moulines (2003) and Douc et al. (2004) does not apply]. The func-
tions � and �∞ are displayed in Figure 3. The flow of the initial value problem
μ̇ = h(μ) for a set of initial conditions on the unit sphere in (0, π/2) is displayed
in Figure 4, together with trajectories of the interpolated process.

EXAMPLE 4. Consider the mixture of bivariate Weibull distributions [see
Patra and Dey (1999) for applications],

π(x) ∝ α(x′�−1
1 x)δ−1 exp(−(1/2)(x′�−1

1 x)δ)
(27)

+ (1 − α)(x′�−1
2 x)δ−1 exp(−(1/2)(x′�−1

2 x)δ),

where �i , i =±1,2, are defined in Example 2 and 0 < α < 1. Similarly to Exam-
ple 2, the curvature of the contour curve on the diagonal tends to infinity; neverthe-
less, the target density is regular in the tails over O = X\{x = (x1, x2) ∈ R2, |x1| =
|x2|}. More precisely, we have the following.

LEMMA 2.16. For any ε > 0, there exist M and K such that

sup
|x|≥K,||x1|−|x2||≥M

∣∣|x|β�(x) −�∞(x)
∣∣ ≤ ε,(28)

where β
def= 1−2δ and �∞(x)

def= −m2(q0)|x|βδ(x′�−1
2 x)δ−1��−1

2 x if |x1| > |x2|
and �∞(x)

def= −m2(q0)|x|βδ(x′�−1
1 x)δ−1��−1

1 x otherwise.

We can then establish the analog of Proposition 2.10 for the target distrib-
ution (27), again assuming that the proposal distribution q has compact sup-
port. The details are omitted for brevity. From the discussions above, the SRWM
Markov chain with target distribution π given by (27) is (fu, rs)-ergodic with
fu(x) = 1 + |x|u and rs(t) ∼ t s for all u ≥ 0, s ≥ 0.

3. Conclusions. ODE techniques provide a general and powerful approach
to establishing stability and ergodic theorems for a Markov chain. In typical ap-
plications, the assumptions of this paper hold for any p > 0 and, consequently,
the ergodic Theorem 1.4 asserts that the mean of any function with polynomial
growth converges to its steady-state mean faster than any polynomial rate. The
counterexample presented in Gamarnik and Meyn (2005) shows that, in general,
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it is impossible to obtain a geometric rate of convergence, even when �, {εk} and
the function f are bounded.

The ODE method developed within the queueing networks research commu-
nity has undergone many refinements and has been applied in many very different
contexts. Some of these extensions might serve well in other applications, such as
MCMC. In particular, we should note the following points.

(i) Control variates have been proposed previously in MCMC to speed con-
vergence and construct stopping rules [Robert (1998)]. The fluid model is a con-
venient tool for constructing control variates for application in the simulation of
networks. The resulting simulators show dramatic performance improvements in
numerical experiments: a hundredfold variance reduction is obtained in experi-
ments presented in Henderson and Meyn (1997) and Henderson et al. (2003) based
on marginal additional computational effort. Moreover, analytical results demon-
strate that the asymptotic behavior of the controlled estimators are greatly im-
proved [Meyn (2005, 2006, 2007)]. It is likely that both the theory and methodol-
ogy can be extended to other applications.

(ii) A current focus of interest in the networks community is the reflected diffu-
sion model obtained under a “heavy traffic scaling.” An analog of “heavy-traffic”
in MCMC is the case β > 0 considered in this paper; the larger scaling is necessary
to obtain a nonstatic fluid limit (see Theorem 1.2). We have maintained β < 1 in
order to obtain a deterministic limit. With β = 1, we expect that a diffusion limit
will be obtained for the scaled MH algorithm under general conditions. This will
be an important tool in the subexponential case. In the fluid setting of this paper,
when β > 0, it is necessary to assume a great deal of regularity on the densities π

and q appearing in the MH algorithm to obtain a meaningful fluid limit model. We
expect that very different regularity assumptions will be required to obtain a dif-
fusion limit and that new insights will be obtained from properties of the resulting
diffusion model.

4. Proofs of the main results.

4.1. State-dependent drift conditions. In this section, we improve the state-
dependent drift conditions proposed by Filonov (1989) for discrete state space and
later extended by Meyn and Tweedie (1994) for general state space Markov chains
[see also Meyn and Tweedie (1993) and Robert (2000) for additional references
and comments].

Following Nummelin and Tuominen (1983), we denote by � the set of nonde-
creasing sequences r = {r(n)}n∈N satisfying limn→∞ ↓ log r(n)/n = 0, that is,
log r(n)/n converges to zero monotonically from above. A sequence r ∈ � is
said to be subgeometric. Examples include polynomial sequences r(n) = (n+ 1)δ

with δ > 0 and truly subexponential sequences, r(n) = (n + 1)δecnγ
[c > 0 and
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γ ∈ (0,1)]. Denote by C the set of functions

C
def=

{
φ : [1,∞) → R+, φ is concave, monotone nondecreasing,

(29)

differentiable and inf{v∈[1,∞)}φ(v) > 0, lim
v→∞φ′(v) = 0

}
.

For φ ∈ C, define Hφ(v)
def= ∫ v

1 (1/ϕ(x)) dx. The function Hφ : [1,∞) →[0,∞) is
increasing and limv→∞ Hφ(v) = ∞; see [Douc et al. (2004), Section 2]. Define,

for u ≥ 0, rϕ(u)
def= ϕ ◦H−1

φ (u)/ϕ ◦H−1
φ (0), where H−1

φ is the inverse of Hφ . The
function u �→ rϕ(u) is log-concave and thus the sequence {rϕ(k)}k≥0 is subgeo-
metric. Polynomial functions ϕ(v) = vα , α ∈ (0,1) are associated with polynomial
sequences rϕ(k) = (1 + (1 − α)k)α/(1−α).

PROPOSITION 4.1. Let f : X → [1,∞) and V : X → [1,∞) be measurable
functions, ε ∈ (0,1) be a constant and C ∈ X be a set. Assume that supC f/V <

∞ and that there exists a stopping time τ ≥ 1 such that, for any x /∈ C,

Ex

[
τ−1∑
k=0

f (�k)

]
≤ V (x) and Ex[V (�τ )] ≤ (1 − ε)V (x).(30)

Then, for all x /∈ C, Ex[∑τC

k=0 f (�k)] ≤ (ε−1∨supC f/V )V (x). If, in addition, we
assume that supx∈C{f (x) + Ex[V (�1)]} < ∞, then supx∈C Ex[∑τC

k=0 f (�k)] <

∞.

PROOF. Set τ̃
def= τ1Cc(�0) + 1C(�0) and define recursively the sequence

{τn} by τ 0 def= 0, τ 1 def= τ̃ and τn def= τn−1 + τ̃ ◦ θτn−1
, where θ is the shift oper-

ator. For any n ∈ N, define by �̄n = �τn the chain sampled at the instants {τn}n≥0.

{�̄n}n≥0 is a Markov chain with transition kernel P̄ (x,A)
def= Px(�τ̃ ∈ A), x ∈ X,

A ∈ X. Equation (30) implies that

P̄ V (x) = Ex[V (�τ̃ )] ≤ V (x) − F(x) for all x /∈ C,(31)

where F(x)
def= εEx[∑τ̃−1

k=0 f (�k)]. Let τ̄C
def= inf{n ≥ 1, �̄n ∈ C}. Applying the

Markov property and the bound τC ≤ τ τ̄C , we obtain, for all x /∈ C,

Ex

[
τC∑

k=0

f (�k)

]
≤ Ex

[
τ̄C−1∑
k=0

τ̃◦θτk−1∑
j=0

f (�j+τ k )

]
+ Ex

[
f (�τ τ̄C )1{τ τ̄C <∞}

]

≤ ε−1Ex

[
τ̄C−1∑
k=0

F(�̄k)

]
+

(
sup
C

f

V

)
Ex

[
V (�ττ̄C )1{τ τ̄C <∞}

]
.
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Furthermore, (31) and the comparison theorem [Meyn and Tweedie (1993), Theo-
rem 11.3.2] applied to the sampled chain {�̄n}n≥0 yields

Ex

[
τ̄C−1∑
k=0

F(�̄k)

]
+ Ex

[
V (�ττ̄C )1{τ τ̄C <∞}

] ≤ V (x), x /∈ C,

which concludes the proof of the first claim. The second claim follows by writing,
for x ∈ C,

Ex

[
τC∑

k=0

f (�k)

]
≤ 2 sup

C

f + Ex

[
1{X1 /∈ C}

τC∑
k=1

f (�k)

]

≤ 2 sup
C

f + Ex

[
1{X1 /∈ C}EX1

[
τC−1∑
k=0

f (�k)

]]

≤ 2 sup
C

f +
(
ε−1 ∨ sup

C

f/V

)
Ex[1{X1 /∈ C}V (X1)]. �

PROPOSITION 4.2. Assume that the conditions of Proposition 4.1 are satisfied
with f (x) = φ ◦ V (x) for x /∈ C with φ ∈ C. Then, for x /∈ C, Ex[∑τC−1

k=0 rφ̃(k)] ≤
M−1V (x) and supx∈C Ex[∑τC−1

k=0 rφ̃(k)] < ∞, where,

for all t φ̃(t)
def= φ(Mt) and M

def=
[
ε−1 ∨ sup

C

φ ◦ V/V

]−1

.(32)

PROOF. It is known that U(x)
def= Ex[∑σC

k=0 φ ◦ V (�k)], where σC
def= inf{k ≥

0,�k ∈ C}, solves the equations PU(x) = U(x)−φ◦V (x), x /∈ C and U(x) = φ◦
V (x), x ∈ C [see Meyn and Tweedie (1993), Theorem 14.2.3]. By Proposition 4.1,
U(x) ≤ M−1V (x) for all x /∈ C. Hence,

PU(x) ≤ U(x) − φ̃ ◦ U(x), x /∈ C.(33)

From (33) and Douc et al. (2004), Proposition 2.2, Ex[∑τC−1
k=0 rφ̃(k)] ≤ U(x) ≤

M−1V (x), for x /∈ C. The proof is concluded by noting that for x ∈ C,

Ex

[
τC−1∑
k=0

rφ̃(k)

]
≤ rφ̃(0) + Ex

[
1{�1 /∈ C}

τC−1∑
k=1

rφ̃(k)

]

≤ rφ̃(0) +M−1 sup
x∈C

PV (x) < ∞. �

THEOREM 4.3. Suppose that {�n}n≥0 is a phi-irreducible and aperiodic
Markov chain. Assume that there exist a function φ ∈ C, a measurable function
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V : X →[1,∞), a stopping time τ ≥ 1, a constant ε ∈ (0,1) and a petite set C ⊂ X
such that

Ex

[
τ−1∑
k=0

φ ◦ V (�k)

]
≤ V (x), x /∈ C,(34)

Ex[V (�τ )] ≤ (1 − ε)V (x), x /∈ C,(35)

sup
C

{V + PV } < ∞.(36)

P is then positive Harris recurrent with invariant probability π and:

(1) for all x ∈ X, limn→∞ rφ̃(n)‖P n(x, ·) − π‖TV = 0, where φ̃ is defined
in (32);

(2) for all x ∈ X, limn→∞‖P n(x, ·)− π‖φ◦V = 0;

(3) the fundamental kernel Z is a bounded linear transformation from L
φ◦V∞

to LV∞.

PROOF. (1–2) By Tuominen and Tweedie [(1994), Theorem 2.1], it is suffi-
cient to prove that

sup
x∈C

Ex

[
τC−1∑
k=0

rφ̃(k)

]
< ∞, sup

x∈C

Ex

[
τC−1∑
k=0

φ ◦ V (�k)

]
< ∞

and, for all x ∈ X,

Ex

[
τC−1∑
k=0

rφ̃(k)

]
< ∞, Ex

[
τC−1∑
k=0

φ ◦ V (�k)

]
< ∞.

In Proposition 4.2 we show that the stated assumptions imply such bounds.
(3) By Glynn and Meyn (1996), Theorem 2.3, it is sufficient to prove that there

exist constants b, c < ∞ such that for all x ∈ X, PW(x) ≤ W(x) − φ ◦ V (x) +
b1C(x), with W(x) ≤ cV (x). This follows from Proposition 4.1, which shows
that supx∈C Ex[∑τC

k=0 φ ◦ V (�k)] < ∞ and Ex[∑τC

k=0 φ ◦ V (�k)] ≤ cV (x) for all
x /∈ C. �

Using an interpolation technique, we derive a rate of convergence associated
with some g-norm, 0 ≤ g ≤ φ ◦ V .

COROLLARY 4.4 (Theorem 4.3). For any pair of functions (α,β) satisfying
α(u)β(v) ≤ u+ v, for all (u, v) ∈ R+ × R+ and all x ∈ X,

lim
n

α(rφ̃(n))‖P n(x, ·)− π‖β(φ◦V )∨1 = 0.

A pair of functions (α,β) satisfying this condition can be constructed by using
Young’s inequality [Krasnosel’skij and Rutitskij (1961)].
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4.2. Proof of Theorem 1.2. We preface the proof with a preparatory lemma.
For any process {εk}k≥1, define

M∞(ε, n)
def= sup

1≤l≤n

∣∣∣∣∣
l∑

k=1

εk

∣∣∣∣∣.(37)

LEMMA 4.5. Assume B1 and B2.

(i) For all κ > 0, J and K integers with J < K ,

sup
0≤k≤k+j≤K,0≤j≤J

|�k+j −�k|

≤ 8M∞(ε,K)+ 2N(β,�)κ−βJ +N(β,�) + 2κ,

where N(β,�) is given in B2.
(ii) For all 0 ≤ α ≤ β and all T > 0, there exists M such that

lim
r→∞ sup

x∈X
Px

(
sup

0≤k≤k+j≤�T r1+α�
|�k+j −�k| ≥ Mr

)
= 0.

(iii) For all T > 0 and ε > 0, there exists δ > 0 such that

lim
r→∞ sup

x∈X
Px

(
sup

0≤k≤k+j≤�T r1+β�,0≤j≤�δr1+β�
|�k+j −�k| ≥ εr

)
= 0.

PROOF. (i) Let 0 ≤ j ≤ J and 0 ≤ k ≤ K − j . On the set
⋂j−1

l=0 {|�k+l| > κ},

|�k+j − �k| =
∣∣∣∣∣
k+j−1∑

l=k

{�l+1 − �l}
∣∣∣∣∣

≤
∣∣∣∣∣

k+j∑
l=k+1

εl

∣∣∣∣∣ +
k+j−1∑

l=k

|�(�l)|
(38)

≤
∣∣∣∣∣

k+j∑
l=k+1

εl

∣∣∣∣∣ +
k+j−1∑

l=k

|�l|−βN(β,�)

≤ 2M∞(ε,K)+ Jκ−βN(β,�).

Consider now the case when |�k+l| ≤ κ for some 0 ≤ l ≤ j − 1. Define

τj
def= inf{0 ≤ l ≤ j − 1, |�k+l| ≤ κ}

and

σj
def= sup{0 ≤ l ≤ j − 1, |�k+l| ≤ κ} + 1,
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which are, respectively, the first hitting time and the last exit time before j of
the ball of radius κ . Write �k+j − �k = (�k+j − �k+σj

) + (�k+σj
− �k+τj

) +
(�k+τj

− �k) and consider the three terms separately. The first term is nonnull if
σj < j ; hence,

|�k+j −�k+σj
| ≤

∣∣∣∣∣
k+j∑

l=k+σj+1

εl

∣∣∣∣∣ +
k+j−1∑
l=k+σj

|�(�l)|

≤ 2M∞(ε,K)+ Jκ−βN(β,�)

since, by the definition of σj , |�k+l| > κ for all σj ≤ l ≤ j − 1. Similarly, for the
third term,

|�k+τj
−�k| ≤

∣∣∣∣∣
k+τj∑

l=k+1

εl

∣∣∣∣∣ +
k+τj−1∑

l=k

|�(�l)|
(39)

≤ 2M∞(ε,K)+ Jκ−βN(β,�)

since, by the definition of τj , |�l| > κ for all 0 ≤ l < τj . Finally, the second term
is bounded by

|�k+σj
−�k+τj

| ≤ |�k+σj
−�k+σj−1| + |�k+σj−1| + |�k+τj

|
≤ N(β,�) + 2M∞(ε,K)+ 2κ.

Combining the inequalities above yields the desired result.
(ii) From the previous inequality applied with κ = �r > 0 and K = J =

�T r1+α�, it holds that

Px

(
sup

0≤k≤k+j≤�T r1+α�
|�k+j − �k| ≥ 4Mr

)

≤ 4pM−pr−p sup
x∈X

Ex[Mp∞(ε, �T r1+α�)]

+ 1{N(β,�) ≥ Mr} + 1{2N(β,�)T ≥ �βMr−α+β} + 1{2� ≥ M}.
By Lemma A.1, the expectation tends to zero uniformly for x ∈ X. The second
term tends to zero when r →∞. The remaining two terms are zero with � and M

chosen so that �1+β > N(β,�)T and M > 2�.
(iii) The proof follows similarly upon setting K = �T r1+β�, J = �δr1+β� and

κ = �r . �

PROOF OF THEOREM 1.2. Let α ≤ β . A sequence of probability measures
on D(R+,X) is said to be D(R+,X)-tight if it is tight in D(R+,X) and if every
weak limit of a subsequence is continuous. By [Billingsley (1999), Theorem 13.2,
(13.7), page 140 and Corollary, page 142], the sequence of probability measures
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{Qα
rn;xn

}n≥0 is C(R+,X)-tight if (a) lima→∞ lim supn Qα
rn;xn

{η : |η(0)| ≥ a} = 0,
(b) lim supn→∞ Qα

rn;xn
{η : sup0≤t≤T |η(t) − η(t−)| ≥ a} = 0 and (c) for all κ > 0

and ε > 0, there exist δ ∈ (0,1) such that lim supn Qα
rn;xn

{η :w(η, δ) ≥ ε} ≤ κ ,

where w(η, δ)
def= sup0≤s≤t≤T ,|t−s|≤δ |η(t) − η(s)|. Properties (a)–(c) follow im-

mediately from Lemma 4.5. Choose α < β . Let {rn} and {xn} be sequences such
that limn rn = ∞ and limn xn = x. Let ε > 0. We have, for all n sufficiently large
that |xn − x| ≤ ε/2,

Prnxn

(
sup

0≤t≤T

|ηα
rn

(t;xn)− x| ≥ ε

)
≤ Prnxn

(
sup

0≤k≤�T r1+α
n �

|�k − rnxn| ≥ (ε/2)rn

)

and we have (b), again by Lemma 4.5(ii). �

4.3. Proof of Theorem 1.4. We preface the proof by establishing a uniform
integrability condition for the martingale increment sequence {εk}k≥1 and then for
the Markov chain {�k}k≥0.

LEMMA 4.6. Assume B1. Then, for all T > 0,

lim
b→∞ sup

|x|≥1
|x|−pEx[Mp∞(ε, �T |�0|1+β�)1{M∞(ε, �T |�0|1+β�) ≥ b|�0|}]

(40)

= 0.

PROOF. Set T�0
def= �T |�0|1+β�. For K ≥ 0, set ε̄k

def= εk1{|εk| ≤ K} and ε̃k
def=

εk1{|εk| ≥ K}. By Lemma A.2, there exists a constant C (depending only on p)
such that

Ex[Mp∞(ε, T�0)1{M∞(ε, T�0) ≥ b|�0|}]
≤ CEx[Mp∞(ε̄, T�0)1{M∞(ε̄, T�0) ≥ (b/2)|�0|}] + CEx[Mp∞(ε̃K,T�0)].

Consider the first term on the right-hand side of the previous inequality. Using
Lemma A.3 with a > 1 ∨ 2/p and Lemma A.1 yields

|x|−pEx[Mp∞(ε̄, �T |�0|1+β�)1{M∞(ε̄, T�0) ≥ (b/2)|�0|}]
≤ (b/2)−(a−1)p|x|−apEx[Map∞ (ε̄, T�0)] ≤ CA(ε̄, ap)b−(a−1)p|x|−a(1−β)p/2,

where A(ε̄, ap)
def= supx∈X Ex[|ε̄1|ap]. Note that, by construction, A(ε̄, ap) ≤

Kap . Similarly, Lemma A.1 implies that Ex[Mp∞(ε̃K,T�0)] ≤ CA(ε̃K,p) ×
T p/2|x|{p(1+β)/2}∨(1+β), where A(ε̃K,p)

def= supx∈X Ex[|ε̃1|p]. Therefore, since
p ≥ 1 + β , sup|x|≥1 |x|−pEx[Mp∞(ε̃K,T�0)] ≤ CT p/2A(ε̃K,p). Combining the
two last inequalities, we have

sup
|x|≥1

|x|−pEx[Mp∞(ε, T�0)1{M∞(ε, T�0) ≥ b|�0|}]
≤ C{Kapb−p(a−1) +A(ε̃K,p)},
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which goes to 0 by setting K
def= K(b) = log(b). �

PROPOSITION 4.7. Assume B1 and B2. Then, for all T > 0,

sup
x∈X

(1 + |x|)−pEx

[
sup

0≤k≤�T |�0|1+β�
|�k|p

]
< ∞,(41)

lim
K→∞ sup

|x|≥1
|x|−pEx

[
sup

0≤k≤�T |�0|1+β�
|�k|p

(42)

× 1
{

sup
0≤k≤�T |�0|1+β�

|�k| ≥ K|�0|
}]

= 0.

PROOF. Set T�0 = �T |�0|1+β�. For all r ≥ 1, applying Lemma 4.5(i) with
K = J = �T |�0|1+β� and κ = |�0| yields

sup
0≤k≤T�0

|�k|r ≤ C{1 + |�0|r +Mr∞(ε, T�0)}(43)

for some constant C depending upon r, β,N(β,�) and T . The first assertion is
then a consequence of Lemma A.1. Inequality (43) applied with r = 1 implies that
there exist constants a, b > 0 such that for all |x| ≥ 1 and all large enough K ,{

sup
0≤k≤T�0

|�k| ≥ K|�0|
}
⊂ {M∞(ε, T�0) ≥ (aK − b)|�0|} Px-a.s.

Hence, for large enough K and an appropriately chosen constant C,

sup
|x|≥1

|x|−pEx

[
sup

0≤k≤T�0

|�k|p1
{

sup
0≤k≤T�0

|�k| ≥ K|�0|
}]

≤ C sup
|x|≥1

Px[M∞(ε, T�0) ≥ (aK − b)|�0|]

+C sup
|x|≥1

|x|−pEx[Mp∞(ε, T�0)1{M∞(ε, T�0) ≥ (aK − b)|�0|}].

The proof of (42) follows from Lemma 4.6. �

PROPOSITION 4.8. Assume B1 and B2 and that there exist T < ∞ and ρ ∈
(0,1) such that

lim sup
|x|→∞

Px(σ > τ) = 0, with σ
def= inf{k ≥ 0, |�k| < ρ|�0|},(44)

where τ
def= σ ∧  T |�0|1+β!. It then follows that (a) there exists M such that

sup|x|≥M |x|−pEx[|�τ |p] < 1 and

(b) Ex[∑τ−1
k=0 |�k|p] ≤ C|x|p+1+β .
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PROOF. Set T�0 =  T |�0|1+β!. For any K ≥ 0,

|x|−pEx[|�τ |p]
= |x|−pEx[1{τ = σ }|�τ |p] + |x|−pEx[1{σ > T�0}|�T�0

|p](45)

≤ ρp + |x|−pEx[|�T�0
|p1{|�T�0

| ≥ K|�0|}] + KpPx[σ > T�0].
By Proposition 4.7, one may choose K sufficiently large so that

sup
|x|≥1

|x|−pEx[|�T�0
|p1{|�T�0

| ≥ K|�0|}] < 1 − ρp.(46)

Since lim sup|x|→∞ Px[σ > T�0] = 0, the proof of (a) follows. Since τ ≤
T�0 , (b) follows from (41) and the bound Ex[∑τ−1

k=0 |�k|p] ≤ CT |x|1+β ×
Ex[sup1≤k≤T�0

|�k|p]. �

The following elementary proposition relates the stability of the fluid limit
model to the condition (44) on the stopping time σ . We introduce the polygonal
process that agrees with �k/r at the points t = kr−(1+α) and is defined by linear
interpolation

η̃α
r (t;x) = r−1

∑
k≥0

{(k + 1 − tr1+α)�k + (tr1+α − k)�k+1}
(47)

× 1{k ≤ tr1+α < (k + 1)}.
Denote by Q̃α

r;x the image probability on C(R+,X) of Prx by η̃α
r (t;x). The intro-

duction of this process allows for an easier characterization of the open and closed
sets of C([0, T ],X) equipped with the uniform topology, than the open and closed
sets of D([0, T ],X) equipped with the Skorokhod topology. For any sequences
{rn}n ⊂ R+ such that rn → +∞ and {xn} ⊂ X such that xn → x, the family of
probability measures {Q̃α

rn;xn
} is tight and converges weakly to Qα

x , the weak limit
of the sequence {Qα

rn;xn
}n∈N. This can be proved following the same lines as in

the proof of Theorem 1.2 [see, e.g., Billingsley (1999), Theorem 7.3]. Details are
omitted.

PROPOSITION 4.9. Assume B1, B2 and that the β-fluid limit model {Qβ
x , x ∈

X} is stable. Then, (44) is satisfied.

PROOF. Let {yn} ⊂ X be any sequence of initial states with |yn| → ∞ as

n →∞. Set rn
def= |yn| and xn

def= yn/|yn|. One may extract a subsequence {xnj
} ⊆

{xn} such that limj→∞ xnj
= x for some x, |x| = 1. By Theorem 1.2, there ex-

ist subsequences {rmj
} ⊆ {rnj

} and {xmj
} ⊆ {xn} and a β-fluid limit Q

β
x such that
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Q̃
β
rmj

;xmj
⇒ Q

β
x . By construction,

Prmj
xmj

(σ > τ) ≤ Prmj
xmj

(
inf

0≤t≤T
|η̃β

rmj
(t;xmj

)| ≥ ρ

)

= Q̃
β
rmj

;xmj

(
η ∈ C(R+,X) : inf

0≤t≤T
|η(t)| ≥ ρ

)
.

By the Portmanteau theorem, since the set {η ∈ C(R+,X), inf[0,T ] |η| ≥ ρ} is
closed, we have

lim sup
j→∞

Q̃
β
rmj

;xmj

(
inf

0≤t≤T
|η(t)| ≥ ρ

)
≤ Qβ

x

(
inf

0≤t≤T
|η(t)| ≥ ρ

)
= 0.

Because {yn} is an arbitrary sequence, this relation implies (44). �

PROOF OF THEOREM 1.4. This follows immediately from Theorem 4.3, using
Propositions 4.8 and 4.9. �

4.4. Proof of Proposition 1.5. In this proof, we see the β-fluid limit Q
β
x as

the weak limit of Q̃
β
rn;xn

for some sequences {rn} ⊂ R+ and {xn} ⊂ X satisfying
limn→∞ rn =∞ and limn→∞ xn = x. Fix s, t such that s < t . We prove that

Qβ
x

(
A(s, t)∩

{
η ∈ C([s, t],X) :

(48)

sup
s≤u≤t

∣∣∣∣η(u)− η(s)−
∫ u

s
h ◦ η(y) dy

∣∣∣∣ > 0
})

= 0.

Let U be an open set such that Ū ⊆ O, where Ū denotes the closure of the set U.
For any δ > 0, M > 0 and m > 0, s ≤ u < w ≤ t , define

AU
δ,m,M(u,w)

def=
{
η ∈ C([s, t],X), η([u,w]) ⊂ U ∩ Cm,M,

(49)

sup
u≤v≤w

∣∣∣∣η(v) − η(u)−
∫ v

u
h ◦ η(x) dx

∣∣∣∣ > δ

}
,

where Cm,M
def= {x ∈ X,m ≤ |x| ≤ M}. Since δ, m, M , U, u and w are arbitrary,

(48) holds whenever Q
β
x [AU

δ,m,M(u,w)] = 0. By the Portmanteau theorem, since
the set AU

δ,m,M(u,w) is open in the uniform topology,

Qβ
x [AU

δ,m,M(u,w)] ≤ lim inf
n→∞ Q̃

β
rn;xn

[AU
δ,m,M(u,w)]

and the property will follow if we can prove that the right-hand side of the previous
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inequality is null. To that end, we write

η̃β
rn

(v;xn) − η̃β
rn

(u;xn) −
∫ v

u
h ◦ η̃β

rn
(y;xn) dy

= η̃β
rn

(v;xn)− η̃β
rn

(�vr1+β
n �r−(1+β)

n ;xn

)
+ η̃β

rn

(�ur1+β
n �r−(1+β)

n ;xn

) − η̃β
rn

(u;xn)

+ r−1
n

�vr
1+β
n �−1∑

k=�ur
1+β
n �

{�k+1 − �k} −
∫ v

u
h ◦ η̃β

rn
(t;xn) dt

≤ 2χ1 + χ2 + χ3 + 2r−1
n M∞(ε, �tr1+β

n �),
where we have defined

χ1
def= sup

u≤v≤w

{∣∣η̃β
rn

(v;xn) − η̃β
rn

(�vr1+β
n �r−(1+β)

n ;xn

)∣∣
+

∣∣∣∣
∫ v

�vr
1+β
n �r−(1+β)

n

h ◦ η̃β
rn

(t;xn) dt

∣∣∣∣
}
,

χ2 =
�wr

1+β
n �−1∑

j=�ur
1+β
n �

∣∣r−1
n �

(
rnη̃

β
rn

(
jr−(1+β)

n

);xn

) − r−(1+β)
n h

(
η̃β

rn

(
jr−(1+β)

n

)
xn

)∣∣,

χ3 =
�wr

1+β
n �−1∑

j=�ur
1+β
n �

∣∣∣∣r−(1+β)
n h

(
η̃β

rn

(
jr−(1+β)

n ;xn

)) − ∫ (j+1)r
−(1+β)
n

jr
−(1+β)
n

h ◦ η̃β
rn

(t;xn) dt

∣∣∣∣.
Denote by ωm,M,U the modulus of continuity of h on U∩Cm,M . Since h is contin-
uous on U, limλ→0 ωm,M,U(λ) = 0. On the event {η̃β

rn(t;xn) ∈ U ∩ Cm,M},
χ1 ≤ r−1

n

(
1 + sup

|x|≥m

|h(x)|
)

sup
1≤j≤�tr1+β

n �
|�j+1 −�j |,

χ2 ≤ (t − s + 1)m−β sup
{x∈U,|x|≥m}

∣∣rβ
n |x|β�(rnx) −�∞(x)

∣∣
and, for any λ > 0,

χ3 ≤ (t − s + 1)

(
ωm,M,U(λ) + sup

|x|≥m

|h(x)|1
{

sup
1≤j≤�tr1+β

n �
|�j+1 −�j | ≥ λrn

})
.

By Lemma 4.5, for any δ > 0, limn→∞ Prnxn(sup
1≤j≤�tr1+β

n � |�j+1 − �j | ≥
δrn) = 0. On the other hand, limn→∞ sup{x∈U,|x|≥mrn} ||x|β�(x) − �∞(x)| = 0.
Therefore, for any δ > 0, one may choose λ small enough so that

lim
n→∞Prnxn

(
η̃β

rn
(t;xn) ∈ U ∩ Cm,M, (2χ1 + χ2 + χ3) ≥ δ

) = 0.
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The proof follows from Lemma A.1.

4.5. Proof of Theorem 1.6. We preface the proof by a lemma showing that the
fluid limits are uniformly bounded.

LEMMA 4.10. Assume B1 and B2.

(i) For any T > 0 and ρ > 0, there exists δ > 0 such that, for any β-fluid
limit Q

β
x ,

Qβ
x

(
η ∈ C(R+,X), sup

0≤t≤u≤t+δ≤T

|η(u)− η(t)| ≤ ρ

)
= 1.(50)

(ii) For any T > 0, there exists K > 0 such that, for any β-fluid limit Q
β
x ,

Qβ
x

(
η ∈ C(R+,X), sup

0≤t≤T

|η(t)− η(0)| ≥ K

)
= 0.(51)

PROOF. (i) Let {rn} ⊂ R+ and {xn} ⊂ X be two sequences such that
limn→∞ rn = +∞, limn→∞ xn = x and Q

β
rn;xn

⇒ Q
β
x . By the Portmanteau the-

orem, since the set {η ∈ C(R+,X), sup0≤t≤u≤t+δ≤T |η(u)− η(t)| ≤ ρ} is closed, it
follows that

Qβ
x

(
η ∈ C(R+,X), sup

0≤t≤u≤t+δ≤T

|η(u)− η(t)| ≤ ρ

)

≥ lim sup
n

Q̃
β
rn;xn

(
η ∈ C(R+,X), sup

0≤t≤u≤t+δ≤T

|η(u)− η(t)| ≤ ρ

)
.

By definition of the process η̃
β
rn(·;xn),

Q̃
β
rn;xn

(
η ∈ C(R+,X), sup

0≤t≤u≤t+δ≤T

|η(u)− η(t)| > ρ

)

≤ Prnxn

(
sup

0≤k<k+j≤T r
1+β
n ,0≤j≤δr

1+β
n

|�k+j −�k| > ρrn

)

and the proof follows from Lemma 4.5(iii).
(ii) The proof follows from (i) by considering the decomposition

sup
0≤t≤T

|η(t)− η(0)| ≤
�T/δ�∑
q=0

sup
qδ≤u≤(q+1)δ

|η(u)− η(qδ)|.
�

PROOF OF THEOREM 1.6. Under the stated assumptions, μ([0, Tx]; ) is a
compact subset of O. Since O is open, there exists ρ > 0 such that

{y ∈ X, d(y,μ([0, Tx];x)) ≤ 2ρ} ⊂ O,
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where, for x ∈ X and A ⊂ X, d(x,A) is the distance from x to the set A. By
Lemma 4.10(i), there exists δ > 0 such that

Qβ
x

(
η ∈ C(R+,X), sup

0≤t≤u≤t+δ≤Tx

|η(u)− η(t)| ≤ ρ

)
= 1.

Since Q
β
x (η ∈ C(R+,X), η(0) = x = μ(0;x)) = 1, we have

Qβ
x

(
η ∈ C(R+,X), η([0, δ]) ⊂ O

) = 1.

By Proposition 1.5, this yields Q
β
x = δμ(·;x) on C([0, δ],X). By repeated appli-

cation of Lemma 4.10(i), it is readily proved by induction that Q
β
x = δμ(·;x) on

C([(q − 1)δ, qδ] ∩ [0, Tx],X) for any integer q ≥ 1. �

4.6. Proof of Theorem 1.9. Let x be such that |x| = 1. By Lemma 4.10, there
exists K depending on T0 such that Q

β
x (η : sup[0,T0] |η(·)| ≤ K) = 1 for any β-

fluid limit Q
β
x . Set T = T0 + TK , where T0 and TK are defined by (11) and (12),

respectively.
By definition, for any set H, H ⊂ �H; therefore, there exists an increasing se-

quence {Hn} of compact subsets of O such that Hn � Hn+1 and O = ⋃
n �Hn (note

that �Hn ⊆ �Hn+1 ). This implies that

Qβ
x

(
η : inf[0,T ] |η(·)| > ρK

)

= Qβ
x

(
η : inf[0,T ] |η(·)| > ρK,η([0, T0])∩ O �= ∅

)

= lim ↑n Qβ
x

(
η : inf[0,T ] |η(·)| > ρK,η([0, T0]) ∩�Hn �= ∅

)
.

lim ↑n stands for a limit that converges monotonically from below. We prove that
for any n, the term in the right-hand side is zero. To that end we start by proving
that for any compact set H ⊂ O and any real numbers 0 ≤ q ≤ T0,

Qβ
x

(
η : inf[0,T ] |η(·)| > ρK,η(q) ∈ �H

)

= Qβ
x

(
η : inf[0,T ] |η(·)| > ρK,η(q + ·) = μ(·;η(q))(52)

on
[
0, Tη(q)

]
, η(q) ∈ �H

)
.

We will then establish that

Qβ
x

(
η : inf[0,T ] |η(·)| > ρK,η(q + ·) = μ(·;η(q))

(53)

on
[
0, Tη(q)

]
, η(q) ∈ �H

)
= 0.
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Since Q
β
x (C(R+,X)) = 1, (52) and (53) imply that

Qβ
x

(
η : inf[0,T ] |η(·)| > ρK,η([0, T0])∩�Hn �= ∅

)

≤ ∑
q∈Q

Qβ
x

(
η : inf[0,T ] |η(·)| > ρK,η(q + ·) = μ(·;η(q))

on
[
0, Tη(q)

]
, η(q) ∈ �H′

n

)
= 0,

where H′
n ⊃ Hn is a compact set of O and Q ⊂ [0, T0] is a denumerable dense set.

This concludes the proof.
We now turn to the proof of (52) and (53). Since �H is a compact set of O,

there exists ε > 0 (depending on H) such that {y ∈ X, d(y,�H) ≤ 2ε} � O. By
Lemma 4.10, one may choose δ > 0 small enough (depending on T and ε) so that

Qβ
x

(
η ∈ C(R+,X) : sup

0≤t≤u≤t+δ≤T

|η(u)− η(t)| ≤ ε

)
= 1.

Therefore, for any compact set H ⊂ O and q ∈ Q,

Qβ
x

(
η : inf[0,T ] |η(·)| > ρK,η(q) ∈ �H

)

= Qβ
x

(
η : inf[0,T ] |η(·)| > ρK,η(q) ∈ �H, sup

0≤t≤u≤t+δ≤T

|η(u)− η(t)| ≤ ε

)

= Qβ
x

(
η : inf[0,T ] |η(·)| > ρK,η(q) ∈ �H, η

([q, (q + δ)∧ T ]) ⊂ O
)
.

By Proposition 1.5, on the set A(q, q + δ), η(q + ·) = μ(·;η(q)) on [0, δ ∧ Tη(q)],
Q

β
x -a.s. Hence,

Qβ
x

(
η : inf[0,T ] |η(·)| > ρK,η(q) ∈ �H

)

= Qβ
x

(
η : inf[0,T ] |η(·)| > ρK,η(q) ∈ �H, η(q + ·) = μ(·;η(q)),

on
[
0, δ ∧ Tη(q)

])
.

By repeated application of Proposition 1.5, for any integer l > 0,

Qβ
x

(
η : inf[0,T ] |η(·)| > ρK,η(q) ∈ �H

)

= Qβ
x

(
η : inf[0,T ] |η(·)| > ρK,η(q) ∈ �H, η(q + ·) = μ(·;η(q)),

on
[
0, lδ ∧ Tη(q)

])
,
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which concludes the proof of (52).

Qβ
x

(
η : inf[0,T ] |η(·)| > ρK,η(q + ·) = μ(·;η(q)) on

[
0, Tη(q)

]
, η(q) ∈ �H

)

≤ Qβ
x

(
η : inf[0,T ] |η(·)| > ρK, inf[0,T0+TK ] |η| ≤ ρK

)
= 0

since T = T0 + TK , which concludes the proof of (53).

5. Proofs for Section 2.

5.1. Proofs of Section 2.1.

PROOF OF PROPOSITION 2.4. Define

�̄(x)
def= −

∫
Rx

yq(y)λLeb(dy).(54)

Introduce, for any δ > 0, the δ-zone Cx(δ) around Cx ,

Cx(δ)
def= {y + sn(y), y ∈ Cx,−δ ≤ s ≤ δ}.(55)

By Jarner and Hansen [(2000), Theorem 4.1], we may bound the measure of the
δ-zone’s intersection with the ball B(0,K), for any K > 0 and all |x| large enough,

λLeb(
Cx(δ) ∩ B(0,K)

) ≤ δ

( |x| + K

|x| − K

)d−1 λLeb{B(0,3K)}
K

,

where the x-dependent term tends to 1 as |x| tends to infinity. From this, it follows,
using the fact that

∫ |y|q(y)λLeb(dy) < ∞, that for any K > 0 and ε > 0, there
exists δ > 0 such that

lim sup
|x|→∞

∫
Ex(δ,K)

|y|q(y)λLeb(dy) < ε,(56)

where Ex(δ,K)
def= Cx(δ) ∩ B(0,K). For arbitrary, but fixed, ε > 0, choose K > 0

such that
∫

Bc(0,K) |y|q(y)λLeb(dy) ≤ ε. Then choose δ > 0 such that (56) holds.
By construction, for y ∈ Rx , π(x + y)/π(x) ≤ 1 and (56) implies that

lim sup
|x|→∞

∫
Rx∩Ex(δ,K)

|y|π(x + y)

π(x)
q(y)λLeb(dy) ≤ ε,(57)

lim sup
|x|→∞

∫
Rx∩Bc(0,K)

|y|π(x + y)

π(x)
q(y)λLeb(dy) ≤ ε.(58)

From (15), for y ∈ Rx such that y has radial distance at least δ to Cx , the acceptance
probability satisfies π(x + y)/π(x) ≤ ε/K for all |x| sufficiently large [see Jarner
and Hansen (2000), page 351] and (56) shows that

lim sup
|x|→∞

∫
Rx∩Ec

x(δ,K)∩B(0,K)
|y|π(x + y)

π(x)
q(y)λLeb(dy) ≤ ε.(59)
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By combining (14), (54), (57), (58) and (59), lim sup|x|→∞ |�(x) − �̄(x)| ≤ 3ε

and since ε is arbitrary, lim|x|→∞ |�(x) − �̄(x)| = 0. �

PROOF OF PROPOSITION 2.6. Set z = (z1, . . . , zd)
def= �−1/2y and v =

n(�1/2u). Then,∫
{y,y′u≥0}

yq(y)λLeb(dy) = �1/2
∫
{z,v′z≥0}

zq0(z)λ
Leb(dz)

= �1/2v

∫
X
z11{z1≥0}q0(z) dz.

The proof follows. �

5.2. Proof of Lemma 2.9. Let δ and M be constants to be specified later. Write

�(x) −�∞(x)
def= ∑4

i=1 Ai(δ,M,x), where

A1(δ,M,x)
def=

∫
{y,|y|≤M,|y′�−1

2 x|≥δ|x|}
π(x + y)

π(x)
1R∞,x (y) yq(y)λLeb(dy),

A2(δ,M,x)
def=

∫
{y,|y|≤M,|y′�−1

2 x|≥δ|x|}

(
π(x + y)

π(x)
− 1

)(
1Rx (y) − 1R∞,x (y)

)
× yq(y)λLeb(dy),

A3(δ,M,x)
def=

∫
{y,|y|≤M,|y′�−1

2 x|≤δ|x|}

{(
π(x + y)

π(x)
− 1

)
1Rx (y) + 1R∞,x (y)

}

× yq(y)λLeb(dy),

A4(δ,M,x)
def=

∫
{y,|y|≥M}

{(
π(x + y)

π(x)
− 1

)
1Rx (y) + 1R∞,x (y)

}
yq(y)λLeb(dy).

For x = (x1, x2) such that |x1| − |x2| ≥ 2M and |y| ≤ M , and |x1 + y1| ≥ |x1| −
M ≥ |x2| + M ≥ |x2 + y2|, it is easily shown that

(1 − α) exp(−0.5y′�−1
2 y − x′�−1

2 y)

≤ π(x + y)

π(x)
(60)

≤ (1 − α)−1 exp(−0.5y′�−1
2 y − x′�−1

2 y).

If y ∈ R∞,x ∩ {z : |x′�−1
2 z| ≥ δ|x|}, then, by (60), π(x + y)/π(x) ≤ (1 −

α)−1e−δ|x|, which implies that |A1(δ,M,x)| ≤ (1−α)−1e−δ|x| ∫ |y|q(y)λLeb(dy).
Furthermore, for any K such that (1−α)−1e−δK ≤ 1 and x such that ||x1|−|x2|| ≥
2M and |x| ≥ K , R∞,x ∩ {y : |y| ≤ M, |x′�−1

2 y| ≥ δ|x|} ⊆ Rx . This property
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yields to the bound∣∣∣∣π(x + y)

π(x)
− 1

∣∣∣∣|1Rx (y) − 1R∞,x (y)|1{y, |x′�−1
2 y| ≥ δ|x|, |y| ≤ M}

(61)
≤ 1Rx\R∞,x (y)1{y, |y| ≤ M, |x′�−1

2 y| ≥ δ|x|}.
Again using (60) for y ∈ Rx ∩ {|y| ≤ M}, (1 − α)e−0.5a2M2

e−x′�−1
2 y ≤ π(x +

y)/π(x) ≤ 1. On the other hand, for y /∈ R∞,x satisfying |x′�−1
2 y| ≥ δ|x|, we

have x′�−1
2 y ≤−δ|x|, showing that

y ∈ Rx \ R∞,x ∩ {z, |z| ≤ M, |x′�−1
2 z| ≥ δ|x|}

$⇒ (1 − α)e−0.5a2M2
eδK ≤ π(x + y)/π(x) ≤ 1.

For fixed M , we choose K such that (1 − α)e−0.5a2M2
eδK > 1, which implies

that the right-hand side in (61) is zero and thus A2(δ,M,x) = 0. Finally, consider
Ai(δ,M,x), i = 3,4. Noting that∣∣∣∣

(
π(x + y)

π(x)
− 1

)
1Rx (y) + 1R∞,x (y)

∣∣∣∣ ≤ 2,

the proof follows from the bounds

|A3(δ,M,x)| ≤ 2M

∫
1{y, |y′�−1

2 x| ≤ δ|x|}|y|q(y)λLeb(dy),(62)

|A4(δ,M,x)| ≤ 2
∫
|y|≥M

|y|q(y)λLeb(dy).(63)

These terms are arbitrarily small for convenient constants M and δ.

5.3. Proof of Proposition 2.10.

5.3.1. Proof of condition (i) of Theorem 1.9. The only difficulty here stems
from the irregularity of the ODE for initial conditions on the diagonals. Con-

sider the β-fluid limit Q
β
u� with initial condition u�

def= (1/
√

2,1/
√

2) (the other

cases can be dealt with similarly). Set v�
def= (1/

√
2,−1/

√
2) and define V (x) =

|〈v�, x〉|. Since the increment distribution is assumed to be bounded, there ex-
ists a positive constant Cq such that |�1 − �0| ≤ Cq , Px-a.s. for all x ∈ X. By
Lemma 2.9, we may choose constants γ ∈ (0,1), m > 0, M0 > Cq and R such
that

R ∩ Ec ⊂ {x ∈ X, |〈v�,�(x)〉| ≥ m, 〈v�, x〉〈v�,�(x)〉 > 0},(64)

where (see Figure 9)

E
def= {x,V (x) ≤ M0} and R

def= {x ∈ X, |x| ≥ R, |〈v�, n(x)〉| ≤ γ }.(65)
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FIG. 9. The complement of the zone R and the strips E and F.

For δ > 0, define the stopping time κ(δ) as the infimum of the following three
stopping times

κ1(δ)
def= inf{k ≥ 0, |〈v�,�k〉| ≥ 2δ|�0|},(66)

κ2
def= inf{k ≥ 0, |�k − �0| ≥ (1/2)|�0|},(67)

κ3
def= inf{k ≥ 0, |�k| < R}.(68)

We will establish the following drift condition: there exist constants b > 0 and C

such that for all δ ∈ (0, γ /4),

E[V (�k+1)|Fk] ≥ V (�k)+m − b1E(�k) on the set {k < κ(δ)},(69)

Ex

[
κ(δ)−1∑
k=0

1E(�k)

]
≤ C,(70)

with the convention that
∑b

a = 0 when a > b. We postpone the proof of (69)
and (70) and show how these drift conditions allow us to obtain condition (i). On
the event {k < κ(δ)}, |�k| ≥ R, (1/2)|�0| ≤ |�k| ≤ (3/2)|�0| and |〈v�, n(�k)〉| ≤
4δ ≤ γ . Therefore, for all x ∈ X, Px-a.s.,

{k < κ(δ)} ⊂ {�k ∈ R}.(71)

Condition (69) yields, for any constant N > 0,

mEx[κ(δ)∧N ] ≤ Ex

[
V

(
�κ(δ)∧N

)
1{κ(δ) ≥ 1}] + bEx

[
κ(δ)∧N−1∑

k=0

1E(�k)

]
.
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The definitions of κ(δ) and Cq imply that Ex[V (�κ(δ)∧N)1{κ(δ) ≥ 1}] ≤ 2δ|x| +
Cq for all N , which, with (70), yields the bound

mEx[κ(δ)] ≤ 2δ|x| + bC +Cq.(72)

Let {xn} be a sequence of initial states such that limn→∞ xn = u� and {rn}
be a sequence of scaling constants, limn→∞ rn = +∞. By Lemma 4.10, there
exists T0 such that Q

β
u�{supt∈[0,T0] |η(t) − η(0)| < 1/4} = 1. Furthermore, we

have 1/2 ≤ |xn| ≤ 3/2 for all n large enough. Then, by the Portmanteau theo-
rem,

Qβ
u�
{η,η([0, T0])∩ O = ∅}

= lim
δ↓0+

Qβ
u�

{
η, sup

t∈[0,T0]
|η(t)− η(0)| < 1/4, sup

t∈[0,T0]
|〈v�, η(t)〉| < δ

}

≤ lim
δ↓0+

lim inf
n→∞ Prnxn

{
sup

0≤k≤2T0|�0|/3
|�k − �0| < (1/2)|�0|,

sup
0≤k≤2T0|�0|/3

|〈v�,�k〉| < 2δ|�0|
}

≤ lim
δ↓0+

lim inf
n→∞ Prnxn

(
κ(δ) ≥ 2T0|�0|/3

) = 0,

where the last equality stems from (72). This proves Theorem 1.9(i).
We now prove (69). Since E[�k+1|Fk] = �k +�(�k), Jensen’s inequality im-

plies that Ex[V (�k+1)|Fk] ≥ |〈v�,�k + �(�k)〉|. Furthermore, by (64) and (71),
{k < κ(δ),�k ∈ Ec} ⊂ {�k ∈ R ∩ Ec}, which implies that |〈v�,�k + �(�k)〉| −
|〈v�,�k〉| = |〈v�,�(�k)〉| ≥ m since, on R ∩ Ec, 〈v�, x〉 and 〈v�,�(x)〉 have the
same sign and 〈v�,�(x)〉 is lower bounded. On the set {k < κ(δ),�k ∈ E}, we
write V (�k+1) ≥ V (�k)−Cq so that E[V (�k+1)|Fk] ≥ V (�k)+m− (Cq +m).
This concludes the proof of (69).

Finally, we prove (70). For A ∈ X, we denote by σA
def= inf{k ≥ 0,�k ∈ A}

the first hitting time on A. For notational simplicity, we write κ instead of κ(δ).

Define recursively σ (1) def= σE∩R and, for all k ≥ 2, σ (k) def= σ (k−1) + τ ◦ θσ (k−1) +
σ (1) ◦ θτ◦θσ(k−1)+σ (k−1)

, where τ
def= κ ∧ k�, k� being an integer whose value will be

specified later. With this notation,

Ex

[
κ−1∑
k=0

1E(�k)

]
≤ k�

∑
q≥1

Px

(
σ (q) < κ

)
.(73)

Furthermore, for all q ≥ 2, the strong Markov property yields the bound

Px

(
σ (q) < κ

) ≤ Px

(
σ (q−1) < κ

)
sup

y∈E∩R
Py

(
τ + σ (1) ◦ θτ < κ

)
.
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Therefore, by (73), (70) holds, provided that supx∈E∩R Px(τ + σ (1) ◦ θτ < κ) < 1.
For all x ∈ E ∩ R, it is easily seen that

Px

(
τ + σ (1) ◦ θτ < κ

)
(74)

= Px(τ < κ)− Ex

(
1{τ < κ}1{�τ ∈ Ec ∩ R}P�τ

[
κ ≤ σ (1)])

≤ 1 − inf
x∈Ec∩R

Px

(
κ ≤ σ (1)){Px(τ = κ)+ Px(τ = k�,�k� ∈ Ec ∩ R)},(75)

showing that the conditions

inf
x∈E∩R

Px({τ < k�} ∪ {τ = k�,�k� ∈ Ec ∩ R}) > 0,(76)

inf
x∈Ec∩R

Px

(
κ ≤ σ (1)) > 0(77)

imply (70). We first prove (76). Choose γ̃ ∈ (γ,1) such that the four half-planes
{z, 〈z,�−1

i u±
�,γ̃

〉 < 0} (i = 1,2) have a nonempty intersection, where u−
�,γ̃

and u+
�,γ̃

are the unit vectors defining the edges of the cone Cγ̃
def= {z ∈ X, |〈v�, n(z)〉 ≤ γ̃ }.

Define

W
def= {z,0 ≤ |z| ≤ Cq, 〈z,�−1

i u±
�,γ̃

〉 ≤ 0, i = 1,2}.(78)

Since any vector y in the cone Cγ̃ can be written as a linear combination of the
vectors u−

�,γ̃
and u+

�,γ̃
with positive weights, for any y ∈ Cγ̃ and z ∈ W, 〈z,�−1

i y〉 ≤
0, i = 1,2, which implies that

〈z,∇π(y)〉
= −α〈z,�−1

1 y〉 exp(−0.5y′�−1
1 y) − (1 − α)〈z,�−1

2 y〉 exp(−0.5y′�−1
2 y)

≥ 0.

By choosing R large enough [see (65)], we can assume, without loss of generality,
that for all x ∈ R and z ∈ W, x + tz ∈ Cγ̃ for all t ∈ (0,1). Thus, π(x + z) =
π(x) + ∫ 1

0 〈∇π(x + tz), z〉dt ≥ 0 and we have π(x + z) ≥ π(x), showing that
W ⊂ Ax . Finally, we write W as the union of two disjoint sets W−, W+, where

W+ def= {z ∈ W, 〈v�, z〉 ≥ 0}. Since, for x ∈ R, W ⊂ Ax , for any 0 ≤ c ≤ Cq , we
have

inf
x∈R,〈v�,x〉≥0

Px

(|〈v�,�1〉| ≥ |〈v�,�0〉| + c
)

≥
∫

W+
1{y, |〈v�, y〉| ≥ c}q(y)λLeb(dy) > 0.

An analogous lower bound holds for all x ∈ R such that 〈v�, x〉 ≤ 0. These inequal-
ities, combined with repeated applications of the Markov property, yield (76), by
choosing k� such that k�c ≥ M0.
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We now prove (77). Let M1 > M0 and set F
def= {x,V (x) ≤ M1}. By Lemma A.1,

we may choose J ≥ 1 and then M1 > M0 large enough so that, for all x ∈ X,

Px

(
sup
j≥J

j−1

∣∣∣∣∣
j∑

l=1

εl

∣∣∣∣∣ ≥ m

)
< 1/2,

(79)

Px

(
sup
j≤J

∣∣∣∣∣
j∑

l=1

εl

∣∣∣∣∣ ≥ M1 −M0

)
< 1/2.

It is easily seen that, using the strong Markov property,

inf
x∈Ec∩R

Px(κ ≤ σE∩R) ≥ inf
x∈Ec∩R

Px(σFc∩R < σE∩R) inf
x∈Fc∩R

Px(κ ≤ σE∩R).

The first term of the right-hand side of the previous relation can be shown to be pos-
itive, using arguments which are similar to those used in the proof of (76). We write
〈v�,�k〉 = 〈v�,�0〉+∑k

l=1〈v�,�(�l−1)〉+∑k
l=1〈v�, εl〉. Let x ∈ Fc ∩R. Px -a.s.,

since |�l −�l−1| ≤ Cq ≤ M0, on the event {1 ≤ k ≤ σE∩R < κ}, |〈v�,�k〉| ≥ M0,
〈v�,�0〉〈v�,�j 〉 > 0 and 〈v�,�0〉〈v�,�(�j )〉 > 0 for all 0 ≤ j < k, which im-
plies that

|〈v�,�k〉| ≥ |〈v�,�0〉| +
k∑

l=1

|〈v�,�(�l−1)〉| −
∣∣∣∣∣

k∑
l=1

〈v�, εl〉
∣∣∣∣∣

≥ M1 + km −
∣∣∣∣∣

k∑
l=1

〈v�, εl〉
∣∣∣∣∣.

Thus, for all x ∈ Fc ∩ R, using the definition (79) of J and M1, we have

Px{J ≤ σE∩R < κ} ≤ sup
x∈X

Px

{
sup
j≥J

j−1

∣∣∣∣∣
j∑

l=1

〈v�, εl〉
∣∣∣∣∣ ≥ m

}
< 1/2,

Px{σE∩R < κ ∧ J } ≤ sup
x∈X

Px

{
sup
j≤J

∣∣∣∣∣
j∑

l=1

εl

∣∣∣∣∣ ≥ (M1 −M0)

}
< 1/2,

which proves infx∈Fc∩R Px(κ ≤ σE∩R) > 0 and therefore (77).

5.3.2. Proof of B4 and the conditions (ii)–(iii) of Theorem 1.9. Assume that

x ∈ C
def= {x,0 < |x2| < x1} (the three other cases are similar). By Lemma 2.9,

h(x) = −cqn(�−1
2 x) for all x ∈ C, which is locally Lipschitz. Hence, there ex-

ists a unique maximal solution μ(·;x) on [0, Tx] satisfying μ(0;x) = x and
μ(t;x) ∈ C for all t ≤ Tx , showing B4. Since, for t ∈ [0, Tx), d/dt |μ(t;x)|2 =
2|μ(t;x)|〈n(μ(t;x)), h◦μ(t;x)〉 < −2cq |a|−1|μ(t;x)|, the norm of the ODE so-
lution is bounded by |μ(t;x)| ≤ (|x|− cq |a|−1t)+ for all 0 ≤ t ≤ |x||a|c−1

q , which
implies condition (ii), provided that Tx ≥ TK for all x ∈ C ∩ B(0,K). This result
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follows from the fact that the boundaries of C are repulsive: consider the rela-

tive neighborhood in C, V
def= V1 ∪ V2, of the boundaries where V1

def= {x :x1 >

0, 〈v�, x〉 > 0, 〈x,�−1
2 v�〉 < 0} and V2

def= {x :x1 > 0, 〈u�, x〉 > 0, 〈x,�−1
2 u�〉 < 0}.

Assume that there exists s ∈ [0, Tx] such that μ(s;x) ∈ V1 (the other case can be
handled similarly). Since t �→ μ(t;x) is continuous and V1 is a relative open sub-
set of C, there exists δ such that for all 0 ≤ t ≤ δ, μ(s + t;x) ∈ V1. This implies
that for all 0 ≤ t ≤ δ,

〈v�,μ(s + t;x)〉 − 〈v�,μ(s;x)〉
= −cq

∫ t

0
|�−1

2 μ(s + u;x)|−1〈v�,�
−1
2 μ(s + u;x)〉du > 0,

showing that, in V1, the distance to the boundary always increases. The properties
above also imply condition (iii) of Theorem 1.9.

APPENDIX: TECHNICAL LEMMAS

LEMMA A.1. Let {εk}k≥1 be an Lp-martingale difference sequence adapted
to the filtration {Fk}k≥0. For any p > 1, there exists a constant C (depending only
on p) such that

E

[
sup

1≤l≤n

∣∣∣∣∣
l∑

k=1

εk

∣∣∣∣∣
p]

≤ C sup
k≥1

E[|εk|p]n1∨p/2,(80)

P

[
sup
n≤l

l−1

∣∣∣∣∣
l∑

k=1

εk

∣∣∣∣∣ ≥ M

]
≤ C sup

k≥1
E[|εk|p]M−pn−p+1∨p/2.(81)

PROOF. For p > 1, applying in sequence the Doob maximal inequality, by the
Burkholder inequality for Lp-martingales, there exists a constant Cp such that

E

[
sup

1≤l≤n

∣∣∣∣∣
l∑

k=1

εk

∣∣∣∣∣
p]

≤ CpE

[∣∣∣∣∣
n∑

k=1

|εk|2
∣∣∣∣∣
p/2]

.

Equation (80) follows from the Minkovski inequality for p ≥ 2,

E

[
sup

1≤l≤n

∣∣∣∣∣
l∑

k=1

εk

∣∣∣∣∣
p]

≤ Cp sup
k≥1

E[|εk|p]np/2,(82)

and the subadditivity inequality for 1 < p ≤ 2,

E

[
sup

1≤l≤n

∣∣∣∣∣
l∑

k=1

εk

∣∣∣∣∣
p]

≤ Cp sup
k≥1

E[|εk|p]n.(83)

Equation (81) follows from Birnbaum and Marshall (1961), Theorem 1. �
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LEMMA A.2. Let X,Y be two nonnegative random variables. Then, for any
p ≥ 1, there exists a constant Cp (depending only on p) such that, for any M > 0,

E[(X + Y)p1{X + Y > M}] ≤ Cp(E[Xp1{X ≥ M/2}] + E[Yp]).

PROOF. Note that 1{X + Y ≥ M} ≤ 1{X ≥ M/2} + 1{X ≤ M/2}1{Y ≥
M/2}. Therefore,

E(Xp1{X + Y ≥ M}) ≤ E(Xp1{X ≥ M/2}) + (M/2)pP(Y ≥ M/2)

≤ E(Xp1{X ≥ M/2}) + E(Yp).

The proof then follows from the fact that (X + Y)p ≤ 2p−1(Xp + Yp). �

LEMMA A.3. Let X be a nonnegative random variable. For any p ≥ 0, a > 1
and M , we have

E[Xp1{X ≥ M}] ≤ M−(a−1)pE[Xap].

PROOF.

E[Xp1{X ≥ M}] ≤ (E[Xap])1/a(P[X ≥ M])(a−1)/a

≤ (E[Xap])1/a(M−apE[Xap])(a−1)/a. �
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