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CONVEX PRICING BY A GENERALIZED ENTROPY PENALTY1

BY JOHANNES LEITNER

Vienna University of Technology

In an incomplete Brownian-motion market setting, we propose a convex
monotonic pricing functional for nonattainable bounded contingent claims
which is compatible with prices for attainable claims. The pricing functional
is defined as the convex conjugate of a generalized entropy penalty functional
and an interpretation in terms of tracking with instantaneously vanishing risk
can be given.

1. Introduction. Given an incomplete market, one of the problems of mathe-
matical finance is to price nonattainable contingent claims. One way to do this is
(expected or robust) utility indifference pricing. Typically, pricing functionals are
desired to be convex, monotonic, (weakly) continuous and translation invariant or
monetary. Furthermore, for attainable claims, the pricing functional should lead to
the price of a replicating self-financing hedging strategy.

However, having sold a nonattainable contingent claim for such a utility indif-
ference price, it is not clear whether their exists a good way to hedge the claim
from a (market) risk management point of view.

In our approach, the risk stemming from not being able to perfectly repli-
cate a nonattainable claim, measured at an instantaneous level, directly enters
the pricing functional via an instantaneous penalty. The pricing functional can
be represented using its convex conjugate which can be interpreted as a gener-
alized relative entropy functional. The total penalty turns out to be the general-
ized entropy of an equivalent martingale measure depending on the claim, rel-
ative to the minimal martingale measure, introduced in Föllmer and Schweizer
(1990).

Similarly, as for expected exponential utility indifference pricing functionals
[see Rouge and El Karoui (2000), Lazrak and Quenez (2003) and Mania and
Schweizer (2005)], a quadratic BSDE appears. See El Karoui, Peng and Quenez
(1997), El Karoui and Mazliak (1997), Ma and Yong (1999) and Peng (2004)
for the BSDE theory. Quadratic BSDEs have been considered in Kobylanski
(1997), Kobylanski (2000), Lepeltier and San Martin (1998) and Briand and Hu
(2006).
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After introducing the market model in Section 2, we propose in Section 3 a
generalized relative entropy functional. This convex functional is used in Section 4
as a penalty functional in order to define a convex pricing functional as its convex
conjugate. Alternatively, the pricing functional can be defined as the initial value of
a bounded quadratic growth BSDE with terminal value in L∞. In Section 5 a local
representation of the pricing functional is shown to also make it an instantaneous
risk measure.

2. Preliminaries. Let � := (�,F ,F,P ) be a stochastic base satisfying the
usual assumptions, where the augmented filtration F = (Ft )t∈R+ is generated by an
Rn-dimensional standard Brownian motion W = (W 1,W 2), Wk Rnk -valued, nk ≥
1, k = 1,2, 〈W 1,W 2〉 = 0. In particular, we assume (�,F0,P ) to be a complete
probability space, an assumption which will be needed for several measurability
results for closed random sets.

Consider a market model with n1 traded assets whose price processes are, for
sake of simplicity, modeled as S = S0 + λ · t + W 1 for a uniformly bounded pre-
dictable Rn1 -valued process λ, S0 ∈ Rn1 , and where tt := t, t ∈ R+. For a general
price process with martingale part given as a stochastic integral with respect to
W 1, and under a regularity assumption on its drift and volatility matrix, by orthog-
onalization, this can always be achieved.

The relative entropy of a probability measure Q with respect to P is defined for
Q � P as

H(Q|P) := EP

[
dQ

dP
ln

dQ

dP

]
= EQ

[
ln

dQ

dP

]
∈ [0,∞],(1)

respectively as H(Q|P) := ∞ otherwise; see, for example, Csiszár (1975).
Fix a time horizon 0 < T < ∞ and denote by Q the set of all probability mea-

sures on (�,FT ), absolutely continuous with respect to P . Define M as the set of
probabilities Q ∈ Q such that S becomes on [0, T ] a local martingale with respect
to Q. The so-called minimal equivalent martingale measure (EMM) Qmin over

[0, T ] is defined by dQmin

dP
= E(−λ · W 1)T ; see Föllmer and Schweizer (1990).

Qmin is in general different from the minimal entropy EMM; see Frittelli (2000)
and Delbaen et al. (2002).

Since Qmin ∼ P , we have Q � Qmin for all Q ∈ Q and we can interpret Q
as a subspace of L1(Qmin) via Q 	→ dQ

dQmin . Note that M is convex and closed

in L1(Qmin). Recall that, by the predictable martingale representation property of
Brownian motion, we can find for all Q ∈ M with density process q := qQ :=
E[dQ

dP
|F·], an up to evanescence unique predictable Rn2 -valued process γ = γ Q

with γ = γ 1[0,τ ), where τ := τQ := inf{t ≥ 0|qt = 0}, such that γ · W 2 is a local
martingale on [0, τ ) and q = E(−λ · W 1 + γ · W 2).
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3. Generalized entropy penalties. Set hE := |γ |2
2 · t. hE is the entropy-

Hellinger process of Q ∈ M with respect to Qmin introduced in Choulli and
Stricker (2005). It has been shown there that H(Q|Qmin) = EQ[hE

T ] holds. The

idea is now to replace dhE

dt
= |γ |2

2 by a more general convex function ρ̂ ≥ 0 of γ

(to be specified more precisely in the next section), and to define a generalized
entropy of Q with respect to Qmin by

Hρ(Q|Qmin) := EQ

[∫ T

0
ρ̂t (γ ) dt

]

(2)

= E

[∫ T

0
qt ρ̂t (γ ) dt

]
∈ [0,∞],

where ρ̂ denotes the convex conjugate of ρ and where we have used the following
well-known result for the 2nd identity:

LEMMA 3.1. Let A be a nondecreasing predictable (continuous) process
with A0 = 0. Then for all Q � P with density process q , we have EQ[A∞] =
E[∫ ∞

0 qt dAt ] ∈ [0,∞].

PROOF. Note that EQ[ATn] → EQ[A∞] for all increasing sequences of stop-
ping times (Tn)n≥1 with limn→∞ Tn = ∞. Since qA = A · q + q · A and A · q

is a local martingale, we find for a localizing sequence (Tn)n≥1, EQ[ATn] =
E[qTnATn] = E[q · ATn] → E[q · A∞]. �

REMARK 3.1. It is possible to show convexity of the functional Hρ(·|Qmin)

directly. However, establishing weak lower semi-continuity by a direct argument
seems to be difficult (due to the complex relationship between Q and γ , especially
if Q ∈ Q is not equivalent to P ). Only by identifying Hρ(·|Qmin) as the convex
conjugate of a weak-∗ lower semi-continuous convex functional are we going to
achieve this in Theorem 4.1.

3.1. Closed random sets. Let us collect some well-known results on random
closed sets and normal integrands; see Molchanov (2005), in particular, Chapter
5.3.1.

Set �̃ := � × R+, denote by P the predictable σ -algebra for � on �̃ and let
P̃ denote the product measure of P and the Lebesgue-measure on R+. Let ρ be
a P -measurable normal convex integrand on Rn2 , that is, ρ : �̃ × Rn2 → R, and
ω̃ 	→ epi(ρ(ω̃, ·)), ω̃ ∈ �̃, is a P -measurable random closed convex set, where
epi(ρ(ω̃, ·)) := {(z, r) ∈ Rn2 × R|ρ(ω̃, z) ≤ r} for all ω̃ ∈ �̃. For a Rn2 -valued
predictable process γ , ρ(γ ) : �̃ → R defined by ω̃ 	→ ρ(ω̃, γ (ω̃)) is then P -
measurable. Similarly, as in Theorem 5.3.13 in Molchanov (2005), one shows that
∂ρ(γ ), where the closed convex random set ∂ρ(z) := {y ∈ Rn2 |ρ(z) + 〈x, y〉 ≤
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ρ(z + x),∀x ∈ Rn2} is the (random) sub-differential of ρ at z ∈ Rn2 , is a P -
measurable closed convex random set. Note that since ρ is assumed to be R-
valued, it follows that P̃ -a.s. ∂ρ �= ∅. The convex conjugate ρ̂ of ρ is defined by
ρ̂(γ ) := supz∈Rn2 zγ − ρ(z) for all γ ∈ Rn2 . ρ̂ is known to be an extended normal
convex integrand on Rn2 with P̃ -a.s. ∂ρ̂ �= ∅; see Theorem 5.3.13 in Molchanov
(2005).

3.2. Bounded quadratic growth. Let ρ denote a P -measurable normal convex
integrand on Rn2 . We are going to need a quadratic growth bound on ρ, hence, we
will assume throughout that P̃ -a.s. ρ ≥ 0, ρ(0) = 0 and

ρ(z) ≤ K

2
|z|2, z ∈ Rn2,(3)

for some constant K > 0. Note that then, for all γ ∈ Rn2 ,

ρ̂(γ ) := sup
z∈Rn2

zγ − ρ(z)

≥ sup
z∈Rn2

zγ − K

2
|z|2 = K−1

2
|γ |2,

hence, we have P̃ -a.s. ρ̂ ≥ 0, ρ̂(0) = 0 and a quadratic growth bound from below:
ρ̂(z) ≥ K−1

2 |z|2, z ∈ Rn2 . Furthermore, we are going to need the following bounded
growth condition on ρ̂: For all γ ∈ Rn2 , we assume P̃ -a.s.

∂ρ̂(γ ) ⊆ B2K−1|γ |,(4)

where Br := {z ∈ Rn2 ||z| ≤ r}. Note that then, for all γ ∈ Rn2 , we have P̃ -a.s.

ρ̂(γ ) =
∫ 1

0
∂+
γ ρ̂(sγ ) ds

=
∫ 1

0
sup

z∈∂ρ̂(sγ )

zγ ds

≤
∫ 1

0
2K−1s|γ |2 ds

= K−1|γ |2 = (K/2)−1

2
|γ |2.

Hence, we find similarly as above P̃ -a.s. ρ(z) ≥ K/2
2 |z|2, z ∈ Rn2 . That is, under

conditions (3) and (4), ρ and ρ̂ are both sandwiched between two parabola. Alter-
natively, we could replace (3) by the stronger condition

∂ρ(z) ⊆ BK|z|, z ∈ Rn2 .(5)

For ρ, ρ̂ satisfying conditions (3) and (4), we can define Hρ(·|Qmin) by
equation (2) and we find immediately for all Q ∈ M, Hρ(Q|Qmin) < ∞ iff
H(Q|Qmin) < ∞.



624 J. LEITNER

4. A convex pricing functional. In this section we are going to present a con-
vex pricing functional, based on a generalized entropy penalty, which is compatible
with prices for attainable contingent claims.

Assume condition (3) and consider the following convex quadratic BSDE:

dY = −f (Z1,Z2) dt + Z1 dW 1 + Z2 dW 2, YT = ξ ∈ L∞,(6)

with predictable random generator f defined as f (ω, t, z1, z2) := −z1λt (ω) +
ρ(ω, t, z2) for (ω, t, z1, z2) ∈ � × [0, T ] × Rn1 × Rn2 , where we will often sup-
press the dependency on (ω, t) and write f (Z1,Z2) or ft (Z

1,Z2) instead.
BSDE (6) admits a unique solution (Y ξ ,Z1,Z2) = (Y ξ ,Zξ,1,Zξ,2) with

square-integrable martingale part and supt∈[0,T ] |Y ξ
t | ∈ L∞; see Kobylanski

(2000). This allows us to define the following map F :L∞ → R by

F(ξ) := Fρ(ξ) := Y
ξ
0 , ξ ∈ L∞.(7)

It has been shown by Kobylanski (2000) that F is continuous with respect to ‖·‖∞-
norm and by the comparison principle, convexity of the generator f implies F to
be convex.

Clearly, strong continuity is a desirable property of any pricing functional: Ap-
proximately, equal derivatives (with respect to L∞-norm) should have approxi-
mately the same prices. Admittedly, we do not have a cogent argument that all
sensible pricing functionals necessarily should be convex. One could claim some-
what vaguely that convexity supports mitigation of risks by encouraging diversi-
fication and risk sharing, but in our opinion such arguments better apply if the
pricing functional is in addition positively homogeneous. For the moment con-
vexity is just a very useful technical property which we can not dispense with.
However, in Section 5 we are going to see in which sense the risk immanent in ξ

enters the price F(ξ), and this interpretation is very much based on the convexity
of F , respectively f .

Since norm-continuity for convex functionals implies weak-∗ lower semi-
continuity by Mazur’s lemma, we find F to be convex and lower semi-continuous
with respect to the σ(L∞,L1)-topology on L∞ [see, e.g., Ekeland and Témam
(1999)].

Consider the convex conjugate of F with respect to the σ(L∞,L1)-topology on
L∞, restricted to Q:

F̂ (Q) := F̂ ρ(Q) := sup
ξ∈L∞

EQ[ξ ] − Fρ(ξ), Q ∈ Q.(8)

Let H = HT denote the set of Rn1 -valued predictable processes H on [0, T ] such
that E[∫ T

0 |Ht |2 dt] < ∞ and for V H := (Hλ) · t + H · W 1, sup0≤t≤T |V H
t | ∈

L∞. Note that for H ∈ H and v0 ∈ R, (Y ξ + v0 + V H ,Z1 + H,Z2) solves
BSDE (6) for terminal value ξ + v0 + V H

T . It follows that F(ξ + v0 + V H
T ) =

F(ξ + v0) = F(ξ) + v0 and we easily find F̂ (Q) = ∞ for Q /∈ M. In par-
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ticular, F is compatible with prices for attainable contingent claims since
F(v0 + V H

T ) = v0.

THEOREM 4.1. Under conditions (3) and (4), for all Q ∈ M, we have

F̂ ρ(Q) = Hρ(Q|Qmin).(9)

In particular, Hρ(·|Qmin) is an extended weakly lower semi-continuous convex
functional on M.

PROOF. Let Q ∈ M and denote by q = E(−λ · W 1 + γ · W 2)T its density
process. Set τ := inf{t ≥ 0|qt = 0} ∧ T and let ξ ∈ L∞ admit the BSDE represen-
tation (Y ξ ,Z1,Z2). Note that for any sequence of stopping times (Tn)n≥1, increas-
ing to τ , we have EQ[ξ ] = limn→∞ EQ[Y ξ

Tn
] = limn→∞ E[qTnY

ξ
Tn

] for ξ ∈ L∞,

since supt∈[0,T ] |Y ξ
t | ∈ L∞. Since for a local martingale l,

qY ξ = Y
ξ
0 + (

q
(
Z2γ − Z1λ − f (Z1,Z2)

)) · t + l

= F(ξ) + (
q
(
Z2γ − ρ(Z2)

)) · t + l,

we find

EQ[ξ ] − F(ξ) = E

[∫ T

0
qt

(
Z2

t γt − ρt (Z
2)

)
dt

]
(10)

and

lim
n→∞E

[∫ T

Tn

qt

(
Z2

t γt − ρt (Z
2)

)
dt

]
= 0.(11)

Since γ · W 2 is a local martingale on [0, τ ), |γ |2 · t is on [0, τ ) locally in-
tegrable. Under condition (4), and using the measurable selection theorem for
random closed sets, we find a predictable Rn2 -valued process Z̃ such that on
[0, τ ) P̃ -a.s. Z̃ ∈ ∂ρ̂(γ ) holds. By condition (4), we have |Z̃| ≤ 2K−1|γ | on
[0, τ ). It follows that |Z̃|2 · t is locally integrable on [0, τ ). Furthermore, since
the process −f (0, Z̃) · t + Z̃ · W 2 is locally bounded on [0, τ ), we can find
a sequence of stopping times (Tn)n≥1, Tn < τ , increasing to τ , and such that
ξn := − ∫ Tn

0 ft (0, Z̃) dt + ∫ Tn

0 Z̃t dW 2
t ∈ L∞, n ≥ 1.

Since P̃ -a.s. ρ̂(γ ) = Ẑγ − ρ(Ẑ) = supz∈Rn2 zγ − ρ(z) on [0, τ ) iff P̃ -a.s. Ẑ ∈
∂ρ̂(γ ) on [0, τ ), and since for all n ≥ 1, ξ̃ n := ξ − Y

ξ
Tn

∈ L∞, we find for ξ̂ n :=
ξn + ξ̃ n ∈ L∞, EQ[ξ̂ n] − F(ξ̂n) = E[∫ Tn

0 qt ρ̂t (γ ) dt + ∫ T
Tn

qt (Z
2
t γt − ρt (Z

2)) dt].
Hence,

EQ[ξ̂ n+1] − F(ξ̂n+1) ≥ EQ[ξ̂ n] − F(ξ̂n)
(12)

≥ EQ[ξ ] − F(ξ), n ≥ 1,
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and by Lemma 3.1, F̂ (Q) = E[∫ T
0 qt ρ̂t (γ ) dt] = Hρ(Q|Qmin). �

Set F̃ (ξ) := supQ∈Q EQ[ξ ] − F̂ (Q) = supQ∈M EQ[ξ ] − F̂ (Q) for ξ ∈ L∞.

PROPOSITION 4.1. Under conditions (4) and (5), for all ξ ∈ L∞, F̃ (ξ) =
F(ξ) holds and there exists a probability measure Qξ ∈ M, Qξ ∼ P with F(ξ) =
EQξ [ξ ] − F̂ (Qξ ).

PROOF. We follow in part the proof of Theorem 2.1 in Frittelli (2000): Let
(Qn)n≥1 be a sequence in M such that EQn[ξ ] − F̂ (Qn) increases to F̃ (ξ). Since
{EQn[ξ ]|n ≥ 1} is bounded, {F̂ (Qn)|n ≥ 1} is bounded too. By (3), we have P̃ -

a.s. ρ̂(z) ≥ K−1 |z|2
2 , z ∈ Rn2 . Hence, F̂ (Q) ≥ K−1H(Q|Qmin) for all Q ∈ M and

{H(Qn|Qmin)|n ≥ 1} is bounded. It follows now from the Vallée–Poussin crite-
rion [see, e.g., Dellacherie and Meyer (1982)] that { dQn

dQmin |n ≥ 1} is uniformly in-

tegrable with respect to Qmin and by the Dunford–Pettis compactness theorem, we

can assume ( dQn

dQmin )n≥1 to converge weakly in L1(Qmin) to dQξ

dQmin for a measure

Qξ ∈ Q. Since S is locally bounded, we easily find Qξ ∈ M. By weak convergence
and weak lower semi-continuity of F̂ , we have F̂ (Qξ ) ≤ lim infn→∞ F̂ (Qn),
hence, F̃ (ξ) = EQξ [ξ ] − F̂ (Qξ ). Let q = qQξ

be given as E(−λ · W 1 + γ · W 2).

|γ |2 · t is then locally integrable on [0, τ ) for τ := τQξ ∧ T and by condition (4)
(qρ̂(γ )) · t as well. We have on [0, τ ), for some local martingale l,

qY ξ − (qρ̂(γ )) · t − Y
ξ
0 = q · Y ξ + Y ξ · q + [q,Y ξ ] − (qρ̂(γ )) · t

= (
q
(
γZ2 − f (Z1,Z2) − Z1λ − ρ̂(γ )

)) · t + l

= (
q
(
γZ2 − ρ(Z2) − ρ̂(γ )

)) · t + l.

Since P̃ -a.s. γZ2 − ρ(Z2) ≤ ρ̂(γ ) and γZ2 − ρ(Z2) = ρ̂(γ ) on [0, τ ) iff P̃ -a.s.
Z2 ∈ ∂ρ̂(γ ) on [0, τ ), we find by optimality of Qξ that P̃ -a.s. γZ2 − ρ(Z2) =
ρ̂(γ ) on [0, τ ). Hence, qY ξ − (qρ̂(γ )) · t is a local martingale on [0, τ ) and the
assertion follows from F(ξ) = Y

ξ
0 = limn→∞ EQξ [Y ξ

Tn
] − F̂ (Qξ ) = F̃ (ξ) for a

localizing sequence (Tn)n≥1, Tn < τ , increasing to τ . In order to show Qξ ∼ P ,
observe that P̃ -a.s. Z2 ∈ ∂ρ̂(γ ) on [0, τ ) iff P̃ -a.s. γ ∈ ∂ρ(Z2) on [0, τ ), and con-
dition (5) implies

∫ τ
0 |γt |2 dt to be integrable. Hence γ · W 2 is a square integrable

martingale on [0, τ ], implying qτ > 0 a.s. by the Doléans–Dade formula for the
stochastic exponential and τ = T . �

Note that F = F̃ implies F to be monotonic and, moreover, ξ ≥ 0 and P(ξ >

0) > 0 implies F(ξ) > 0. Like strong continuity and weak lower semi-continuity,
this property is desirable for any pricing functional. In the following section we



CONVEX PRICING BY A GENERALIZED ENTROPY PENALTY 627

give an interpretation of how the pricing functional penalizes for risk in terms of
the instantaneous risk of an optimal tracking error.

Consider the predictable Rn2 -valued process γ̂ := Z2ρ(Z2)

|Z2|2 , ( 0
0 = 0). It is easy

to check that for q̂ := E(−λ · W 1 + γ̂ · W 2), q̂Y ξ is a local martingale on [0, T ].
Similarly, as in Lemma 4.2 in Hu, Imkeller and Müller (2005), in order to show
that q̂T defines a probability measure Q̂ξ ∼ P in M, it suffices by Theorem 2.3
in Kazamaki (1994) to show that γ̂ · W 2 is a BMO martingale on [0, T ]. Since
P̃ -a.s. |γ̂ | ≤ K

2 |Z2| by condition (3), it suffices to show that Z2 · W 2 or M :=
Z1 · W 1 + Z2 · W 2 is a BMO martingale on [0, T ].

LEMMA 4.1. MT is a BMO martingale.

PROOF. Set Eτ [·] := E[·|Fτ ] for all stopping times 0 ≤ τ ≤ T . By translation
invariance and uniqueness, we can without loss of generality assume Y = Y ξ ≤ 0.
Using Itô’s formula, we calculate

Eτ [Y 2
T − Y 2

τ ] ≥ Eτ

[
Y 2

T − Y 2
τ −

∫ T

τ

∣∣∣∣ Z1
t√
2

+ √
2Ytλt

∣∣∣∣
2

dt

]

= Eτ

[∫ T

τ

1

2
|Z1

t |2 − 2Y 2
t |λt |2 + |Z2

t |2 − 2Ytρt (Z
2) dt

]

≥ 1

2
Eτ

[∫ T

τ
|Z1

t |2 + |Z2
t |2 dt

]
− Eτ

[∫ T

τ
2Y 2

t |λt |2 dt

]
.

Since sup0≤t≤T |Yt |, sup0≤t≤T |λt | ∈ L∞, we find supτ Eτ [∫ T
τ |Z1

t |2 + |Z2
t |2 dt] to

be uniformly bounded. �

Note that Y ξ is a uniformly bounded Q̂ξ -martingale. Hence, introducing a new
asset with price process Y ξ to the market spanned by S results again into an
arbitrage-free market. However, we think of ξ rather as a one-time OTC deriva-
tive deal that has to be priced. We do not expect a liquid market in the derivative
ξ with price process Y ξ to come into existence. (This is a quite realistic assump-
tion: Even in deep option markets, only options near or at the money can really be
regarded as liquid.) The seller is interested in hedging ξ using the liquid assets S.
In the following section we are going to see in which sense exactly the initial price
F(ξ) allows the seller to hedge ξ .

5. Instantaneous risk. We are going to work in the following setting: Let
δ : �̃ × Rn1 × Rn2 → R be a normal convex integrand on Rn1 × Rn2 . It is easy
to check that then, for all z1 ∈ Rn1 , the section δz1 : �̃ × Rn2 → R, defined
by δz1(ω̃, z2) := δ(ω̃, z1, z2), (ω̃, z2) ∈ �̃ × Rn2 , is a normal convex integrand
on Rn2 . Furthermore, ω̃ 	→ {(z2, r)| infz1∈Rn1 z1λ(ω̃) + δ(ω̃,−z1,−z2) ≤ r} =
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cl
⋃

z1∈Qn1 {(z2, r)|z1λ(ω̃) + δ−z1(ω̃,−z2) ≤ r} defines a closed random set. If, in

addition, for δz2 := δ(·, z2), P̃ -a.s. infz1∈Rn1 z1λ+ δz2(−z1) = −δ̂z2(λ) > −∞, for
example, if P̃ -a.s. δ(z1, z2) ≥ k(1 + |z1|2) for some constant k > 0, then ρ : �̃ ×
Rn2 → R, defined by ρ(ω̃, z2) := infz1∈Rn1 z1λ(ω̃) + δ(ω̃,−z1,−z2), (ω̃, z2) ∈
�̃ × Rn2 , is a normal integrand on Rn2 . Assume that, for almost all (ω̃, z2) ∈
�̃ × Rn2 , z1λ(ω̃) + δ(ω̃,−z1,−z2) assumes its minimum for a unique z1 ∈ Rn1 .
It is easy to check that convexity of δ implies ρ to be convex. Assuming now
that δ(z1, xz2) increases in x ≥ 0 for all (z1, z2) ∈ Rn1 × Rn2 and replacing δ

by δ − ρ(0), we find for the corresponding ρ, ρ ≥ 0 and ρ(0) = 0. A uniform
quadratic growth bound in the last variable of δ results into a uniform quadratic
growth bound for ρ as required in our setting.

Conversely, starting with ρ, consider δ defined by δ(z1, z2) := ρ(−z2) +
k−1

2 |λ|2 + k
2 |z1|2. It is then easy to check that the corresponding ρ constructed

as above equals the ρ we have started with.
δ can be interpreted as an instantaneous risk measure: Let (Y ξ ,Z1,Z2) be the

solution to BSDE (6) and assume we are trying to track Y ξ by trading in S. Con-
sider for V H := Y

ξ
0 + H · S,H ∈ H , the tracking error increment [see Leitner

(2006)]

d(V H − Y ξ ) = (
Hλ + f (Z1,Z2)

)
dt + (H − Z1) dW 1 − Z2 dW 2

= (
(H − Z1)λ + ρ(Z2)

)
dt + (H − Z1) dW 1 − Z2 dW 2.

Assign to an increment μdt + z1 dW 1 + z2 dW 2 the instantaneous risk r(μ, z1,

z2) := −μ + δ(z1, z2) and note that this definition is an infinitesimal version of
a convex risk measure, that is, it is translation invariant in the drift μ and convex
in (μ, z1, z2) ∈ R × Rn1 × Rn2 . See Artzner et al. (1999) and Delbaen (2001) for
coherent risk measures, and Föllmer and Schied (2002) for convex risk measures.
For related results on dynamic convex risk measures, see Barrieu and El Karoui
(2004, 2005, 2007) and Klöppel and Schweizer (2007).

DEFINITION 5.1. We say that H ∈ H has instantaneously vanishing risk for
ξ with respect to ρ (or δ) if the instantaneous risk r((H − Z1)λ + ρ(Z2),H −
Z1,−Z2) of the tracking error increment d(V H − Y ξ ) vanishes on [0, T ]. H has
nonnegative instantaneous risk for ξ if r((H −Z1)λ+ ρ(Z2),H −Z1,−Z2) ≥ 0
holds on [0, T ].

We have the following result:

PROPOSITION 5.1. All H ∈ H have nonnegative instantaneous risk for ξ .
H has instantaneously vanishing risk with respect to ρ iff (up to evanescence)
z1λ + δ(−z1,−Z2) attains its minimum at z1 = Z1 − H .
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PROOF. We find for the instantaneous risk r assigned to d(V H − Y ξ )

r = −(
(H − Z1)λ + ρ(Z2)

) + δ(H − Z1,−Z2)

= −ρ(Z2) + (Z1 − H)λ + δ
(−(Z1 − H),−Z2)

≥ −ρ(Z2) + (Z1 − Ĥ )λ + δ
(−(Z1 − Ĥ ),−Z2) = 0,

for Ĥ := Z1 − h, where h satisfies hλ + δ(−h,−Z2) = infz1∈Rn1 z1λ + δ(−z1,

−Z2). �

Note that it follows from the normality of δ that h in the above proof can be cho-
sen to be predictable. Under a bounded growth condition, the optimal Ĥ := Z1 −h

will be locally in H . However, it is an open problem under which conditions
Ĥ ∈ H holds.

To give a simple example, consider δ(z1, z2) := c + k
2(|z1|2 + |z2|2) for pre-

dictable c, k, k > 0. For c := k−1

2 |λ|2, it is easy to check that with ρ constructed

from δ as above, we have ρ(z2) = k
2 |z2|2 and ρ̂(z2) = k−1

2 |z2|2, z2 ∈ Rn2 . If
K−1 ≤ k ≤ K for some constant K > 1, we can apply our previous results, and

we find Hρ(Q|Qmin) = EQ[∫ T
0

k−1
t

2 |γt |2 dt] for all Q ∈ M, which can be inter-

preted as a weighted entropy functional. For the optimal tracking strategy Ĥ , we
find Ĥ = Z1 + k−1λ and Ĥ · W 1 to be a BMO martingale on [0, T ] by Lemma
4.1. This suggests that the right space of hedging strategies to work with could
be the space of self-financing strategies such that the resulting value processes
are BMO martingales with respect to Qmin. However, solving quadratic BSDEs
with unbounded terminal value seems to be quite difficult; see Briand and Hu
(2006).

6. Conclusions. The advantage of our pricing method is that the dynam-
ics of the tracking error provides an immediate feedback on the performance of
the hedge. This is very convenient for P&L considerations practitioners are in-
terested in. In contrast, having priced and sold a nonattainable contingent claim
by expected (exponential) utility indifference, it is not clear how to hedge such
a financial obligation in a good way from a (market) risk management point of
view.
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