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RECURSIVE COMPUTATION OF THE INVARIANT MEASURE OF
A STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BY
A LEVY PROCESS

BY FABIEN PANLOUP

Université Paris 6

We study some recursive procedures based on exact or approximate Euler
schemes with decreasing step to compute the invariant measure of Lévy
driven SDEs. We prove the convergence of these procedures toward the in-
variant measure under weak conditions on the moment of the Lévy process
and on the mean-reverting of the dynamical system. We also show that an a.s.
CLT for stable processes can be derived from our main results. Finally, we
illustrate our results by several simulations.

1. Introduction.

1.1. Objectives and motivations. This paper is devoted to the computation of
the invariant measure (denoted by v) of ergodic stochastic processes which obey
a stochastic differential equation (SDE) driven by a Lévy process. Practically, we
want to construct a sequence of empirical measures (v,(w,dx)),>1 which can
be recursively simulated and such that v, (w, f) — v(f) a.s. for a range of func-
tions f containing bounded continuous functions.

In the case of Brownian diffusions, some methods have already been developed
by several authors to approximate the invariant measure (see Section 1.3), but this
paper seems to be the first one that deals with this problem in the case of general
Lévy driven SDEs. The motivation for this generalization is the study of dynam-
ical systems that are widely used in modeling. Indeed, there are many situations
where the noise of the dynamical system is discontinuous or too intensive to be
modeled by a Brownian motion. Let us consider an example that comes from the
fragmentation-coalescence theory. In situations such as polymerization phenom-
enons, when temperature is near to its critical value, molecules constantly break-up
and recombine. This situation has been modeled by Berestycki [2] through what
he terms EFC (Exchangeable Fragmentation-Coalescence) process. The mass of
the dust generated by this process (see [2] for more details) is a solution to a
mean-reverting SDE for which the noise component is driven by a subordinator
(an increasing Lévy process). We come back to this example in Section 7.
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For other examples of situations where models that use a Lévy driven SDE are
adapted, we refer to Barndorff-Nielsen et al. [1] for examples in financial mod-
eling (where ergodic Lévy driven SDEs are usually used to model the volatil-
ity of a financial market), Protter—Talay [23] for examples in finance, electrical
engineering, . .. or Deng [8], who models the spot prices of electricity by a mean-
reverting Brownian diffusion perturbed by a compound Poisson noise.

1.2. The stochastic differential equation. According to the Lévy—Khintchine
decomposition (for this result and for introduction to Lévy processes, see, e.g.,
Bertoin [4], Protter [22] or Sato [25]), an R!-valued Lévy process (L;) with Lévy
measure 7 admits the following decomposition: L, = at + /OW; + Y; + N,
where o € R/, Q is a symmetric positive / x [ real matrix, (W) is a /-dimensional
standard Brownian motion, (Y;) is a centered /-dimensional Lévy process with
jumps bounded by 1 and characteristic function given for every ¢ > 0 by

{lyl=1}

and (N;) is a compound Poisson process with parameters A = 7 (]y| > 1) and
u(dy) = ljy>1ym(dy)/m(ly| > 1) (A denotes the parameter for the waiting time
between the jumps of N and p, the distribution of the jumps). Moreover, (W;),
(Y;) and (N;) are independent Lévy processes.

Following this decomposition, we consider an R?-valued cadlag process (X;)
solution to the SDE

(1) dX, =b(X,-)dt +o(X,~)dW; + k(X,-)dZ,,

where b:R? > R?, 5 : R My s (set of d x [ real matrices) and « ‘RY My
are continuous with sublinear growth and (Z;) is the sum of the jump components
of the Lévy process: Z; = Y; + N;.

In most papers dealing with Lévy driven SDEs, the SDE reads dX; =
f(X;-)dL;, where (L;);>0 is a Lévy process. Here, we separate each part of
the Lévy process because they act differently on the dynamical system. We isolate
the drift term because it usually produces the mean-reverting effect (which in turn
induces the ergodicity of the SDE). The two other terms are both noises, but we
distinguish them because they do not have the same behavior.

REMARK 1. In (1) we chose to write the jump component by compensating
the jumps smaller than 1, but it is obvious that, for every & > 0, (X;) is also solution
to

() dX, =b"(X,-)dt + o (X,-)dW, +«(X,-)dZ"
with b" = b+ [y e YP@Y) if b > 1, 6" =b— [/, cuiyy y7(dy) if h < 1, and
Zl = Y + N, where the characteristic function of ¥} is given for every ¢ > 0 by

E{ei(u,Yth)} — exp[t(/ ei(u,y) —1- i(l/t, y)n(dy))}
{lyl<h}
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and (Nth) is a compound Poisson process with parameters M= n( y| > h) and
wl(dy) = Ljy>mm(dy)/m(]y| > h). By this remark, we want to emphasize that
the formulation (1) is conventional and that the coefficient » in (1) is dependent on
this choice. We will come back to this remark when we introduce the assumptions
of the main results where we want, on the contrary, that they be intrinsic (see
Remark 4).

Let us recall a result about existence, uniqueness and Markovian structure of
the solutions of (1) (see [22]).

THEOREM 1. Assume that b, o and «k are locally Lipschitz functions with
sublinear growth. Let (2, ¥, (¥7), P) be a filtered probability space satisfying the
usual conditions and let X be a random variable on (2, ¥, P) with values in RY.
Then, for any (¥;)-Brownian motion (W;);>0, for any (¥;)-measurable (Z;);>0
as previously defined, the SDE (1) admits a unique cadlag solution (X;);>o with
initial condition Xo. Moreover, (X;);>¢ is a Feller and Markov process.

REMARK 2. Lévy driven SDEs are the largest subclass of SDEs driven by
semimartingales such that the solutions have a Markovian structure. Indeed, a re-
sult due to Jacod and Protter (see [13]) shows that, under appropriate conditions
on the coefficients, a stochastic process solution to a homogeneous SDE driven by
a semimartingale is a strong Markov process if, and only if, the driving process is
a Lévy process.

1.3. Background on approximation of invariant measures for Brownian diffu-
sions. This problem has already been studied by several authors when (X;) is
a Brownian diffusion, that is, when « = 0. In [28] Talay approximates v(f) by
oY ( H=1nd5_ f ()_(,):71), where (X)), denotes the Euler scheme with con-
stant step . Denoting by v? the invariant distribution of the homogeneous Markov

chain ()_( y )n, he shows that e n_)=+>°O vY and that vY y:_)() v, under some uniform
ellipticity and Lyapunov-type stability assumptions. (A Markov process (X;) with
infinitesimal generator A satisfies a Lyapunov assumption if there exists a positive
function 'V such that V(x) — 400 and limsup AV (x) = —oo when |x| — +o0.
Then, V is called a Lyapunov function for (X;). Under this assumption, (X;) ad-
mits a stationary, often ergodic when unique, distribution. The existence of such
a Lyapunov function depends on the mean-reversion of the drift and on the inten-
sity of the diffusions term (see, e.g., [5, 7, 12] and [19] for literature on Lyapunov
stability).) In this procedure, y and n correspond to the two types of errors that
the discretization of this long time problem generates. Practically, one cannot ef-
ficiently manage them together. Indeed, when one implements this algorithm, one
sets a positive real y and then, one approximates the biased target v¥. In order
to get rid of this problem, Lamberton and Pages (see [14, 15]) replace the stan-
dard Euler scheme with constant step y with an Euler scheme with decreasing
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step y,. Denoting by ()_( n)n>1 this Euler scheme and by (nx)r>1 a sequence of

weights such that H,, = >} nx e +o00, they define a sequence of weighted
empirical measures (V) and show under some Lyapunov assumptions (but without
ellipticity assumptions) that if (n,/y,) is nonincreasing,

1 & - n—>+00
()= 2 2w K)o

n k=1

for every continuous function f with polynomial growth (see [14, 15] for more
details and [17] for extensions).

REMARK 3. These two approaches are significantly different. Talay’s method
strongly relies on the homogeneous Markovian structure of the constant step Euler
scheme and on its classical “toolbox” (irreducibility, positive recurrence, ..., see,
e.g., [18]). Since the Euler scheme with decreasing step is no longer homogeneous,
Lamberton and Pages develop another method based on stability of Markov chains
and on martingale methods which can be extended to a nonhomogeneous setting
(see [9]). This is why they do not need any ellipticity assumptions on the coeffi-
cients.

1.4. Difficulties induced by the jumps of the Lévy process. In this paper we
adapt the Lamberton and Pages approach. In order to obtain some similar results in
the case of Lévy driven SDEs, one mainly has two kinds of obstacles to overcome.

From a dynamical point of view, the main difficulty comes from the moments
of the jump component. Indeed, by contrast with the case of Brownian motion, the
jump component can have only few moments (stable processes, e.g.), and it then
generates some instability for the SDE.

The second obstacle appears in the simulation of the Euler scheme. Actually,
only in some very particular cases can the jump component of a Lévy process be
simulated (compound Poisson processes, stable processes, ...). In those cases, the
Euler scheme [that we call exact Euler scheme and denote by (A)] can be built by
using the true increments of (Z;). Otherwise, one has to study some approximate
Euler schemes where we replace the increments of Z; with some approximations
that can be simulated. The canonical way for approximating the jump compo-
nent is to truncate its small jumps. Let (#,),>1 be a sequence of positive numbers
such that u,, < 1 and (u,) decreases to 0 and (Y"),>1 be the sequence of cadlag
processes defined by

Y=Y AYsl{AneDn}—f/

yr(dy) V>0
O<s<t Dy

with D, ={y € R u, < |y| <1} and AYy =Y; — Y. The process Y”" is a com-
pensated compound Poisson process with parameters A, = 7 (D,) and u,(dy) =
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1p,(y)m(dy)/7(Dy). It converges locally uniformly in L? to Y, that is, for every
T >0,

(3) IE{ sup |Y, — Y,"|2} "2EO0  (see [4]).
O<t<T

We will denote by Z" the process defined by Z" = Y" + N and by (B) the Euler
Scheme built with its increments. The increments of Z” can be simulated if A,, and
the coefficient of the drift term can be calculated, and if u, can be simulated for
all n € N. This is the case for a broad class of Lévy processes, thanks to classical
techniques (rejection method, integral approximation, .. .). If there exists (#,)n>1
such that the increments of Z” can be simulated for all n € N, we say that the Lévy
measure can be simulated. However, the simulation time of Z]' depends on the av-
erage number of its jumps, that is, on 7w (|y| > u,)t. When the truncation threshold
tends to O (this is necessary to approach the true increment of the jump compo-
nent), 7 (|y| > u,) explodes as soon as the Lévy measure is not finite (i.e., as soon
as the true jump component is not a compound Poisson process). It implies that
the simulation time of Z}' explodes for a fixed z. However, thanks to the decreas-
ing step, it is possible to adapt the time step y;, and the truncation threshold u;, so
that the expectation of the number of jumps at each time step remains uniformly
bounded. Following the same idea, it is also possible to choose some steps and
some truncation thresholds so that the average number of jumps at each time step
tends to 0. In this case, approximating the true component by the preceding com-
pound Poisson process stopped at its first jump time (the first time when it jumps)
can also be efficient [see Scheme (C)].

1.5. Construction of the procedures. Let (y,)y>1 be a decreasing sequence
of positive real numbers such that limy, =0 and I, = >_}_, yx = +0o when
n — 4o00. Let (U,),>1 be a sequence of i.i.d. square integrable centered R!-valued
random variables with Xy, = I;. Finally, let (Zn)nzl, (Zf)nzl and (ch)nzl be
sequences of independent R!-valued random variables independent of (U,),>1,
such that,

— Rl _ RI _ ]RZ
2,9z, 229z ad 28Dzl . Vnz1,

with 7" =inf{s > 0, |AZ{| > 0}. Let x € R?. The Euler Schemes (A), (B) and (C)
are recursively defined by X = Xg = Xg =x and forevery n > 1,

(A) Xn—i—l = Xn + Vn—l—lb()_(n) + 2V Vn—l—lU(Xn)Un—i—l + K(Xn)zn-l-l,
B)  XE  =XB 4y, 1 b(XE)+ SYurio(XEYU11 +1(XBYZE, |,
© XS = XS+ vt 1b(XS) + VY10 (X)) Upir +1(X$H) ZE, ;.

We set F, = o(Xg, k <n), FE =0 (XE, k <n) and FE = o(X{,k <n). Let
(nk)ken be a sequence of positive numbers such that H, = Y} _, nx — +00. For
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each scheme, we define a sequence of weighted empirical measures by

1 n

- _ 1 5o .

Vn Hn ]; Uk Xk—l
4) | |

-B -C

=— 3% and =— Syc .

o Hy l; " XE*I o H, 1; " Xkc_l
For a function f: R > R, (b, ( f)) can be recursively computed (so is the case
for the two other schemes). Indeed, we have v1(f) = f(x) and for every n > 1,

V1 (f) = v (f) + (f Xn+1) = 9u ()

NMn+1
Hn-H

Some comments about the approximate Euler schemes. In Scheme (B), since
(up) decreases to 0, we discard fewer and fewer jumps of the true component
when n grows. We will see in Theorem 2 below that this is the only condition on
(up,) for the convergence of (Df ). This means that we only need the law of Z;ﬁn to
be an “asymptotically good approximation” of the law of Z,, . Yet, as previously
mentioned, there is a hidden constraint induced by the simulation time which is
proportional to the average number 7 (|y| > u,)y, of jumps of Z" on [0, y,]. In
practice, we require (7 (|y| > u,)yn) to be bounded.

Furthermore, if 7 (|y| > u,)y, — O (i.e., the average number of jumps at each
step tends to 0), we will see that the first jump of Z”" is all that matters for the con-
vergence of the empirical measure. This means that Scheme (C) becomes efficient.

1.6. Notations. Throughout this paper, every positive real constant is denoted
by C (it may vary from line to line). We denote the usual scalar product on R?
by (-,-) and the Euclidean norm by | - |. For any d x [ real matrix M, we de-
fine ||M| = supy <1y IMx|/|x|. For a symmetric d x d real matrix M, we set
Ay = max(0,Aq, ..., A7), where Aq,..., s denote the eigenvalues of M. For
every x € R?,

5) Mx®% = x*Mx < hylx|>.

We denote by Cp(RD) [resp. Co(R?)] the set of bounded continuous functions
on R? with values in R (resp. continuous functions that go to 0 at infinity) and
@%( (RY), the set of C2-functions on R? with values in R and compact support.
One says that f is a p-Holder function on E with values in F' (where E and F are
normed vector spaces) if

[f1, = sup If &) = FWIIF

p
x,y€E [|x _y”E

< +00

Finally, we say that V ‘RY R?% is an EQ-function (Essentially Quadratic func-
tion) if V is €2, lim V (x) = 400 when |x| — +oo, |VV| < C+/V and D?V is
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bounded. [In particular, V given by V (x) = p + Sx®2, where p is a positive num-
ber and S is a definite and positive symmetric d x d real matrix, is an EQ-function.]
For p > 0, one checks that || D?(V?)|| < CVP~!, that V? is a 2 p-Hélder function
if p <1/2, and that VP~'VV is a (2p — 1)-Holder function if p € (1/2,1) (see
Lemma 3). Hence, A, and c), given by

)Lp = Exseuﬂgdkvl_l’Dz(V”)(x) and
(6) Ve
Cp = p 12p

[VP=IVVI,—y,  if pe(1/2,1]

are finite positive numbers.

1.7. Organization of the paper. The main results (Theorems 2 and 3) are stated
in Section 2 and are proved in Sections 3, 4 and 5. First, we focus on the proof of
these theorems for the exact Euler Scheme (A): in Section 3 we prove the almost
sure tightness of (v,) and in Section 4 we establish that every weak limiting dis-
tribution of (v,) is invariant for the SDE (1). Second, in Section 5 we point out
the main differences which arise in the proofs when considering the approximate
Euler Schemes (B) and (C). In Section 6 we show that the almost sure central
limit theorem for symmetric stable processes (see [3]) can be obtained as a conse-
quence of our main theorems. Finally, in Section 7 we simulate the procedure on
some concrete examples.

2. Main results. In Theorem 2 we obtain a result under simple conditions on
the steps and on the weights. In Theorem 3 we show that, under more stringent
conditions on the steps and on the weights, some assumptions on the coefficients
of the SDE can be relaxed. Let us introduce the joint assumptions. First, we state
some assumptions on the moments of the Lévy measure at 400 and 0:

s [ TP < oo, HY: f| @Dy < oo
yi= yi=

where p is a positive real number and ¢g € [0, 1].

Assumption (Hé) is satisfied if, and only if, E|Z;|*? < +oo for every t > 0
(see [1], Theorem 6.1). By the compensation formula (see [4]), (H(Zl) is satisfied
if and only if E{D ¢_,<, |AY;|?1} < 400, that is, if and only if (¥;) has locally
2q-integrable variation. We recall that (Hle) is always satisfied for ¢ = 1 since

f{lylfl} |y|271(dy) < oo for any Lévy measure 7.
Now, we introduce the Lyapunov assumption on the coefficients of the SDE
and on 7t denoted by (S, p q). The parameter a specifies the intensity of the mean-
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reversion. We denote by b the function defined by
b, ifp=<1/2=<gq,
o[ yman,  itpasi2
b= {lyl=1}

b+K/ yr(dy), if p>1/2.
{lyl>1}

The function b plays the role of the global drift of the dynamical system resulting
from b and from the jump component (see Remark 4 for more precisions). Let
ae(0,1], p>0andgq €0, 1].

ASSUMPTION (S, q). There exists an EQ-function V such that:
1. Growth control: |b|2 <CvVve,

{Tr(aa*) + |l ||2PVe) < cyatr—l if p<1,
Tr(oo*) + ||k||? < CV*, if p>1.

2. Mean-reversion: there exist 8 € R, o > 0 such that, (VV, l;) +¢pqlo, K, m,
V) < B —aV? where ¢, , is given by

¢p,q((7’ K, jTa V)
cpmap llKIPPVITPL, <), if p<1,
M (Tr(oo®) +moz|kl?), ifp=1,

2p
K .
dp)\.p<Tr(O’0'*) +m27n||;(||2+epm2pvﬂ%), if p>1,

with m, » = [ |y|"7(dy), d, = 22P=D=D+ ¢ and A, given by (6), and e, =

WV,

Assumption (S p ).2 can be viewed as a discretized version of “AV? < 8 —

aVatP=1> where A is the infinitesimal generator of (X;) defined on a subset
D(A) of C2(RY) by
- Af(x) = (V£,b)(x) + 3 Tr(c* D* fo) (x)
7
[+ w003) = £ = (V@K@ i) (@),

Furthermore, one can check that if Assumption (S, p q) is fulfilled, then there ex-
ist € R and @ > 0 such that “AVP < — @V*P~1” This means that if V is
the function whose existence is required in Assumption (S, p q), then V7 is a Lya-
punov function for the stochastic process (X;) and for the Euler scheme (X,).
The left-hand side of (S, q).2 is the sum of two antagonistic components:
(VV, b) produces the mean-reverting effect (see Example 1 for concrete cases),
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whereas the positive function ¢, , expresses the noise induced by the Brownian
and jump components. In particular, if the following tighter growth control condi-
tion holds,

Tr(oo* () "= o (Va0 (1)),

(®) bI> <CV*, .
e (o) [12 FEE o(viera (x)),

with g p g = (pvg) Ya+p—-1)if p<1and Na,p,q = a if p > 1, then the term
¢p,q becomes negligible and the mean-reversion assumption becomes

(VV,b) < B —aVe.

REMARK 4. If we had chosen to compensate the jumps smaller than & > 0

rather than i = 1, the corresponding assumption would have been (S;"p?q), where

(Sh ) is obtained from (S, p,q) by replacing b with b" and b with b" defined by

", ifp<1/2<gq,

. bh—xf yrdy),  ifpg<1/2,
b" = {lyl<h)

bh—i-/c/ yr(dy), if p>1/2.
{ly|>h}
One can check that, for every h > 0, (Sgp’q) <= (Sa,p,q)- This means that these

assumptions do not depend on the choice of the truncation parameter /. Indeed,

first, it is clear that (Sg’p’q).l <= (Sa,p,q)-1. Second, when p > 1/20r p,q <1/2,

(Sg’pvq).2 <= (Sa,p,q)-2 because in these cases, b" = b for every h > 0. This can
be explained by the existence of a formulation of the SDE that does not depend
on h. Actually, when p > 1/2, we can rewrite the SDE (2) by replacing b" with
b" and, Z" with Zth =zh - t f{jyj=ny Y7 (dy), that is, we can compensate the big

jumps. Since (Zf) = (Z;°) forevery h > 0, it follows that b" = b (= b*>) for every
h > 0. There also exists an intrinsic formulation when p, g < 1/2 because in this
case, we can replace b" with b and Z!' with Z,h =ZI+1 Jiy1<ny y7(dy) (now, we
do not compensate any jumps). Since (Zf) = (Z9) forevery h > 0, " =b(=bY).
These formulations can be considered as the natural formulations of the dynamical
system in these settings.

When p < 1/2 < ¢, there is no intrinsic formulation of the SDE (even if 7 is
symmetrical). Since »” depends on £, it appears that the left-hand side of (S;"p, Q-2
also depends on . However, under the growth assumption on «, one can check that
(VV,b" = (VV,b) +0(V?) and it follows that the same conclusion still holds in
this case.

We now state our first main result.
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THEOREM 2. Leta € (0,1], p > 0 and q € [0, 1] such that (HLI)), (Hé) and

(Sa,p.q) are satisfied. Suppose that E{|U;|*PVD} < +00 and that the sequence
(Mn/Vn)n=1 is nonincreasing. Then:

(1) If p/2+a—1> 0, the sequence (v,),>1 is almost surely tight. Moreover, if

K (x) rlzhoo o(|x|) and Tr(oo*) + ||k |27 < CVP/2He=1 then every weak limit of
this sequence is an invariant probability for the SDE (1). In particular, if (X;):>0
admits a unique invariant probability v, for every continuous function f such that
[ =0(VPPHh) dimy 00 U (f) = v(f) a.s.

(2) The same result holds for (ﬁf)nzl-

(3) The same result holds for (Dnc )n>1 under the additional condition

n—400

€)) 7yl > un)yn —> 0.

We present below some examples which fulfill the conditions of Theorem 2. In
the first we suppose that the dynamical system has a radial drift term and a noise
generated by a centered jump Lévy process with a Lévy measure close to that of
a symmetric stable process. In the second we suppose that the SDE is only driven
by a jump Lévy process, but we suppose that it is not centered. This implies that
even if the SDE has seemingly no drift term, a mean-reverting assumption can be
still satisfied.

EXAMPLE 1. Let ¢ and ¢ be positive, bounded and continuous functions
on R? such that

$(x)=¢(—x)  VxeR’
¢ =ming(x) >0 and ¢ = inf Y(x)>0.
- R4 —  {lx|>1}

Consider (Z;) defined as in the SDE (1) with Lévy measure 7 given by 7 (dy) =
¢(y)/|y|d+’)»d(dy), where r € (0,2). When ¢ = C > 0, the increments of (Z;)
can be exactly simulated because (Z;) is a symmetric R?-stable process with or-
der r. In the other cases, Z8 and Z¢ can be simulated by the rejection method
since the density of 7 is dominated by the density of a Pareto’s law.

Let p € [0, 2) and b be a continuous function defined by b(x) = —y (x)x/|x|”.
We consider (X;) solution to

(10) dX, =b(X,-)dt +k(X,-)dZ,,

where « is a continuous function such that |k (x)[|> < C(1 + |x|*)€ with € < 1.
A natural candidate for the function V is V(x) = 1 + |x|2. Indeed, since b = b
[because ¢ (v) = ¢ (—y)], one checks that there exists 8 € R such that

(VV(x), b(x)) = =2y @x)|x|* " <B— ﬂv(x)l—p/Z.
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Weseta:=1—p/2 and
A(r) :={(p, q) € (0, +00) x [0, 1], (Hp) and (H7) hold}.

We have A(r) = (0,r/2) x (r/2,1). By (8), for every (p,q) € A(r), (Sap,q) is
satisfiedif e < (p+a —1)/qg =(p — p/2)/q. Hence, (v,) is tight if there exists
(p,q) € A(r)suchthat p/2+4+a—1> 0, thatis,if p > p,and 2p — p)/(2q) > €.
If, moreover, ||k [|?7 < C(1+ |x|*)P/?T¢=1 thatis, if (p— p)/(2q) < €, every weak
limit v is invariant for the SDE (10).

It follows that if the invariant distribution v is unique, v, :'C> V a.s. as soon
as 2p < r and € < sup{(p — p)/2q), (p,q) € A(r)} =1/2 — p/r. Furthermore,
Ua(f) = v(f) a.s. for every continuous function f satisfying f(x) < C(1 + |x|)?
with 8 € [0, (r/2 — p)/2).

EXAMPLE 2. Let  be a Lévy measure on R such that flylfl |yl (dy) < +o0,

Jiyi=1 |y|2Pr(dy) < 400 with p > 2 and [y (dy) > 0. Let (Z°) be a real Lévy
process with characteristic function given for every ¢t > 0 by

E{ei<“’Z?>} = exp[t(/(e””’y> — 1)7T(dy)>].

For instance, (Z?) can be a subordinator with no drift term. We assume that x (x) =
—yr(x)x/|x|? with p € [0,2) and ¥ defined as in the preceding example. We then
consider the SDE:

dX, =x(X;-)dZ? =b(X,-)dt + k(X,-)dZ;,
with b(x) =k (x) [y, <1y y7(dy) and Z; = ZD — 1 [, <1, y7 (dy). Since p > 1/2,

b(x) = b(x) + Kk (x) f{|y|>1} yr(dy) =k (x) [ ym(dy). Setting V (x) = 1 4+ x2, one
checks that there exists 8 € R such that

VI(0)b(x) = —2W<X)/yn(dy)|x|2*” <B- ﬂ/ ya(dy)V (x) P2,

We seta =1—p/2. Let p =2 and g < 1/2 such that (H}) and (H) hold. First,
checking that as soon as p > 0, [k (x)||? = o(1 + |x|®)* when |x| — +o0, we
derive from (8) that (S, p q) is satisfied as soon as p € (0, 2). Second, for every
p>2,g<1anda e (0,1), one can check that p/2+a — 1 > 0 and ||k (x)]%? <
C(1 + |x|>)P/>*te=1 Hence, Theorem 2 applies for every p € (0, 2).

The interest of Theorem 2 lies in the facility with which it can be put to use in
concrete situations. For instance, in Scheme (A), we only have to take a sequence
(Yn)n>1 decreasing to 0, with infinite sum and n, = y,,. The next theorem (The-
orem 3) requires tougher conditions on the sequences (y,) and (n,), but it can
be applied to SDEs where the coefficients do not necessarily verify all conditions
of Theorem 2. It broadens the class of SDEs for which we can find an efficient
procedure for the approximation of the invariant measure.
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THEOREM 3. Leta € (0,11, p > 0 and q € [0,1] such that (H}), (H2) and
(Sa,p,q) are satisfied. Suppose that E{|U; |2(W1)} < 400. Then:

(1) Let s € (1, 2] satisfying the following additional conditions when p > 1/2:

2p !
s > , if-—<p<l,
(11) 2p+(@—-1)2p—-1)/p 2
2p .
§>— ifp=1
2p+a—1

If p/s +a — 1> 0, there exist some sequences (Yn)n>1 and (Ny)n>1 such that

(Vn)n>1 is almost surely tight. Moreover, if k(x) Il 2 ofoo o(|x]) and Tr(co™) +

l||? < CVPISTa=l then every weak limit of this sequence is an invariant
probability for the SDE (1). In particular, if (X;);>0 admits a unique invari-
ant probability v, for every continuous function f such that f = o(VP/sTa=1),
limy, 00 V1 (f) = v(f) a.s.

(2) The same result holds for (ﬁf)nzl.

(3) The same result holds for (17,? )n>1 under the additional condition (9).

REMARK 5. The sequences (17,),>1 and (y,),>1 must verify an explicit con-
dition given in Proposition 1 below (see Remark 6 for a version adapted to poly-
nomial steps and weights).

In the following example, we consider the same class of SDEs as in Example 1
in the nonintegrable case (i.e., ¥ < 1). One can observe that the mean-reversion
condition and the growth condition on « and on the functions f whose the proce-
dure converges can be relaxed. We also give some explicit polynomial weights and
steps for which Theorem 3 applies in this case.

EXAMPLE 3. Letp €[0,2)andr € (0, 1], let b and k be continuous functions
defined as in Example 1. Consider (X;) solution to the SDE (10) and assume that
the invariant measure v is unique. For s € (1, 2], denote by (y, ) and (7,,,5) some
sequences of steps and weights satisfying y, s = Cn™"!, n, s = Cn™"2 with r; <rp
and

1 1
0<r1<2<1——) and <1 or O<r1§2(1——) and r=1.

N N

Then, for these choices of steps and weights, v, —£, 1 a.s. as soon as sp < r and
€ €10,1/s — p/r) (this improves the condition: 2p < r and € € [0,1/2 — p/r)
of Example 1). Furthermore, v, (f) — v(f) a.s. for every continuous function
f satistying | f(x)] < C(1 + Ix)? with 6 € [0, (r/s — p)/2) (this improves the
condition: 6 € [0, (r/2 — p)/2) of Example 1).
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3. Almost sure tightness of (v,(w, dx)),en. The main result of this section
is Proposition 1. We need to introduce the function f, , defined for all s € (1, 2]
by
s, ifs >2p,
(12)  fapls) = pta-1l s
p/s+@—1/2(pAl)
Assume that p +a — 1 > 0. Then, s = f, ,(s) is a nondecreasing function which

satisfies f1 ,(s) = s for all p > 0 and f, ,(2) = 2. Note that f, ,(s) > 1 if and
only if s satisfies assumption (11).

if s <2p.

PROPOSITION 1. Let a € (0,1], p > 0 and g € (0,1] such that (Hy), (Hz)

and (Sa,p,q) are satisfied. Assume that E{|U|>?VD} < 400 and M/ Vn)n>1 is
nonincreasing.

(1) Then,

sup v, (VP21 < 400 a.s.
n>1

Consequently, if % +a— 1> 0, the sequence (V,),eN is a.s. tight.

(2) Let s € (1, 2) such that assumption (11) is satisfied. Assume that (n,)n>1
and (Yn)n>1 are such that

fa,p(S) fa,p(S)

1 Mn . . . Nn
(13) <—< ) > is nonincreasing and Z( ) < 4o00.
Vn Hn«/ Vn n>1 Hy \/Vn

Then, sup,~ Up(VP/sHa=1y < 400 a.s. and the sequence (Vy)nen is a.s. tight as
soonas p/s+a—1>0.

REMARK 6. If y,, = Cn™"! and 5, = Cn™"2 with r; < rp, then assump-
tion (13) reads

1
rp <1 and O<r1<f1:=2<1— )
fu,p(s)
(14)

mn=1 and O<r; <r].

The proof of Proposition 1 is organized as follows: first, in Section 3.1 (see Propo-
sition 2) we establish a fundamental recursive control of the sequence (V7 (X,)):
we show that (R, p): There exist ng € N, ' > 0, ' > 0 such that ¥n > no,

(15)  E{VPXusDIFn) < VPXp) + vt VETH XD (B — o' VE(X)).

For this step, we rely on Lemma 2 that provides a control of the moments of the
increments of the jump component in terms of p and g.
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Second, in Section 3.3 we make use of martingale techniques in order to derive
some consequences from (R, ). In Lemma 5 we establish a L”-control of the
Euler scheme with arguments close to [15]. This control is fundamental for the
proof of Corollary 1 where we show the following property:

(Cp,s): There exist p € (1,2] and a sequence () of F,-measurable random
variables such that

P _
(16) Z(H”” ) E{|VP (Xn) — 7117} < +00.

n=>1 n¥n

This step is used to obtain a L”-martingale control (see proof of Lemma 1). We
will see in the proof of Corollary 1 that the choice of the sequence (;r,,) depends
on p and g. In particular, even if g does not appear in (Cp ), this assumption
indirectly depends on this parameter. The same remark holds for (R, ). In the
following lemma, we show that these two steps are all what we have to show for
the proof of Proposition 1.

LEMMA 1. Let p>0,a€(0,1] and s € (1,2] such that (HIID), (Ra,p) and

(Cp.s) are fulfilled. Assume that E{|U, |2PVDY < 400 and that (Mn/¥n) is nonin-
creasing. Then,

17 sup b, (VP/5Ha=1y <« 100 a.s.

n>1

and the sequence (V,),>1 is a.s. tight as soon as p/s +a — 1> 0.

PROOF. By a convexity argument (see Lemma 3 of [15]), one shows that
(Ra,p) = (Rap) for all p € (0, p]. Hence, for all s € (1, 2], there exists ng € N,
& > 0 and B > 0 such that Vk > ny,

(18)  E(VPS(X)|Fio1) < VP X)) + VS H X)) (B —aVea(Xi_)).

For R > 0, set £(R) = supyj, - gy V"9 (x) and M(R) = supy, <z V""" (x). We
have

(19) VP (x) <e(R)VPIH1(x) + M(R).

Since V (x) — 400 when |x| — +o00 (resp. since V is bounded on every compact
set), e(R) — 0 when R — 400 [resp. M(R) is finite for every R > 0]. Hence,
for every ¢ > 0, there exists M, > 0 such that ypr/s=l < gyp/sta=l 4 pp By
setting ¢ = &/(2B), @ = &/2 and B = BM,, we deduce that VP/5~1(B —qV9) <
B —aVvP/sta=l Hence, we derive from (18) that

VPIS(Xg_1) —BAVP/S(Xy) | Fio1} N B

vristaslx, )< ” = Vk=no.
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It follows that (17) holds if

1 o 5 v
sup <— Yo =V K- —E{V”/S(Xk)lﬁk—l}))
n>no+1 n k=no+1 Yk
(20)

< 400 a.s.

We then prove (20). We decompose the above sum as follows:

1 " _ _
> BV R — BV ()| Fie)
n k=np+1 Yk
1 " -
=—— Y Taveisxy
H, k=no+1 Yk
1 " Nk - -
+om 2 (VIR — BV XDIFi-1)).
n k=ng+1

where AVP/S(Xy) = VP/S(Xy) — VP/S(Xy_1). First, an Abel’s transform yields

1 & - 1 v X
Y By = (TR - v,
H, Vn

Hn k=l’l0+1 Vk noy

n
+L( > (nk e 1)V‘D/S(X’k 1))
Hy k=no41 Ve Ykl

< O VP(X,,),

n¥Yng

where we used in the last inequality that (7, /y,) is nonincreasing. Hence, since

Hy, 25 00 and 7" VP (Ryg) "2500as.,
1 _
@1 sup (—— 3 ﬁAvP/S(Xk)) <400 as.
nzno n k=ngt1 Y

Second, one denotes by (M},), <N the martingale defined by
n
Mk . -
(22) M=) ﬁ(vl’“(m — E{V?S(Xp)| Fi—t}).-
k=1

Let p € (1,2] and (;r;) be a sequence of Fi-measurable random variables such
that (16) holds. We derive from the elementary inequality |u 4 v|° < 2°~(|u|” +
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|v|?) that
E{|VP5 (X — E(VPF (X1 Fi-1)|”)
< CE{|VP/* (Xp) — mx-117} + CE{[E{ (mx—1 — VP (X0))| Fir }|)
< CE{IV"* (X) — 7117},
thanks to the Jensen inequality. Hence, (Cp s) yields } ;- E{|AM|”} < +o00 a.s.
Since p > 1, it follows from Chow’s theorem (see [11]) that M, e My a.s.

where M is finite a.s. Then, Kronecker’s lemma yields

n—oo

1 " - -
23— > Bwrsy —EverEIFo)) =50 as,

N k=ng+1
Hence, (20) follows from (21) and (23). Finally, since lim|y|— 100 V?/* T4~ (x) =
400 when p/s +a — 1 > 0, we derive from a classical tightness criteria (see, e.g.,
[9], page 41) that (V,),>1 is a.s. tight as soon as p/s +a —1>0. U

3.1. A recursive stability relation.

PROPOSITION 2. Let p > 0,q €[0, 1] and a € (0, 1]. Assume (Hrl,), (Hg) and
(Sa,p,q)- If, moreover, E{|U; |2(PV1)} < 400, then (Ryp) holds.

The idea of the proof of Proposition 2 is to obtain an inequality of the following
type:
E{V?(Xp1) = VP XD Fa) < Va1 pVP T (K) D(Xp) + Ru,
where ® = (VV, l;) + ¢pq(o,k,m, V) [see (Sap,q)-2] and R, is asymptotically
negligible in a sense made clear in the proof. To this end, we begin by three lem-
mas. In Lemma 2 we study the behavior of the moments of (Z;) near 0. Then, in
Lemma 3, we state some properties of the derivatives of V7 in terms of p and in the

last one (Lemma 4) we control the contribution of the jump component on the con-
ditional expectation (conditioned by ¥,) of the increment V7 (X, 1) — V7 (X,).

LEMMA 2. (i) Let p > 0 such that (HII)) holds. Then, for every h > 0, there
exists a locally bounded function \ry, such that

(24) Vi=0  E(N!PP)= / Py e+ 9n 06,

[yl>
(i) Let g € [0, 1] such that (chl) holds. Then, for every h > 0,
2q
Bflvi 4 [ ynan| f=of @ rasi
lyl<h lyl<h

E{Y/'1*1} < th/y|<h v (dy), ifq € (1/2,1].
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(iii) Let p € [1, +00) such that (HIIJ) holds. Then, there exists n > 1 such that,
forevery T > 0, for every & > 0, there exists C¢ 1 , > 0 such that,

Viel[0,T] {2} < r(/ PP (dy) +s) + Cogpt",

where (Z,) is the compensated jumps process defined by Zi=27Z;—t ly|=1 Y7 (dy).
In particular, B| Z;|* =t [ y|?m(dy).

REMARK 7. In this lemma we obtain, in particular, a control of the expansion
of t = E{|D;|"} in the neighborhood of 0 (where D denotes one of the above jump
components and r, a positive number). We have the following type of inequality:
E{|D;|"} <crt + O(t"), where ¢, is a nonnegative real constant and 1 > 1. In the
first and in the last inequality, we minimize this value because it has a direct impact
on the coefficients of the function ¢, ;, and then, on the mean-reverting assumption
(see Lemma 4 for details). Note that we cannot have ¢, = 0 in the inequalities of
Lemma 2. Indeed, according to the Kolmogorov criterion, a Lévy process D that
satisfies [E{| D;|"} < Ct" in the neighborhood of 0 is pathwise continuous [for the
Brownian motion, ¢, = 0 as soon as r > 2 since E{|W,|"} = o(t"/?)]. When p > 1,
this feature generates a specific contribution of the jump component on the mean-
reverting assumption ((Sy,p,q)-2). This contribution appears in ¢, , where there is
an additional term of order 2p coming only from the jump component.

PROOF OF LEMMA 2. (i) (Nth)tZO is a compound Poisson process with pa-
rameters Ay, = 7(|y| > h) and " (dy) = 1{y=ny7(dy)/7(|y| > h). Hence, (N}*)
can be written as follows: Nth = an 1Rul7,<;, where (R,),>1 is a sequence of
1.1.d. r.v. with law ,uh and (7,),en is the sequence of the jump times of a Poisson
process with parameter Aj, independent of (R,),>1. We have

n 2p .
E(IN} PP} = ZE{ SR }e—mM
i=1

— = Mt E{|Ri[PP} F, (1)
n>1 n.

E{ Y RiPPY ()"
E{Ri??} (n+ 1)

where F) (1) = e M Z

n>0

By the elementary inequality (this inequality will be usually needed in the sequel
for the control of the moments of some sums of jumps)

n o n
(25) Yai,...,a, € R, Va >0 Zai Sn(‘“l)*ZIaila,
i=1

i=l

used with o« = 2p, we obtain

E(| S5 Ril?) _El+ D@D S RIPP) (i D@D

(n+ DIE{|Ry[?P} (n + DIE{|Ry|?P} n!
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It follows that F}, is an analytic function on R such that F;, (0) = 1. Therefore,
Fy, () =1+ 1yp(r)  with [ ()] = C(p,h,Ap) Vt€[0,T].

Since E{|R;|*"} = ﬁ f{|y|>h} |y|>P 7 (dy), the first equality is obvious.
(i) If [, 1<, [y1%7(dy) < 400 with ¢ < 1/2, then Y" has locally bounded

variations and Y,h + tfly\gh yr(dy) = o<s<t AY,h. Inequality (25) with o = 2¢g
and the compensation formula yield

“|

y" +tf yr(dy)
lyI<h

Zq} < E{ > |AY,h|2‘f}

O<s<t

_ 2q

=t [ yPrry).
y=h

Now, let g € (1/2,1]. As Y his a martingale, we derive from the Burkholder—
Davis—Gundy (BDG) inequality (see [4]) that

q
E{|Y}'*) < ch{< > |AYsh|2) }

O<s<t

The second inequality follows from inequality (25) with @ = g and from the com-
pensation formula.

(iii) One first considers case p = 1. The process (M;) defined by M; = |Z, |2 —
t [ |y|?m(dy) is a martingale. Then, in particular, E{|Z,%} = t [ |y|?m(dy). Sup-
pose now that p > 1. In order to simplify the notation, we assume that 7 < 1. The
BDG inequality yields

p
(26) E{|Yﬁ|2p}scpﬂz{< >, |AY£|2) ]

O<s<t

. k k .
For every integer k > 1, M; x := o_s<; |AYSh)|2 — tf{lylfh} ly|? m(dy) is a
martingale. By inequality (25) and the BDG inequality applied to (M, i), we obtain

p/2k71
fzo) )
O<s<t
<C(E{|Mm, P> +<z )
= ({| t,k| } /{
pJ2k )2kl
<c(E AY“"“) }—i—(z‘ 1 ) )
< ( {(Z| ) /{|y<h}|y| 7(dy)

O<s<t

2k—1

. r/
Iy[2 n(dy))
ly|<h}
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Set kg = inf{k > 1,2k > p}. Iterating the preceding relation yields

(g o) ol )

O<s<t O<s<t

ko

. p/2k71
+CZ(ff ly|? n(dy)) )
=\ Jiyisn

By construction, p/2¥0 < 1. We then derive from inequality (25) with o = p/2%0,
from the compensation formula and from (26) that

p
E{|Y/">"} < cpE{( > |AY?|2> }
O<s<t

@7)
<Cpt f Y12Px(dy) + Cppt™
{lyl<h}

with 1 = p/Zk"_1 > 1. We now consider (Zt). For every h € (0, +00), we have
Z; = Y+ Nf’, where ]\A/,h =Nl —1 ly|>h Y7 (dy). Using the elementary inequal-
ity,

(28)  Vu,veRy,Va>1  (u+v)* <u®+a2% '@ v +0v%),

we derive from (24) that

(29) Vo > 1 ]E{|1\7,h|“}§t/

Iy (dy) + Cont®">.
[y|>h

Using (28) and the independence between (Nth) and (Yth) also yields
E{|Z,[*P} <E{IN" PP} + C®{INMPPP IR Y} + E{ Y ?P)).

Since E{|Y/"|?} = [f{\ylsh} |y|?>7(dy), we derive from the Jensen inequality that

E{|Y,h|} < Cp+/t. Hence, by (27) and (29), it follows that, for every & > 0 and
t<T,

E{2,[27) sz/

PR + P+ Cot [y Prady)
{ly|>h} {lyl<h}

with n; > 1, C;’h > 0 and Clz7 > 0. Let ¢ be a positive number. As Cf7 does not
depend on /4, and flylﬁh |y|2p71(dy) — 0 when & — 0, we can choose & > 0 such
that C[% Jiy1<n. |y|*P7(dy) < e. That yields the announced inequality. [

LEMMA 3. Let V be an EQ-function defined on RY. Then:

() If pel0,1/2], VP isa-Hdolder for any o € [2p, 1] and if p € (0, 1], V(VP)
is a-Holder for any a € [2p — 1, 11N (0, 1].
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(b) Letx, yeRY and & € [x,x + y] and set v =min{V (x),x e R4}. If p < 1,

(30) ID*(VP)(&)y®* < puP~'aplyl%.
VA

If, moreover, |y| < (1 — ¢) NGl with ¢ € (0, 1], then,

(31) ID*(VP)(&)y®? < prpe? P~ DV P10y

Ifp>1,

(32)  AD*(VP)(E)y®? < pa, 2P0 (vl () 4 [VV] Iy PP D)y R

PROOF. Consider a continuous function f : R? > R. Let « € (0, 1] such that
| £11/¢ is Lipschitz. Then, f is an a-Holder function. This argument yields (a)
(see [21] for details). Now, let us pass to (b). We have

VV®VV>
V b

where (VV @ VV); ; = (VV);(VV);. Since yr=l <yl f p <1, we de-
rive (30) from relations (5) and (6). For (31), we consider & = x + 6y with

6 [0, 1]and |y| < (1 — e)%. As +/V is a Lipschitz function,
1

VE=2VVE -V zeVVi) = v© <20 v,
Hence, inequality (31) follows from (6). If p > 1,

VVE =VVO+[VV]l = v = (V@ +[VV] )Y,
We then derive (32) from (25) [with o =2(p — 1) and n = 2] and from (6). [l

(33) DZ(Vp)szp_l(DzV—i—(p— 1)

LEMMA 4. Let p € (0,1), g €[0,1] and a € (0, 1]. Assume (H}), (H3) and
(Sap,q)-1. Then, for every ¢ > 0, there exists h, € [0, +o0], T > 0 and C, > 0
such that for every x, z € R, for every t < T,

E{VP(z +x(x)Z)) = VP (2)}
(34)
<t(pey [ IPPR@eplle @I + VP10 4 )

with ¢, given by (6), h, € (0,1]1if p<1/2<q,h, =0if p,q <1/2and hy = +00
if pe/2,1).

PROOF. Set A(z,x,U)=VP(z+k((x)U)— VP(z). We first consider the case
p<1/2and g > 1/2. Let h € (0, 00). Since Z,h = Yth + Nth, we can decompose
A(z, x, Zf) as follows:

Az, x, Z}) = Az + k()N x, Y) + Az, x, N]).
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One controls each term of the right-hand side. On the one hand, as V' is 2 p-Holder
with constant [V”],, = pc), [see (6)], we deduce from Lemma 2(i) that

E{A(z, x, N")} < pe,llie(x)IPPE(IN! 2P}
(35)

<pep [ IPPR@)IR@IP (91006,
Iy[>h

where v, is a locally bounded function. On the other hand, we set 7 = z 4+« (x)Nth.
By the Taylor formula,

AG,x, Y = (V(VP)E), k()Y + (V(VP)E) — V(VP)(E), k(x)Y])

with & € [z,Z + K(X)Yth]. As (Nth) and (Y,h) are independent and Yth is cen-
tered, E{(V(V?)(Z),k(x)Y")} = 0. By Lemma 3, VP=IVV = V(VP)/p is
(2g — 1)-Holder (because 2g — 1 € [2p — 1, 1] N (0, 1] in this case). Then, it fol-
lows from Lemma 2(ii).2 that
56 E{A(z+ kN, x, Y1)} < plVP 'V Vg1 e () PTE{ Y/ 12}

< Cliewo s |

ly[*1 7 (dy).
lyl<h

Let ¢ > 0. First, by (Sapq)-1, ||/<(x)||2‘1 < CVvPte=l  Then, using that

flylsh ly|* 7 (dy) — 0 when h — 0, we can fix &, € (0, 1] such that
37) E{A(z + k()N x, v])} < %th+”_1(x).

Second, since v, is locally bounded, it follows from (35) that there exists C 81
such that, for every ¢t < 1, E{A(z, x, N,hg)} < C81t||/c(x)||2p. Now, as p < ¢, for
every § > 0, there exists Cg > 0 such that ||k (x)||*? <svPte—T 4 C(S2 [see (19)
for similar arguments]. Hence, setting §, = &/ (2C81) yields

(38) E(A(z. x. N/)} < r(%vw—l(x) + cg)

with C, = C;ng. Then, adding up (37) and (38) yields the result when p <
1/2 <gq.

When p, g < 1/2, we deal with (Z;) = (Z°). For every h > 0, Z; = Y + N,
where I?,h = Yth +tf{|y|<h} yr(dy). Hence, for every h > 0,

Az, x, Z;) = A(z + k(X)N!, x, }v’f‘) + Az, x, NM.

If g < p, m satisfies (HI%)' Since p < 1/2, VP is 2p-Holder. Therefore, by
Lemma 2(ii).1,

E{A(z +x(x)N!, x, Y} < pcpt||/c(x)||2p/

Iy 1P 7 (dy).
ly|<h
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By summing up this inequality and (35), we deduce (34). When p < g < 1/2,
we use that V? is 2¢g-Holder (see Lemma 3) and a proof analogous to the case
p <1/2 < q yields the result.

Finally, we consider the case p > 1/2 where we deal with 7= Z°. For every
h >0, we have Z, = Y! —HQ[’, where I\A/th = N} — J{jy=n Y7 (dy). For every h > 0,

A(z, x, Z) can be written as follows:
(39) Az, x, Z) = Az + kN x, Y1) + A x, ).

One the one hand, by the same process as that used for (36) and by inequality (29),
we have

E{A(z, x, N} < plVPTIV Vo, 1k () |?PE( N 2P)
5,||K(x)||2p(/|| h|y|2”n<dy)+chz2p—l>.
y>

On the other hand, by Lemma 3, V? —1VVis (2( p vV q) — 1)-Holder. Hence, (36)
is still valid in this case if we replace ¢ with p Vv ¢. By using this control for the
first term of the right-hand side of (39), we obtain if ¢ < p

E{A(Za X, Zl‘)}
5tllf<<x>||2”( f Iy PP (dy) + / |y|2pn<dy)+chﬂp—1).
{lyl>h} lyl<h

The result follows in this case. When g > p, the sequel of the proof is similar to
thecase p<1/2<gq. U

3.2. Proof of Proposition 2. For this proof, one needs to study separately the
p <1 and p > 1 cases. We detail the first case. When p > 1, we briefly indicate
the process of the proof which is close to that of Lemma 3 of [15].

Case p <1. For h > 1, we set Z' = Z,, — ynf{1<|y|§h}yn(dy) and for h €
0, 1), Zf; =Zn+ Vn f{h<|y‘§1}yn(dy). If g <1/2 (resp. p > 1/2), we can take
h =0 (resp. h = 4+00). Thus, we can write

3
AXpp1 =Xnp1 — Xn =D AXI' o with AX!, | =y (X),
k=1

(40) _ _ _ _
AX! = a0 (X)Upyr and  AX) 5 =k(X)Z) .

The idea is to study the difference V7 ()_( nt1) — V7P ()_( n) as the sum of three terms
that correspond to the above decomposition. For k = 1,2, 3, set X Z k= X g +

k h
Yic1 AX
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(i) First term: There exists n1 € N such that, for every n > n;
E(VP (X1 ) — VP X Fa)

(VV.,b
vi-r

(41) 3
< PYnt1 (Xp) + Cyl VP=l(X,).

Indeed, from Taylor’s formula,

_ _ (VV, b
VPXp ) = V() = pYati 1

_ 1 _
ey ) + 5DV (A X P,

where S;H €[ Xn X + yn+1bh()_(n)]. Set x = X,, and y = yn+1bh()_(,,). Since

n——+00

¥, —> 0 and Ib"| < CJV by (Sap,q)-1, there exists n; € N such that, for

n>ng, |yl < 2*[/3%) a.s. Thus, we can apply the second inequality of Lemma 3(b)
1

with ¢ = 1/2 and deduce (41) from (S, p ¢).1.
(i1) Second term: For every ¢ > 0, there exists ny , € N such that, for every
n 2 n2,£’

42) E{VP(X! ) — VPXE DIFD <evna VPN (X)) + Clyns.

Let us prove this inequality. Since E{U,1|%,} = 0, we deduce from Taylor’s for-
mula that

E{VP(X}, 1 0) = VPXE L DIFa} = 3ED* (VI Er D (AX i1, 2)®2 | Fa)

with £2,, € [X! | ;X! ) Set x = X! || and y = \/Vu310(x)Upy1. By
(Sa,p,q)-1. llo (x)]l < Co4/V (x) because p+a —1 < 1. Then, the conditions of (31)
are satisfied with £ = 1/2if |U, 41| < pns1 = 1/QRCo [V V11/Vns1). Therefore,
E{D*(VP)(Er ) (AXnt1.2) 10, 1 1=p1)| |
< Cyur1 VP (X)) Tr(o6%)(X,)
< Cyup VPPV (X))

since Tr(oco*) < CVPT4~1 when p < 1. By (30) and (S, p,q).1, we also have

E{D*(VP)(EL D(AXus1.) 2 Ltpar 1= one}| Fr ) < COnp1vnr1 VPN (X,

where 4, = E{lUn|21{‘U”|>p”}}. Now, let ¢ > 0. First, sincea +2(p — 1) <a +
p — 1 when p < 1, there exists C, > 0 such that VP~ Tr(oo*) <eVatr—l 4 C,
[see (19) for similar arguments]. Second, since p,, — +00, 8, — 0. Thus, there
exists 12 . € N such that, for every n > np ¢, C8, VP41 < gVP+a=1 The com-
bination of these two arguments yields (42).
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(iii) Third term: For every ¢ > 0, there exists 4, € [0, oo], C g > 0 and n3 ; such
that, for all n > n3 ¢,

E{VP (X5, 5) = V(X0 ) Fa)

(43) +1, +1, n
< Vnt1 (pcp / PP (@) Lig<p) e X1 +eVPH1(X,) + CS)
withh, € (0,1]if p<1/2<gq,h, =0if p,q < 1/2andh€_+001fpe (1/2,1).

This step is a consequence of Lemma 4: since U, and Z 4 are independent, we
have

E(VP (X!, 5) = VP(XD DIF) = E{Gh, (X5 5, X | Bl
where Gy (z, x) = E{V?(z 4+ k(x)Z") — VP(2)}. Then, Lemma 4 yields (43).

We can now prove the proposition. Let ¢ > 0. By adding (41), (42) and (43) and
using that ynz < ey, for sufficiently large n (since y,, — 0), we obtain that there
exists n, € N, h, > 0 and C, > 0 such that, for every n > n,,

E(V?(Xpt1)|Fn}

<VP(Xy) + Yas1 (eVPHH(X) + Co)
(44) .
+ Va1 PVP TN (X))

x (<vv, D)+ gy [ |y|2pn(dy>||x||2Pv1—l’)<5<n>.

When p,q < 1/2 (resp. p > 1/2), hy =0 (resp. he = 00). We deduce that
(VV, bhs> (VV,b) because b = b0 (resp. b = b>) when p,q < 1/2 (resp.
p > 1/2). We then recognize the left-hand side of (S, q).2 in (44). When
p<1/2<gq, he € (0,00) and (VV,ble) = (VV, b) + @), where & (x) =
(VV(x),k(x) f{h5<|y\§1} ym(dy)). Therefore, by (S, p q).2, we obtain

E{V? (Xp+1)|Fn}
< VP(Xy) + Yar1pVP X (B — a V(X))
+ Va1 (VPN XD 4 Ce + 1(p=1/2<y P VP (X)) i (X)),

When p,q < 1/2or p > 1/2, we set ¢ = par/2 and obtain (R,,p) with g’ = pp +
Ce/vP~! and o’ = pa/2. When p <1/2 < ¢q, by (Sa,p,q)-1, one checks that, for
every ¢ > 0, there exists C~’g > 0 such that Vp*1|<Dh8| <gypta-l 4 C~‘£ and the
result follows.

Case p > 1. Thanks to Taylor’s formula,

VP (Xpt1) = VE(Xy) + vus1 (VVEN(X), AXpg1)
+ 3DX(VP) Enr ) (A X )2,
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where §,41 € (X, Xn+l] and
A)_(n—‘,-l = Xn-i—l - Xn = Vn-i—lboo(Xn) + Vn—l—lo'()_(n)Un—&-l + K(Xn)zgil

with ijo =Zn — Vn f{‘y|>1}yn(dy). Using that b = b™ in this case and that
E{Un+1|Fn} = E{Z;3 || F0} = 0 yields

E{VP(Xp:)|Fn} = VP(X0) + pyas1 VP H XD (VV, BY(X,)
+ SE(D*(VP) (Epy 1) (A X 1) ®2 F ).

The sequel of the proof consists in studying the last term of this equality. The
main tools for this are the last inequality of Lemma 3 which provides a control
of D*(VP)(&p41)(AX,41)®? and Lemma 2(iii), which gives a control of the mo-
ments of the jump component (see [21] for details or [15] for a similar proof).

3.3. Consequences of Proposition 2. In Proposition 2, we established (R, p).
According to Lemma 1, it suffices now to prove (C, s). This property is established
in Corollary 1 and is a consequence of Proposition 2 [under additional assumptions
on (y,) and (,) when s < 2]. More precisely, we first show in Lemma 5 that a
supermartingale property can be derived from (R p) and that this property pro-
vides an L?12~1_control of the sequence (V(X,)) [see (45)]. Second, we show in
Corollary 1 that we can derive (Cp s) from this lemma.

LEMMA 5. Leta € (0,1] and p > 0. Assume (Hlla) and (Ryp). Let (0)neN
be a nonincreasing sequence of nonnegative numbers such that ;- Onyy < 00.

Then, there exists ng > 0, @ > 0 and ,é > 0 such that (S;)n>n, defined by
n
Sp=0.VP(X)+a ) Oy VP X))+ B Oiwe
k=1 k>n

is a nonnegative Ll-supermartingale. In particular,

45) D OayaB{VPH TN (X, o)} < +o0  and E{vv(xnn"ﬁ%(ei),

n>1

PROOF. Since b, o and k have sublinear growth and Z, € L?P for everyn > 1,
we can check by induction that, for every n > 0, VP(X,) is integrable. Denote
by (A,)n>1 the sequence of martingale increments defined by A, = VP(X,) —
E{V?(X,)|Fn_1}. By (Ra,p), there exists ng € N such that, for every n > ny,

Oni1 VP (Xui1)
< Gn-HAn-H + 9n+1E{Vp(Xn+l)|~(Fn}
< O 1 Antt +On 1 (VP (X)) + Y1 VPTL X)) (B — ' VE(X))).
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By the same argument as in (19), one can find & > 0 and /§ > 0 such that
vP—l(g —a'V4) < B —aVPT* ! Since (6,) is nonincreasing, we deduce that

On1 (VP (Xng1) + Gy VP 1(X,))

<O VP(Xy) + 018041 + Ons1Ynr1 B.

Adding “& Y0 _; Oy VPN (Xpm1) + B Y k>n+10kyi” to both sides of the in-
equality yields

Snt1 <Su +Opr18n11 = E{Su1lFu} < Sy Vn > ny.
Since S, € L', it follows that (Sn)n=n, 1s a nonnegative supermartingale and then,
that supE{S,,} < +o00. The result is obvious. [l

COROLLARY 1. Leta € (0,1], p > 0 and q € [0, 1]. Assume (H}), (Hy) and
(Sa,p,)- I E{|U; 12PVDY < 400 and (Mn/Vn)neN is nonincreasing,

2
(46) Z(H”—y) E([VP2(Ry) — VPP (Xuet + yub(Ru) ) < +oc.
n>1 n¥Yn

In particular, (Cy2) holds with p =2 and 7, = VP/>(X, + y,b(X,)).
Furthermore, if conditions (11) and (13) are satisfied for s € (1,2),

Nn Jap(s) /Sy /S (¥ 7y Sa,p(s)
S () BV R = VP (R + bR ) )
Hyyy

< +00.
In particular, (Cy ) holds with p = f4 ,(s) and 1w, = VIS (X, + yub(Xy)).
PROOF. Letus begin the proof by two useful remarks. First, (46) is a particular
case of (47) since f; »(2) =2 and (13) is always satisfied in this case. Indeed, as
(n/Vn)neN 1S nonincreasing, so is (y_ln(Hn%)z)’ and
Mn n M _ N~ AHy ° dt
(48) < ) §C<1+/ —><oo,
,,2;1 Hy /Vn Vl,;Hz )/12 H? m 12

with AH, = H, — H,_1. Then, it suffices to prove (47). Second, by Lemma 5
applied with 6, = L (= i )fal’(é) we have

Hy, Vn
Z M Ja,p(s) pta—1,%
(49) < ) E{vP™ (X,—1)} < +o0.
n>1 Hl’l\/ Vn

Hence, one checks that (47) holds as soon as
E{|VP/(X) = VPP (Rt + yab (X))
(50) ) )
< Cyl PRV, ).
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Thus, we only need to prove (50). We inspect the p/s <1/2 and p/s > 1/2 cases
successively.

Case p/s <1/2. In this case, f; ,(s) =s. We keep the notation introduced
in(40), withh=1if p<1/2<q,h=0if p,g<1/2and h=+o0if p>1/2,
and derive from (25) that

(VP (X)) = VPP (Xt + yub (X))
(51 _ i} _ i}
SCIVPEXD ) = VIS DI+ CIVPE(Xy) — VPEX]E ).

We study successively the two right-hand side members. First, by the Taylor for-
mula,

(VPIS(X,) — VPIS(XE DT < CyPVvPRTIVVED, o (Xu—)Un)

with 5; € [)_(,’:71; )_(2’,2]. The function V?/5~1VV is bounded. Hence, since || ||* <
CTr(oo*) (because s < 2), we derive from (S p q).1 that

(52)  B{VPEXD ) — VPEEXE DI Fam1) < Cys PVt i(X, ).
Second, since U,, and Z,ﬁ’ are independent,
E{ VPP (Xy) = VPP X DI} = B(Th(X] 5. Xt yu)| Fat)
where Y, (z, x,y) = B{|VP/5 (2 +k(x) Z})) = VPIS (2)|'}.

By (51) and (52), one checks that (50) holds if there exists C > O such that, for
every z,x e R and y < i,

(53) Th(z,x,y) < Cy*2vetrl(x),

where h = 1 (resp. h =0, resp. h = 400) if p <1/2 < g (resp. if p,qg <1/2,
resp. if p > 1/2). Then, it suffices to prove (53). First, when p < 1/2 < g, we have
Z)l/ =Z, =Y, + N,. On the one hand, since VP/S is a 2p/s-Holder function [see
Lemma 3(a)], it follows from (S, p q).1 and Lemma 2(i) that

. E{|VP/*(z 4k (xX)Ny) = VP (@'} < Cllie () IPE{IN, [*P)
<Cyvrtaly.

On the other hand, V?/* is a 2¢/s-Holder function when ¢/s < 1/2 (because
2p/s <2q/s <1 in this case). Hence, using this property if ¢/s < 1/2 and the
Taylor formula if g /s > 1/2 yields

E{[VPP (2 4k ()(Ny +Y,)) = VP (2 + k()N )|}

< ¢ | e @IPIE(Y, 1), if /s <1/2,
T EVPRTIVV @G Y)Y ifg/s > 172,

(55)
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with & € [z +k(x)N,, z +«(x)(N, +Y,)]. By Lemma 2(ii).2, IE{|YV|2‘1} <Cy.
It follows from Jensen’s inequality that

(56) E{|[VP(z+k(0)Z,) = VP (2 + k()Ny) [} < Cy*/COMN e ()72

One checks that ||x||**%¢ < CVPte=1 under (Sa,p,q)-1 and that y + yS/CON <
C ys/ 2 for every ¥ < y1. Hence, summing up (54) and (56) and using (25)
yields (§3) (with s =1) when p <1/2 <gq.

When p,q < 1/2 (resp. p > 1/2), we have to check that (53) holds with
h =0 (resp. with & = 4-00). Then, we need to use a decomposition of the jump
component adapted to the value of 4. We split up Zg (resp. Z}°) as follows:

ZO = f + N, with 173, =Y, + Vf|y\<1 yr(dy) [resp. Z)° =Y, + ]\7 with
Ny =N, — yf{‘y|>1 ym(dy)]. Then, when p,q <1/2 (resp p > 1/2), the idea
is to replace Y,, with Y (resp. N, with Ny) in the left-hand sides of (54) and (55)
and to derive some adapted controls from Lemma 2 and inequality (29). Since the

proof is close to that of the p < 1/2 < g case, we leave it to the reader.
Case p/s > 1/2. Since p > 1/2, we use the notatlon introduced in (40) with

h = +00. We recall that X,,_1 + y,b(X,—1) = |- Then, applying the following
inequality,
(57) Yu,v>0,Va >1 [u® — v*| < Co(lu — v[u®~" + |u — v|%)

with u =v/V(X,), v=+V(X%) and @ = (2p) /s, we obtain

(VP (Xy) = VPIS (XD < CIWV (X)) = VV(X)|VEEY2(X, )

+CIVV(X,) = VXS,
We deduce from (S, p,q).1 that
CV@rr=DICr (X, ) (7alUnl +1Z5°)),  ifp <],
CVY2( X)) (Pl Unl + 1Z2°)), if p>1.
Since +/V is Lipschitz, one then checks that
VPR (X,) — VP (X2

X — X3° I_{

< CV' K ) (W7l Unl +1Z2N+ p P WUGPPE 1220 12P10),

-1 —1
<B+" )v<%), ifp<l,
s 2p s

~1
<£+a )v@, ifp>1.

where r =

K 2 K
One derives from Lemma 2(iii) and from the Jensen inequality that, for o > O,
E{|Z2°1*} = O (1P, Therefore, since 2p/s > 1/2 and f, ,(s) <2, we have

_ — wp(8)/2
E{(/Tn|Unl +1Z5°] + y 25| U [P/5 420 120/5) Far @) = 0 (/077



RECURSIVE COMPUTATION 407

Second, one deduces from the definition of f, , that rf, ,(s) <a+ p — 1. There-
fore, inequality (50) follows. [

By Lemma 1, Corollary 1 concludes the proof of Proposition 1 and then, the
part which is concerned with the tightness of (v,(®, dx)),>1. The only thing left
to prove the theorem for Scheme (A) is thus to identify the limit. This is the aim
of the next section.

4. Identification of the weak limits of (v,(w,dx)),>1. In this section we
show that every weak limiting distribution of (v,(w,dx)),>1 is invariant for
(X:)r>0. For this purpose, we will rely on the Echeverria—Weiss theorem (see [7],
page 238, [14] and [16]). This is a criterion for invariance based on the infini-
tesimal generator A of (X;) defined by (7). By the Echeverria—Weiss theorem,
we know that if A(G%{ (R?)) C Cy(R?), a probability v is invariant for the SDE
if for every f € C%(R?), v(Af) = 0. One can check that A(C% (R%)) C Co(RY)
if [k(x)|| = o(]x]) when |x| — 400 (and this condition cannot be improved in
general). Hence, under this condition on «, it follows that every weak limiting
distribution of (v,,) is invariant if for every f € GIZ{ (RY), v,(A f) — 0. The main
result of this section is then the following proposition.

PROPOSITION 3. Let a € (0,11, p > 0 and q € [0, 1]. Assume (Hy), (HY),

(Sa,p,q)-1. Assume that ||k (x)]| bl 2foo o(|x|) and that (N, /yn)n>1 is nonincreas-

ing. If, moreover,

sup U, (€ 1?4 + Tr(o0*)) < 00 and

n>1
(58) -
n; _
3 BVl (Xy)) < 400,
k>1 Hi v
then,
(59) VfeCL@®Y), as., /Af 45, "0,

Consequently, a.s., every weak limiting distribution of (v, (@, dx)),>1 is invariant
for the SDE (1).

REMARK 8. This proposition is sufficient to conclude the proof because the
two assumptions in (58) hold under the assumptions of Theorem 2 (resp. The-
orem 3). Indeed, since |k |[%? + Tr(co*) < CVP/sta=1 with s = 2 in Theo-
rem 2 [resp. with s satisfying (11) in Theorem 3], the first is a consequence of
Proposition 1. Likewise, the second is a consequence of Lemma 5 applied with

On = (nn/ (Huyn))? [see (48)].
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4.1. Proof of Proposition 3. The proof of Proposition 3 is built in two suc-
cessive steps that are represented by Propositions 4 and 5. In Proposition 4
we claim that showing that v,(Af) — 0 a.s. is equivalent to showing that
1/Hy Y0 i/ vi)BAf (Xk) — f(Xk—1)|Fr—1} — O a.s. Then, in Proposition 5
we show that this last term does tend to 0.

PROPOSITION 4. Assume that the assumptions of Proposition 3 are fulfilled.
Then, for every f € C%(RY),

N E{f(Xx) — f(Xp—1)|Fi—1}
60 1 — (
(60) nggoHn];nk ”

— Af()_(k_l)) =0 as.

We begin the proof by a technical lemma.

LEMMA 6. Let ®:R? +— R! be a continuous function with compact support,
VR > Ry, a locally bounded function, (h(f)ee[o,l] and (hg)ge[(),l] two families
of Borel functions defined on R¢ x R with values in R? satisfying the following
assumptions:

o There exists 5o > 0 such that

|x]—400

(61) (1K1, ) + 1RSI (x, v)) == 4oc.

inf
0€[0,1],y €[0,80]

e [For every compact set K,

(62) sup (10 Ge.y) — WO,y 23 0.
xekK,0€[0,1]

Then, for every sequence (xy)ken of RY,

1 & .
— Dk sup (1@ (R (ve—1, ) — DS (a1, ) IW () == 0.
Hu (2 6eton

PROOF. & has a compact support, therefore, we derive from (61) that there
exists Ms, > 0 such that, for every |x| > Ms,, ¥y <8¢ and 0 € [0, 1],
®(h(x,y)) = (h5(x, 7)) =0.

Consider p — w(p, ®) = sup{n > 0, SUP |, _y|<p |P(x) —DP(y)| < p}. As D is uni-
formly continuous, w(p, ®) > 0 for every p > 0. Thanks to (62), for every p > 0,
there exists 6, < o such that, for every y <é,, 6 € [0, 1],

sup [ (x,y) —h5(x, )| < w(p, D).
|x[<Ms,
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As vx kotpo 0, there exists k, € N such that y; <6, for k > k,. By using that

H, n2Ape 400, we deduce that

. 1 & _
limsup — > ne sup || D] (x—1, Y1) — D5 (k1. YD IW (xk—1) < p W,
n—+oo Hp [ 0ef0.1]
where Wgo == sup{|W(x)|, |x| < Ms,} < +o0 since W is locally bounded. The re-
sult follows. [

PROOF OF PROPOSITION 4.  We have to inspect successively the g € (1/2, 1]
and g € [0, 1/2] cases.

Caseqge (1/2,1]. Let f € @,%(Rd). Decompose the infinitesimal generator as
the sum of three terms defined by

ALf(x) =(V [, b)(x), Ay f(x) =Tr(c*D* fo)(x),
A3 f(x) = /(f(x +r(0)y) = f) = (V) k()y) Ly <1y) 7 (@)

Set ?_(k,l_ = Xk_—l + b (Xk—1), X2 = Xi,1 + V0 (Xk—1)Ux and Xi 3 = Xp 2+
JVik (Xr—1)Zr. We then part the proof into three steps:

1 _ ) _ _
Step 1. EE{f(Xk,l) — [(Xk—1)/Fr—1} = A1 f (Xx—1) + R (v, Xi—1)

n

1 )
with A > kR (v, Xg—1) "= 0.

noq

1 _ ) ) _
Step 2. EE{f(Xk,z) — [(Xi, DI Fk—1} = Ao f (Xp—1) + Ro(yi, Xi—1)
I - n—00
with A Z’?kRz()/k» Xk—1) — 0.
n
1 _ _ ) _
Step 3. EE{f(Xk) — fXe DN Fi—1) = A3 f (Xp—1) + R3 (ks Xi—1)

- v .
with —- Y mRs(vk, Xi—1) =5 0.
noq

The combination of the three steps yields Proposition 4. We refer to Proposition 4
of [15] for steps 1 and 2 and focus on the last step where the specificity of our
jump Lévy setting appears. Since X_1 is Fir_i-measurable and Zi, Uy and Fi_;
are independent, we have

E{ f (X2 + 1 (Xk—1) Zi) | Fiet} = Oy f Ki—),

where Q,, f(x) = /Rd E{f (Sx,yu + & (x)Zy)}Py, (du),
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with Sy yu =x +yb(x) + /Yo (x)u. Set Vi = S, u + k(x)Z;. Applying Itd’s
formula to (f(V;))s=0 yields

t
FOVD = F(Seyu) + fo (V (Vi) ke (x) dYy)

(63) 3
+ 3 A (Seyu+K(0Z-. x. AZ)
O<s<t
(64) where, HY (z,x,y) = f(z 4+« (x)y) — £ (@) — (V£ (2), k (x)¥) L {jy|<1)-

The process (fé(Vf(st), k(x)dY;)) is a true martingale since V f is bounded.
The compensation formula and a change of variable yield

E{f(Sxyu +K(x)Zy)}
—E{f(V,))
1 -
= F(Seyu) + yE{ fo dv / 7 (dy) A (Sy.y o + 5 (0 Zuy %, y>}-

Since Az f(x) = frr(dy)l:lf(x,x, y) = IE{[O1 dvfrr(dy)ﬁf(x,x, y)}, it follows
from the previous inequality that

1 ) ) _ )
ﬁE{f(Xk) — f(Xi ) Fk—1} = Az f (Xx—1) + R3(vk, Xi—1),

where,

1 -
Rs(y.x) = / JE{ /O dv / 2 dy) A (S +x<x>zvy,x,x,y)}19>ul<du>

with Aﬁf(zl, 72,X,y) = Flf(zl,x, y) — I:If(ZZ,x, y). We upper-bound R3 by
two terms: R3 1 and Rj3  that are associated to the small and big jumps components
of (Z;), namely,

R3.1(y,x)
1 -
://0 dvv/{| | 1}J'r(a’y)IE\AHf(S,C,,,,u—i-lc(x)Zvy,x,x,y)|IP’U1 (du),
yl=<
R32(y, x)

1 )
://0 dv/{l | TEIAR (S0 Zuy .5, 3) Py @0,
y|i>

We study successively R3 1 and R3 2. From Taylor’s formula, we have for every y
such that |y| <1

(AR (Sxyu + k() Zyy, x,x,9)| < SR(Z, y, x,u,0, p) Ik (0)y]%,
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where
R(Z,y,x,u,v,y)

— esFopH” D? f(Sx.yu + K (X)(Zyy +6)) — D* f(x + 0k (x)y)].

By setting ® = D2 f, W (x) = [k (x)||*|y[%
(. y) = Seyu + K@) (Zoy +6y) and  hy(x,y) =x + 0k ()y,

we want to show that the assumptions of Lemma 6 are a.s. fulfilled for every fixed

u, vandy.

|x |—>+oo

First, since k(x) o(]x]), there exists a continuous function & such that

k(x) = |x|e(x) and &(x) —>Oo 0. Therefore, as b and o have sublinear growth,

one checks that there exist some positive real constants C; and C; such that

65) 1Sy + K X)(Zyy +09)| = [x]|(1 =y C1 = (1Zyy | + [yD]e(x)]) = C2,
x + 6k (x)y] = [xI(1 = [e(O)]Iy])-

Let o be a positive number such that 1 —60C1 > 0. Since (Z;) is locally bounded

(as a cadlag process) and e(x) 0 there exists a.s. M > 0,

inf 1-yCi—(Z 0.
ot (== (Zuy |+ 1YDIE)) >

It follows that a.s.,

eem]; 0 Uh (x, y) + 1B (x, V)) X .

Second, let K be a compact set of R?. We check that (62) holds. We have

sup  |h{(x, ) —h§(x)]
xeK,0€[0,1]
(66)

—0
= Sullz()/lb(x)l + P lo @l + k() Zuy ) =0 as.
xe

because b, o, « are locally bounded and lim;_,g Z; = 0 a.s. Thus, by Lemma 6, for
any sequence (xx)xenN of R4, for every (u,v,y) € R? x [0, 1] x B4(0, 1),

1 - .
(67) A Z M AH? Sy, e 6 Ck—1) Zoyer Xke1, Xk—1, Y) =0 a.s.
n k=1

Now, since V f and D? f are bounded, we derive from Taylor’s formula that, for
every 71, 22 € RY,
2V flloollc GO Ty 1y1<1y

A (22, 3) = B @1ox )l 1=y <
PRI =21 D2 £ o e 21y 21 jy1<1)-
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Then, for every g € (1/2, 1],
(68)  |AH! (Syyu + 1) Zyy, x, %, ¥)|1y1<1y < Cllic ) 1241312 1y <1y,

where C = 2max(||V f oo, | D* f|loo). Therefore, by assumption (chl)’ we finally
derive from (67), (68) and from the Lebesgue dominated convergence theorem that

1 n
— > meR3 1 (k. Xk—1) =0
Hy i3
(69)

. 1<
if sup — Z Micllie (ee—1) 1% < o0,
neN Hn

We apply this result to (x;) = (Xy). By (58), sup,,en Vn (Il 29) < oo a.s. Hence, it
follows that 1/H, Y 3 _ ncR3.1 (v, Xi—1) "0 as.
Now, let us focus on R3 3. Set Af(z1,22) = f(z1) — f(z2). Then,

1
R32(y, x) =/E{/{; dv _/{‘|y|>1}n(dy)Af(x,Sx,y7u —I—K(x)ZW)}IP’U1 (du)

+/E{/Oldv/{yl>l}n(dy)

X Af(Sx,yu + k(X)) Zyy + ), x +K(x)y)}IP’Ul (du).

One proceeds as before. By using Lemma 6, one begins by showing that, for any
sequence (xx)keN , for every (u, v, y) € [0, 1] x R? x B4(0, 1), a.s.,

1 & N
= 2 AL (it Se o+ K (k1) Zuy) = 0 and
k=1
(70)

1 n
A Z AL (Sxy oy + k1) (Zuy, + 3)s Xe—1 + 6 (—1)y) =3 0.
k=1

By the dominated convergence theorem [which can be applied because
m(ly] > 1) < oo and f is bounded], we deduce that, for any sequence (xg)geN,

l n
A Z M R3 2 (Vs Xk—1) —> 0 a.s.
" k=1

This completes the proof of Step 3 when g € (1, 2].

Case ¢ <1/2. The reader can check that the assumption g € (1/2, 1] is used
only once: when we want to apply the dominated convergence theorem for R3 j
[see (68)]. Since inequality (68) is not true when g < 1/2, we need to decompose
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the infinitesimal generator in a slightly different way:

A1 f(x) = (V £, 60 (x),
Arf(x) =Tr(a*D? fo) (x),

s = [(Flr+x00y) = F@)T@y).

Note that this decomposition is only possible when g < 1/2. That means that
with the notation (40), we decompose A Xj with 2 = 0 and inspect the three in-
duced steps. We do not go into further details since the proof is similar to the case
qg>1/2. O

PROPOSITION 5. Assume that the assumptions of Proposition 3 are fulfilled.
Then,

lim —Z”’;E{ﬂxk) FEDIF) =0  as.

PROOF. We do not detail the proof of this proposition which is an adaptation
of Proposition 3 in [15]. O

5. Proof of the main theorems for Schemes (B) and (C). The aim of this
section is to give a general idea of the proof for Schemes (B) and (C) and to over-
come the main difficulties induced by the approximation of the jump component.
For Scheme (A), main theorems have been proven in two successive steps. First,
we focused on tightness results (Proposition 1) and then proved that every weak
limiting distribution is invariant for (X;);>0 (Proposition 3). We follow the same
process for Schemes (B) and (C). We will successively explain for both schemes
why Proposition 1 and Proposition 3 remain valid.

5.1. Almost sure tightness of ﬁf (w,dx) and inc (w,dx). The tightness result
for Schemes (B) and (C) is strictly identical to Proposition 1 [in particular, assump-
tion (9) is not necessary for tightness]. Looking carefully into the proof of this
theorem for Scheme (A) shows that the properties of the jumps that we use are the
following: the control of the moments of the jump components (Lemma 2) which
is fundamental for Proposition 2, and independence between (Y)nens (Np)nen
and (U,),en. We show in Lemma 7 below that the controls of Lemma 2 hold true
for the moments of the jump components of Schemes (B) and (C). Then, since
Scheme (B) satisfies the 1ndependence properties, Proposition 1 follows in this
case. In Scheme (C), (Yc)neN and (N )neN are no longer independent. It raises
several technical difficulties in the proof of Proposition 2 in case p < 1, but the
process of the proof is the same. So, we only state a variant of Lemma 2 (see [21]
for details).
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LEMMA 7. Let Ty be a positive number and T" = inf{s > 0, |AZ}'| > 0}.

(i) Let p > 0 such that (HIl,) holds. Then, for every t < Ty and h > 0,

BUING 7o) < tf|y|>h ly*Prdy)  ifp>0.

(ii) Let T be an (F;)-stopping time and g € [0, 1] such that (Hé) holds. Set
D! ={y,|y| € (uy, h]} and Y,h’” = 0<s<t AY;’I{AY!@D’;;} _thl,’ yr(dy). Then,
2q
Ef L= Py, iraeron
lyl<h

E{|Y/" ) < cqrflyl<h Iy (dy), ifqe/2.1]

Y/ A r)th yr(dy)

(iii) Let p > 1 such that (Hll)) holds. Set 2;1 =7 — tf{|y|>1}y7r(dy). Then,
there exists n > 1 such that, for every To > 0, for every ¢ > 0, there exists
Ce,1y,p > 0, no € N such that, for every t > Ty and n > ny,

E{|Z}*"} < r( / Iy PP (dy) + s) +Ce 1y, pt"
and

E{|Z\pn|*P} < z(/ 1?77 (dy) + s) + Cep pt "
PROOF. The proof is left to the reader. [

REMARK 9. In (iii), the control is only valid for n sufficiently large but that
does not make any problem since (R, ) just needs to be valid for sufficiently
large n.

5.2. Identification of the limit of (Df),,eN and (D,f)neN. The theorem which is
obtained for (ﬁ,?)neN and (Dnc JneN is strictly identical to Proposition 3 under the
additional condition (9) for Scheme (C). We recall that the proof of Proposition 3
is based on two steps: Propositions 4 and 5. Proposition 5 is still valid without
additional difficulties. However, the proof of the analogous result to Proposition 4
raises some new difficulties. Denote by A¥8 and A% C the operators on GQK (RY)
with values in G, (R?, R) defined by

ARB £(x) = (V £.5) (x) + A Tr(o™D? for) (x) + f{ A7 (x.x, ) (dy),

|y|=ui}

ARC £ () = ARB £ (o) — (1 — ax() / A7 (x,x, y)m(dy),
{ly|=ux}
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_e—myl=upt » ] 2] 3
where oy (1) = lnequk);‘ Af — ARB £ and “Af — AKC £ can be viewed as

the principal part of the weak error induced by the approximation in Schemes (B)
and (C) [A% 8 is the infinitesimal generator of (X f), where (X f) is solution to the
SDE (1) driven by (Zf) instead of (Z;)]. Thus, one may expect that this error be
negligible in the sense of our problem. This is the aim of Lemma 8.

LEMMA 8. Assume (chl). Let (xx)keN be a sequence such that
(71) sup—annK(xk DI < oo.
Then, for every function f € 82K R4, R),

im Hﬂ};nk Af (xx—1) — ARB f (1)) =

and if 1(Dp)yn " =570,

w i Hn;nk Af (o) — ARC f () =

PROOF. Note that AR5 f(x) — Af(x) = [,y H (x,x, y)7(dy). When
g > 1/2, we deduce from Taylor’s formula and the boundedness of V f and D? f
that there exists C, > 0 such that

|H (e, DIy < Calle IRy P 1y <uy-
When g < 1/2, since f is a 2g-Hélder function,

1H G, 6, )yt < L g e GOy P11y <

+ sup [Vl Ik Ty 1y <u-
xesupp f

By setting v 4 = f{|y|<uk} |y[%7(dy), we have

C (vi,q I Car—D) 1179 + vi 1), ifg <1/2,

|Af (xx—1) — ARB f(xp_p)| < l .
Cop gl k117, ifg>1/2.

Since v o kiio 0 for every @ > g under assumption (Hé), the first result follows
from (71). One deduces the second inequality by checking that

|ARB £ (x) — ARC F(0)| < Cr (D (1 + e () ]1%9). O
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Set

E(f (X)) - FXEDIFEL)
Vi

E{f(XP) — X DIFEL)
Yk

The rest of the proof then amounts to proving that

RE¥(y, XP ) = —AkBr(xB ),

C.k S _
Ry (v, XS = — ARCF(XE ).

[ Bk B
lim — E Ry , X, 1)=0
noo H, k=l’7k 3 Ve Xi—1)
and

LK ek, we
i, = ; mR3 ™ (vie. X)) =0.
We do not detail this proof based on the same approach as the proof of Proposi-
tion 4 (see [21] for more details). However, we want to derive the main difficulties
from the proof. For Scheme (B), one deduces from the Ito formula that

1 -,
R0l < [ [ do [ 7@EIAR (Suyu+000ZEy 500, 9)| By @)

The right-hand term can be written Ri’lk(y, x) + Rg’zk(y, x), where Ri’lk(y, X)
[resp. Rg’zk(y, x)] is simply derived from R3 1(y, x) [resp. R32(y, x)], defined in

the proof of Proposition 3, by replacing Z with Z*. We focus on Rg ’lk. One ob-
serves that the controls (65) and (66) used for R3 1 no longer work since the jump
component depends on n. An idea is to use the Skorokhod representation theorem
(see, e.g., [24]) in order to replace (Z5 by a uniformly controllable sequence.

LEMMA 9. There exist a sequence of cadlag processes (Z") and a cadlag

process 7 such that Z" = 7" for everyn > 1, ZL£Zand 7" > 7 a.s. for the

Skorokhod topology. In particular,
sup sup |Z"| < +oo VT >0 and

neNO0<s<T
(72) -
limsup sup [Z}|=0 a.s.
n——+00,y—>00<s<y

PROOF. Z" converges locally uniformly in L? toward Z, hence, in distribu-
tion for the Skorokhod (Polish) topology. Thanks to the Skorokhod representation
theorem, there exists (ZM)nen and Z with Z" £ 77 and Z £ 7 such that Z" tends
a.s. toward Z for Skorokhod topology. The assertion (72) easily follows from the
continuity of o > |[|a|sup and o — «(0) for the Skorokhod topology. []
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Since Rf’ ’lk only depends on the law of Z", one can replace Z” with Z". Then,
we use (72) as an alternative to the local boundedness and the continuity at t =0
of (Z;) needed in (65) and (66) respectively. A result analogous to (67) follows.
The idea is the same for Rg ,2k.

Finally, for Scheme (C), the result essentially follows from the following re-
mark:

sup |Zg,rn|l < sup |Z{].
O<s<t O<s<t
This means that the remainders in Scheme (C) are easier to control than those of
Scheme (B). For more details, we refer to [21].

6. A theoretical application. The “classical” a.s. CLT due to Brosamler [6]
and Schatte [26] is the following result. Let (U, ),<N be a sequence of i.i.d. random
variables with values in R? such that EU; = 0 and Yy, = 14. Then,

1 &1
P-a.s m Z %81/\/EZ{€:1 Ui — e/V(O, Id).
k=1

This result is obviously connected with the central limit theorem which expresses
the fact that every square-integrable centered random variable is in the domain
of normal attraction of the normal law. When the square-integrability no longer
holds, Berkes, Horvath and Khoshnevisan [3] obtained an extension of this re-
sult connected with the nonsquare-integrable attractive laws which are stable laws
[with index « € (0, 2)]. We are going to show that we can deduce this extension
from Theorem 2.

Let ¢ be a positive number and denote by (Z;"“);>¢ a symmetrical one-
dimensional a-stable process such that the characteristic function ¢ of Z‘IX’C satis-
fies ¢ (u) = e—PI“I*  where p = 2¢ f0+°° y~%sinydy. Consider a sequence (V,),eN
of symmetrical i.i.d. random variables such that, for x > 0,

P(V) 2 x) = — +8(x)(x " “(Inx)"")
(73) !

—+00

with y > 0 and §(x) " == 0.
By a result of Gnedenko and Kolmogorov (see [10]), we know that
Vi+--+V,
nl/a
Then, the following a.s. CLT holds:

a,c
:}Zl .

THEOREM 4. Let (Ni)keN be a nonincreasing sequence with infinite sum such
that (kni)reN is nonincreasing and set v = (,C(Z?’C). Then, if y > é, a.s.,
1 ¢ (R)
Hy ,2 Y e



418 F. PANLOUP

In particular,

1 &1 (R)
m %8(V1+-~~+Vk)/kl/a =V a.s.
k=1

In order to prove this theorem, we first need an almost sure invariance principle
due to Stout (see [27] or [3]).

PROPOSITION 6. Let (V,)n>1 and (&n)n>1 be sequences of i.i.d. random vari-
ables such that £, £ Z‘f”c and V1 is defined as above. Then, if y > é, there exists a
probability space (2, F,P) and sequences of i.i.d. random variables (V,),>1 and
(2,,),121 such that ‘}1 £ Vi, 21 £ ¢y and

SN O e 1y _l)
74 Y G- Vi o(n'/*(Inn)~") a.s.V,oe(O,y -

i=1 i=1

PROOF OF THEOREM 4. First, we assume that V| = ¢; £ Z1C. Set

_ Gt

S, = PN Vn > 0.

1
One easily checks that S, 41 =S, — éynHSn + Vr1én+2 + Rut with y, = #

and R,y = O(y,$+1|Sn|). The idea of the proof is to compare (S,),>0 with the
exact Euler scheme with initial value {1 and step sequence (y;) associated with
the SDE (Eq ) defined by dX; = —éXt— dt +dZ;°. Since (Z;"“);>0 is a self-
similar process with index 1/« (see, e.g., [25]), its Euler scheme can be written

- —_ - 1 —_ 1
Xo=¢ and Xpp1 =X, — &Vn—HXn + yna+1§n+2-

As an Ornstein—Uhlenbeck process driven by a symmetric stable law, (X;) admits
a unique invariant measure v and v = cC(Z‘lx’c) (see [25], page 188). Since « is
bounded, assumptions of Theorem 2 are clearly fulfilled with V (x) = 1 +x2,a = 1
and for any p € (0, «/2) and g € («/2, 1). (In the rest of the paper the initial value
of the Euler scheme is supposed to be constant, but it is obvious that Theorem 2
is still true when X is a random variable satisfying E{|Xo|*”} < +00.) Hence, it
follows from Theorem 2 that

1 2 —+00
(75) Fn /; nké,-(k_l ==y a.s.
Then, by using that |£(Sk) — f(Xx)| < C(ISx — Xi| A 1) for every Lipschitz
bounded function f, one easily checks that Theorem 4 holds with V| = ¢1 if

n——+0o

(76) Ayi=S,—X, =0 a.s.
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Let us show (76). One first checks that

1
A()IO and An:(l—m)Anl+Rn Vl’lZ]
Setting kg = inf{k > 0, k — 1/a > 0}, we deduce that, for every n > ko + 1,
Ay, 1 & " 1 -
A, =—"24 — Z cr Ry with ¢, = 1_[ (1—7> .
o Ot k=ko+1 alk+1)

One observes that

n+1 1 n+1 1 1 n—+00 - /g
Cp = €exp Z 1n<1——) =exp " Z %+0(ﬁ> ~ Cn'".

k=ko+2 k=ko+2
Then, Ay,/c, — 0a.s. Hence, (76) holds if we check that 1/c,, ZZ:kO+1 ckRy — 0
a.s. First, if o > 1, as ¢; is integrable and Ry = O (Sk—1/(k + 1)?), we have
ElSe—11} _ KE{]Z11}
E{|Rx C —_—
Z {IRk[} = Z (k + 1)2 — Zl (k + 1)1/(a+2)

k>1 k>1
CZ (k + 1)1+1/a < +00.

. + .
We deduce that } ;- [Ri| < +00 a.s. Since ¢, "2 400, we derive from Kro-
necker’s lemma that

n—>+oo .
0 as.ifa>1.

Z aR"TT0 = A,
Cn k=ko+1
Second, if ¢ < 1, ¢; has a moment of order 6 for every 6 < «. It follows from
inequality (25) that
C
(k + 1)9(2—1—1/0{)—1 :

E{|R|°} < C E{|¢11%) <

(k + 1)29+9/a
Therefore, if 6 satisfies 6(2 + é) — 1 > 1, that is, if 22+—“a < 6 < «a, we have
D k=1 |Rx|® < +00 a.s. Hence, by inequality (25) and Kronecker’s lemma, it fol-

lows that
0

1 1
— X ak <5 X JIRSTTE0 O as
" k=ko+1 n k=ko+1

and the theorem is proved when V| = ¢;. Now, consider a sequence (V,),>0 of
i.i.d. symmetric random variables satisfying (73). Since Theorem 4 is true for
(¢n)n>1, itis also true for every sequence (&,),>1 of i.i.d. random variables satisfy-

ing 21 £ 1. By taking (2,,),,21 such that Proposition 6 holds, we derive from (74)

that there exists a sequence of i.i.d. random variables (17,,),,21 such that V) £ \71
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and

1 - n—+00
77 H, f”qﬂ+m+wvww = v as

As (Vy)n>1 and (17,,),,21 are sequences of i.i.d. random variables such that
Vi £ ‘71, (77) is also true for (V;,)p>1. U

7. Simulations.

EXAMPLE 4. Denote by (Z;);>0 a Cauchy process with parameter 1 [with
Lévy measure defined by 7 (dy) = 1/y?dy] and consider the Ornstein—Uhlenbeck
process solution to d X; = —X;- dt + dZ, corresponding to (E1,1) defined in the
previous subsection. The unique invariant measure of (X;);>¢ is the Cauchy law
(see [25], page 188) and the assumptions of Theorem 2 are fulfilled with V(x) =
1+x%,a=1and every p € (0,1/2) and g € (1/2, 1). Therefore,

J )

a.s.
(1 +x2)

- - - +
AOSHOR G|
for every f satisfying f = O(|x|'/?>7¢) with ¢ > 0. In Figures 1, 2 and 3, one
0.35 T T T T T

- -- Approx. density
—— Theor. density

03r

0.25

PR

0.2

0.1

0.05 -

0 . { , .
-20 -15 -10 -5 0 5 10 15 20

FIG. 1. Scheme (A), t =12.5.
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0.35 T T T T T T T

- -- Approx. density
n —— Theor. density

0.3 B

0.25 4

0.2 b

0.1 b

0.05 4

1 1 1

0]
-20 -15 -10 -5 0 5 10 15 20

FI1G. 2. Scheme (B),t =16.6.

0.35 T T T T T T T
==+ Approx. density
n —— Theor. density

0.3

0.2 b

0.15 I 4

0.05 b

[¢]
-20 -15 -10 -5 0 5 10 15 20

F1G. 3. Scheme (C), t =16.4.
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1.3 T T T T T

1.12}F B

1 | 1
0 2 10° 4.10° 6.10° 8.10° 106

FIG. 4. Scheme (A).

compares the theoretical density of the invariant measure with the density ob-
tained by convolution of each of the empirical measures by a Gaussian kernel for
N =5.10*. We choose 1, = yu = 1//n, un = /¥ [s0 that 7(Dy)y, — 0] and
t indicates the CPU time. In order to have a more precise idea of the differences
between the three Euler schemes, we simulate and represent on Figures 4, 5 and 6
the sequence (v, (f)) with f(x) = |x|%4, for several choices of polynomial steps.
We set y, = n, = 1/n9 and u, =y, (resp. u, = ﬁn) for Scheme (B) [resp. for
Scheme (C)]. We observe that, among the tested steps, the best rate seems to be
obtained for 6 = 0.3. Notably, in Schemes (B) and (C), we see that, on the one
hand, if the step decreases too slowly (e.g., 8 = 0.7), so is the stabilization and, on
the other hand, if the steps decreases too fast (e.g., when 6 = 0.1), there are not
sufficient variations to correct the error.

REMARK 10. In [20] we study the rate of convergence of these procedures
in terms of steps, weights and truncation thresholds. This enlightens these first
numerical illustrations.

EXAMPLE 5. Now we deal with the following SDE:
dX[ - (1 - Xt—)dt - Xt_ dZt,
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FI1G. 5. Scheme (B).
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FIG. 6. Scheme (C).
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—— Scheme (B)
------ Scheme (C)

0 Il Il | 1 1 f | L L ]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FI1G. 7. Approximated density, N = 106.

where (Z;);>0 is a drift-free subordinator with Lévy measure 7 defined by

2(dy) = f3/2,1éz(y) 4

where f, ; is the density function of the B(a, b)-distribution. This SDE models the
dust generated by a particular EFC process (see Introduction) whose sudden dis-
locations do not create dust, having parameters (according to the notation of [2]):

ck =0, ce=1, Vcoag(dy):f3/2,l/2(y)dy-

One checks that (Sy,1,1,2) is satisfied with V(x) =1 + x2. However, we do not
have «(x) = o(|x]), but since supp(sr) is restrained to [0, 1] without singularities
in 0 and 1, we are able to show that assumption « (x) = o(x) is no longer necessary
in this case. In Figure 7 we represent the approximation of the invariant measure
obtained for Schemes (B) and (C) [we are not able to simulate Scheme (A) in that
case].

Acknowledgments. Thanks to Gilles Pages for extensive discussions and sug-
gestions.
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