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RECURSIVE COMPUTATION OF THE INVARIANT MEASURE OF
A STOCHASTIC DIFFERENTIAL EQUATION DRIVEN BY

A LÉVY PROCESS

BY FABIEN PANLOUP

Université Paris 6

We study some recursive procedures based on exact or approximate Euler
schemes with decreasing step to compute the invariant measure of Lévy
driven SDEs. We prove the convergence of these procedures toward the in-
variant measure under weak conditions on the moment of the Lévy process
and on the mean-reverting of the dynamical system. We also show that an a.s.
CLT for stable processes can be derived from our main results. Finally, we
illustrate our results by several simulations.

1. Introduction.

1.1. Objectives and motivations. This paper is devoted to the computation of
the invariant measure (denoted by ν) of ergodic stochastic processes which obey
a stochastic differential equation (SDE) driven by a Lévy process. Practically, we
want to construct a sequence of empirical measures (ν̄n(ω, dx))n≥1 which can
be recursively simulated and such that ν̄n(ω,f ) → ν(f ) a.s. for a range of func-
tions f containing bounded continuous functions.

In the case of Brownian diffusions, some methods have already been developed
by several authors to approximate the invariant measure (see Section 1.3), but this
paper seems to be the first one that deals with this problem in the case of general
Lévy driven SDEs. The motivation for this generalization is the study of dynam-
ical systems that are widely used in modeling. Indeed, there are many situations
where the noise of the dynamical system is discontinuous or too intensive to be
modeled by a Brownian motion. Let us consider an example that comes from the
fragmentation-coalescence theory. In situations such as polymerization phenom-
enons, when temperature is near to its critical value, molecules constantly break-up
and recombine. This situation has been modeled by Berestycki [2] through what
he terms EFC (Exchangeable Fragmentation-Coalescence) process. The mass of
the dust generated by this process (see [2] for more details) is a solution to a
mean-reverting SDE for which the noise component is driven by a subordinator
(an increasing Lévy process). We come back to this example in Section 7.
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For other examples of situations where models that use a Lévy driven SDE are
adapted, we refer to Barndorff-Nielsen et al. [1] for examples in financial mod-
eling (where ergodic Lévy driven SDEs are usually used to model the volatil-
ity of a financial market), Protter–Talay [23] for examples in finance, electrical
engineering, . . . or Deng [8], who models the spot prices of electricity by a mean-
reverting Brownian diffusion perturbed by a compound Poisson noise.

1.2. The stochastic differential equation. According to the Lévy–Khintchine
decomposition (for this result and for introduction to Lévy processes, see, e.g.,
Bertoin [4], Protter [22] or Sato [25]), an R

l-valued Lévy process (Lt ) with Lévy
measure π admits the following decomposition: Lt = αt + √

QWt + Yt + Nt ,
where α ∈ R

l , Q is a symmetric positive l × l real matrix, (Wt) is a l-dimensional
standard Brownian motion, (Yt ) is a centered l-dimensional Lévy process with
jumps bounded by 1 and characteristic function given for every t ≥ 0 by

E
{
ei〈u,Yt 〉} = exp

[
t

(∫
{|y|≤1}

ei〈u,y〉 − 1 − i〈u,y〉π(dy)

)]

and (Nt ) is a compound Poisson process with parameters λ = π(|y| > 1) and
μ(dy) = 1{|y|>1}π(dy)/π(|y| > 1) (λ denotes the parameter for the waiting time
between the jumps of N and μ, the distribution of the jumps). Moreover, (Wt),
(Yt ) and (Nt) are independent Lévy processes.

Following this decomposition, we consider an R
d -valued càdlàg process (Xt)

solution to the SDE

dXt = b(Xt−) dt + σ(Xt−) dWt + κ(Xt−) dZt ,(1)

where b : Rd 	→ R
d , σ : Rd 	→ Md,l (set of d × l real matrices) and κ : Rd 	→ Md,l

are continuous with sublinear growth and (Zt ) is the sum of the jump components
of the Lévy process: Zt = Yt + Nt .

In most papers dealing with Lévy driven SDEs, the SDE reads dXt =
f (Xt−) dLt , where (Lt )t≥0 is a Lévy process. Here, we separate each part of
the Lévy process because they act differently on the dynamical system. We isolate
the drift term because it usually produces the mean-reverting effect (which in turn
induces the ergodicity of the SDE). The two other terms are both noises, but we
distinguish them because they do not have the same behavior.

REMARK 1. In (1) we chose to write the jump component by compensating
the jumps smaller than 1, but it is obvious that, for every h > 0, (Xt) is also solution
to

dXt = bh(Xt−) dt + σ(Xt−) dWt + κ(Xt−) dZh
t(2)

with bh = b+∫
{|y|∈(1,h]} yπ(dy) if h > 1, bh = b−∫

{|y|∈(h,1]} yπ(dy) if h < 1, and

Zh
t = Yh

t + Nh
t , where the characteristic function of Yh

t is given for every t ≥ 0 by

E
{
ei〈u,Y h

t 〉} = exp
[
t

(∫
{|y|≤h}

ei〈u,y〉 − 1 − i〈u,y〉π(dy)

)]
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and (Nh
t ) is a compound Poisson process with parameters λh = π(|y| > h) and

μh(dy) = 1{|y|>h}π(dy)/π(|y| > h). By this remark, we want to emphasize that
the formulation (1) is conventional and that the coefficient b in (1) is dependent on
this choice. We will come back to this remark when we introduce the assumptions
of the main results where we want, on the contrary, that they be intrinsic (see
Remark 4).

Let us recall a result about existence, uniqueness and Markovian structure of
the solutions of (1) (see [22]).

THEOREM 1. Assume that b, σ and κ are locally Lipschitz functions with
sublinear growth. Let (	,F , (Ft ),P) be a filtered probability space satisfying the
usual conditions and let X0 be a random variable on (	,F ,P) with values in R

d .
Then, for any (Ft )-Brownian motion (Wt)t≥0, for any (Ft )-measurable (Zt )t≥0
as previously defined, the SDE (1) admits a unique càdlàg solution (Xt)t≥0 with
initial condition X0. Moreover, (Xt)t≥0 is a Feller and Markov process.

REMARK 2. Lévy driven SDEs are the largest subclass of SDEs driven by
semimartingales such that the solutions have a Markovian structure. Indeed, a re-
sult due to Jacod and Protter (see [13]) shows that, under appropriate conditions
on the coefficients, a stochastic process solution to a homogeneous SDE driven by
a semimartingale is a strong Markov process if, and only if, the driving process is
a Lévy process.

1.3. Background on approximation of invariant measures for Brownian diffu-
sions. This problem has already been studied by several authors when (Xt) is
a Brownian diffusion, that is, when κ = 0. In [28] Talay approximates ν(f ) by
ν̄

γ
n (f ) = 1/n

∑n
k=1 f (X̄

γ
k−1), where (X̄

γ
n )n denotes the Euler scheme with con-

stant step γ . Denoting by νγ the invariant distribution of the homogeneous Markov

chain (X̄
γ
n )n, he shows that ν̄

γ
n

n→+∞�⇒ νγ and that νγ γ→0�⇒ ν, under some uniform
ellipticity and Lyapunov-type stability assumptions. (A Markov process (Xt) with
infinitesimal generator A satisfies a Lyapunov assumption if there exists a positive
function V such that V(x) → +∞ and lim supAV (x) = −∞ when |x| → +∞.
Then, V is called a Lyapunov function for (Xt). Under this assumption, (Xt) ad-
mits a stationary, often ergodic when unique, distribution. The existence of such
a Lyapunov function depends on the mean-reversion of the drift and on the inten-
sity of the diffusions term (see, e.g., [5, 7, 12] and [19] for literature on Lyapunov
stability).) In this procedure, γ and n correspond to the two types of errors that
the discretization of this long time problem generates. Practically, one cannot ef-
ficiently manage them together. Indeed, when one implements this algorithm, one
sets a positive real γ and then, one approximates the biased target νγ . In order
to get rid of this problem, Lamberton and Pagès (see [14, 15]) replace the stan-
dard Euler scheme with constant step γ with an Euler scheme with decreasing
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step γn. Denoting by (X̄n)n≥1 this Euler scheme and by (ηk)k≥1 a sequence of

weights such that Hn = ∑n
k=1 ηk

n→+∞−→ +∞, they define a sequence of weighted
empirical measures (ν̄n) and show under some Lyapunov assumptions (but without
ellipticity assumptions) that if (ηn/γn) is nonincreasing,

ν̄n(f ) = 1

Hn

n∑
k=1

ηkf (X̄k−1)
n→+∞−→ ν(f ) p.s.,

for every continuous function f with polynomial growth (see [14, 15] for more
details and [17] for extensions).

REMARK 3. These two approaches are significantly different. Talay’s method
strongly relies on the homogeneous Markovian structure of the constant step Euler
scheme and on its classical “toolbox” (irreducibility, positive recurrence, . . . , see,
e.g., [18]). Since the Euler scheme with decreasing step is no longer homogeneous,
Lamberton and Pagès develop another method based on stability of Markov chains
and on martingale methods which can be extended to a nonhomogeneous setting
(see [9]). This is why they do not need any ellipticity assumptions on the coeffi-
cients.

1.4. Difficulties induced by the jumps of the Lévy process. In this paper we
adapt the Lamberton and Pagès approach. In order to obtain some similar results in
the case of Lévy driven SDEs, one mainly has two kinds of obstacles to overcome.

From a dynamical point of view, the main difficulty comes from the moments
of the jump component. Indeed, by contrast with the case of Brownian motion, the
jump component can have only few moments (stable processes, e.g.), and it then
generates some instability for the SDE.

The second obstacle appears in the simulation of the Euler scheme. Actually,
only in some very particular cases can the jump component of a Lévy process be
simulated (compound Poisson processes, stable processes, . . .). In those cases, the
Euler scheme [that we call exact Euler scheme and denote by (A)] can be built by
using the true increments of (Zt ). Otherwise, one has to study some approximate
Euler schemes where we replace the increments of Zt with some approximations
that can be simulated. The canonical way for approximating the jump compo-
nent is to truncate its small jumps. Let (un)n≥1 be a sequence of positive numbers
such that un < 1 and (un) decreases to 0 and (Y n)n≥1 be the sequence of càdlàg
processes defined by

Yn
t = ∑

0<s≤t

�Ys1{�Ys∈Dn} − t

∫
Dn

yπ(dy) ∀t ≥ 0

with Dn = {y ∈ R
l , un < |y| ≤ 1} and �Ys = Ys − Ys− . The process Yn is a com-

pensated compound Poisson process with parameters λn = π(Dn) and μn(dy) =
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1Dn(y)π(dy)/π(Dn). It converges locally uniformly in L2 to Y , that is, for every
T > 0,

E

{
sup

0<t≤T

|Yt − Yn
t |2

}
n→+∞−→ 0 (see [4]).(3)

We will denote by Zn the process defined by Zn = Yn + N and by (B) the Euler
Scheme built with its increments. The increments of Zn can be simulated if λn and
the coefficient of the drift term can be calculated, and if μn can be simulated for
all n ∈ N. This is the case for a broad class of Lévy processes, thanks to classical
techniques (rejection method, integral approximation, . . .). If there exists (un)n≥1
such that the increments of Zn can be simulated for all n ∈ N, we say that the Lévy
measure can be simulated. However, the simulation time of Zn

t depends on the av-
erage number of its jumps, that is, on π(|y| > un)t . When the truncation threshold
tends to 0 (this is necessary to approach the true increment of the jump compo-
nent), π(|y| > un) explodes as soon as the Lévy measure is not finite (i.e., as soon
as the true jump component is not a compound Poisson process). It implies that
the simulation time of Zn

t explodes for a fixed t . However, thanks to the decreas-
ing step, it is possible to adapt the time step γn and the truncation threshold un so
that the expectation of the number of jumps at each time step remains uniformly
bounded. Following the same idea, it is also possible to choose some steps and
some truncation thresholds so that the average number of jumps at each time step
tends to 0. In this case, approximating the true component by the preceding com-
pound Poisson process stopped at its first jump time (the first time when it jumps)
can also be efficient [see Scheme (C)].

1.5. Construction of the procedures. Let (γn)n≥1 be a decreasing sequence
of positive real numbers such that limγn = 0 and 
n = ∑n

k=1 γk → +∞ when
n → +∞. Let (Un)n≥1 be a sequence of i.i.d. square integrable centered R

l-valued
random variables with �U1 = Id . Finally, let (Z̄n)n≥1, (Z̄B

n )n≥1 and (Z̄C
n )n≥1 be

sequences of independent R
l-valued random variables independent of (Un)n≥1,

such that,

Z̄n
(Rl )= Zγn, Z̄B

n

(Rl )= Zn
γn

and Z̄C
n

(Rl )= Zn
γn∧T n ∀n ≥ 1,

with T n = inf{s > 0, |�Zn
s | > 0}. Let x ∈ R

d . The Euler Schemes (A), (B) and (C)
are recursively defined by X̄0 = X̄B

0 = X̄C
0 = x and for every n ≥ 1,

X̄n+1 = X̄n + γn+1b(X̄n) + √
γn+1σ(X̄n)Un+1 + κ(X̄n)Z̄n+1,(A)

X̄B
n+1 = X̄B

n + γn+1b(X̄B
n ) + √

γn+1σ(X̄B
n )Un+1 + κ(X̄B

n )Z̄B
n+1,(B)

X̄C
n+1 = X̄C

n + γn+1b(X̄C
n ) + √

γn+1σ(X̄C
n )Un+1 + κ(X̄C

n )Z̄C
n+1.(C)

We set Fn = σ(X̄k, k ≤ n), F B
n = σ(X̄B

k , k ≤ n) and F C
n = σ(X̄C

k , k ≤ n). Let
(ηk)k∈N be a sequence of positive numbers such that Hn = ∑n

k=1 ηk → +∞. For
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each scheme, we define a sequence of weighted empirical measures by

ν̄n = 1

Hn

n∑
k=1

ηkδX̄k−1
,

(4)

ν̄B
n = 1

Hn

n∑
k=1

ηkδX̄B
k−1

and ν̄C
n = 1

Hn

n∑
k=1

ηkδX̄C
k−1

.

For a function f : Rd 	→ R, (ν̄n(f )) can be recursively computed (so is the case
for the two other schemes). Indeed, we have ν̄1(f ) = f (x) and for every n ≥ 1,

ν̄n+1(f ) = ν̄n(f ) + ηn+1

Hn+1

(
f (X̄n+1) − ν̄n(f )

)
.

Some comments about the approximate Euler schemes. In Scheme (B), since
(un) decreases to 0, we discard fewer and fewer jumps of the true component
when n grows. We will see in Theorem 2 below that this is the only condition on
(un) for the convergence of (ν̄B

n ). This means that we only need the law of Zn
γn

to
be an “asymptotically good approximation” of the law of Zγn . Yet, as previously
mentioned, there is a hidden constraint induced by the simulation time which is
proportional to the average number π(|y| > un)γn of jumps of Zn on [0, γn]. In
practice, we require (π(|y| > un)γn) to be bounded.

Furthermore, if π(|y| > un)γn → 0 (i.e., the average number of jumps at each
step tends to 0), we will see that the first jump of Zn is all that matters for the con-
vergence of the empirical measure. This means that Scheme (C) becomes efficient.

1.6. Notations. Throughout this paper, every positive real constant is denoted
by C (it may vary from line to line). We denote the usual scalar product on R

d

by 〈·, ·〉 and the Euclidean norm by | · |. For any d × l real matrix M , we de-
fine ‖M‖ = sup{|x|≤1} |Mx|/|x|. For a symmetric d × d real matrix M , we set
λM = max(0, λ1, . . . , λd), where λ1, . . . , λd denote the eigenvalues of M . For
every x ∈ R

d ,

Mx⊗2 = x∗Mx ≤ λM |x|2.(5)

We denote by Cb(R
d) [resp. C0(R

d)] the set of bounded continuous functions
on R

d with values in R (resp. continuous functions that go to 0 at infinity) and
C2

K(Rd), the set of C2-functions on R
d with values in R and compact support.

One says that f is a p-Hölder function on E with values in F (where E and F are
normed vector spaces) if

[f ]p = sup
x,y∈E

‖f (x) − f (y)‖F

‖x − y‖p
E

< +∞.

Finally, we say that V : Rd 	→ R
∗+ is an EQ-function (Essentially Quadratic func-

tion) if V is C2, limV (x) = +∞ when |x| → +∞, |∇V | ≤ C
√

V and D2V is



RECURSIVE COMPUTATION 385

bounded. [In particular, V given by V (x) = ρ + Sx⊗2, where ρ is a positive num-
ber and S is a definite and positive symmetric d ×d real matrix, is an EQ-function.]
For p > 0, one checks that ‖D2(V p)‖ ≤ CV p−1, that V p is a 2p-Hölder function
if p ≤ 1/2, and that V p−1∇V is a (2p − 1)-Hölder function if p ∈ (1/2,1) (see
Lemma 3). Hence, λp and cp given by

λp := 1

2p
sup
x∈Rd

λV 1−pD2(V p)(x) and

(6)

cp :=
⎧⎪⎨
⎪⎩

[
V p

p

]
2p

, if p ∈ (0,1/2],
[V p−1∇V ]2p−1, if p ∈ (1/2,1]

are finite positive numbers.

1.7. Organization of the paper. The main results (Theorems 2 and 3) are stated
in Section 2 and are proved in Sections 3, 4 and 5. First, we focus on the proof of
these theorems for the exact Euler Scheme (A): in Section 3 we prove the almost
sure tightness of (ν̄n) and in Section 4 we establish that every weak limiting dis-
tribution of (ν̄n) is invariant for the SDE (1). Second, in Section 5 we point out
the main differences which arise in the proofs when considering the approximate
Euler Schemes (B) and (C). In Section 6 we show that the almost sure central
limit theorem for symmetric stable processes (see [3]) can be obtained as a conse-
quence of our main theorems. Finally, in Section 7 we simulate the procedure on
some concrete examples.

2. Main results. In Theorem 2 we obtain a result under simple conditions on
the steps and on the weights. In Theorem 3 we show that, under more stringent
conditions on the steps and on the weights, some assumptions on the coefficients
of the SDE can be relaxed. Let us introduce the joint assumptions. First, we state
some assumptions on the moments of the Lévy measure at +∞ and 0:

(H1
p) :

∫
|y|>1

π(dy)|y|2p < +∞, (H2
q) :

∫
|y|≤1

π(dy)|y|2q < +∞,

where p is a positive real number and q ∈ [0,1].
Assumption (H1

p) is satisfied if, and only if, E|Zt |2p < +∞ for every t ≥ 0

(see [1], Theorem 6.1). By the compensation formula (see [4]), (H2
q) is satisfied

if and only if E{∑0<s≤t |�Yt |2q} < +∞, that is, if and only if (Yt ) has locally
2q-integrable variation. We recall that (H2

q) is always satisfied for q = 1 since∫
{|y|≤1} |y|2π(dy) < ∞ for any Lévy measure π .

Now, we introduce the Lyapunov assumption on the coefficients of the SDE
and on π denoted by (Sa,p,q). The parameter a specifies the intensity of the mean-
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reversion. We denote by b̃ the function defined by

b̃ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b, if p ≤ 1/2 ≤ q,

b − κ

∫
{|y|≤1}

yπ(dy), if p,q ≤ 1/2,

b + κ

∫
{|y|>1}

yπ(dy), if p > 1/2.

The function b̃ plays the role of the global drift of the dynamical system resulting
from b and from the jump component (see Remark 4 for more precisions). Let
a ∈ (0,1], p > 0 and q ∈ [0,1].

ASSUMPTION (Sa,p,q). There exists an EQ-function V such that:
1. Growth control: |b|2 ≤ CV a ,{

Tr(σσ ∗) + ‖κ‖2(p∨q) ≤ CV a+p−1, if p < 1,
Tr(σσ ∗) + ‖κ‖2 ≤ CV a, if p ≥ 1.

2. Mean-reversion: there exist β ∈ R, α > 0 such that, 〈∇V, b̃〉 + φp,q(σ, κ,π,

V ) ≤ β − αV a , where φp,q is given by

φp,q(σ, κ,π,V )

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cpm2p,π‖κ‖2pV 1−p1q≤p, if p < 1,
λ1

(
Tr(σσ ∗) + m2,π‖κ‖2)

, if p = 1,

dpλp

(
Tr(σσ ∗) + m2,π‖κ‖2 + epm2p,π

‖κ‖2p

V p−1

)
, if p > 1,

with mr,π = ∫ |y|rπ(dy), dp = 2(2(p−1)−1)+ , cp and λp given by (6), and ep =
[√V ]2(p−1)

1 .

Assumption (Sa,p,q).2 can be viewed as a discretized version of “AV p ≤ β −
αV a+p−1,” where A is the infinitesimal generator of (Xt) defined on a subset
D(A) of C2(Rd) by

Af (x) = 〈∇f, b〉(x) + 1
2 Tr(σ ∗D2f σ)(x)

(7)
+

∫ (
f

(
x + κ(x)y

) − f (x) − 〈∇f (x), κ(x)y〉1{|y|≤1}
)
π(dy).

Furthermore, one can check that if Assumption (Sa,p,q) is fulfilled, then there ex-
ist β̄ ∈ R and ᾱ > 0 such that “AV p ≤ β̄ − ᾱV a+p−1.” This means that if V is
the function whose existence is required in Assumption (Sa,p,q), then V p is a Lya-
punov function for the stochastic process (Xt) and for the Euler scheme (X̄n).

The left-hand side of (Sa,p,q).2 is the sum of two antagonistic components:
〈∇V, b̃〉 produces the mean-reverting effect (see Example 1 for concrete cases),
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whereas the positive function φp,q expresses the noise induced by the Brownian
and jump components. In particular, if the following tighter growth control condi-
tion holds,

|b|2 ≤ CV a,

⎧⎨
⎩ Tr(σσ ∗(x))

|x|→+∞= o
(
V a−(1−p)+(x)

)
,

‖κ(x)‖2 |x|→+∞= o(V ηa,p,q (x)),
(8)

with ηa,p,q = (p ∨q)−1(a +p −1) if p ≤ 1 and ηa,p,q = a if p > 1, then the term
φp,q becomes negligible and the mean-reversion assumption becomes

〈∇V, b̃〉 ≤ β − αV a.

REMARK 4. If we had chosen to compensate the jumps smaller than h > 0
rather than h = 1, the corresponding assumption would have been (Sh

a,p,q), where

(Sh
a,p,q) is obtained from (Sa,p,q) by replacing b with bh and b̃ with b̃h defined by

b̃h =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bh, if p ≤ 1/2 ≤ q,

bh − κ

∫
{|y|≤h}

yπ(dy), if p,q ≤ 1/2,

bh + κ

∫
{|y|>h}

yπ(dy), if p > 1/2.

One can check that, for every h > 0, (Sh
a,p,q) ⇐⇒ (Sa,p,q). This means that these

assumptions do not depend on the choice of the truncation parameter h. Indeed,
first, it is clear that (Sh

a,p,q).1 ⇐⇒ (Sa,p,q).1. Second, when p > 1/2 or p,q ≤ 1/2,

(Sh
a,p,q).2 ⇐⇒ (Sa,p,q).2 because in these cases, b̃h = b̃ for every h > 0. This can

be explained by the existence of a formulation of the SDE that does not depend
on h. Actually, when p > 1/2, we can rewrite the SDE (2) by replacing bh with
b̃h and, Zh

t with Ẑh
t = Zh

t − t
∫
{|y|>h} yπ(dy), that is, we can compensate the big

jumps. Since (Ẑh
t ) = (Z∞

t ) for every h > 0, it follows that b̃h = b̃ (= b∞) for every
h > 0. There also exists an intrinsic formulation when p,q ≤ 1/2 because in this
case, we can replace bh with b̃h and Zh

t with Žh
t = Zh

t + t
∫
{|y|≤h} yπ(dy) (now, we

do not compensate any jumps). Since (Žh
t ) = (Z0

t ) for every h > 0, b̃h = b̃ (= b0).
These formulations can be considered as the natural formulations of the dynamical
system in these settings.

When p ≤ 1/2 < q , there is no intrinsic formulation of the SDE (even if π is
symmetrical). Since bh depends on h, it appears that the left-hand side of (Sh

a,p,q).2
also depends on h. However, under the growth assumption on κ , one can check that
〈∇V,bh〉 = 〈∇V,b〉 + o(V a) and it follows that the same conclusion still holds in
this case.

We now state our first main result.
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THEOREM 2. Let a ∈ (0,1], p > 0 and q ∈ [0,1] such that (H1
p), (H2

q) and

(Sa,p,q) are satisfied. Suppose that E{|U1|2(p∨1)} < +∞ and that the sequence
(ηn/γn)n≥1 is nonincreasing. Then:

(1) If p/2+a −1 > 0, the sequence (ν̄n)n≥1 is almost surely tight. Moreover, if

κ(x)
|x|→+∞= o(|x|) and Tr(σσ ∗) + ‖κ‖2q ≤ CV p/2+a−1, then every weak limit of

this sequence is an invariant probability for the SDE (1). In particular, if (Xt)t≥0
admits a unique invariant probability ν, for every continuous function f such that
f = o(V p/2+a−1), limn→∞ ν̄n(f ) = ν(f ) a.s.

(2) The same result holds for (ν̄B
n )n≥1.

(3) The same result holds for (ν̄C
n )n≥1 under the additional condition

π(|y| > un)γn
n→+∞−→ 0.(9)

We present below some examples which fulfill the conditions of Theorem 2. In
the first we suppose that the dynamical system has a radial drift term and a noise
generated by a centered jump Lévy process with a Lévy measure close to that of
a symmetric stable process. In the second we suppose that the SDE is only driven
by a jump Lévy process, but we suppose that it is not centered. This implies that
even if the SDE has seemingly no drift term, a mean-reverting assumption can be
still satisfied.

EXAMPLE 1. Let φ and ψ be positive, bounded and continuous functions
on R

d such that

φ(x) = φ(−x) ∀x ∈ R
d,

φ = min
Rd

φ(x) > 0 and ψ = inf{|x|>1}ψ(x) > 0.

Consider (Zt ) defined as in the SDE (1) with Lévy measure π given by π(dy) =
φ(y)/|y|d+rλd(dy), where r ∈ (0,2). When φ = C > 0, the increments of (Zt )

can be exactly simulated because (Zt ) is a symmetric R
d -stable process with or-

der r . In the other cases, Z̄B
n and Z̄C

n can be simulated by the rejection method
since the density of π is dominated by the density of a Pareto’s law.

Let ρ ∈ [0,2) and b be a continuous function defined by b(x) = −ψ(x)x/|x|ρ .
We consider (Xt) solution to

dXt = b(Xt−) dt + κ(Xt−) dZt ,(10)

where κ is a continuous function such that ‖κ(x)‖2 ≤ C(1 + |x|2)ε with ε ≤ 1.
A natural candidate for the function V is V (x) = 1 + |x|2. Indeed, since b̃ = b

[because φ(y) = φ(−y)], one checks that there exists β ∈ R such that

〈∇V (x), b̃(x)〉 = −2ψ(x)|x|2−ρ ≤ β − ψV (x)1−ρ/2.
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We set a := 1 − ρ/2 and

�(r) := {(p, q) ∈ (0,+∞) × [0,1], (H1
p) and (H2

q) hold}.
We have �(r) = (0, r/2) × (r/2,1). By (8), for every (p, q) ∈ �(r), (Sa,p,q) is
satisfied if ε < (p + a − 1)/q = (p − ρ/2)/q . Hence, (ν̄n) is tight if there exists
(p, q) ∈ �(r) such that p/2 + a − 1 > 0, that is, if p > ρ, and (2p −ρ)/(2q) > ε.
If, moreover, ‖κ‖2q ≤ C(1+|x|2)p/2+a−1, that is, if (p−ρ)/(2q) ≤ ε, every weak
limit ν is invariant for the SDE (10).

It follows that if the invariant distribution ν is unique, ν̄n
L�⇒ ν a.s. as soon

as 2ρ < r and ε < sup{(p − ρ)/(2q), (p, q) ∈ �(r)} = 1/2 − ρ/r . Furthermore,
ν̄n(f ) → ν(f ) a.s. for every continuous function f satisfying f (x) ≤ C(1 + |x|)θ
with θ ∈ [0, (r/2 − ρ)/2).

EXAMPLE 2. Let π be a Lévy measure on R such that
∫
|y|≤1 |y|π(dy) < +∞,∫

|y|>1 |y|2pπ(dy) < +∞ with p ≥ 2 and
∫

yπ(dy) > 0. Let (Z0
t ) be a real Lévy

process with characteristic function given for every t ≥ 0 by

E
{
ei〈u,Z0

t 〉} = exp
[
t

(∫ (
ei〈u,y〉 − 1

)
π(dy)

)]
.

For instance, (Z0
t ) can be a subordinator with no drift term. We assume that κ(x) =

−ψ(x)x/|x|ρ with ρ ∈ [0,2) and ψ defined as in the preceding example. We then
consider the SDE:

dXt = κ(Xt−) dZ0
t = b(Xt−) dt + κ(Xt−) dZt ,

with b(x) = κ(x)
∫
{|y|≤1} yπ(dy) and Zt = Z0

t − t
∫
{|y|≤1} yπ(dy). Since p > 1/2,

b̃(x) = b(x) + κ(x)
∫
{|y|>1} yπ(dy) = κ(x)

∫
yπ(dy). Setting V (x) = 1 + x2, one

checks that there exists β ∈ R such that

V ′(x)b̃(x) = −2ψ(x)

∫
yπ(dy)|x|2−ρ ≤ β − ψ

∫
yπ(dy)V (x)1−ρ/2.

We set a = 1 − ρ/2. Let p ≥ 2 and q ≤ 1/2 such that (H1
p) and (H2

q) hold. First,

checking that as soon as ρ > 0, ‖κ(x)‖2 = o(1 + |x|2)a when |x| → +∞, we
derive from (8) that (Sa,p,q) is satisfied as soon as ρ ∈ (0,2). Second, for every
p ≥ 2, q ≤ 1 and a ∈ (0,1), one can check that p/2 + a − 1 > 0 and ‖κ(x)‖2q ≤
C(1 + |x|2)p/2+a−1. Hence, Theorem 2 applies for every ρ ∈ (0,2).

The interest of Theorem 2 lies in the facility with which it can be put to use in
concrete situations. For instance, in Scheme (A), we only have to take a sequence
(γn)n≥1 decreasing to 0, with infinite sum and ηn = γn. The next theorem (The-
orem 3) requires tougher conditions on the sequences (γn) and (ηn), but it can
be applied to SDEs where the coefficients do not necessarily verify all conditions
of Theorem 2. It broadens the class of SDEs for which we can find an efficient
procedure for the approximation of the invariant measure.
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THEOREM 3. Let a ∈ (0,1], p > 0 and q ∈ [0,1] such that (H1
p), (H2

q) and

(Sa,p,q) are satisfied. Suppose that E{|U1|2(p∨1)} < +∞. Then:

(1) Let s ∈ (1,2] satisfying the following additional conditions when p > 1/2:⎧⎪⎪⎨
⎪⎪⎩

s >
2p

2p + (a − 1)(2p − 1)/p
, if

1

2
< p ≤ 1,

s >
2p

2p + a − 1
, if p ≥ 1.

(11)

If p/s + a − 1 > 0, there exist some sequences (γn)n≥1 and (ηn)n≥1 such that

(ν̄n)n≥1 is almost surely tight. Moreover, if κ(x)
|x|→+∞= o(|x|) and Tr(σσ ∗) +

‖κ‖2q ≤ CV p/s+a−1, then every weak limit of this sequence is an invariant
probability for the SDE (1). In particular, if (Xt)t≥0 admits a unique invari-
ant probability ν, for every continuous function f such that f = o(V p/s+a−1),
limn→∞ ν̄n(f ) = ν(f ) a.s.

(2) The same result holds for (ν̄B
n )n≥1.

(3) The same result holds for (ν̄C
n )n≥1 under the additional condition (9).

REMARK 5. The sequences (ηn)n≥1 and (γn)n≥1 must verify an explicit con-
dition given in Proposition 1 below (see Remark 6 for a version adapted to poly-
nomial steps and weights).

In the following example, we consider the same class of SDEs as in Example 1
in the nonintegrable case (i.e., r ≤ 1). One can observe that the mean-reversion
condition and the growth condition on κ and on the functions f whose the proce-
dure converges can be relaxed. We also give some explicit polynomial weights and
steps for which Theorem 3 applies in this case.

EXAMPLE 3. Let ρ ∈ [0,2) and r ∈ (0,1], let b and κ be continuous functions
defined as in Example 1. Consider (Xt) solution to the SDE (10) and assume that
the invariant measure ν is unique. For s ∈ (1,2], denote by (γn,s) and (ηn,s) some
sequences of steps and weights satisfying γn,s = Cn−r1 , ηn,s = Cn−r2 with r1 ≤ r2
and

0 < r1 < 2
(

1 − 1

s

)
and r2 < 1 or 0 < r1 ≤ 2

(
1 − 1

s

)
and r2 = 1.

Then, for these choices of steps and weights, ν̄n
L�⇒ ν a.s. as soon as sρ < r and

ε ∈ [0,1/s − ρ/r) (this improves the condition: 2ρ < r and ε ∈ [0,1/2 − ρ/r)

of Example 1). Furthermore, ν̄n(f ) → ν(f ) a.s. for every continuous function
f satisfying |f (x)| ≤ C(1 + |x|)θ with θ ∈ [0, (r/s − ρ)/2) (this improves the
condition: θ ∈ [0, (r/2 − ρ)/2) of Example 1).
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3. Almost sure tightness of (ν̄n(w,dx))n∈N. The main result of this section
is Proposition 1. We need to introduce the function fa,p defined for all s ∈ (1,2]
by

fa,p(s) =
⎧⎨
⎩

s, if s ≥ 2p,
p + a − 1

p/s + (a − 1)/(2(p ∧ 1))
∧ s, if s < 2p.(12)

Assume that p + a − 1 > 0. Then, s 	→ fa,p(s) is a nondecreasing function which
satisfies f1,p(s) = s for all p > 0 and fa,p(2) = 2. Note that fa,p(s) > 1 if and
only if s satisfies assumption (11).

PROPOSITION 1. Let a ∈ (0,1], p > 0 and q ∈ (0,1] such that (H1
p), (H2

q)

and (Sa,p,q) are satisfied. Assume that E{|U1|2(p∨1)} < +∞ and (ηn/γn)n≥1 is
nonincreasing.

(1) Then,

sup
n≥1

ν̄n(V
p/2+a−1) < +∞ a.s.

Consequently, if p
2 + a − 1 > 0, the sequence (ν̄n)n∈N is a.s. tight.

(2) Let s ∈ (1,2) such that assumption (11) is satisfied. Assume that (ηn)n≥1
and (γn)n≥1 are such that

(
1

γn

(
ηn

Hn
√

γn

)fa,p(s))
is nonincreasing and

∑
n≥1

(
ηn

Hn
√

γn

)fa,p(s)

< +∞.(13)

Then, supn≥1 ν̄n(V
p/s+a−1) < +∞ a.s. and the sequence (ν̄n)n∈N is a.s. tight as

soon as p/s + a − 1 > 0.

REMARK 6. If γn = Cn−r1 and ηn = Cn−r2 with r1 ≤ r2, then assump-
tion (13) reads

r2 < 1 and 0 < r1 < r̄1 := 2
(

1 − 1

fa,p(s)

)
or

(14)
r2 = 1 and 0 < r1 ≤ r̄1.

The proof of Proposition 1 is organized as follows: first, in Section 3.1 (see Propo-
sition 2) we establish a fundamental recursive control of the sequence (V p(X̄n)):
we show that (Ra,p): There exist n0 ∈ N, α′ > 0, β ′ > 0 such that ∀n ≥ n0,

E{V p(X̄n+1)|Fn} ≤ V p(X̄n) + γn+1V
p−1(X̄n)

(
β ′ − α′V a(X̄n)

)
.(15)

For this step, we rely on Lemma 2 that provides a control of the moments of the
increments of the jump component in terms of p and q .
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Second, in Section 3.3 we make use of martingale techniques in order to derive
some consequences from (Ra,p). In Lemma 5 we establish a Lp-control of the
Euler scheme with arguments close to [15]. This control is fundamental for the
proof of Corollary 1 where we show the following property:

(Cp,s): There exist ρ ∈ (1,2] and a sequence (πn) of Fn-measurable random
variables such that

∑
n≥1

(
ηn

Hnγn

)ρ

E{|V p/s(X̄n) − πn−1|ρ} < +∞.(16)

This step is used to obtain a Lρ -martingale control (see proof of Lemma 1). We
will see in the proof of Corollary 1 that the choice of the sequence (πn) depends
on p and q . In particular, even if q does not appear in (Cp,s), this assumption
indirectly depends on this parameter. The same remark holds for (Ra,p). In the
following lemma, we show that these two steps are all what we have to show for
the proof of Proposition 1.

LEMMA 1. Let p > 0, a ∈ (0,1] and s ∈ (1,2] such that (H1
p), (Ra,p) and

(Cp,s) are fulfilled. Assume that E{|U1|2(p∨1)} < +∞ and that (ηn/γn) is nonin-
creasing. Then,

sup
n≥1

ν̄n(V
p/s+a−1) < +∞ a.s.(17)

and the sequence (ν̄n)n≥1 is a.s. tight as soon as p/s + a − 1 > 0.

PROOF. By a convexity argument (see Lemma 3 of [15]), one shows that
(Ra,p) �⇒ (Ra,p̄) for all p̄ ∈ (0,p]. Hence, for all s ∈ (1,2], there exists n0 ∈ N,
α̂ > 0 and β̂ > 0 such that ∀k ≥ n0,

E{V p/s(X̄k)|Fk−1} ≤ V p/s(X̄k−1) + γkV
p/s−1(X̄k−1)

(
β̂ − α̂V a(X̄k−1)

)
.(18)

For R > 0, set ε(R) = sup{|x|>R} V −a(x) and M(R) = sup{|x|≤R} V p/s−1(x). We
have

V p/s−1(x) ≤ ε(R)V p/s+a−1(x) + M(R).(19)

Since V (x) → +∞ when |x| → +∞ (resp. since V is bounded on every compact
set), ε(R) → 0 when R → +∞ [resp. M(R) is finite for every R > 0]. Hence,
for every ε > 0, there exists Mε > 0 such that V p/s−1 ≤ εV p/s+a−1 + Mε . By
setting ε = α̂/(2β̂), α̃ = α̂/2 and β̃ = β̂Mε , we deduce that V p/s−1(β̂ − α̂V a) ≤
β̃ − α̃V p/s+a−1. Hence, we derive from (18) that

V p/s+a−1(X̄k−1) ≤ V p/s(X̄k−1) − E{V p/s(X̄k)|Fk−1}
α̃γk

+ β̃

α̃
∀k ≥ n0.
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It follows that (17) holds if

sup
n≥n0+1

(
1

Hn

n∑
k=n0+1

ηk

γk

(
V p/s(X̄k−1) − E{V p/s(X̄k)|Fk−1})

)

(20)
< +∞ a.s.

We then prove (20). We decompose the above sum as follows:

1

Hn

n∑
k=n0+1

ηk

γk

(
V p/s(X̄k−1) − E{V p/s(X̄k)|Fk−1})

= − 1

Hn

n∑
k=n0+1

ηk

γk

�V p/s(X̄k)

+ 1

Hn

n∑
k=n0+1

ηk

γk

(
V p/s(X̄k) − E{V p/s(X̄k)|Fk−1}),

where �V p/s(X̄k) = V p/s(X̄k) − V p/s(X̄k−1). First, an Abel’s transform yields

− 1

Hn

n∑
k=n0+1

ηk

γk

�V p/s(X̄k) = 1

Hn

(
ηn0

γn0

V p/s(X̄n0) − ηn

γn

V p/s(X̄n)

)

+ 1

Hn

(
n∑

k=n0+1

(
ηk

γk

− ηk−1

γk−1

)
V p/s(X̄k−1)

)

≤ ηn0

Hnγn0

V p/s(X̄n0),

where we used in the last inequality that (ηn/γn) is nonincreasing. Hence, since

Hn
n→+∞−→ +∞ and

ηn0
Hnγn0

V p/s(X̄n0)
n→+∞−→ 0 a.s.,

sup
n≥n0

(
− 1

Hn

n∑
k=n0+1

ηk

γk

�V p/s(X̄k)

)
< +∞ a.s.(21)

Second, one denotes by (Mn)n∈N the martingale defined by

Mn =
n∑

k=1

ηk

Hkγk

(
V p/s(X̄k) − E{V p/s(X̄k)|Fk−1}).(22)

Let ρ ∈ (1,2] and (πk) be a sequence of Fk-measurable random variables such
that (16) holds. We derive from the elementary inequality |u + v|ρ ≤ 2ρ−1(|u|ρ +
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|v|ρ) that

E
{∣∣V p/s(X̄k) − E{V p/s(X̄k)|Fk−1}

∣∣ρ}
≤ CE{|V p/s(X̄k) − πk−1|ρ} + CE

{∣∣E{(
πk−1 − V p/s(X̄k)

)|Fk−1
}∣∣ρ}

≤ CE{|V p/s(X̄k) − πk−1|ρ},
thanks to the Jensen inequality. Hence, (Cp,s) yields

∑
k≥1 E{|�Mk|ρ} < +∞ a.s.

Since ρ > 1, it follows from Chow’s theorem (see [11]) that Mn
n→∞−→ M∞ a.s.

where M∞ is finite a.s. Then, Kronecker’s lemma yields

1

Hn

n∑
k=n0+1

ηk

γk

(
V p/s(X̄k) − E{V p/s(X̄k)|Fk−1}) n→∞−→ 0 a.s.(23)

Hence, (20) follows from (21) and (23). Finally, since lim|x|→+∞ V p/s+a−1(x) =
+∞ when p/s + a − 1 > 0, we derive from a classical tightness criteria (see, e.g.,
[9], page 41) that (ν̄n)n≥1 is a.s. tight as soon as p/s + a − 1 > 0. �

3.1. A recursive stability relation.

PROPOSITION 2. Let p > 0, q ∈ [0,1] and a ∈ (0,1]. Assume (H1
p), (H2

q) and

(Sa,p,q). If, moreover, E{|U1|2(p∨1)} < +∞, then (Ra,p) holds.

The idea of the proof of Proposition 2 is to obtain an inequality of the following
type:

E{V p(X̄n+1) − V p(X̄n)|Fn} ≤ γn+1pV p−1(X̄n)�(X̄n) + Rn,

where � = 〈∇V, b̃〉 + φp,q(σ, κ,π,V ) [see (Sa,p,q).2] and Rn is asymptotically
negligible in a sense made clear in the proof. To this end, we begin by three lem-
mas. In Lemma 2 we study the behavior of the moments of (Zt ) near 0. Then, in
Lemma 3, we state some properties of the derivatives of V p in terms of p and in the
last one (Lemma 4) we control the contribution of the jump component on the con-
ditional expectation (conditioned by Fn) of the increment V p(X̄n+1) − V p(X̄n).

LEMMA 2. (i) Let p > 0 such that (H1
p) holds. Then, for every h > 0, there

exists a locally bounded function ψh such that

∀t ≥ 0 E{|Nh
t |2p} =

∫
|y|>h

|y|2pπ(dy)
(
t + ψh(t)t

2)
.(24)

(ii) Let q ∈ [0,1] such that (H2
q) holds. Then, for every h > 0,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
E

{∣∣∣∣Yh
t + t

∫
|y|≤h

yπ(dy)

∣∣∣∣2q}
≤ t

∫
|y|≤h

|y|2qπ(dy), if q ≤ 1/2,

E{|Yh
t |2q} ≤ Cqt

∫
|y|≤h

|y|2qπ(dy), if q ∈ (1/2,1].
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(iii) Let p ∈ [1,+∞) such that (H1
p) holds. Then, there exists η > 1 such that,

for every T > 0, for every ε > 0, there exists Cε,T ,p > 0 such that,

∀t ∈ [0, T ] E{|Ẑt |2p} ≤ t

(∫
|y|2pπ(dy) + ε

)
+ Cε,T ,ptη,

where (Ẑt ) is the compensated jumps process defined by Ẑt = Zt − t
∫
|y|>1 yπ(dy).

In particular, E|Ẑt |2 = t
∫ |y|2π(dy).

REMARK 7. In this lemma we obtain, in particular, a control of the expansion
of t 	→ E{|Dt |r} in the neighborhood of 0 (where D denotes one of the above jump
components and r , a positive number). We have the following type of inequality:
E{|Dt |r} ≤ cr t + O(tη), where cr is a nonnegative real constant and η > 1. In the
first and in the last inequality, we minimize this value because it has a direct impact
on the coefficients of the function φp,q and then, on the mean-reverting assumption
(see Lemma 4 for details). Note that we cannot have cr = 0 in the inequalities of
Lemma 2. Indeed, according to the Kolmogorov criterion, a Lévy process D that
satisfies E{|Dt |r} ≤ Ctη in the neighborhood of 0 is pathwise continuous [for the
Brownian motion, cr = 0 as soon as r > 2 since E{|Wt |r} = o(tr/2)]. When p > 1,
this feature generates a specific contribution of the jump component on the mean-
reverting assumption ((Sa,p,q).2). This contribution appears in φp,q where there is
an additional term of order 2p coming only from the jump component.

PROOF OF LEMMA 2. (i) (Nh
t )t≥0 is a compound Poisson process with pa-

rameters λh = π(|y| > h) and μh(dy) = 1{|y|>h}π(dy)/π(|y| > h). Hence, (Nh
t )

can be written as follows: Nh
t = ∑

n≥1Rn1Tn≤t , where (Rn)n≥1 is a sequence of
i.i.d. r.v. with law μh and (Tn)n∈N is the sequence of the jump times of a Poisson
process with parameter λh independent of (Rn)n≥1. We have

E{|Nh
t |2p} = ∑

n≥1

E

{∣∣∣∣∣
n∑

i=1

Ri

∣∣∣∣∣
2p}

e−λht (λht)
n

n! = λhtE{|R1|2p}Fλh
(t)

where Fλ(t) = e−λt
∑
n≥0

E{|∑n+1
i=1 Ri |2p}

E{|R1|2p}
(λt)n

(n + 1)! .

By the elementary inequality (this inequality will be usually needed in the sequel
for the control of the moments of some sums of jumps)

∀a1, . . . , an ∈ R
l ,∀α > 0

∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣
α

≤ n(α−1)+
n∑

i=1

|ai |α,(25)

used with α = 2p, we obtain

E{|∑n+1
i=1 Ri |2p}

(n + 1)!E{|R1|2p} ≤ E{(n + 1)(2p−1)+ ∑n+1
i=1 |Ri |2p}

(n + 1)!E{|R1|2p} = (n + 1)(2p−1)+

n! .
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It follows that Fλh
is an analytic function on R such that Fλh

(0) = 1. Therefore,

Fλh
(t) = 1 + tψh(t) with |ψh(t)| ≤ C(p,h,λh) ∀t ∈ [0, T ].

Since E{|R1|2p} = 1
λh

∫
{|y|>h} |y|2pπ(dy), the first equality is obvious.

(ii) If
∫
|y|≤h |y|2qπ(dy) < +∞ with q ≤ 1/2, then Yh has locally bounded

variations and Yh
t + t

∫
|y|≤h yπ(dy) = ∑

0<s≤t �Yh
t . Inequality (25) with α = 2q

and the compensation formula yield

E

{∣∣∣∣Yh
t + t

∫
|y|≤h

yπ(dy)

∣∣∣∣
2q}

≤ E

{ ∑
0<s≤t

|�Yh
t |2q

}

= t

∫
y≤h

|y|2qπ(dy).

Now, let q ∈ (1/2,1]. As Yh is a martingale, we derive from the Burkholder–
Davis–Gundy (BDG) inequality (see [4]) that

E{|Yh
t |2q} ≤ CqE

{( ∑
0<s≤t

|�Yh
s |2

)q}
.

The second inequality follows from inequality (25) with α = q and from the com-
pensation formula.

(iii) One first considers case p = 1. The process (Mt) defined by Mt = |Ẑt |2 −
t
∫ |y|2π(dy) is a martingale. Then, in particular, E{|Ẑt |2} = t

∫ |y|2π(dy). Sup-
pose now that p > 1. In order to simplify the notation, we assume that T < 1. The
BDG inequality yields

E{|Yh
t |2p} ≤ CpE

{( ∑
0<s≤t

|�Yh
s |2

)p}
.(26)

For every integer k ≥ 1, Mt,k := ∑
0<s≤t |�Yh

s )|2k − t
∫
{|y|≤h} |y|2k

π(dy) is a
martingale. By inequality (25) and the BDG inequality applied to (Mt,k), we obtain

E

{( ∑
0<s≤t

|�Yh
s |2k

)p/2k−1}

≤ C

(
E

{|Mt,k|p/2k−1} +
(
t

∫
{|y|≤h}

|y|2k

π(dy)

)p/2k−1)

≤ C

(
E

{( ∑
0<s≤t

|�Yh
s |2k+1

)p/2k}
+

(
t

∫
{|y|≤h}

|y|2k

π(dy)

)p/2k−1)
.
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Set k0 = inf{k ≥ 1,2k ≥ p}. Iterating the preceding relation yields

E

{( ∑
0<s≤t

|�Yh
s |2

)p}
≤ CE

{( ∑
0<s≤t

|�Yh
s |2k0+1

)p/2k0 }

+ C

k0∑
k=1

(
t

∫
{|y|≤h}

|y|2k

π(dy)

)p/2k−1

.

By construction, p/2k0 ≤ 1. We then derive from inequality (25) with α = p/2k0 ,
from the compensation formula and from (26) that

E{|Yh
t |2p} ≤ CpE

{( ∑
0<s≤t

|�Yh
s |2

)p}

(27)
≤ Cpt

∫
{|y|≤h}

|y|2pπ(dy) + Cp,ht
η1

with η1 = p/2k0−1 > 1. We now consider (Ẑt ). For every h ∈ (0,+∞), we have
Ẑt = Yh

t + N̂h
t , where N̂h

t = Nh
t − t

∫
|y|>h yπ(dy). Using the elementary inequal-

ity,

∀u, v ∈ R+,∀α ≥ 1 (u + v)α ≤ uα + α2α−1(uα−1v + vα),(28)

we derive from (24) that

∀α > 1 E{|N̂h
t |α} ≤ t

∫
|y|>h

|y|απ(dy) + Cα,ht
α∧2.(29)

Using (28) and the independence between (N̂h
t ) and (Y h

t ) also yields

E{|Ẑt |2p} ≤ E{|N̂h
t |2p} + C(E{|N̂h

t |}2p−1
E{|Yh

t |} + E{|Yh
t |2p}).

Since E{|Yh
t |2} = t

∫
{|y|≤h} |y|2π(dy), we derive from the Jensen inequality that

E{|Yh
t |} ≤ Ch

√
t . Hence, by (27) and (29), it follows that, for every h > 0 and

t ≤ T ,

E{|Ẑt |2p} ≤ t

∫
{|y|>h}

|y|2pπ(dy) + C1
p,ht

3/2∧η1 + C2
pt

∫
{|y|≤h}

|y|2pπ(dy)

with η1 > 1, C1
p,h > 0 and C2

p > 0. Let ε be a positive number. As C2
p does not

depend on h, and
∫
|y|≤h |y|2pπ(dy) → 0 when h → 0, we can choose hε > 0 such

that C2
p

∫
|y|≤hε

|y|2pπ(dy) ≤ ε. That yields the announced inequality. �

LEMMA 3. Let V be an EQ-function defined on R
d . Then:

(a) If p ∈ [0,1/2], V p is α-Hölder for any α ∈ [2p,1] and if p ∈ (0,1], ∇(V p)

is α-Hölder for any α ∈ [2p − 1,1] ∩ (0,1].
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(b) Let x, y ∈ R
d and ξ ∈ [x, x + y] and set v = min{V (x), x ∈ R

d}. If p ≤ 1,
1
2D2(V p)(ξ)y⊗2 ≤ pvp−1λp|y|2.(30)

If, moreover, |y| ≤ (1 − ε)
√

V (x)

[√V ]1
with ε ∈ (0,1], then,

1
2D2(V p)(ξ)y⊗2 ≤ pλpε2(p−1)V p−1(x)|y|2.(31)

If p > 1,
1
2D2(V p)(ξ)y⊗2 ≤ pλp2(2(p−1)−1)+(

V p−1(x) + [√
V

]
1|y|2(p−1))|y|2.(32)

PROOF. Consider a continuous function f : Rd 	→ R. Let α ∈ (0,1] such that
|f |1/α is Lipschitz. Then, f is an α-Hölder function. This argument yields (a)
(see [21] for details). Now, let us pass to (b). We have

D2(V p) = pV p−1
(
D2V + (p − 1)

∇V ⊗ ∇V

V

)
,(33)

where (∇V ⊗ ∇V )i,j = (∇V )i(∇V )j . Since V p−1 ≤ vp−1 if p ≤ 1, we de-
rive (30) from relations (5) and (6). For (31), we consider ξ = x + θy with

θ ∈ [0,1] and |y| ≤ (1 − ε)
√

V (x)

[√V ]1
. As

√
V is a Lipschitz function,

√
V (ξ) ≥ √

V (x) − [√
V

]
1|y| ≥ ε

√
V (x) �⇒ V p−1(ξ) ≤ ε2(p−1)V p−1(x).

Hence, inequality (31) follows from (6). If p > 1,
√

V (ξ) ≤ √
V (x) + [√

V
]
1|y| �⇒ V p−1(ξ) ≤ (√

V (x) + [√
V

]
1|y|)2(p−1)

.

We then derive (32) from (25) [with α = 2(p − 1) and n = 2] and from (6). �

LEMMA 4. Let p ∈ (0,1), q ∈ [0,1] and a ∈ (0,1]. Assume (H1
p), (H2

q) and
(Sa,p,q).1. Then, for every ε > 0, there exists hε ∈ [0,+∞], Tε > 0 and Cε > 0
such that for every x, z ∈ R

d , for every t ≤ Tε ,

E
{
V p(

z + κ(x)Z
hε
t

) − V p(z)
}

(34)

≤ t

(
pcp

∫
|y|2pπ(dy)1{q≤p}‖κ(x)‖2p + εV p+a−1(x) + Cε

)
,

with cp given by (6), hε ∈ (0,1] if p ≤ 1/2 < q , hε = 0 if p,q ≤ 1/2 and hε = +∞
if p ∈ (1/2,1).

PROOF. Set �(z, x,U) = V p(z+κ(x)U)−V p(z). We first consider the case
p ≤ 1/2 and q > 1/2. Let h ∈ (0,∞). Since Zh

t = Yh
t + Nh

t , we can decompose
�(z, x,Zh

t ) as follows:

�(z, x,Zh
t ) = �

(
z + κ(x)Nh

t , x, Y h
t

) + �(z, x,Nh
t ).
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One controls each term of the right-hand side. On the one hand, as V p is 2p-Hölder
with constant [V p]2p = pcp [see (6)], we deduce from Lemma 2(i) that

E{�(z, x,Nh
t )} ≤ pcp‖κ(x)‖2p

E{|Nh
t |2p}

(35)
≤ pcp

∫
|y|>h

|y|2pπ(dy)‖κ(x)‖2p(
t + ψh(t)t

2)
,

where ψh is a locally bounded function. On the other hand, we set z̃ = z+κ(x)Nh
t .

By the Taylor formula,

�(z̃, x,Y h
t ) = 〈∇(V p)(z̃), κ(x)Y h

t 〉 + 〈∇(V p)(ξ) − ∇(V p)(z̃), κ(x)Y h
t 〉

with ξ ∈ [z̃, z̃ + κ(x)Y h
t ]. As (Nh

t ) and (Y h
t ) are independent and Yh

t is cen-
tered, E{〈∇(V p)(z̃), κ(x)Y h

t 〉} = 0. By Lemma 3, V p−1∇V = ∇(V p)/p is
(2q − 1)-Hölder (because 2q − 1 ∈ [2p − 1,1] ∩ (0,1] in this case). Then, it fol-
lows from Lemma 2(ii).2 that

E
{
�

(
z + κ(x)Nh

t , x, Y h
t

)} ≤ p[V p−1∇V ]2q−1‖κ(x)‖2q
E{|Yh

t |2q}
(36)

≤ C‖κ(x)‖2qt

∫
|y|≤h

|y|2qπ(dy).

Let ε > 0. First, by (Sa,p,q).1, ‖κ(x)‖2q ≤ CV p+a−1. Then, using that∫
|y|≤h |y|2qπ(dy) → 0 when h → 0, we can fix hε ∈ (0,1] such that

E
{
�

(
z + κ(x)N

hε
t , x, Y

hε
t

)} ≤ ε

2
tV p+a−1(x).(37)

Second, since ψhε is locally bounded, it follows from (35) that there exists C1
ε

such that, for every t ≤ 1, E{�(z, x,N
hε
t )} ≤ C1

ε t‖κ(x)‖2p . Now, as p < q , for
every δ > 0, there exists C2

δ > 0 such that ‖κ(x)‖2p ≤ δV p+a−1 + C2
δ [see (19)

for similar arguments]. Hence, setting δε = ε/(2C1
ε ) yields

E{�(z, x,N
hε
t )} ≤ t

(
ε

2
V p+a−1(x) + Cε

)
(38)

with Cε = C1
εC2

δε
. Then, adding up (37) and (38) yields the result when p ≤

1/2 < q .
When p,q ≤ 1/2, we deal with (Žt ) = (Z0

t ). For every h > 0, Žt = Y̌ h
t + Nh

t ,
where Y̌ h

t = Yh
t + t

∫
{|y|≤h} yπ(dy). Hence, for every h > 0,

�(z, x, Žt ) = �
(
z + κ(x)Nh

t , x, Y̌ h
t

) + �(z, x,Nh
t ).

If q ≤ p, π satisfies (H2
p). Since p ≤ 1/2, V p is 2p-Hölder. Therefore, by

Lemma 2(ii).1,

E
{
�

(
z + κ(x)Nh

t , x, Y̌ h
t

)} ≤ pcpt‖κ(x)‖2p
∫
|y|≤h

|y|2pπ(dy).
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By summing up this inequality and (35), we deduce (34). When p < q ≤ 1/2,
we use that V p is 2q-Hölder (see Lemma 3) and a proof analogous to the case
p ≤ 1/2 < q yields the result.

Finally, we consider the case p > 1/2 where we deal with Ẑt = Z∞
t . For every

h > 0, we have Ẑt = Yh
t + N̂h

t , where N̂h
t = Nh

t −∫
{|y>h} yπ(dy). For every h > 0,

�(z, x, Ẑt ) can be written as follows:

�(z, x, Ẑt ) = �
(
z + κ(x)N̂h

t , x, Y h
t

) + �(z, x, N̂h
t ).(39)

One the one hand, by the same process as that used for (36) and by inequality (29),
we have

E{�(z, x, N̂h
t )} ≤ p[V p−1∇V ]2p−1‖κ(x)‖2p

E{|N̂h
t |2p}

≤ t‖κ(x)‖2p

(∫
|y|>h

|y|2pπ(dy) + Cht
2p−1

)
.

On the other hand, by Lemma 3, V p−1∇V is (2(p ∨ q) − 1)-Hölder. Hence, (36)
is still valid in this case if we replace q with p ∨ q . By using this control for the
first term of the right-hand side of (39), we obtain if q ≤ p

E{�(z, x, Ẑt )}
≤ t‖κ(x)‖2p

(∫
{|y|>h}

|y|2pπ(dy) +
∫
|y|≤h

|y|2pπ(dy) + Cht
2p−1

)
.

The result follows in this case. When q > p, the sequel of the proof is similar to
the case p ≤ 1/2 < q . �

3.2. Proof of Proposition 2. For this proof, one needs to study separately the
p < 1 and p ≥ 1 cases. We detail the first case. When p ≥ 1, we briefly indicate
the process of the proof which is close to that of Lemma 3 of [15].

Case p < 1. For h > 1, we set Z̄h
n = Z̄n − γn

∫
{1<|y|≤h} yπ(dy) and for h ∈

(0,1), Z̄h
n = Z̄n + γn

∫
{h<|y|≤1} yπ(dy). If q ≤ 1/2 (resp. p > 1/2), we can take

h = 0 (resp. h = +∞). Thus, we can write

�X̄n+1 := X̄n+1 − X̄n =
3∑

k=1

�X̄h
n+1,k with �X̄h

n+1,1 = γn+1b
h(X̄n),

(40)
�X̄h

n+1,2 = √
γn+1σ(X̄n)Un+1 and �X̄h

n+1,3 = κ(X̄n)Z̄
h
n+1.

The idea is to study the difference V p(X̄n+1) − V p(X̄n) as the sum of three terms
that correspond to the above decomposition. For k = 1,2,3, set X̄h

n+1,k = X̄h
n +∑k

i=1 �X̄h
n+1,i .
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(i) First term: There exists n1 ∈ N such that, for every n ≥ n1

E{V p(X̄h
n+1,1) − V p(X̄n)|Fn}

(41)

≤ pγn+1
〈∇V,bh〉

V 1−p
(X̄n) + Cγ 2

n+1V
a+p−1(X̄n).

Indeed, from Taylor’s formula,

V p(X̄h
n+1,1) − V p(X̄n) = pγn+1

〈∇V,bh〉
V 1−p

(X̄n) + 1

2
D2(V p)(ξ1

n+1)(�X̄h
n+1,1)

⊗2,

where ξ1
n+1 ∈ [X̄n, X̄n + γn+1b

h(X̄n)]. Set x = X̄n and y = γn+1b
h(X̄n). Since

γn
n→+∞−→ 0 and |bh| ≤ C

√
V by (Sa,p,q).1, there exists n1 ∈ N such that, for

n ≥ n1, |y| ≤
√

V (x)

2[√V ]1
a.s. Thus, we can apply the second inequality of Lemma 3(b)

with ε = 1/2 and deduce (41) from (Sa,p,q).1.
(ii) Second term: For every ε > 0, there exists n2,ε ∈ N such that, for every

n ≥ n2,ε ,

E{V p(X̄h
n+1,2) − V p(X̄h

n+1,1)|Fn} ≤ εγn+1V
a+p−1(X̄n) + C1

ε γn+1.(42)

Let us prove this inequality. Since E{Un+1|Fn} = 0, we deduce from Taylor’s for-
mula that

E{V p(X̄h
n+1,2) − V p(X̄h

n+1,1)|Fn} = 1
2E{D2(V p)(ξ2

n+1)(�X̄n+1,2)
⊗2|Fn}

with ξ2
n+1 ∈ [X̄h

n+1,1; X̄h
n+1,2]. Set x = X̄h

n+1,1 and y = √
γn+1σ(x)Un+1. By

(Sa,p,q).1, ‖σ(x)‖ ≤ Cσ

√
V (x) because p+a−1 ≤ 1. Then, the conditions of (31)

are satisfied with ε = 1/2 if |Un+1| ≤ ρn+1 = 1/(2Cσ [√V ]1
√

γn+1). Therefore,

E
{
D2(V p)(ξ2

n+1)(�X̄n+1,2)
⊗21{|Un+1|≤ρn+1}|Fn

}
≤ Cγn+1V

p−1(X̄n)Tr(σσ ∗)(X̄n)

≤ Cγn+1V
a+2(p−1)(X̄n)

since Tr(σσ ∗) ≤ CV p+a−1 when p < 1. By (30) and (Sa,p,q).1, we also have

E
{
D2(V p)(ξ2

n+1)(�X̄n+1,2)
⊗21{|Un+1|>ρn+1}|Fn

} ≤ Cδn+1γn+1V
p+a−1(X̄n),

where δn = E{|Un|21{|Un|>ρn}}. Now, let ε > 0. First, since a + 2(p − 1) < a +
p − 1 when p < 1, there exists Cε > 0 such that V p−1 Tr(σσ ∗) ≤ εV a+p−1 + Cε

[see (19) for similar arguments]. Second, since ρn → +∞, δn → 0. Thus, there
exists n2,ε ∈ N such that, for every n ≥ n2,ε , CδnV

p+a−1 ≤ εV p+a−1. The com-
bination of these two arguments yields (42).
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(iii) Third term: For every ε > 0, there exists hε ∈ [0,∞], C2
ε > 0 and n3,ε such

that, for all n ≥ n3,ε ,

E{V p(X̄
hε

n+1,3) − V p(X̄
hε

n+1,2)|Fn}
(43)

≤ γn+1

(
pcp

∫
|y|2pπ(dy)1{q≤p}‖κ(X̄n)‖2p + εV p+a−1(X̄n) + C2

ε

)

with hε ∈ (0,1] if p ≤ 1/2 < q , hε = 0 if p,q ≤ 1/2 and hε = +∞ if p ∈ (1/2,1).
This step is a consequence of Lemma 4: since Un+1 and Z̄h

n+1 are independent, we
have

E{V p(X̄
hε

n+1,3) − V p(X̄
hε

n+1,2)|Fn} = E{Ghε(X̄
hε

n+1,2, X̄n)|Fn},
where Gh(z, x) = E{V p(z + κ(x)Zh

t ) − V p(z)}. Then, Lemma 4 yields (43).

We can now prove the proposition. Let ε > 0. By adding (41), (42) and (43) and
using that γ 2

n ≤ εγn for sufficiently large n (since γn → 0), we obtain that there
exists nε ∈ N, hε > 0 and Cε > 0 such that, for every n ≥ nε ,

E{V p(X̄n+1)|Fn}
≤ V p(X̄n) + γn+1

(
εV p+a−1(X̄n) + Cε

)
(44)

+ γn+1pV p−1(X̄n)

×
(
〈∇V,bhε〉 + 1q≤pcp

∫
|y|2pπ(dy)‖κ‖2pV 1−p

)
(X̄n).

When p,q ≤ 1/2 (resp. p > 1/2), hε = 0 (resp. hε = ∞). We deduce that
〈∇V,bhε〉 = 〈∇V, b̃〉 because b̃ = b0 (resp. b̃ = b∞) when p,q ≤ 1/2 (resp.
p > 1/2). We then recognize the left-hand side of (Sa,p,q).2 in (44). When
p ≤ 1/2 < q , hε ∈ (0,∞) and 〈∇V,bhε〉 = 〈∇V, b̃〉 + �hε , where �h(x) =
〈∇V (x), κ(x)

∫
{hε<|y|≤1} yπ(dy)〉. Therefore, by (Sa,p,q).2, we obtain

E{V p(X̄n+1)|Fn}
≤ V p(X̄n) + γn+1pV p−1(X̄n)

(
β − αV a(X̄n)

)
+ γn+1

(
εV p+a−1(X̄n) + Cε + 1{p≤1/2<q}pV p−1(X̄n)�hε(X̄n)

)
.

When p,q ≤ 1/2 or p > 1/2, we set ε = pα/2 and obtain (Ra,p) with β ′ = pβ +
Cε/v

p−1 and α′ = pα/2. When p ≤ 1/2 < q , by (Sa,p,q).1, one checks that, for
every ε > 0, there exists C̃ε > 0 such that V p−1|�hε | ≤ εV p+a−1 + C̃ε and the
result follows.

Case p ≥ 1. Thanks to Taylor’s formula,

V p(X̄n+1) = V p(X̄n) + γn+1〈∇(V p)(X̄n),�Xn+1〉
+ 1

2D2(V p)(ξn+1)(�X̄n+1)
⊗2,
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where ξn+1 ∈ [X̄n, X̄n+1] and

�X̄n+1 = X̄n+1 − X̄n = γn+1b
∞(X̄n) + √

γn+1σ(X̄n)Un+1 + κ(X̄n)Z̄
∞
n+1

with Z̄∞
n = Z̄n − γn

∫
{|y|>1} yπ(dy). Using that b̃ = b∞ in this case and that

E{Un+1|Fn} = E{Z̄∞
n+1|Fn} = 0 yields

E{V p(X̄n+1)|Fn} = V p(X̄n) + pγn+1V
p−1(X̄n)〈∇V, b̃〉(X̄n)

+ 1
2E{D2(V p)(ξn+1)(�X̄n+1)

⊗2|Fn}.
The sequel of the proof consists in studying the last term of this equality. The
main tools for this are the last inequality of Lemma 3 which provides a control
of D2(V p)(ξn+1)(�X̄n+1)

⊗2 and Lemma 2(iii), which gives a control of the mo-
ments of the jump component (see [21] for details or [15] for a similar proof).

3.3. Consequences of Proposition 2. In Proposition 2, we established (Ra,p).
According to Lemma 1, it suffices now to prove (Cp,s). This property is established
in Corollary 1 and is a consequence of Proposition 2 [under additional assumptions
on (γn) and (ηn) when s < 2]. More precisely, we first show in Lemma 5 that a
supermartingale property can be derived from (Ra,p) and that this property pro-
vides an Lp+a−1-control of the sequence (V (X̄n)) [see (45)]. Second, we show in
Corollary 1 that we can derive (Cp,s) from this lemma.

LEMMA 5. Let a ∈ (0,1] and p > 0. Assume (H1
p) and (Ra,p). Let (θn)n∈N

be a nonincreasing sequence of nonnegative numbers such that
∑

n≥1 θnγn < ∞.
Then, there exists n0 ≥ 0, α̂ > 0 and β̂ > 0 such that (Sn)n≥n0 defined by

Sn = θnV
p(X̄n) + α̂

n∑
k=1

θkγkV
p+a−1(X̄k−1) + β̂

∑
k>n

θkγk

is a nonnegative L1-supermartingale. In particular,

∑
n≥1

θnγnE{V p+a−1(X̄n−1)} < +∞ and E{V p(X̄n)} n→+∞= O

(
1

θn

)
.(45)

PROOF. Since b, σ and κ have sublinear growth and Z̄n ∈ L2p for every n ≥ 1,
we can check by induction that, for every n ≥ 0, V p(X̄n) is integrable. Denote
by (�n)n≥1 the sequence of martingale increments defined by �n = V p(X̄n) −
E{V p(X̄n)|Fn−1}. By (Ra,p), there exists n0 ∈ N such that, for every n ≥ n0,

θn+1V
p(X̄n+1)

≤ θn+1�n+1 + θn+1E{V p(X̄n+1)|Fn}
≤ θn+1�n+1 + θn+1

(
V p(X̄n) + γn+1V

p−1(X̄n)
(
β ′ − α′V a(X̄n)

))
.
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By the same argument as in (19), one can find α̂ > 0 and β̂ > 0 such that
V p−1(β ′ − α′V a) ≤ β̂ − α̂V p+a−1. Since (θn) is nonincreasing, we deduce that

θn+1
(
V p(X̄n+1) + α̂γn+1V

p+a−1(X̄n)
)

≤ θnV
p(X̄n) + θn+1�n+1 + θn+1γn+1β̂.

Adding “α̂
∑n

k=1 θkγkV
p+a−1(X̄k−1) + β̂

∑
k>n+1 θkγk” to both sides of the in-

equality yields

Sn+1 ≤ Sn + θn+1�n+1 �⇒ E{Sn+1|Fn} ≤ Sn ∀n ≥ n0.

Since Sn0 ∈ L1, it follows that (Sn)n≥n0 is a nonnegative supermartingale and then,
that sup E{Sn} < +∞. The result is obvious. �

COROLLARY 1. Let a ∈ (0,1], p > 0 and q ∈ [0,1]. Assume (H1
p), (H2

q) and

(Sa,p,q). If E{|U1|2(p∨1)} < +∞ and (ηn/γn)n∈N is nonincreasing,

∑
n≥1

(
ηn

Hnγn

)2

E
{∣∣V p/2(X̄n) − V p/2(

X̄n−1 + γnb̃(X̄n−1)
)∣∣2}

< +∞.(46)

In particular, (Cp,2) holds with ρ = 2 and πn = V p/2(X̄n + γnb̃(X̄n)).
Furthermore, if conditions (11) and (13) are satisfied for s ∈ (1,2),

∑
n≥1

(
ηn

Hnγn

)fa,p(s)

E
{∣∣V p/s(X̄n) − V p/s(X̄n−1 + γnb̃(X̄n−1)

)∣∣fa,p(s)}
(47)

< +∞.

In particular, (Cp,s) holds with ρ = fa,p(s) and πn = V p/s(X̄n + γnb̃(X̄n)).

PROOF. Let us begin the proof by two useful remarks. First, (46) is a particular
case of (47) since fa,p(2) = 2 and (13) is always satisfied in this case. Indeed, as
(ηn/γn)n∈N is nonincreasing, so is ( 1

γn
(

ηn

Hn
√

γn
)2), and

∑
n≥1

(
ηn

Hn
√

γn

)2

≤ η1

γ1

∑
n≥1

ηn

H 2
n

≤ η1

γ1

∑
n≥1

�Hn

H 2
n

≤ C

(
1 +

∫ ∞
η1

dt

t2

)
< ∞,(48)

with �Hn = Hn − Hn−1. Then, it suffices to prove (47). Second, by Lemma 5
applied with θn = 1

γn
(

ηn

Hn
√

γn
)fa,p(s), we have

∑
n≥1

(
ηn

Hn
√

γn

)fa,p(s)

E{V p+a−1(X̄n−1)} < +∞.(49)

Hence, one checks that (47) holds as soon as

E
{∣∣V p/s(X̄n) − V p/s(X̄n−1 + γnb̃(X̄n−1)

)∣∣fa,p(s)}
(50)

≤ Cγ
fa,p(s)/2
n E{V p+a−1(X̄n−1)}.
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Thus, we only need to prove (50). We inspect the p/s ≤ 1/2 and p/s > 1/2 cases
successively.

Case p/s ≤ 1/2. In this case, fa,p(s) = s. We keep the notation introduced
in (40), with h = 1 if p ≤ 1/2 < q , h = 0 if p,q ≤ 1/2 and h = +∞ if p > 1/2,
and derive from (25) that∣∣V p/s(X̄n) − V p/s(X̄n−1 + γnb̃(X̄n−1)

)∣∣s
(51)

≤ C|V p/s(X̄h
n,2) − V p/s(X̄h

n,1)|s + C|V p/s(X̄n) − V p/s(X̄h
n,2)|s .

We study successively the two right-hand side members. First, by the Taylor for-
mula,

|V p/s(X̄h
n,2) − V p/s(X̄h

n,1)|s ≤ Cγ s/2
n |〈V p/s−1∇V (ξ1

n ), σ (X̄n−1)Un〉|s

with ξ1
n ∈ [X̄h

n,1; X̄h
n,2]. The function V p/s−1∇V is bounded. Hence, since ‖σ‖s ≤

C Tr(σσ ∗) (because s ≤ 2), we derive from (Sa,p,q).1 that

E{|V p/s(X̄h
n,2) − V p/s(X̄h

n,1)|s |Fn−1} ≤ Cγ s/2
n V a+p−1(X̄n−1).(52)

Second, since Un and Z̄h
n are independent,

E{|V p/s(X̄n) − V p/s(X̄h
n,2)|s} = E{ϒh(X̄

h
n,2, X̄n−1, γn)|Fn−1}

where ϒh(z, x, γ ) = E
{∣∣V p/s

(
z + κ(x)Zh

γ

) − V p/s(z)
∣∣s}.

By (51) and (52), one checks that (50) holds if there exists C > 0 such that, for
every z, x ∈ R

d and γ ≤ γ1,

ϒh(z, x, γ ) ≤ Cγ s/2V a+p−1(x),(53)

where h = 1 (resp. h = 0, resp. h = +∞) if p ≤ 1/2 < q (resp. if p,q ≤ 1/2,
resp. if p > 1/2). Then, it suffices to prove (53). First, when p ≤ 1/2 < q , we have
Z1

γ = Zγ = Yγ + Nγ . On the one hand, since V p/s is a 2p/s-Hölder function [see
Lemma 3(a)], it follows from (Sa,p,q).1 and Lemma 2(i) that

E
{∣∣V p/s(z + κ(x)Nγ

) − V p/s(z)
∣∣s} ≤ C‖κ(x)‖2p

E{|Nγ |2p}
(54)

≤ CγV p+a−1(x).

On the other hand, V p/s is a 2q/s-Hölder function when q/s ≤ 1/2 (because
2p/s ≤ 2q/s ≤ 1 in this case). Hence, using this property if q/s ≤ 1/2 and the
Taylor formula if q/s > 1/2 yields

E
{∣∣V p/s(z + κ(x)(Nγ + Yγ )

) − V p/s(z + κ(x)Nγ

)∣∣s}
(55)

≤ C

{‖κ(x)‖2q
E{|Yγ |2q}, if q/s ≤ 1/2,

E{|〈V p/s−1∇V (ξ2), κ(x)Yγ 〉|s}, if q/s > 1/2,



406 F. PANLOUP

with ξ2 ∈ [z + κ(x)Nγ , z + κ(x)(Nγ + Yγ )]. By Lemma 2(ii).2, E{|Yγ |2q} ≤ Cγ .
It follows from Jensen’s inequality that

E
{∣∣V p/s(z + κ(x)Zγ

) − V p/s(z + κ(x)Nγ

)∣∣s} ≤ Cγ s/(2q)∧1‖κ(x)‖s∧2q.(56)

One checks that ‖κ‖s∧2q ≤ CV p+a−1 under (Sa,p,q).1 and that γ + γ s/(2q)∧1 ≤
Cγ s/2 for every γ ≤ γ1. Hence, summing up (54) and (56) and using (25)
yields (53) (with h = 1) when p ≤ 1/2 < q .

When p,q ≤ 1/2 (resp. p > 1/2), we have to check that (53) holds with
h = 0 (resp. with h = +∞). Then, we need to use a decomposition of the jump
component adapted to the value of h. We split up Z0

γ (resp. Z∞
γ ) as follows:

Z0
γ = Y̌γ + Nγ with Y̌γ = Yγ + γ

∫
{|y|≤1} yπ(dy) [resp. Z∞

γ = Yγ + N̂γ with

N̂γ = Nγ − γ
∫
{|y|>1} yπ(dy)]. Then, when p,q ≤ 1/2 (resp. p > 1/2), the idea

is to replace Yγ with Y̌γ (resp. Nγ with N̂γ ) in the left-hand sides of (54) and (55)
and to derive some adapted controls from Lemma 2 and inequality (29). Since the
proof is close to that of the p ≤ 1/2 < q case, we leave it to the reader.

Case p/s > 1/2. Since p > 1/2, we use the notation introduced in (40) with
h = +∞. We recall that X̄n−1 + γnb̃(X̄n−1) = X̄∞

n,1. Then, applying the following
inequality,

∀u, v ≥ 0,∀α ≥ 1 |uα − vα| ≤ Cα(|u − v|uα−1 + |u − v|α)(57)

with u = √
V (X̄n), v = √

V (X̄∞
n,1) and α = (2p)/s, we obtain

|V p/s(X̄n) − V p/s(X̄∞
n,1)| ≤ C

∣∣√V (X̄n) − √
V (X̄∞

n,1)
∣∣V p/s−1/2(X̄n−1)

+ C
∣∣√V (X̄n) − √

V (X̄∞
n,1)

∣∣2p/s
.

We deduce from (Sa,p,q).1 that

|X̄n − X̄∞
n,1| ≤

{
CV (a+p−1)/(2p)(X̄n−1)

(√
γn|Un| + |Z̄∞

n |), if p < 1,

CV a/2(X̄n−1)
(√

γn|Un| + |Z̄∞
n |), if p ≥ 1.

Since
√

V is Lipschitz, one then checks that

|V p/s(X̄n) − V p/s(X̄∞
n,1)|

≤ CV r(X̄n−1)
(√

γn|Un| + |Z̄∞
n | + γ p/s

n |Un|2p/s + |Z̄∞
n |2p/s),

where r =

⎧⎪⎪⎨
⎪⎪⎩

(
p

s
+ a − 1

2p

)
∨

(
a + p − 1

s

)
, if p < 1,(

p

s
+ a − 1

2

)
∨ ap

s
, if p ≥ 1.

One derives from Lemma 2(iii) and from the Jensen inequality that, for α > 0,
E{|Z̄∞

n |α} = O(γ
(α/2)∧1
n ). Therefore, since 2p/s ≥ 1/2 and fa,p(s) ≤ 2, we have

E
{(√

γn|Un| + |Z̄∞
n | + γ p/s

n |Un|2p/s + |Z̄∞
n |2p/s)fa,p(s)} = O

(
γ

fa,p(s)/2
n

)
.
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Second, one deduces from the definition of fa,p that rfa,p(s) ≤ a + p − 1. There-
fore, inequality (50) follows. �

By Lemma 1, Corollary 1 concludes the proof of Proposition 1 and then, the
part which is concerned with the tightness of (ν̄n(ω, dx))n≥1. The only thing left
to prove the theorem for Scheme (A) is thus to identify the limit. This is the aim
of the next section.

4. Identification of the weak limits of (ν̄n(ω,dx))n≥1. In this section we
show that every weak limiting distribution of (ν̄n(ω, dx))n≥1 is invariant for
(Xt)t≥0. For this purpose, we will rely on the Echeverria–Weiss theorem (see [7],
page 238, [14] and [16]). This is a criterion for invariance based on the infini-
tesimal generator A of (Xt) defined by (7). By the Echeverria–Weiss theorem,
we know that if A(C2

K(Rd)) ⊂ C0(R
d), a probability ν is invariant for the SDE

if for every f ∈ C2
K(Rd), ν(Af ) = 0. One can check that A(C2

K(Rd)) ⊂ C0(R
d)

if ‖κ(x)‖ = o(|x|) when |x| → +∞ (and this condition cannot be improved in
general). Hence, under this condition on κ , it follows that every weak limiting
distribution of (ν̄n) is invariant if for every f ∈ C2

K(Rd), ν̄n(Af ) → 0. The main
result of this section is then the following proposition.

PROPOSITION 3. Let a ∈ (0,1], p > 0 and q ∈ [0,1]. Assume (H1
p), (H2

q),

(Sa,p,q).1. Assume that ‖κ(x)‖ |x|→+∞= o(|x|) and that (ηn/γn)n≥1 is nonincreas-
ing. If, moreover,

sup
n≥1

ν̄n

(‖κ‖2q + Tr(σσ ∗)
)
< ∞ and

(58) ∑
k≥1

η2
k

H 2
k γk

E{V a+p−1(X̄k−1)} < +∞,

then,

∀f ∈ C2
K(Rd), a.s.,

∫
Af dν̄n

n→∞−→ 0.(59)

Consequently, a.s., every weak limiting distribution of (ν̄n(ω, dx))n≥1 is invariant
for the SDE (1).

REMARK 8. This proposition is sufficient to conclude the proof because the
two assumptions in (58) hold under the assumptions of Theorem 2 (resp. The-
orem 3). Indeed, since ‖κ‖2q + Tr(σσ ∗) ≤ CV p/s+a−1 with s = 2 in Theo-
rem 2 [resp. with s satisfying (11) in Theorem 3], the first is a consequence of
Proposition 1. Likewise, the second is a consequence of Lemma 5 applied with
θn = (ηn/(Hnγn))

2 [see (48)].
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4.1. Proof of Proposition 3. The proof of Proposition 3 is built in two suc-
cessive steps that are represented by Propositions 4 and 5. In Proposition 4
we claim that showing that ν̄n(Af ) → 0 a.s. is equivalent to showing that
1/Hn

∑n
k=1(ηk/γk)E{f (X̄k) − f (X̄k−1)|Fk−1} → 0 a.s. Then, in Proposition 5

we show that this last term does tend to 0.

PROPOSITION 4. Assume that the assumptions of Proposition 3 are fulfilled.
Then, for every f ∈ C2

K(Rd),

lim
n→∞

1

Hn

n∑
k=1

ηk

(
E{f (X̄k) − f (X̄k−1)|Fk−1}

γk

− Af (X̄k−1)

)
= 0 a.s.(60)

We begin the proof by a technical lemma.

LEMMA 6. Let � : Rd 	→ R
l be a continuous function with compact support,

� : Rd 	→ R+, a locally bounded function, (hθ
1)θ∈[0,1] and (hθ

2)θ∈[0,1] two families
of Borel functions defined on R

d × R+ with values in R
d satisfying the following

assumptions:

• There exists δ0 > 0 such that

inf
θ∈[0,1],γ∈[0,δ0]

(|hθ
1|(x, γ ) + |hθ

2|(x, γ )
) |x|→+∞−→ +∞.(61)

• For every compact set K ,

sup
x∈K,θ∈[0,1]

|hθ
1(x, γ ) − hθ

2(x, γ )| γ→0−→ 0.(62)

Then, for every sequence (xk)k∈N of R
d ,

1

Hn

n∑
k=1

ηk sup
θ∈[0,1]

‖�(hθ
1(xk−1, γk)) − �(hθ

2(xk−1, γk))‖�(xk−1)
n→+∞−→ 0.

PROOF. � has a compact support, therefore, we derive from (61) that there
exists Mδ0 > 0 such that, for every |x| > Mδ0 , γ ≤ δ0 and θ ∈ [0,1],

�(hθ
1(x, γ )) = �(hθ

2(x, γ )) = 0.

Consider ρ 	→ w(ρ,�) = sup{η > 0, sup|x−y|≤η |�(x)−�(y)| ≤ ρ}. As � is uni-
formly continuous, w(ρ,�) > 0 for every ρ > 0. Thanks to (62), for every ρ > 0,
there exists δρ ≤ δ0 such that, for every γ ≤ δρ , θ ∈ [0,1],

sup
|x|≤Mδ0

|hθ
1(x, γ ) − hθ

2(x, γ )| ≤ w(ρ,�).
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As γk
k→+∞−→ 0, there exists kρ ∈ N such that γk ≤ δρ for k ≥ kρ . By using that

Hn
n→+∞−→ +∞, we deduce that

lim sup
n→+∞

1

Hn

n∑
k=1

ηk sup
θ∈[0,1]

‖�(hθ
1(xk−1, γk)) − �(hθ

2(xk−1, γk))‖�(xk−1) ≤ ρ�δ0,

where �δ0 := sup{|�(x)|, |x| ≤ Mδ0} < +∞ since � is locally bounded. The re-
sult follows. �

PROOF OF PROPOSITION 4. We have to inspect successively the q ∈ (1/2,1]
and q ∈ [0,1/2] cases.

Case q ∈ (1/2,1]. Let f ∈ C2
K(Rd). Decompose the infinitesimal generator as

the sum of three terms defined by

A1f (x) = 〈∇f, b〉(x), A2f (x) = Tr(σ ∗D2f σ)(x),

A3f (x) =
∫ (

f
(
x + κ(x)y

) − f (x) − 〈∇f (x), κ(x)y〉1{|y|≤1}
)
π(dy).

Set X̄k,1 = X̄k−1 + γkb(X̄k−1), X̄k,2 = X̄k,1 +√
γkσ (X̄k−1)Uk and X̄k,3 = X̄k,2 +√

γkκ(X̄k−1)Z̄k . We then part the proof into three steps:

Step 1.
1

γk

E{f (X̄k,1) − f (X̄k−1)/Fk−1} = A1f (X̄k−1) + R1(γk, X̄k−1)

with
1

Hn

n∑
1

ηkR1(γk, X̄k−1)
n→∞−→ 0.

Step 2.
1

γk

E{f (X̄k,2) − f (X̄k,1)|Fk−1} = A2f (X̄k−1) + R2(γk, X̄k−1)

with
1

Hn

n∑
1

ηkR2(γk, X̄k−1)
n→∞−→ 0.

Step 3.
1

γk

E{f (X̄k) − f (X̄k,2)|Fk−1} = A3f (X̄k−1) + R3(γk, X̄k−1)

with
1

Hn

n∑
1

ηkR3(γk, X̄k−1)
n→∞−→ 0.

The combination of the three steps yields Proposition 4. We refer to Proposition 4
of [15] for steps 1 and 2 and focus on the last step where the specificity of our
jump Lévy setting appears. Since X̄k−1 is Fk−1-measurable and Z̄k , Uk and Fk−1
are independent, we have

E
{
f

(
X̄k,2 + κ(X̄k−1)Z̄k

)|Fk−1
} = Qγk

f (X̄k−1),

where Qγ f (x) =
∫

Rd
E

{
f

(
Sx,γ,u + κ(x)Zγ

)}
PU1(du),
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with Sx,γ,u = x + γ b(x) + √
γ σ(x)u. Set Vt = Sx,γ,u + κ(x)Zt . Applying Itô’s

formula to (f (Vt ))t≥0 yields

f (Vt ) = f (Sx,γ,u) +
∫ t

0
〈∇f (Vs−), κ(x) dYs〉

(63)
+ ∑

0<s≤t

H̃ f (
Sx,γ,u + κ(x)Zs−, x,�Zs

)

where, H̃ f (z, x, y) = f
(
z+κ(x)y

)−f (z)−〈∇f (z), κ(x)y〉1{|y|≤1}.(64)

The process (
∫ t

0 〈∇f (Vs−), κ(x) dYs〉) is a true martingale since ∇f is bounded.
The compensation formula and a change of variable yield

E
{
f

(
Sx,γ,u + κ(x)Zγ

)}
= E{f (Vγ )}

= f (Sx,γ,u) + γ E

{∫ 1

0
dv

∫
π(dy)H̃ f (

Sx,γ,u + κ(x)Zvγ , x, y
)}

.

Since A3f (x) = ∫
π(dy)H̃ f (x, x, y) = E{∫ 1

0 dv
∫

π(dy)H̃ f (x, x, y)}, it follows
from the previous inequality that

1

γk

E{f (X̄k) − f (X̄k,2)|Fk−1} = A3f (X̄k−1) + R3(γk, X̄k−1),

where,

R3(γ, x) =
∫

E

{∫ 1

0
dv

∫
π(dy)�H̃f (

Sx,γ,u + κ(x)Zvγ , x, x, y
)}

PU1(du)

with �H̃f (z1, z2, x, y) = H̃ f (z1, x, y) − H̃ f (z2, x, y). We upper-bound R3 by
two terms: R3,1 and R3,2 that are associated to the small and big jumps components
of (Zt ), namely,

R3,1(γ, x)

=
∫ ∫ 1

0
dv

∫
{|y|≤1}

π(dy)E
∣∣�H̃f (

Sx,γ,u + κ(x)Zvγ , x, x, y
)∣∣PU1(du),

R3,2(γ, x)

=
∫ ∫ 1

0
dv

∫
{|y|>1}

π(dy)E
∣∣�H̃f (

Sx,γ,u + κ(x)Zvγ , x, x, y
)∣∣PU1(du).

We study successively R3,1 and R3,2. From Taylor’s formula, we have for every y

such that |y| ≤ 1∣∣�H̃f (
Sx,γ,u + κ(x)Zvγ , x, x, y

)∣∣ ≤ 1
2R(Z,γ, x,u, v, y)|κ(x)y|2,
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where

R(Z,γ, x,u, v, y)

= sup
θ∈[0,1]

∥∥D2f
(
Sx,γ,u + κ(x)(Zvγ + θy)

) − D2f
(
x + θκ(x)y

)∥∥.
By setting � = D2f , �(x) = ‖κ(x)‖2|y|2,

hθ
1(x, γ ) = Sx,γ,u + κ(x)(Zvγ + θy) and hθ

2(x, γ ) = x + θκ(x)y,

we want to show that the assumptions of Lemma 6 are a.s. fulfilled for every fixed
u, v and y.

First, since κ(x)
|x|→+∞= o(|x|), there exists a continuous function ε such that

κ(x) = |x|ε(x) and ε(x)
|x|→∞−→ 0. Therefore, as b and σ have sublinear growth,

one checks that there exist some positive real constants C1 and C2 such that{ |Sx,γ,u + κ(x)(Zvγ + θy)| ≥ |x|(1 − γC1 − (|Zvγ | + |y|)|ε(x)|) − C2,

|x + θκ(x)y| ≥ |x|(1 − |ε(x)||y|).(65)

Let δ0 be a positive number such that 1 − δ0C1 > 0. Since (Zt ) is locally bounded

(as a càdlàg process) and ε(x)
|x|→∞−→ 0, there exists a.s. M > 0,

inf|x|>M,γ∈[0,δ0]
(
1 − γC1 − (|Zvγ | + |y|)|ε(x)|) > 0.

It follows that a.s.,

inf
θ∈[0,1],γ∈[0,δ0]

(|hθ
1|(x, γ ) + |hθ

2|(x, γ )
) |x|→∞−→ +∞.

Second, let K be a compact set of R
d . We check that (62) holds. We have

sup
x∈K,θ∈[0,1]

|hθ
1(x, γ ) − hθ

2(x)|
(66)

≤ sup
x∈K

(
γ |b(x)| + √

γ ‖σ(x)‖|u| + ‖κ(x)‖ |Zvγ |) γ→0−→ 0 a.s.

because b, σ , κ are locally bounded and limt→0 Zt = 0 a.s. Thus, by Lemma 6, for
any sequence (xk)k∈N of R

d , for every (u, v, y) ∈ R
d × [0,1] × Bd(0,1),

1

Hn

n∑
k=1

ηk�H̃f (
Sxk−1,γk,u + κ(xk−1)Zvγk

, xk−1, xk−1, y
) n→∞−→ 0 a.s.(67)

Now, since ∇f and D2f are bounded, we derive from Taylor’s formula that, for
every z1, z2 ∈ R

d ,

|H̃ f (z2, x, y) − H̃ f (z1, x, y)|1{|y|≤1} ≤
{

2‖∇f ‖∞‖κ(x)‖ |y|1{|y|≤1},
2‖D2f ‖∞‖κ(x)‖2|y|21{|y|≤1}.



412 F. PANLOUP

Then, for every q ∈ (1/2,1],∣∣�H̃f (
Sx,γ,u + κ(x)Zvγ , x, x, y

)∣∣1{|y|≤1} ≤ C‖κ(x)‖2q |y|2q1{|y|≤1},(68)

where C = 2 max(‖∇f ‖∞,‖D2f ‖∞). Therefore, by assumption (H2
q), we finally

derive from (67), (68) and from the Lebesgue dominated convergence theorem that

1

Hn

n∑
k=1

ηkR3,1(γk, xk−1)
n→∞−→ 0

(69)

if sup
n∈N

1

Hn

n∑
k=1

ηk‖κ(xk−1)‖2q < ∞.

We apply this result to (xk) = (X̄k). By (58), supn∈N ν̄n(‖κ‖2q) < ∞ a.s. Hence, it

follows that 1/Hn

∑n
k=1 ηkR3,1(γk, X̄k−1)

n→∞−→ 0 a.s.
Now, let us focus on R3,2. Set �f (z1, z2) = f (z1) − f (z2). Then,

R3,2(γ, x) =
∫

E

{∫ 1

0
dv

∫
{|y|>1}

π(dy)�f
(
x,Sx,γ,u + κ(x)Zvγ

)}
PU1(du)

+
∫

E

{∫ 1

0
dv

∫
{|y|>1}

π(dy)

× �f
(
Sx,γ,u + κ(x)(Zvγ + y), x + κ(x)y

)}
PU1(du).

One proceeds as before. By using Lemma 6, one begins by showing that, for any
sequence (xk)k∈N , for every (u, v, y) ∈ [0,1] × R

d × Bd(0,1)c, a.s.,

1

Hn

n∑
k=1

ηk�f
(
xk−1, Sxk−1,γk,u + κ(xk−1)Zuγk

) n→∞−→ 0 and

(70)
1

Hn

n∑
k=1

ηk�f
(
Sxk−1,γk,u + κ(xk−1)(Zvγk

+ y), xk−1 + κ(xk−1)y
) n→∞−→ 0.

By the dominated convergence theorem [which can be applied because
π(|y| > 1) < ∞ and f is bounded], we deduce that, for any sequence (xk)k∈N,

1

Hn

n∑
k=1

ηkR3,2(γk, xk−1)
n→∞−→ 0 a.s.

This completes the proof of Step 3 when q ∈ (1,2].
Case q ≤ 1/2. The reader can check that the assumption q ∈ (1/2,1] is used

only once: when we want to apply the dominated convergence theorem for R3,1

[see (68)]. Since inequality (68) is not true when q < 1/2, we need to decompose
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the infinitesimal generator in a slightly different way:

A1f (x) = 〈∇f, b0〉(x),

A2f (x) = Tr(σ ∗D2f σ)(x),

A3f (x) =
∫ (

f
(
x + κ(x)y

) − f (x)
)
π(dy).

Note that this decomposition is only possible when q ≤ 1/2. That means that
with the notation (40), we decompose �X̄k with h = 0 and inspect the three in-
duced steps. We do not go into further details since the proof is similar to the case
q > 1/2. �

PROPOSITION 5. Assume that the assumptions of Proposition 3 are fulfilled.
Then,

lim
n→∞

1

Hn

n∑
k=1

ηk

γk

E{f (X̄k) − f (X̄k−1)|Fk−1} = 0 a.s.

PROOF. We do not detail the proof of this proposition which is an adaptation
of Proposition 3 in [15]. �

5. Proof of the main theorems for Schemes (B) and (C). The aim of this
section is to give a general idea of the proof for Schemes (B) and (C) and to over-
come the main difficulties induced by the approximation of the jump component.
For Scheme (A), main theorems have been proven in two successive steps. First,
we focused on tightness results (Proposition 1) and then proved that every weak
limiting distribution is invariant for (Xt)t≥0 (Proposition 3). We follow the same
process for Schemes (B) and (C). We will successively explain for both schemes
why Proposition 1 and Proposition 3 remain valid.

5.1. Almost sure tightness of ν̄B
n (ω, dx) and ν̄C

n (ω, dx). The tightness result
for Schemes (B) and (C) is strictly identical to Proposition 1 [in particular, assump-
tion (9) is not necessary for tightness]. Looking carefully into the proof of this
theorem for Scheme (A) shows that the properties of the jumps that we use are the
following: the control of the moments of the jump components (Lemma 2) which
is fundamental for Proposition 2, and independence between (Ȳn)n∈N, (N̄n)n∈N

and (Un)n∈N. We show in Lemma 7 below that the controls of Lemma 2 hold true
for the moments of the jump components of Schemes (B) and (C). Then, since
Scheme (B) satisfies the independence properties, Proposition 1 follows in this
case. In Scheme (C), (Ȳ C

n )n∈N and (N̄C
n )n∈N are no longer independent. It raises

several technical difficulties in the proof of Proposition 2 in case p < 1, but the
process of the proof is the same. So, we only state a variant of Lemma 2 (see [21]
for details).
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LEMMA 7. Let T0 be a positive number and T n = inf{s > 0, |�Zn
t | > 0}.

(i) Let p > 0 such that (H1
p) holds. Then, for every t ≤ T0 and h > 0,

E{|Nh
t∧T n |2p} ≤ t

∫
|y|>h

|y|2pπ(dy) if p > 0.

(ii) Let τ be an (Ft )-stopping time and q ∈ [0,1] such that (H2
q) holds. Set

Dh
n = {y, |y| ∈ (un,h]} and Y

h,n
t = ∑

0<s≤t �Yh
s 1{�Yh

s ∈Dh
n} − t

∫
Dh

n
yπ(dy). Then,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
E

{∣∣∣∣Yh,n
t∧τ + (t ∧ τ)

∫
Dh

n

yπ(dy)

∣∣∣∣2q}
≤ t

∫
|y|≤h

|y|2qπ(dy), if q ∈ [0,1/2],

E{|Yh,n
t∧τ |2q} ≤ Cqt

∫
|y|≤h

|y|2qπ(dy), if q ∈ (1/2,1].

(iii) Let p ≥ 1 such that (H1
p) holds. Set Ẑn

t = Zn
t − t

∫
{|y|>1} yπ(dy). Then,

there exists η > 1 such that, for every T0 > 0, for every ε > 0, there exists
Cε,T0,p > 0, n0 ∈ N such that, for every t ≥ T0 and n ≥ n0,

E{|Ẑn
t |2p} ≤ t

(∫
|y|2pπ(dy) + ε

)
+ Cε,T0,ptη

and

E{|Ẑn
t∧T n |2p} ≤ t

(∫
|y|2pπ(dy) + ε

)
+ Cε,T0,ptη.

PROOF. The proof is left to the reader. �

REMARK 9. In (iii), the control is only valid for n sufficiently large but that
does not make any problem since (Ra,p) just needs to be valid for sufficiently
large n.

5.2. Identification of the limit of (ν̄B
n )n∈N and (ν̄C

n )n∈N. The theorem which is
obtained for (ν̄B

n )n∈N and (ν̄C
n )n∈N is strictly identical to Proposition 3 under the

additional condition (9) for Scheme (C). We recall that the proof of Proposition 3
is based on two steps: Propositions 4 and 5. Proposition 5 is still valid without
additional difficulties. However, the proof of the analogous result to Proposition 4
raises some new difficulties. Denote by Ak,B and Ak,C the operators on CK

2 (Rd)

with values in Cb(R
d,R) defined by

Ak,Bf (x) = 〈∇f, b〉(x) + 1
2 Tr(σ ∗D2f σ)(x) +

∫
{|y|≥uk}

H̃ f (x, x, y)π(dy),

Ak,Cf (x) = Ak,Bf (x) − (
1 − αk(γk)

) ∫
{|y|≥uk}

H̃ f (x, x, y)π(dy),
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where αk(t) = 1−e−π(|y|>uk)t

π(|y|>uk)t
. “Af − Ak,Bf ” and “Af − Ak,Cf ” can be viewed as

the principal part of the weak error induced by the approximation in Schemes (B)
and (C) [Ak,B is the infinitesimal generator of (Xk

t ), where (Xk
t ) is solution to the

SDE (1) driven by (Zk
t ) instead of (Zt )]. Thus, one may expect that this error be

negligible in the sense of our problem. This is the aim of Lemma 8.

LEMMA 8. Assume (H2
q). Let (xk)k∈N be a sequence such that

sup
n≥1

1

Hn

n∑
k=1

ηk‖κ(xk−1)‖2q < ∞.(71)

Then, for every function f ∈ CK
2 (Rd,R),

lim
n→+∞

1

Hn

n∑
k=1

ηk

(
Af (xk−1) − Ak,Bf (xk−1)

) = 0

and if π(Dn)γn
n→+∞−→ 0,

lim
n→+∞

1

Hn

n∑
k=1

ηk

(
Af (xk−1) − Ak,Cf (xk−1)

) = 0.

PROOF. Note that Ak,Bf (x) − Af (x) = ∫
{|y|<uk} H̃

f (x, x, y)π(dy). When

q ≥ 1/2, we deduce from Taylor’s formula and the boundedness of ∇f and D2f

that there exists Cq > 0 such that

|H̃ f (x, x, y)|1{|y|≤uk} ≤ Cq‖κ(x)‖2q |y|2q1{|y|≤uk}.

When q ≤ 1/2, since f is a 2q-Hölder function,

|H̃ f (x, x, y)|1{|y|≤uk} ≤ [f ]2q‖κ(x)‖2q |y|2q1{|y|≤uk}
+ sup

x∈suppf

|∇f (x)| · ‖κ(x)‖ |y|1{|y|≤uk}.

By setting vk,q = ∫
{|y|<uk} |y|2qπ(dy), we have

|Af (xk−1) − Ak,Bf (xk−1)| ≤
{

C
(
vk,q‖κ(xk−1)‖2q + vk,1

)
, if q ≤ 1/2,

Cvk,q‖κ(xk−1)‖2q, if q ≥ 1/2.

Since vk,α
k→∞−→ 0 for every α ≥ q under assumption (H2

q), the first result follows
from (71). One deduces the second inequality by checking that

|Ak,Bf (x) − Ak,Cf (x)| ≤ Cπ(Dk)γk

(
1 + ‖κ(x)‖2q)

. �
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Set

R
B,k
3 (γk, X̄

B
k−1) = E{f (X̄B

k ) − f (X̄B
k−1)|F B

k−1}
γk

− Ak,Bf (X̄B
k−1),

R
C,k
3 (γk, X̄

C
k−1) = E{f (X̄C

k ) − f (X̄C
k−1)|F C

k−1}
γk

− Ak,Cf (X̄C
k−1).

The rest of the proof then amounts to proving that

lim
n→∞

1

Hn

n∑
k=1

ηkR
B,k
3 (γk, X̄

B
k−1) = 0

and

lim
n→∞

1

Hn

n∑
k=1

ηkR
C,k
3 (γk, X̄

C
k−1) = 0.

We do not detail this proof based on the same approach as the proof of Proposi-
tion 4 (see [21] for more details). However, we want to derive the main difficulties
from the proof. For Scheme (B), one deduces from the Ito formula that

|Rk,B
3 (γ, x)| ≤

∫ ∫ 1

0
dv

∫
π(dy)E

∣∣�H̃f (
Sx,γ,u + κ(x)Zk

vγ , x, x, y
)∣∣PU1(du).

The right-hand term can be written R
B,k
3,1 (γ, x) + R

B,k
3,2 (γ, x), where R

B,k
3,1 (γ, x)

[resp. R
B,k
3,2 (γ, x)] is simply derived from R3,1(γ, x) [resp. R3,2(γ, x)], defined in

the proof of Proposition 3, by replacing Z with Zk . We focus on R
B,k
3,1 . One ob-

serves that the controls (65) and (66) used for R3,1 no longer work since the jump
component depends on n. An idea is to use the Skorokhod representation theorem
(see, e.g., [24]) in order to replace (Zk) by a uniformly controllable sequence.

LEMMA 9. There exist a sequence of càdlàg processes (Z̃n) and a càdlàg

process Z̃ such that Z̃n L= Zn for every n ≥ 1, Z̃
L= Z and Z̃n → Z̃ a.s. for the

Skorokhod topology. In particular,

sup
n∈N

sup
0≤s≤T

|Z̃n
s | < +∞ ∀T > 0 and

(72)
lim sup

n→+∞,γ→0
sup

0≤s≤γ

|Z̃n
s | = 0 a.s.

PROOF. Zn converges locally uniformly in L2 toward Z, hence, in distribu-
tion for the Skorokhod (Polish) topology. Thanks to the Skorokhod representation

theorem, there exists (Z̃n)n∈N and Z̃ with Z̃n L= Zn and Z̃
L= Z such that Z̃n tends

a.s. toward Z̃ for Skorokhod topology. The assertion (72) easily follows from the
continuity of α 	→ ‖α‖sup and α 	→ α(0) for the Skorokhod topology. �
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Since R
B,k
3,1 only depends on the law of Zn, one can replace Zn with Z̃n. Then,

we use (72) as an alternative to the local boundedness and the continuity at t = 0
of (Zt ) needed in (65) and (66) respectively. A result analogous to (67) follows.
The idea is the same for R

B,k
3,2 .

Finally, for Scheme (C), the result essentially follows from the following re-
mark:

sup
0<s≤t

|Zn
s∧T n | ≤ sup

0<s≤t

|Zn
s |.

This means that the remainders in Scheme (C) are easier to control than those of
Scheme (B). For more details, we refer to [21].

6. A theoretical application. The “classical” a.s. CLT due to Brosamler [6]
and Schatte [26] is the following result. Let (Un)n∈N be a sequence of i.i.d. random
variables with values in R

d such that EU1 = 0 and �U1 = Id . Then,

P-a.s
1

lnn

n∑
k=1

1

k
δ1/

√
k

∑k
i=1 Ui

�⇒ N (0, Id).

This result is obviously connected with the central limit theorem which expresses
the fact that every square-integrable centered random variable is in the domain
of normal attraction of the normal law. When the square-integrability no longer
holds, Berkes, Horvath and Khoshnevisan [3] obtained an extension of this re-
sult connected with the nonsquare-integrable attractive laws which are stable laws
[with index α ∈ (0,2)]. We are going to show that we can deduce this extension
from Theorem 2.

Let c be a positive number and denote by (Z
α,c
t )t≥0 a symmetrical one-

dimensional α-stable process such that the characteristic function φ of Z
α,c
1 satis-

fies φ(u) = e−ρ|u|α , where ρ = 2c
∫ +∞

0 y−α siny dy. Consider a sequence (Vn)n∈N

of symmetrical i.i.d. random variables such that, for x > 0,

P(V1 ≥ x) = c

xα
+ δ(x)(x−α(lnx)−γ )

(73)
with γ > 0 and δ(x)

x→+∞−→ 0.

By a result of Gnedenko and Kolmogorov (see [10]), we know that

V1 + · · · + Vn

n1/α
�⇒ Z

α,c
1 .

Then, the following a.s. CLT holds:

THEOREM 4. Let (ηk)k∈N be a nonincreasing sequence with infinite sum such
that (kηk)k∈N is nonincreasing and set ν = L(Z

α,c
1 ). Then, if γ > 1

α
, a.s.,

1

Hn

n∑
k=1

ηkδ(V1+···+Vk)/k
1/α

(R)�⇒ ν.
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In particular,

1

lnn

n∑
k=1

1

k
δ(V1+···+Vk)/k

1/α
(R)�⇒ ν a.s.

In order to prove this theorem, we first need an almost sure invariance principle
due to Stout (see [27] or [3]).

PROPOSITION 6. Let (Vn)n≥1 and (ζn)n≥1 be sequences of i.i.d. random vari-

ables such that ζ1
L= Z

α,c
1 and V1 is defined as above. Then, if γ > 1

α
, there exists a

probability space (	̂, F̂ , P̂) and sequences of i.i.d. random variables (V̂n)n≥1 and

(ζ̂n)n≥1 such that V̂1
L= V1, ζ̂1

L= ζ1 and
n∑

i=1

ζ̂i −
n∑

i=1

V̂i
n→+∞= o(n1/α(lnn)−ρ) a.s. ∀ρ ∈

(
0, γ − 1

α

)
.(74)

PROOF OF THEOREM 4. First, we assume that V1 = ζ1
L= Z

α,c
1 . Set

Sn = ζ1 + · · · + ζn+1

(n + 1)1/α
∀n ≥ 0.

One easily checks that Sn+1 = Sn − 1
α
γn+1Sn + γ

1
α

n+1ζn+2 + Rn+1 with γn = 1
n+1

and Rn+1 = O(γ 2
n+1|Sn|). The idea of the proof is to compare (Sn)n≥0 with the

exact Euler scheme with initial value ζ1 and step sequence (γn) associated with
the SDE (Eα,c) defined by dXt = − 1

α
Xt− dt + dZ

α,c
t . Since (Z

α,c
t )t≥0 is a self-

similar process with index 1/α (see, e.g., [25]), its Euler scheme can be written

X̄0 = ζ1 and X̄n+1 = X̄n − 1

α
γn+1X̄n + γ

1
α

n+1ζn+2.

As an Ornstein–Uhlenbeck process driven by a symmetric stable law, (Xt) admits
a unique invariant measure ν and ν = L(Z

α,c
1 ) (see [25], page 188). Since κ is

bounded, assumptions of Theorem 2 are clearly fulfilled with V (x) = 1+x2, a = 1
and for any p ∈ (0, α/2) and q ∈ (α/2,1). (In the rest of the paper the initial value
of the Euler scheme is supposed to be constant, but it is obvious that Theorem 2
is still true when X̄0 is a random variable satisfying E{|X̄0|2p} < +∞.) Hence, it
follows from Theorem 2 that

1

Hn

n∑
k=1

ηkδX̄k−1

n→+∞�⇒ ν a.s.(75)

Then, by using that |f (Sk) − f (X̄k)| ≤ C(|Sk − X̄k| ∧ 1) for every Lipschitz
bounded function f , one easily checks that Theorem 4 holds with V1 = ζ1 if

�n := Sn − X̄n
n→+∞−→ 0 a.s.(76)
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Let us show (76). One first checks that

�0 = 0 and �n =
(

1 − 1

α(n + 1)

)
�n−1 + Rn ∀n ≥ 1.

Setting k0 = inf{k ≥ 0, k − 1/α > 0}, we deduce that, for every n ≥ k0 + 1,

�n = �k0

cn

+ 1

cn

n∑
k=k0+1

ckRk with cn =
n∏

k=k0+1

(
1 − 1

α(k + 1)

)−1

.

One observes that

cn = exp

(
−

n+1∑
k=k0+2

ln
(

1 − 1

αk

))
= exp

(
1

α

n+1∑
k=k0+2

1

k
+ O

(
1

k2

))
n→+∞∼ C′n1/α.

Then, �k0/cn → 0 a.s. Hence, (76) holds if we check that 1/cn

∑n
k=k0+1 ckRk → 0

a.s. First, if α > 1, as ζ1 is integrable and Rk = O(Sk−1/(k + 1)2), we have∑
k≥1

E{|Rk|} ≤ C
∑
k≥1

E{|Sk−1|}
(k + 1)2 ≤ C

∑
k≥1

kE{|ζ1|}
(k + 1)1/(α+2)

≤ C
∑
k≥1

1

(k + 1)1+1/α
< +∞.

We deduce that
∑

k≥1 |Rk| < +∞ a.s. Since cn
n→+∞−→ +∞, we derive from Kro-

necker’s lemma that

1

cn

n∑
k=k0+1

ckRk
n→+∞−→ 0 �⇒ �n

n→+∞−→ 0 a.s. if α > 1.

Second, if α ≤ 1, ζ1 has a moment of order θ for every θ < α. It follows from
inequality (25) that

E{|Rk|θ } ≤ C
k

(k + 1)2θ+θ/α
E{|ζ1|θ } ≤ C

(k + 1)θ(2+1/α)−1 .

Therefore, if θ satisfies θ(2 + 1
α
) − 1 > 1, that is, if 2α

2+α
< θ < α, we have∑

k≥1 |Rk|θ < +∞ a.s. Hence, by inequality (25) and Kronecker’s lemma, it fol-
lows that ∣∣∣∣∣ 1

cn

n∑
k=k0+1

ckRk

∣∣∣∣∣
θ

≤ 1

cθ
n

n∑
k=k0+1

cθ
k |Rk|θ n→+∞−→ 0 a.s.

and the theorem is proved when V1 = ζ1. Now, consider a sequence (Vn)n≥0 of
i.i.d. symmetric random variables satisfying (73). Since Theorem 4 is true for
(ζn)n≥1, it is also true for every sequence (ζ̂n)n≥1 of i.i.d. random variables satisfy-

ing ζ̂1
L= ζ1. By taking (ζ̂n)n≥1 such that Proposition 6 holds, we derive from (74)

that there exists a sequence of i.i.d. random variables (V̂n)n≥1 such that V1
L= V̂1
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and

1

Hn

n∑
k=1

ηkδ(V̂1+···+V̂k)/k
1/α

n→+∞�⇒ ν a.s.(77)

As (Vn)n≥1 and (V̂n)n≥1 are sequences of i.i.d. random variables such that

V1
L= V̂1, (77) is also true for (Vn)n≥1. �

7. Simulations.

EXAMPLE 4. Denote by (Zt )t≥0 a Cauchy process with parameter 1 [with
Lévy measure defined by π(dy) = 1/y2 dy] and consider the Ornstein–Uhlenbeck
process solution to dXt = −Xt− dt + dZt corresponding to (E1,1) defined in the
previous subsection. The unique invariant measure of (Xt)t≥0 is the Cauchy law
(see [25], page 188) and the assumptions of Theorem 2 are fulfilled with V (x) =
1 + x2, a = 1 and every p ∈ (0,1/2) and q ∈ (1/2,1). Therefore,

ν̄n(f ), ν̄B
n (f ), ν̄C

n (f )
n→+∞−→

∫
f (x)

π(1 + x2)
dx a.s.

for every f satisfying f = O(|x|1/2−ε) with ε > 0. In Figures 1, 2 and 3, one

FIG. 1. Scheme (A), t = 12.5.
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FIG. 2. Scheme (B), t = 16.6.

FIG. 3. Scheme (C), t = 16.4.
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FIG. 4. Scheme (A).

compares the theoretical density of the invariant measure with the density ob-
tained by convolution of each of the empirical measures by a Gaussian kernel for
N = 5.104. We choose ηn = γn = 1/

√
n, un = √

γn [so that π(Dn)γn → 0] and
t indicates the CPU time. In order to have a more precise idea of the differences
between the three Euler schemes, we simulate and represent on Figures 4, 5 and 6
the sequence (ν̄n(f )) with f (x) = |x|0.4, for several choices of polynomial steps.
We set γn = ηn = 1/nθ and un = γn (resp. un = √

γ
n
) for Scheme (B) [resp. for

Scheme (C)]. We observe that, among the tested steps, the best rate seems to be
obtained for θ = 0.3. Notably, in Schemes (B) and (C), we see that, on the one
hand, if the step decreases too slowly (e.g., θ = 0.7), so is the stabilization and, on
the other hand, if the steps decreases too fast (e.g., when θ = 0.1), there are not
sufficient variations to correct the error.

REMARK 10. In [20] we study the rate of convergence of these procedures
in terms of steps, weights and truncation thresholds. This enlightens these first
numerical illustrations.

EXAMPLE 5. Now we deal with the following SDE:

dXt = (1 − Xt−) dt − Xt− dZt ,
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FIG. 5. Scheme (B).

FIG. 6. Scheme (C).
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FIG. 7. Approximated density, N = 106.

where (Zt )t≥0 is a drift-free subordinator with Lévy measure π defined by

π(dy) = f3/2,1/2(y)

y2 dy,

where fa,b is the density function of the β(a, b)-distribution. This SDE models the
dust generated by a particular EFC process (see Introduction) whose sudden dis-
locations do not create dust, having parameters (according to the notation of [2]):

ck = 0, ce = 1, νcoag(dy) = f3/2,1/2(y) dy.

One checks that (S1,1,1/2) is satisfied with V (x) = 1 + x2. However, we do not
have κ(x) = o(|x|), but since supp(π) is restrained to [0,1] without singularities
in 0 and 1, we are able to show that assumption κ(x) = o(x) is no longer necessary
in this case. In Figure 7 we represent the approximation of the invariant measure
obtained for Schemes (B) and (C) [we are not able to simulate Scheme (A) in that
case].

Acknowledgments. Thanks to Gilles Pagès for extensive discussions and sug-
gestions.
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