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and Technische Universität Berlin

We study a discrete time spatial branching system on Z
d with logistic-

type local regulation at each deme depending on a weighted average of the
population in neighboring demes. We show that the system survives for all
time with positive probability if the competition term is small enough. For a
restricted set of parameter values, we also obtain uniqueness of the nontrivial
equilibrium and complete convergence, as well as long-term coexistence in
a related two-type model. Along the way we classify the equilibria and their
domain of attraction for the corresponding deterministic coupled map lattice
on Z

d .

1. Introduction and main results. An important problem from the field of
mathematical ecological modeling is to find plausible stochastic models on the
level of individuals for the time evolution of a “population,” say, of animals or
plants, which live, move—in the case of plants, we think rather of the dispersal
of seeds—and reproduce in a 2-dimensional space, subject to individual random
fluctuations. The mathematically simplest class of stochastic models one might
come up with, namely, branching random walk and its relatives in which individ-
uals do not interact, are not adequate because in dimension 2, they virtually never
exhibit stable long-time behavior: it is well known (see, e.g., [20] and the discus-
sion there) that they will die out locally if the branching is (sub-)critical, and grow
locally beyond all bounds if it is supercritical.

To describe an “old” population, which corresponds mathematically to a non-
trivial equilibrium situation, one has to introduce some interactions among individ-
uals, which is of course also natural from the modeling perspective. A very drastic
solution that is frequently used in so-called stepping stone models (see, e.g., [19]),
in the context of population genetics models, is to force the population size, or the
population size per deme in a spatially extended scenario, to be constant, that is,
each birth is exactly matched by a death in the population. A number of ecological
models have been introduced and studied rigorously in the context of interacting
particle systems and probabilistic cellular automata on Z

d (see, e.g., [8, 7, 18]). In
these models the state of the system at discrete or continuous time t is described by
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a function ξt : Zd → S, where in most cases S is some finite set of possible types.
The interpretation is that a site x is vacant at time t if ξt (x) = 0 and occupied by
one individual of type i if ξt (x) = i for some i ∈ S \ {0}. An individual at site x

changes its type or dies at a certain rate (with certain probability in discrete time
setting), which depends on the neighborhood of x. Reinterpreting the type as oc-
cupancy numbers, this class can, in principle, accommodate models with a fixed
a priori upper bound on particle density. On the other hand, it seems more nat-
ural to allow arbitrary population sizes or densities, and introduce a self-regulation
mechanism which, for example, makes individual reproduction super-critical in
presently sparsely populated regions and subcritical in crowded areas—accounting
for stress or competition for resources. Such models with explicit space have been
studied in the ecological literature (see, e.g., [2, 13]), mostly using computer sim-
ulations and heuristic arguments (see, e.g., [3, 17] for a comparison of different
approaches). Recently, some variants of models of locally regulated populations
have been studied in the mathematics literature and the possibility of long-time
survival in certain parts of the parameter space has been rigorously proved for a
continuous mass model [1, 10, 11].

We add to this literature a variant where particles live in discrete demes
(arranged on Z

d ) in nonoverlapping generations, which looks as follows: In the
absence of competition, an individual has on average m > 1 offspring. Due to
competition, for example, for local resources, the average reproductive success of
an individual at position x is reduced by an amount of λxy ≥ 0 by each individual
at position y. Here λxy is a finite range kernel on Z

d . Thus, an individual at x in
generation n will have a random number of offspring with mean given by(

m − ∑
y∈Zd

λxyξn(y)

)+
,(1)

where ξn(y) denotes the number of individuals at spatial position y in genera-
tion n, and for r ∈ R, we write r+ = max{0, r}. In particular, if the occupancy of
neighboring sites is so high that the term in brackets is negative, no offspring are
generated at site x in this generation. For definiteness and simplicity, we assume
that the actual number of offspring, given the present configuration, is Poisson-
distributed with the above mean, and independent for different individuals. Once
created, offspring take an independent random walk step according to a kernel p

from the location of their mother. In this way, our model incorporates individual-
based random fluctuations in the number and spatial dispersal of offspring.

A formal specification of the model is given as follows: We assume that the mo-
tion/dispersal kernel p = (pxy)x,y∈Zd and the competition kernel λ = (λxy)x,y∈Zd

satisfy the following conditions:

(A1) The kernel (pxy)x,y∈Zd = (py−x)x,y∈Zd is a zero mean aperiodic stochastic
kernel with finite range Rp ≥ 1, that is, for all x, y ∈ Z

d : pxy = 0 for ‖x −
y‖∞ > Rp .
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(A2) 0 ≤ λxy = λ0,y−x , λ0 := λ00 > 0 and λxy = 0 for ‖y − x‖∞ > Rλ, where
1 ≤ Rλ < ∞.

For a configuration η ∈ R
Z

d

+ and x ∈ Z
d , define

f (x;η) := η(x)

(
m − λ0η(x) − ∑

z �=x

λxzη(z)

)+
(2)

and

F(x;η) := ∑
y∈Zd

f (y;η)pyx,(3)

that is, f (y;η) is the expected number of offspring generated at site y and, thus,
F(x;η) is the expected number of individuals at x in the daughter generation if the
present configuration is η. Let N(x,n), (x, n) ∈ Z

d × Z+ be independent standard
Poisson processes on R+. Given ξn, the configuration of the nth generation, ξn+1,
arises as

ξn+1(x) = N(x,n)(F (x; ξn)), x ∈ Z
d .(4)

By well-known properties of the Poisson distribution, this definition is consistent
with the intuitive description given above. Note that, technically, this model is a
“probabilistic cellular automaton” (see, e.g., [5]) with countably infinitely many
possible states at each site.

As for all η ∈ R
Z

d

+ , we have f (x;η) ≤ mη(x), for m ≤ 1, one can easily con-
struct a coupling of (ξn) with a subcritical branching random walk. In that case
(ξn) becomes extinct in finite time with probability 1 starting from any finite ini-
tial condition. Our first result states in the case m ∈ (1,4) that if the competition
is weak enough, the population, starting from any nontrivial initial condition, will
survive for all time with positive probability.

THEOREM 1. For each m ∈ (1,4) and p satisfying (A1), there are choices
of positive numbers λ∗

0 = λ∗
0(m,p) and κ∗ = κ∗(m,p) such that if λ0 ≤ λ∗

0 and∑
x �=0 λ0x ≤ κ∗λ0, then the population survives with positive probability, that is,

Pξ0[∀n ∈ N,∃x ∈ Z
d : ξn(x) > 0] > 0

for all ξ0 with f (x; ξ0) > 0 for some x ∈ Z
d . Furthermore, conditioned on nonex-

tinction

lim inf
N→∞

1

N

N∑
n=1

1{ξn(0)>0} > 0 a.s.,

in particular, the origin (and, in fact, any site x ∈ Z
d ) will be occupied at arbitrar-

ily large times.
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FIG. 1. Function φ for different values of m.

Note that this result as well as Theorem 3 and Corollary 4 below work in any
dimension d ≥ 1 (with threshold values λ∗

0, κ
∗ depending on d), in particular, it

establishes the possibility of long-term survival in d = 2.
The small competition coefficients mean that the system will typically be able

to maintain a high number of particles per site. In this sense, our result concerns
a “high density regime.” Technically, we follow the natural path of a block con-
struction in conjunction with comparison with oriented percolation, that might be
paraphrased as “life plus good randomness leads to more life, so show that bad
randomness has small probability.” We call a space-time point occupied if there
are enough particles there and not too many in the neighborhood (see Definition 6
for details). The definition is such that in the corresponding deterministic model
(which is a “coupled map lattice” in dynamical systems jargon; see, e.g., [4] for a
recent survey of this field)

ζn+1(x) = F(x; ζn), x ∈ Z
d, n = 0,1, . . . ,(5)

in which the Poisson variables are replaced by their means, an occupied site would
after finitely many steps “colonize” its neighbors, that is, make them occupied as
well. Then we control the probability that this remains the case under stochastic
perturbation. Choosing small competition coefficients, we increase the “typical
number of particles” per site in the deterministic model. Then we use the fact that
the relative deviation of a Poisson random variable from its mean is typically small
if the parameter is large. Finally, the finite range of competition and motion kernels
allows to compare the set of occupied space-time sites with finite-range dependent
oriented percolation on a suitable sub-grid of the space-time lattice.

The method can be adapted to a situation of two competing species to show that
if in addition to the conditions of Theorem 1 the interspecific competition is weak
enough, then long term coexistence is possible (see Theorem 8).

The logistic map φ(x) = x(m − λx)+ and especially the one dimensional de-
terministic dynamical system

xn+1 = φ(xn)(6)



SURVIVAL AND COMPLETE CONVERGENCE 1781

play an important role throughout the paper (see Figure 1 for a sketch of φ for var-
ious values of m). For example, in Theorem 1 the restriction to m < 4 comes from
the fact that otherwise the function φ would not map the set {x ∈ R :φ(x) > 0}
into itself. The function φ has two fixed points, namely, 0 and (m − 1)/λ. For m ∈
(1,3), it is well known that 0 is repelling and (m−1)/λ is attracting, that is, if x1 �=
0, then the sequence (xn) converges to (m − 1)/λ, whereas for m ≥ 3, there are no
stable fixed points. It is interesting on its own that the former fact can be general-
ized to the coupled map lattice (5) which is a spatially extended version of (6): If
the competition coefficients are small enough, the fixed point η ≡ (m−1)/

∑
x λ0x

of the function F is globally attracting in the sense of locally uniform convergence.

THEOREM 2. Let m ∈ (1,3), p, λ satisfying (A1) and (A2) be given. Then
there exists a positive number κ∗ = κ∗(m,p) such that if

∑
x �=0 λ0x ≤ κ∗λ0 and

f (x; ζ0) > 0 for some x ∈ Z
d , then (ζn) converges locally (i.e., pointwise w.r.t.

z ∈ Z
d ) to (m − 1)/

∑
x λ0x .

Notice that, under the assumptions of Theorem 2, we obtain a complete clas-
sification of the equilibria of (5) and their domains of attraction: If (ζn) does
not hit the all zero configuration 0 ∈ Z

Z
d

+ after the first step, it is attracted by
η ≡ (m − 1)/

∑
x λ0x .

Obviously 0 ∈ Z
Z

d

+ is an absorbing state for (ξn), so the Dirac measure in this
state is an invariant distribution for (ξn). In view of Theorem 1, it is natural to
ask if there exist nontrivial stationary distributions, and one might expect that if
the process does not go extinct, its distribution converges to some unique invariant
distribution. A powerful method to address this problem is coupling. Let (ξ

(1)
n )

and (ξ
(2)
n ) be versions of the process (ξn) introduced in (4). Let N

(x,n)
0 , N

(x,n)
1 and

N
(x,n)
2 , (x, n) ∈ Z

d × Z+, be independent standard Poisson processes. We define

the coupling of (ξ
(1)
n ) and (ξ

(2)
n ) as follows:

ξ
(1)
n+1(x) = N

(x,n+1)
0

(
F

(
x; ξ (1)

n

) ∧ F
(
x; ξ (2)

n

))
+ N

(x,n+1)
1

((
F

(
x; ξ (1)

n

) − F
(
x; ξ (2)

n

))+)
,

(7)
ξ

(2)
n+1(x) = N

(x,n+1)
0

(
F

(
x; ξ (1)

n

) ∧ F
(
x; ξ (2)

n

))
+ N

(x,n+1)
2

((
F

(
x; ξ (2)

n

) − F
(
x; ξ (1)

n

))+)
.

THEOREM 3. Let m ∈ (1,3), and p, λ as in (A1), (A2) be given. There
are λ∗∗

0 = λ∗∗
0 (m,p) > 0 and κ∗∗ = κ∗∗(m,p) > 0 such that if λ0 ≤ λ∗∗

0 and∑
x �=0 λ0x ≤ κ∗∗λ0, then, conditioned on nonextinction of both populations, the

coupling of (ξ
(1)
n ) and (ξ

(2)
n ) is successful in the sense that for each finite � ⊂ Z

d ,
there is a random time T , such that

ξ (1)
n (x) = ξ (2)

n (x) for all x ∈ � and n ≥ T .
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Obviously we have λ∗∗
0 ≤ λ∗

0, κ∗∗ ≤ κ∗. We do not know if in the case m ∈
(1,3) the inequalities are strict (but certainly the bounds obtained in the proof
of Theorem 3 are much smaller than those obtained in the proof of Theorem 1).
The proof of Theorem 3 again uses the block construction argument together with
Lemma 14 which essentially follows from [6] where it was used in a similar spirit
to prove uniqueness of the nontrivial invariant distribution for multicolor systems.

COROLLARY 4. Under the conditions of Theorem 3 the process (ξn) has
two extremal invariant distributions. These distributions are translation invariant.
Conditioned on nonextinction, (ξn) converges in distribution in the vague topology
to a random measure distributed according to the nontrivial extremal invariant
distribution, that is, we have complete convergence.

REMARK 5. (i) To our knowledge, we present here the first rigorous result
showing the possibility of long-time survival in a locally regulated population in
d = 2 for a particle-based model allowing multiple occupancy (but for particular
cases in a continuous-time version, cf. [11], Proposition 6.4, where the competi-
tion acts strictly within-deme, and Proposition 7.9, where competition and disper-
sal kernel must be identical). Notice that because of the nonlocality of the com-
petition and the discreteness of time the system considered here is not monotone
(see [14], Chapter II.2, for background). As the mathematically rigorous investiga-
tion of spatial stochastic systems with local regulation terms is still in its infancy,
we think it is justified to study the phenomenon in several mathematical guises.
Furthermore, many species do live in discrete generations, and it is well known
that discrete time dynamics can have a much richer behavior than their continuous
time analogues. This shows up in our model as well; see point 4 below.

Being honest, one has to admit that the results of this paper, as well as those in
[1, 11] are still too weak to capture many ecologically interesting phenomena. Up
to now, all the rigorous results are more of a conceptual nature, showing that sur-
vival respectively coexistence of several types is possible if the interaction terms
are weak enough, but giving little clues about what realistic sizes of threshold val-
ues enabling/excluding survival or coexistence might be. This stems from the fact
that in order to apply comparison with finite-range dependent directed percola-
tion, one usually has to keep far away from the true critical values. For example,
we have little rigorous information about properties of the nontrivial equilibrium
guaranteed by Corollary 4, apart from the fact that its mean is close to the determin-
istic prediction (m−1)/

∑
x λ0x when the competition terms are small. One would

suspect that correlations decay exponentially, but we have no rigorous proof.
Thus, the contribution of these mathematical investigations to the question, how

a population or several populations arrange themselves in space in order to survive
in a (ecologically very interesting) situation of scarce resources and, hence, ap-
preciable competition is at present rather limited. It appears that more powerful
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mathematical tools need to be invented in order to make rigorous progress in this
direction.

(ii) The Poisson offspring distribution in our model is a somewhat artificial
choice, which helps to streamline calculations, but is not essential for the result.
To formulate a more general form of the model, one would need a one-parameter
family of probability distributions (say, indexed by their mean) which includes
sub- and supercritical distributions. A natural way would be to start with a fixed
supercritical offspring distribution and then superimpose a “thinning” according
to the local weighted density. A nice feature of the Poisson distribution is that we
can in fact think of it in this way. Another feature of the Poisson distribution is that
the variance of the total number of offspring produced at some site x (given the
present configuration) and its mean are the same. While it is natural for a “branch-
ing model” to assume that conditional variance and mean of the size of the new
generation are of the same order, a general class of offspring distributions would
allow for different proportionality factors.

(iii) Our results require that λ0, the on-site competition coefficient, is (substan-
tially) larger than the total competition with neighboring sites. Thus, they apply
to a situation where most of the competition is felt by individuals within the same
“colony.” One can think, for example, of colonies arranged on Z

d and λ0 governing
a rather strong population regulation inside each colony, whereas the competition
λ0x , x �= 0, with surrounding colonies is of a lower order.

This is certainly a technical condition which is not necessary for survival, but
which intuitively helps quite a bit because it prevents the occupancy of a site from
becoming so big that it would “eradicate” its neighborhood in the next step. Note
that no such condition is necessary for the continuous-time continuous-mass result
in Theorem 1.5, 2 b) in [10] (on the other hand, unlike [10], we do not need the
requirement that the range of λ must not exceed that of p).

Simulations suggest that the system may survive also when λ0 and λ0x , 0 <

‖x‖ ≤ Rλ, are the same or similar (but sufficiently small), but occupancy num-
bers will fluctuate much more wildly than in the scenario treated in Theorem 1.
On the other hand, with a highly asymmetric competition kernel, one observes in
simulations the appearance of “fronts” of occupied sites moving in the direction
of smaller λ. This might indicate local extinction despite global survival when
starting from a finite initial population in such a case.

(iv) As the model is in some sense a stochastic version of a spatial system of
coupled logistic maps, the restrictions on m in our results are inherited from the
behavior of (6): When m > 4, the one dimensional deterministic dynamical sys-
tem (6) would “live” only on a Cantor-like set, and the technique employed in the
proof of Theorem 1 would fail. On the other hand, simulations suggest that, even
in the case m > 4, the random fluctuations can “smooth out” the trajectories so
that (4) might survive from initial conditions which would drive (5) to extinction
in finitely many steps. The restriction to m ∈ (1,3) in Theorem 3 stems of course
from the fact that this guarantees a unique stable fixed point of the logistic map.
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It is unclear if Corollary 4 would hold in a situation where (6) has periodic orbits:
Then, one can see in simulations large regions of space which are “oscillating out
of phase,” which might indicate that the system builds up long range structure over
large time scales. Similar effects have been studied in [9].

(v) We note that the “stepping stone version of the Bolker–Pacala model” intro-
duced in Definition 1.3 of [10] can be obtained as a scaling limit of a sequence of
models considered above: Assume that the parameters of the N th model are given
by

m(N) = 1 + αM

N
,

p(N)
xy = 1

N
mxy +

(
1 − 1

N

∑
x

m0x

)
δxy,

λ(N)
xy = ακλxy

N2 ,

where α,M,mxy, λxy are as in [10], page 191. Let ξ
(N)
0 (x) = [Nµ(x)], where

µ is some finite measure on Z
d , and define X

(N)
t (x) := 1

N
ξ

(N)
[Nt](x). Then X(N)

converges in distribution on D[0,∞)(Mf (Zd)) to X, the solution of (5) on page 191
of [10], that is, the stepping stone version of the Bolker–Pacala model, with γ = 1.
Of course, this is a remark about finite time horizons. Deducing results about the
steady states of the Bolker–Pacala model from our theorems would presumably
require a considerable amount of work.

(vi) Hutzenthaler and Wakolbinger [12] have shown that (at least in the case
of within-site competition only) the stepping stone version of the Bolker–Pacala
model from [10] dies out in any dimension if the carrying capacity, which would
correspond to (m − 1)/

∑
x λ0x in our model, is too small. Similarly, one would

expect that our model, even when m ∈ (1,3), will die out when λxy are too large.
Simulations suggest that this is indeed the case, but we have no rigorous proof.

The rest of this paper is organized as follows: in Section 2 we provide a basic
lemma showing how “occupancy” spreads through space and prove Theorem 1,
in Section 3 we briefly discuss how the results can be transferred to a two-species
scenario with (weak) interspecific competition. Section 4 provides results about
the deterministic system (5) and proves Theorem 2. These results will be required
in Section 5, where we prove Theorem 3 and Corollary 4.

To simplify the notation in the proofs, we will use in the sequel a transformed
version of the kernel λ,

λxy = κγxy, x �= y,(8)

where we assume that
∑

y �=x γxy = 1. That is, we separate the nondiagonal part
of λ into κ := ∑

x �=0 λ0x , the total “nondiagonal” competition and the normalized
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kernel γ0x = λ0x/κ (γxx := 0). Nevertheless, we prefer to state the theorems in
terms of λxy because these have an intuitive biological interpretation. For η ∈ R

Z
d

+ ,
x ∈ Z

d and κ ≥ 0, we write

fκ(x;η) := η(x)

(
m − λ0η(x) − κ

∑
z �=x

γxzη(z)

)+
(9)

and

F(x;η) := ∑
y∈Zd

fκ(y;η)pyx.(10)

Note that this is just (2) and (3) in the new parametrization.

2. Survival. The value fκ(x;η) is the mean number of offspring at site x if
the present configuration is η. The maximal (mean) number of offspring at one site
in one generation will be denoted by

m∗
λ0

:= max
η∈R

Zd
+

fκ(0;η) = m2

4λ0
.(11)

If the number of particles at some site x exceeds Mλ0 := m/λ0, then, as the term
in the parenthesis in (2) and (9) is negative, no offspring is produced at this site.
Furthermore, let us introduce

m̄(λ0, κ) := m − 1

λ0 + κ
and m̄λ0 := m̄(λ0,0),(12)

the deterministic equilibrium values when the nondiagonal regulation term is κ

respectively 0. Note that, for η ≡ m̄(λ0, κ), we have fκ(x;η) = m̄(λ0, κ) and,
therefore, η(x) = F(x;η) for all x ∈ Z

d .

FIG. 2. Graph of the function f̃ (z) = z(m − λ0z)+.
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DEFINITION 6. Let η ∈ R
Z

d

+ . For a pair of positive numbers (ε1, ε2), we will
say that a site x is (ε1, ε2)-occupied with respect to η if

η(x) ∈ [ε1m̄λ0, (1 − ε2)Mλ0] and η(y) ≤ (1 − ε2)Mλ0,‖x − y‖∞ ≤ Rλ.

We will often say that η(x) is (ε1, ε2)-occupied, or just occupied if there is no risk
of confusion, meaning that x is (ε1, ε2)-occupied with respect to η.

As advertised earlier, to prove Theorem 1, we compare the process (ξn) with
oriented percolation on a sub-grid of Z

d × Z+. The main step is to show that if
a site is (ε1, ε2)-occupied with respect to some ξn, then in a while its neighbors
will be also (ε1, ε2)-occupied with high probability. To this end, we consider a
perturbed coupled map lattice

ζn+1(x) = F(x; ζn) + δn(x),(13)

where the perturbation δn is assumed to satisfy δn(x) ≥ −F(x; ζn), such that (ζn)

is nonnegative. We will show that under certain additional conditions on the per-
turbation term the system (ζn) has the desired property. Then we view the original
process (ξn) as a perturbed dynamical system and we will see that the conditions
mentioned above are satisfied with high probability if the competition is weak
enough.

Let us now introduce and explain some notation which will be used in the se-
quel. We denote by pn

xy the n-step transition probability of a random walk with
kernel p. As mentioned above, our goal is to show that an occupied site colonizes
its neighbors in a couple of steps and remains itself occupied. In the first step the
offspring are distributed according to the kernel p. Thus, there is in general no rea-
son why an occupied site should remain occupied after one step. Let us fix some
m̃ ∈ (1,m). By the Local Central Limit Theorem, the number

n∗ = min{j ∈ N :pj
0xm̃

j ≥ 1 for all x with ‖x‖∞ ≤ 1}(14)

is finite. We set

I = {(y, j) ∈ Z
d × Z+ :pj

0y > 0,0 ≤ j ≤ n∗}
⊂ {(y, j) :‖y‖∞ ≤ jRp,0 ≤ j ≤ n∗}.

Suppose that the site 0 is (ε1, ε2)-occupied with respect to ζ0 and that there is no
mass at the other sites. Let us also assume for the moment that the perturbation
term vanishes and that the competition between individuals at different sites is
zero, that is, κ = 0. We set f̃ (z) = z(m − λ0z)

+, see Figure 2. As this function is
unimodal, to find the minimum of f̃ on some interval, it suffices to consider the
values at the endpoints. If for some positive a we have z ∈ [aε1m̄λ0, (1 − ε2)Mλ0],
then

f̃ (z) ≥


f̃ (ε2Mλ0) = ε2Mλ0m(1 − ε2), aε1m̄λ0 ≥ ε2Mλ0 ,

f̃ (aε1m̄λ0) = aε1m̄λ0m

(
1 − aε1 + 1

m

)
, aε1m̄λ0 < ε2Mλ0 .

(15)
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This means that the number of offspring at site 0 is at least m̃ε1m̄λ0 if ε1 is suf-
ficiently small. Then the offspring are distributed in the neighborhood according
to the kernel p. In this neighborhood the mass is again multiplied by at least m̃

(unless the local mass happens to be already large enough) and then distributed
according to p. Hence, after k steps the mass at a site y is larger than or equal
to pk

0ym̃
kε1m̄λ0 . The living space of the whole population at this time is the kth

timeslice of I which is contained in the ball of radius kRp . By the definition of
n∗, after n∗ steps the mass in 0 and in points with norm one reaches or maybe ex-
ceeds the level ε1m̄λ0 . Thus, these sites are occupied at that time if the mass there
and in the Rλ-neighborhood does not exceed (1 − ε2)Mλ0 .

We need some additional conditions on the perturbation term. We set

X = {(y, n) ∈ Z
d × Z+ :n < n∗,‖y‖∞ ≤ n(Rp + Rλ)}.(16)

Consider the assumptions:

(B1)ε2 for all (y, n) ∈ X: F(y; ζn) + δn(y) ≤ (1 − ε2)Mλ0 ,
(B2)δ,K for all (y, n) ∈ X: F(y; ζn) ≥ K implies |δn(y)| ≤ δF (y; ζn).

LEMMA 7. Assume that m and p are as in Theorem 1. For each K > 0 and δ

satisfying m(1 − δ) > m̃ > 1, there are choices of positive numbers ε1, ε2, λ∗
0 and

κ∗ such that whenever

λ0 ≤ λ∗
0 and κ ≤ κ∗λ0,(17)

the following holds:

ζ0(0) is (ε1, ε2)-occupied, (B1)ε2 , (B2)δ,K are satisfied

�⇒ ζn∗(x) are (ε1, ε2)-occupied for all x with ‖x‖∞ ≤ 1.

PROOF. Let K > 0 be given. We choose ε2 > 0 such that

m(1 − δ)

(
1 − ε2

m

m − 1

)
≥ m̃ and m∗

λ0
≤ (1 − 2ε2)Mλ0 .(18)

For the second inequality, we need m < 4. Then we choose ε1 > 0 satisfying

pn
0ym̃

nε1 ≤ ε2
m + 1

m
≤ ε2

m

m − 1
for all (n, y) ∈ I .(19)

Note that this choice guarantees

pn
0ym̃

nε1m̄λ0 ≤ ε2
m + 1

m
m̄λ0 ≤ ε2Mλ0 for all (n, y) ∈ I .(20)

By construction of I , the number Imin = min{m̃npn
0y : (n, y) ∈ I } is positive.

Therefore we may choose λ∗
0 such that, for λ0 ≤ λ∗

0,

ε1m̄λ0Imin ≥ K.
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Finally, we choose κ∗ such that, for some α satisfying m̃ < m − α,

(1 − ε2)Mλ0κ
∗λ∗

0 ≤ α.

Let us first consider the case κ = 0. We have to show that

ζn∗(x) ∈ [ε1m̄λ0, (1 − ε2)Mλ0], ‖x‖∞ ≤ 1.

By (B1)ε2 , we have

ζn+1(x) = F(x; ζn) + δn(x) ≤ (1 − ε2)Mλ0 for all (x, n) ∈ X.(21)

This means, in particular, ζn∗(x) ≤ (1 − ε2)Mλ0 for ‖x‖∞ ≤ 1. To complete the
proof for that case, we show by induction on n that

ζn(y) ∈ [pn
0ym̃

nε1m̄λ0, (1 − ε2)Mλ0], 0 ≤ n ≤ n∗ and (y, n) ∈ I .

By definition of n∗, the assertion of the lemma then follows. For n = 0, the claim
holds by assumption. If it holds for some n < n∗, then, first using (20) and (15),
then (19) and the first part of (18), we obtain

(1 − δ)f (y; ζn) ≥ (1 − δ)f̃ (pn
0ym̃

nε1m̄λ0)

≥ (1 − δ)pn
0ym̃

nε1m̄λ0 · m
(

1 − pn
0ym̃

nε1 + 1

m

)
≥ pn

0ym̃
n+1ε1m̄λ0 .

Hence,

(1 − δ)F (y; ζn) = ∑
z∈Zd

(1 − δ)f (z; ζn)pzy

≥ ∑
z∈Zd

pn
0zm̃

n+1ε1m̄λ0pzy = ε1m̄λ0m̃
n+1pn+1

0y , (y, n) ∈ I .

In particular, we have F(y; ζn) ≥ ε1m̄λ0m̃
n+1pn+1

0y ≥ K for λ0 ≤ λ∗
0. Therefore,

(B2)δ,K applies and from the last display we obtain

ζn+1(y) ≥ (1 − δ)F (y; ζn) ≥ ε1m̄λ0m̃
n+1pn+1

0y .

This concludes the proof of the induction and proves the lemma in the special case
κ = 0.

Now let us turn to the case κ > 0. Assumption (B1)ε2
, (17) and the choice of κ∗

imply that

0 ≤ κ
∑
y �=x

γxyζn(y) ≤ κ∗λ0(1 − ε2)Mλ0 ≤ α,

‖x‖∞ ≤ n(Rλ + Rp) − Rλ,n < n∗,
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where α > 0 satisfies m − α > m̃. We obtain

f (l)(x; ζn) := ζn(x)
(
m − α − λ0ζn(x)

)+ ≤ fκ(x; ζn(x))

≤ ζn(x)
(
m − λ0ζn(x)

)+ =: f (u)(x; ζn).

So we can use the same induction as in the diagonal case. For the lower bound
estimates, we use f (l) and for the upper bound estimates, we use f (u). �

We set ζ0 = ξ0 and assume that (ζn) is the solution of (13) with the perturbation
term

δn(x) = N(n,x)(F (x; ξn)) − F(x; ξn).

Thus, (ξn) with ξn = ζn can be considered as a perturbed coupled map lattice.

PROOF OF THEOREM 1. Recall the definition of the space-time box in (16).
For (x, n) ∈ Z

d × Z+, we set

X(x,n) = {
N(y,j) : (y, j) ∈ (x, n) + X

}
.

Consider the events

A(x,n) = {
N(y,j)(m∗

λ0
) ≤ (1 − ε2)Mλ0, (y, j) ∈ (x, n) + X

}
and

B(x,n) =
{

sup
(y,j)∈(x,n)+X

sup
t≥K

∣∣∣∣N(y,j)(t)

t
− 1

∣∣∣∣ ≤ δ

}
.

We say that X(x,n) is good if A(x,n) ∩ B(x,n) holds. First we want to show
that the probability of a good realization can be made arbitrarily large by choos-
ing small λ0. It is of course enough to consider the corresponding problem in the
space-time point (0,0). As A(0,0) implies (B1)ε2

and B(0,0) implies (B2)δ,K on
the event A(0,0) ∩ B(0,0), Lemma 7 yields

{ξ0(0)(ε1, ε2)-occupied} ∩ (
A(0,0) ∩ B(0,0)

)
⊂ {ξn∗(y),‖y‖∞ ≤ 1 (ε1, ε2)-occupied}.

By translation invariance, the corresponding statement is also true for all (x, n) ∈
Z

d × Z+. Furthermore, we point out that X(x,n) and X(x′, n′) are independent if
‖x − x′‖∞ ≥ 2n(Rλ + Rp) or |n − n′| > n∗.

Let � be the number of points in X and let (N(t))t≥0 be a standard Poisson
process. Then we have

P[A(0,0)] = (
1 − a(λ0)

)� where a(λ0) = P[N(m∗
λ0

) > (1 − ε2)Mλ0].
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According to (18), we have m∗
λ0

≤ (1 − 2ε2)Mλ0 . Thus, for some c̃1 > 0, we have

a(λ0) = P

[
N(m∗

λ0
)

m∗
λ0

− 1 >
(1 − ε2)Mλ0

m∗
λ0

− 1
]

≤ P

[
N(m∗

λ0
)

m∗
λ0

− 1 > ε2

]
≤ exp

(
− c̃1ε

2
2

λ0

)
.

Furthermore, by standard large deviation results for Poisson processes, for some
c̃2 > 0 and sufficiently large K , we have

P[B(0,0)] = P

[
sup
t≥K

∣∣∣∣N(t)

t
− 1

∣∣∣∣ ≤ δ

]�

=
(

1 − P

[
sup
t≥K

∣∣∣∣N(t)

t
− 1

∣∣∣∣ > δ

])�

≥ (
1 − exp(−c̃2δ

2K)
)�

.

From the proof of Lemma 7, one can see that making K large corresponds to
making λ0 small. Hence,

P
[(

A(0,0) ∩ B(0,0)
)c] ≤ P[A(0,0)c] + P[B(0,0)c] ≤ θ(λ0),(22)

where θ(λ0) ≤ exp(−c/λ0) for some suitable positive constant c = c(p,m,Rλ).
This implies

P[X(0,0) is good] ≥ 1 − θ(λ0) = 1 − (
1 −

√
p(λ0)

)�
,

where p(λ0) = (1 − θ(λ0)
1/�)2. Since p(λ0) converges to one as λ0 goes to 0

and the range of dependence is finite, it is clear that the good sites perco-
late if λ0 is small enough. For example, one can apply a result by Liggett,
Schonmann and Stacey (see [16], Theorem 26) to show that, for fixed n, the
distribution of the random field 1{X(x,n) is good} dominates the product measure

νp(λ0) = ⊗
Zd Ber(p(λ0)) on {0,1}Z

d×Z+ . Comparison of the process
(1{X(x,n) is good})x∈Zd×n∗Z+ with independent oriented percolation concludes the
proof. �

3. A competing species model. In this section we consider two processes
(ξ

(1)
n ) and (ξ

(2)
n ), modeling, for example, two different species or genetic types

living in the same habitat and competing for similar (or the same) resources. In the
absence of the other type, each of them is a version of the basic process described
in the introduction, possibly with different parameters.

Let (λ
(ij)
xy )x,y∈Zd , i, j ∈ {1,2}, be translation invariant nonnegative kernels on

Z
d with finite range Rλ. These kernels will determine the intra- respectively inter-

specific competition: The average reproductive success of an i-individual at x is
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reduced by each j -individual at y by λ
(ij)
xy . The evolution of (ξ

(1)
n , ξ

(2)
n ) may then

be described as follows. Similar to the single species model, we define

f1
(
x; ξ (1)

n , ξ (2)
n

) = ξ (1)
n (x)

(
m1 − ∑

y

λ(11)
xy ξ (1)

n (y) − ∑
y

λ(12)
xy ξ (2)

n (y)

)+
,

f2
(
x; ξ (1)

n , ξ (2)
n

) = ξ (2)
n (x)

(
m2 − ∑

y

λ(22)
xy ξ (2)

n (y) − ∑
y

λ(21)
xy ξ (1)

n (y)

)+
,

F1
(
x; ξ (1)

n , ξ (2)
n

) = ∑
y

f1
(
y; ξ (1)

n , ξ (2)
n

)
p(1)

yx ,

F2
(
x; ξ (1)

n , ξ (2)
n

) = ∑
y

f2
(
y; ξ (1)

n , ξ (2)
n

)
p(2)

yx ,

where mi is the mean number of offspring of a type i individual in the absence of
competition. If N

(x,n)
1 , N

(x,n)
2 , (x, n) ∈ Z

d ×Z+ are independent standard Poisson

processes on R+, then, given (ξ
(1)
n , ξ

(2)
n ), the configuration of the next generation

is given by(
ξ

(1)
n+1, ξ

(2)
n+1

) = (
N

(x,n)
1

(
F1

(
x; ξ (1)

n , ξ (2)
n

))
,N

(x,n)
2

(
F2

(
x; ξ (1)

n , ξ (2)
n

)))
.

We obtain the following about long-term coexistence if the competition terms
are weak enough:

THEOREM 8. For given m1,m2 ∈ (1,4), p(1) and p(2) satisfying (A1) and
range Rλ, there are positive numbers λ∗

1, λ∗
2, κ∗

1 , κ∗
2 and γ ∗ such that if the condi-

tions:

(i) 0 < λ
(ii)
0 ≤ λ∗

0,
∑

y �=x λ
(ii)
xy ≤ λ

(ii)
0 κ∗

i , i ∈ {1,2};
(ii)

∑
y λ

(12)
xy ,

∑
y λ

(21)
xy ≤ γ ∗ min{λ(11)

0 , λ
(22)
0 };

are satisfied, then both populations survive with positive probability, provided that
for some x, y ∈ Z we have f1(x; ξ (1)

0 , ξ (2)(0)) > 0 and f2(y; ξ (11)
0 , ξ

(22)
0 ) > 0. Fur-

thermore, conditioned on survival of both populations,

lim inf
N→∞

1

N

N∑
n=1

1{ξ (1)
n (0)ξ

(2)
n (0)>0} > 0 a.s.,

that is, we have local coexistence.

To prove this theorem, one can essentially use the same argument as we have
used in the proof of Lemma 7 to reduce the case κ > 0 to the case κ = 0.
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4. Results for the deterministic system. In this section we will prove The-
orem 2. For clarity of exposition, we start with the “diagonal case” κ = 0. Let us
consider more generally a coupled map lattice (ζn) on Z

d , defined via

ζn+1(x) = ∑
y∈Zd

g(ζn(y))pyx, x ∈ Z
d,(23)

where (pyx)x,y∈Zd is a translation invariant stochastic kernel with finite range sat-
isfying (A1) and g : [0,G] → [0,G] is a continuously differentiable function. We
think of the single site function g as having 0 as a repelling fixed point and another
stable fixed point ā ∈ (0,G] which attracts (0,G], that is, for any x0 ∈ (0,G], the
sequence (xn) defined through xn+1 = g(xn) converges to ā. [Thus, in particular,
g′(0) > 1, g(G) > 0.] Then obviously ζ ≡ 0 and ζ ≡ ā are fixed points of (23),
and one is strongly inclined to believe that in this well-behaved scenario there are
no others. We will say that a dynamical system (ηn) on Z

d converges locally to
a ∈ R if for each finite � ⊂ Z

d and each ε > 0 there exists N0 such that

|ηn(x) − a| ≤ ε for all x ∈ � and n ≥ N0.

Having been unable to find the result we need in the literature, we provide
Lemma 9 below. Assume the following:

(DS1) For each a > 0, there exist sequences (αn) and (βn) such that 0 < α0 ≤ a,
β0 = G, αn ↑ ā, βn ↓ ā and g([αn,βn]) ⊂ [αn+1, βn+1].

Note that this implies the following:

(DS2) There exists a ∈ (0, ā) with the following property:
If ζ0(0) ∈ [a,G], then there is N0 ∈ N such that ζN0(x) ∈ [a,G], ‖x‖∞ ≤ 1.

A proof that (DS1) ⇒ (DS2) is basically a reformulation of the proof of
Lemma 7. Note that (DS1) holds true, for example, if we assume additionally
that g is concave (see, e.g., the construction given in Lemma 12). We refrain from
pursuing the most general conditions for (DS1), but observe that this together with
Lemma 9 already yields a proof of Theorem 2 in the diagonal case κ = 0.

LEMMA 9. If ζ0(x) ∈ (0,G] for some x ∈ Z
d and (DS1) holds, then (ζn) con-

verges locally to ā.

In the following we will call the set Nk(A) := {x ∈ Z
d : infy∈A ‖x − y‖∞ ≤ k}

the k-neighborhood of A. If A = {x}, then we write Nk(x) for the k-neighborhood
of x.

PROOF OF LEMMA 9. Let � be a finite subset of Z
d . We may assume that �

is a ball with respect to the sup norm. Let (αn) and (βn) be sequences from (DS1).
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FIG. 3. A sketch of the nested boxes and the dynamical system in one dimension after two steps.
The superscripts l and r indicate the left respectively the right-hand side of the box. Initially the
population size is in [α0, β0] in each site of �′. After two steps the population size is in [α0, β0] on
�′ \ �1, is in [α1, β1] on �1 \ �2 and in [α2, β2] on �2.

Given ε > 0, we choose n0 such that βn − αn < ε holds for all n ≥ n0. According
to (DS2), there exist a ∈ (0, ā) and n1 ∈ N such that

ζn(x) ≥ a ⇒ ζn+n1(y) ≥ a for all y with ‖x − y‖∞ ≤ 1.

Since 0 and ā are the only fixed points of g, g′(0) > 1 and a ∈ (0, ā], we have
g(a) ≥ a. It follows that if for all y in the Rp-neighborhood of some point x we
have ζ0(y) ≥ a, then

ζ1(x) = ∑
y

g(ζ0(y))pyx ≥ a.

We set

�′ := NRp(n0+n1)(�) and �i = NRp(n0−i)(�), i ∈ {0, . . . , n0}.
Note that �i = NRp(�i+1) and �n0 = �. By (DS2), there is some time point
n2 ∈ N such that ζn2(x) ≥ a for all x ∈ �′. We claim that ζn2+n(x) ≥ a for all
x ∈ �0 and all n ≥ 0. Indeed, during the next n1 − 1 steps from time n2 on, the
mass in the points of the Rp-neighborhood of �0 remain bounded from below
by a. According to (DS2) by the time n2 + n1 each point in the 1-neighborhood of
�′ is bounded below by a. Hence, we are, in particular, again in the above situation.

For simplicity of notation, we assume that ζ0(x) ≥ a for all x ∈ �′. We need to
show that ζn(x) ∈ [αn0, βn0] for all x ∈ � and n ≥ n0. First, we check inductively
that for n = 0,1, . . . , n0 we have the following (see Figure 3 for an illustration):

(i) ζn(x) ∈ [αn,βn] for x ∈ �n,
(24)

(ii) ζk(x) ∈ [αk,βk] for x ∈ �k \ �k+1, k = 0,1, . . . , n − 1.
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For n = 0, (i) is true by assumption, and (ii) is void. Assume that (i) and (ii) hold
true for some n < n0, let k ∈ {0,1, . . . , n + 1} and x ∈ �k \ �k−1, respectively
x ∈ �n+1 if k = n + 1. As �k−1 = NRp(�k), we have

ζn+1(x) = ∑
y

g(ζn(y))pyx = ∑
y∈�k−1

g(ζn(y))pyx ∈ [αk,βk]

by (DS1), proving (i) and (ii) for n + 1.
To conclude the proof, note that, by the argument above, the set of configura-

tions ζ such that

ζ(x) ≥ a for x ∈ �′,

ζ(x) ∈ [αk,βk] for x ∈ �k \ �k+1, k = 0,1, . . . , n0 − 1,

ζ(x) ∈ [αn0, βn0] for x ∈ �n0

is invariant under the dynamics (23), hence, we have, in particular, for n ≥ n0,

ζn(x) ∈ [αn0, βn0] for x ∈ �(= �n0). �

For the “nondiagonal” case κ > 0, we need three more lemmas. Note that we
only need to consider the case λ0 = 1. Otherwise, consider ζ̃ defined by ζ̃n(x) =
λ0ζn(x), which solves the iteration given by (9) and (10) with λ0 replaced by 1 and
κ by κ/λ0. Until the end of this section we write m̄1,κ = m̄(1, κ), m∗ = m∗

1 = m2/4
and m̄ = m̄1 = m − 1 [see (12)].

LEMMA 10. There exist positive κ∗ and δ such that for κ ≤ κ∗ exist sequences
(αn), (βn) in [m̄1,0 − δ, m̄1,0 + δ] satisfying the following:

1. αn ↑ m̄1,κ , βn ↓ m̄1,κ ;
2. If ζ(y) ∈ [αn,βn] for all y ∈ NRλ(x), then fκ(x; ζ ) ∈ [αn+1, βn+1].

PROOF. For fixed x ∈ Z
d , we may consider the mapping ζ �→ fκ(x; ζ ) as a

function of the restriction of ζ to the Rλ-neighborhood of x [viewed as an element
of R

k where k is the number of points in NRλ(x)]. We denote by �m1,κ the vector
of length k with all entries equal to m̄1,κ and by Bδ( �m1,κ ) the δ-neighborhood of
�m1,κ with respect to sup norm.

The gradient of ζ �→ fκ(x; ζ ) is given by [we assume that the positive part
appearing in (9) is not 0]

∂ζ(x)fκ(x; ζ ) = m − 2ζ(x) − κ
∑
y �=x

γxyζ(y),

∂ζ(y)fκ(x; ζ ) = −κγxyζ(x) for y �= x.
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Choose positive ε, δ and κ∗ satisfying(|m − 2| + 2δ + κ∗(δ + m − 1)
)2

< 1 − ε and
(25)

κ∗ < min
{

δ

m − 1
,

√
ε√

2(2 + δ)

}
.

For ζ ∈ Bδ( �m1,0), we have

∂ζ(x)fκ(x; ζ ) ≤ m − 2(m̄1,0 − δ) − κ
∑
y �=x

γxy(m̄1,0 − δ)

= 2 − m + 2δ − κ(m − 1) + κδ

and

∂ζ(x)fκ(x; ζ ) ≥ m − 2(m̄1,0 + δ) − κ
∑
y �=x

γxy(m̄1,0 + δ)

= 2 − m − 2δ − κ(m − 1) − κδ,

hence,

|∂ζ(x)fκ(x; ζ )| ≤ |m − 2| + (m − 1)κ + 2δ + κδ

and due to (25), we obtain, for κ ≤ κ∗(
∂ζ(x)fκ(x; ζ )

)2
< 1 − ε.(26)

For y �= x, we have∣∣∂ζ(y)fκ(y; ζ )
∣∣ = κγxyζ(x) ≤ κγxy(m̄0 + δ)

≤ κγxy(m − 1) + δγxyκ < κγxy(2 + δ).

Consequently,∑
y �=x

(
∂ζ(y)fκ(y; ζ )

)2
< (2 + δ)2κ2

∑
x �=y

γ 2
xy ≤ (2 + δ)2κ2 <

ε

2
,(27)

where the last inequality holds if (25) is satisfied.
Altogether, the above implies that for all ζ ∈ Bδ( �m1,κ ) and κ ≤ κ∗ we have

‖∇fκ(x; ζ )‖2
2 < 1 − ε

2
.(28)

Due to the mean value theorem for all ζ, ζ ′ ∈ Bδ( �m1,0) exists ζ̃ ∈ Bδ( �m1,0) such
that

|fκ(x; ζ ) − fκ(x; ζ ′)| = |∇fκ(x; ζ̃ )(ζ − ζ ′)|
≤ ‖∇fκ(x; ζ̃ )‖2 · ‖ζ − ζ ′‖2 ≤ c‖ζ − ζ ′‖2,

where c = √
1 − ε/2 < 1. Thus, the claim of the lemma follows. We only need to

note that fκ(x; �m1,κ ) = m1,κ and that |m̄1,0 − m̄1,κ | < δ if κ < δ/(m − 1) which
holds by (25). �
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LEMMA 11. For each δ > 0 exists κ∗ > 0 such that whenever κ ≤ κ∗ and
fκ(x; ζ0) > 0 for some x ∈ Z

d , the following holds: For each finite � ⊂ Z
d , there

exists N ∈ N such that ζn(x) ∈ [m̄1,0 − δ, m̄1,0 + δ] for all x ∈ � and all n ≥ N .

PROOF. Recall our assumption λ0 = 1, which implies Mλ0 = m. For all x ∈
Z

d , ζ ∈ [0,m]Zd
and δ̃ > 0, we have

κ
∑
z �=x

γxzζ(z) ≤ mκ.

That implies

fκ,l(ζ(x)) := ζ(x)
(
m − mκ − ζ(x)

) ≤ fκ(x; ζ ) ≤ ζ(x)
(
m − ζ(x)

) =: fu(ζ(x)).

The nonzero fixed points of fκ,l and fu are respectively m̄l = m − mκ − 1 and
m̄1,0. Furthermore, if mκ < δ, then m̄1,0 − m̄l < δ.

According to Lemma 7, there is n1 ∈ N and a > 0 with the property

ζn(x) ≥ a ⇒ ζn+n1(y) ≥ a, ‖x − y‖∞ ≤ 1.(29)

Thus, for each finite �′ ⊂ Z
d , there is n2 ∈ N such that ζn2(x) ≥ a for all x ∈ �′.

According to Lemma 12 for each δ > 0, one can choose κ∗ and sequences (an)

and (bn) such that for all κ ≤ κ∗ the following holds:

a0 ≤ a,

fκ,l([an, bn]), fu([an, bn]) ⊂ [an+1, bn+1],
for some n0 ∈ N: an, bn ∈ [m̄0 − δ, m̄0 + δ] for all n ≥ n0.

A construction analogous to the proof of Lemma 9 concludes the proof. �

The following lemma is a deterministic ingredient in our construction [see
(DS1)], providing a shrinking sequence of intervals which the one-point iteration
maps into themselves. Having been unable to find a proof in the literature, we pro-
vide one here. The property in question will hold for a concave f with 0 a repelling
and another attracting fixed point and does not depend on the particular functional
form of f . On the other hand, as we also need to consider a slightly perturbed
version fδ (where in our case the perturbation is of a particular functional form),
we refrain from generality and stick to fδ, f : [0,m] → [0,m∗],

fδ(x) = x(m − δ − x)+, f (x) = x(m − x)+,(30)

where m∗ = m2/4 = maxf = f (m/2). Recall that m̄ = m − 1, m̄δ = m − δ − 1
are the (unique) attracting fixed points of f respectively fδ (we think of small δ).

LEMMA 12. Letting m ∈ (1,3), consider f,fδ as defined in (30). For each
ε > 0, one can choose positive γ and ε̃, a strictly increasing sequence (αn), and a
strictly decreasing sequence (βn) with the following properties:



SURVIVAL AND COMPLETE CONVERGENCE 1797

(A) There exists N0 ∈ N s.t. αn,βn ∈ [m̄ − ε, m̄ + ε] for all n ≥ N0.
(B) For all n ≤ N0 and 0 ≤ δ ≤ γ :fδ([αn,βn]), f ([αn,βn]) ⊂ [αn+1

1−ε̃
,

βn+1
1+ε̃

].
Furthermore, α0 > 0 can be chosen arbitrarily small and β0 < m can be chosen
arbitrarily close to m.

PROOF. We wish to construct the sequences (αn) and (βn) in such a way that

αn < αn+1 < m̄γ ≤ m̄ < βn+1 < βn(31)

and

fγ ([αn,βn]), f ([αn,βn]) ⊂ (αn+1, βn+1)(32)

for all n. This together with

m̄ − ε < lim
n→∞αn ≤ lim

n→∞βn < m̄ + ε(33)

will suffice to conclude, as fγ (x) ≤ fδ(x) ≤ f (x) for 0 ≤ δ ≤ γ and (32) implies
(B) for each finite N0 and sufficiently small ε̃. The construction is slightly different
depending on whether the slope of f at its attractive fixed point m̄ is ∈ (0,1),
= 0 or ∈ (−1,0), thus, we consider the cases m ∈ (1,2), m = 2 and m ∈ (2,3)

separately.
Letting m ∈ (1,2), choose γ ∈ (0, ε) s.t. m − γ ∈ (1,2). Take arbitrary α0 ∈

(0, m̄ − γ ) and β0 > m/2 s.t. fγ (β0) ≥ fγ (α0). This guarantees f ([α0, β0]),
fγ ([α0, β0]) ⊂ [fγ (α0),m

∗]. Define

αn+1 = αn + fγ (αn)

2
, n ≥ 0,

β1 = m∗ + m
2

2
and βn+1 = f (βn) + βn

2
, n ≥ 1.

Note that m∗ < m/2 in the case considered, so the choice of β1 ensures (32) for
n = 0 and that f,fγ are increasing on [α0, β1]. As fγ (x) > x on (0, m̄γ ) and
f ′

γ (m̄γ ) ≥ 0, we have αn < αn+1 < fγ (αn) for n ≥ 1. Thus, αn ↗ m̄γ . Similarly,
observing that x > f (x) ≥ m̄ for x ∈ (m̄,m/2), we have βn > βn+1 > fγ (βn) for
n ≥ 1, hence, βn ↘ m̄. This proves (31), (32) and (33) in this case.

Let m = 2. In this case f (m/2) = m∗, so the values of f (βn) cannot be de-
creasing, and we modify the construction as follows: Choose 0 < γ < ε. Picking
α0 ∈ (0, γ ), define

αn+1 = fδ(αn) + αn

2
,

βn = 2 − γ

2
+

√
(2 − γ )2/4 − fγ (αn), n = 0,1, . . .

As above, we have αn ↗ m̄γ = 2 − γ . Note that βn is the larger root of fγ (x) =
fγ (αn), and that the solutions of fγ (x) = m̄γ are m̄γ = 1 − γ and 1 in the case
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m = 2, so that f (βn) ≥ fγ (βn) > αn+1 and βn ↘ 1. Hence, (31), (32) and (33) are
satisfied.

Finally, let m ∈ (2,3). Here, as m̄ > m/2, we need to observe that f ([αn,βn])
will contain m∗ as long as αn ≤ m/2, so βn must not decrease too quickly. Fur-
thermore, as f ′(m̄) < 0, once we come close to m̄, the roles of the lower and upper
boundary are interchanged in each step.

Choose γ > 0 s.t. m − γ ∈ (2,3) and m̄γ > fγ (m∗) > m/2. Pick α0 ∈ (0, (m −
γ )/2). While (αn + fγ (αn))/2 ≤ m/2, we set

αn+1 = αn + fγ (αn)

2
.

Let n0 be the smallest integer satisfying (αn0 + fγ (αn0))/2 > m/2. We set

αn0+1 = αn0 + fγ (αn0)

2
∧ 1

2

(
m

2
+ fγ (m∗)

)
.

Now we choose β0, . . . , βn0 s.t. m∗ < βi < βi−1 < m and fγ (βi) > αi+1, i =
1, . . . , n0. Note that this is possible because fγ (m∗) > m/2. Put βn0+1 = (βn0 +
m∗)/2.

Let us check (31) and (32) for n ≤ n0: as fγ (x) > x for x ∈ (0, m̄γ ) and
fγ (m∗) < m̄γ , the sequence (αn)n∈{0,...,n0+1} is strictly increasing.
(βn)n∈{0,...,n0+1} is strictly decreasing by construction. By definition, we have

fγ (αn) ≥ 2αn+1 − αn > αn+1.

Note that while αn ≤ m/2, that is, n ≤ n0, we always have

fγ ([αn,βn]), f ([αn,βn]) ⊂ (αn+1,m
∗] ⊂ (αn+1, βn+1).

For n ≥ n0 + 1, define

αn+1 = 1
2

(
fγ (βn) + αn

)
, βn+1 = 1

2

(
βn + f (αn)

)
.(34)

In order to verify (31) and (32) for n ≥ n0 + 1, consider

a ∈
(

m

2
, m̄γ

)
, b ∈ (m̄,m) satisfying f (a) < b,fγ (b) > a.(35)

Note that then

a′ = 1
2

(
a + fγ (b)

)
and b′ = 1

2

(
b + f (a)

)
fulfill

a′ ∈ (a, m̄γ ), b′ ∈ (m̄, b) and f (a′) < b′, fγ (b′) > a′.
Indeed, by assumption, we have fγ (b) > a, so a′ > a. On the other hand, fγ (b) <

m̄γ because fγ is decreasing in [m̄γ ,m] and b > m̄γ = fγ (m̄γ ). As f is decreas-
ing in the considered region, we have

f (a′) < f (a) < 1
2

(
b + f (a)

) = b′.
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Similarly, b′ ∈ (m̄, b) and fγ (b′) > a′.
Obviously, a = αn0+1 and b = βn0+1 satisfy the condition (35), hence,

(31) and (32) hold true for n > n0 as well.
By the above construction, αn ↗ α ∈ (m/2, m̄γ ], βn ↘ β ∈ [m̄,m∗), where

(α,β) solves f (α) = β , fγ (β) = α. For γ = 0, the unique solution would be
α = β = m̄, for γ sufficiently small, we have (33). �

PROOF OF THEOREM 2. Let � be a finite ball in Z
d and ε > 0. Let n1 ∈ N

be such that (29) is fulfilled. For the sequences (αn), (βn) from Lemma 10, choose
n0 s.t. βn − αn ≤ ε for all n ≥ n0. Define �′ and �0, . . . ,�n0 through

�′ = N(n0+n1)(Rλ+Rp)(�) and �i = N(n0−i)(Rλ+Rp)(�), i ∈ {0, . . . , n0}.
According to Lemma 11, there exists n2 ∈ N such that ζn(x) ∈ [m̄1,0 − δ, m̄1,0 + δ]
for all x ∈ �0 and n ≥ n2. Then, for simplicity of notation, we may assume n2 = 0.
Now the rest of the proof is a reproduction of the arguments from the proof of
Lemma 9. �

5. Coupling. In this section we prove Theorem 3 and Corollary 4. Let us first
describe the idea behind the successful coupling. Recall in (7) the definition of the
coupling (ξ (1), ξ (2)). Consider three large (but finite) boxes B1 ⊂ B2 ⊂ B3 ⊂ Z

d

and assume that ξ (1) and ξ (2) agree on B1 with values close to m̄λ0 , that they are
close to m̄λ0 but do not necessarily agree on B2, and that on B3 all sites are occu-
pied in both systems. In view of Lemma 7, we expect that the region of sites which
are occupied in both systems grows. If the competition is not too strong, the ran-
dom system “follows closely” the deterministic one. Thus, in view of Theorem 2,
we can hope that the region where both systems are close to the deterministic
equilibrium m̄λ0 is growing as well. Finally, there is a chance that Poisson vari-
ables whose means are close to each other produce the same realization. There-
fore, there is also hope that the region where both systems are the same grows
too.

Thus, for suitably tuned parameters, we expect that, with high probabil-
ity, the above situation will reproduce itself after some time on larger boxes
B ′

1 ⊂ B ′
2 ⊂ B ′

3. As before, this observation lends itself to a comparison with fi-
nite range dependent percolation on a coarse grained space-time grid. A certain
subtlety stems from the problem that the coarse graining must be chosen depend-
ing on λ0 in such a way that the dependence range of the percolation does not
diverge when taking λ0 small.

For k, l ∈ N, we set Ak = Nk(Rλ+Rp+1)(0) and Ak,l = Nk(Rλ+Rp+1)+l(0). Let-
ting X(y, n), (y, n) ∈ Z

d × Z+ be the event that for some N ∈ N, to be chosen
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later, the following holds:

ξ (1)
n (x) = ξ (2)

n (x) ∈
[
m − 1 − δ

λ0
,
m − 1 + δ

λ0

]
=: I (m, δ, λ0)

for all x ∈ y + AN,

ξ(1)
n (x), ξ (2)

n (x) ∈ I (m, δ, λ0) for all x ∈ y + A4N \ AN,(36)

ξ (1)
n (x), ξ (2)

n (x) ∈ [ε1m̄λ0, (1 − ε2)Mλ0] =: J (m,λ0)

for all x ∈ y + A7N \ A4N.

Our goal is to show that the process 1X(y,n) dominates oriented independent per-
colation on a suitable sub-grid of Z

d × Z+. The main part of the proof is carried
out in Lemma 13 below. With this lemma one can, for example, use the Liggett,
Schonmann and Stacey argument as we have done in the proof of Theorem 1.

Let n∗ be as defined in (14) and note that this number only depends on m and
on the kernel p. As we will later choose N large, we will be able to choose it as a
multiple of n∗. In the sequel we will assume that N/n∗ is an integer.

LEMMA 13. For m ∈ (1,3), p as in assumption (A1) and ε̃ > 0, there exist
λ∗

0, κ
∗ > 0 such that for each λ0 ≤ λ∗

0, κ ≤ κ∗λ0 one can choose N such that

P[X(y, n + N) for all y with ‖x − y‖∞ ≤ N/n∗|X(x, n)] ≥ 1 − ε̃(37)

holds for all x ∈ Z
d .

PROOF. Let m ∈ (1,3) and ε̃ > 0 be given. Due to translation invariance and
the Markov property, the left-hand side in (37) does not depend on (x, n). Thus, it
is enough to prove

P[X(y,N) for all y with ‖y‖∞ ≤ N/n∗|X(0,0)] ≥ 1 − ε̃.(38)

Choose positive ε, δ and κ∗ satisfying

|m − 2| + 2δ + κ∗(δ + m − 1) < 1 − ε and
(39)

κ∗ < min
{

δ

m − 1
,

ε

2(2 + δ)

}
.

These constants also satisfy (25). Thus, the properties of fκ [see (9)], proven in
Lemma 10, are preserved. Note that, unlike the situation in Lemma 10, we do not
set λ0 = 1 here. Furthermore, similar to (26), (27) and (28), we obtain

‖∇fκ(x; ζ )‖1 ≤ 1 − ε

2
(40)

if ζ(y) ∈
[
m − 1 − δ

λ0
,
m − 1 + δ

λ0

]
for all y ∈ NRλ(x).
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We choose k0 such that, for all k ≥ k0, we have

|Ak+1|
|Ak|

(
1 − ε

2

)
≤ |Ak0+1|

|Ak0 |
(

1 − ε

2

)
=: c(ε) < 1.(41)

We will assume that N ≥ k0. We set X0 = X(0,0) and XN = XN,1 ∩ XN,2 ∩
XN,3, where

XN,1 = {
ξ

(1)
N (x) = ξ

(2)
N (x) ∈ I (m, δ, λ0) for all x ∈ A3N

}
,

XN,2 = {
ξ

(1)
N (x), ξ

(2)
N (x) ∈ I (m, δ, λ0) for all x ∈ A6N \ A3N

}
,

XN,3 = {
ξ

(1)
N (x), ξ

(2)
N (x) ∈ J (m,λ0) for all x ∈ A7N,N/n∗ \ A6N

}
.

Furthermore, we define for each n ≤ N the event �n by

�n =
{
∀(x, k) ∈

n⋃
j=1

A4(N−j) × {j} : ξ (1)
k (x), ξ

(2)
k (x) ∈ I (m, δ, λ0)

}
.

As XN implies that X(y,N) holds for all y with ‖y‖∞ ≤ N/n∗, P[XN |X0]
is a lower bound for the left-hand side of (38). Therefore, it suffices to show
P[Xc

N |X0] ≤ ε̃. Because

P[Xc
N |X0] ≤ P[Xc

N,1 ∩ �N |X0] + P[Xc
N,2 ∩ �N |X0]

(42)
+ P[Xc

N,3|X0] + P[�c
N |X0],

it suffices to estimate each of the summands. To do this, we will repeatedly use
large deviation estimates for Poisson random variables. There are constants c1 and
δ1 such that

P[�c
N |X0] ≤ N |A4N | exp

(
−c1δ

2
1

λ0

)
.(43)

Now let us consider the first term on the right-hand side of (42). We denote Fm =
σ({N(x,l)

j :x ∈ Z
d, l ≤ m}, ξ (1)

0 , ξ
(2)
0 ). We have

1

|A3N |
∑

x∈A3N

E
[∣∣ξ (1)

N (x) − ξ
(2)
N (x)

∣∣1�N
|FN−1

]
≤ 1�N−1

1

|A3N |
∑

x∈A3N

E
[∣∣ξ (1)

N (x) − ξ
(2)
N (x)

∣∣|FN−1
]

≤ 1�N−1

1

|A3N |
∑

x∈A3N

∑
y∈NRp (x)

pyx

∑
z∈NRλ

(y)

|∇zfκ(y; ξ̃ )|∣∣ξ (1)
N−1(z) − ξ

(2)
N−1(z)

∣∣
≤ 1�N−1

∑
z∈A3N+1

∣∣ξ (1)
N−1(z) − ξ

(2)
N−1(z)

∣∣ 1

|A3N |
∑

y∈NRλ
(z)

|∇zfκ(y; ξ̃ )| ∑
x∈A3N

pxy
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≤ 1�N−1

|A3N+1|
|A3N |

(
1 − ε

2

)
1

|A3N+1|
∑

z∈A3N+1

∣∣ξ (1)
N−1(z) − ξ

(2)
N−1(z)

∣∣
≤ 1�N−1c(ε)

1

|A3N+1|
∑

z∈A3N+1

∣∣ξ (1)
N−1(z) − ξ

(2)
N−1(z)

∣∣.
We can iterate the above argument to obtain on X0

1

|A3N |
∑

x∈A3N

E
[∣∣ξ (1)

N (x) − ξ
(2)
N (x)

∣∣1�N
|F0

]
≤ c(ε)N

1

|A4N |
∑

z∈A4N

∣∣ξ (1)
0 (z) − ξ

(2)
0 (z)

∣∣
(44)

≤ c(ε)N
1

|A4N |
∑

z∈A4N\AN

2δm̄λ0

= c(ε)N
|A4N \ AN |

|A4N | 2δm̄λ0 ≤ c(ε)N2δm̄λ0 .

From this, we obtain

P[Xc
1,N ∩ �N |X0] ≤ ∑

x∈A3N

E
[∣∣ξ (1)

N (x) − ξ
(2)
N (x)

∣∣1�N

]
(45)

≤ c(ε)N2m̄λ0δ|A3N |.
Note that on X0 for all |x| ≤ Rλ +Rp we have ξ

(1)
n (x) = ξ

(2)
n (x) for all n ≤ N −1.

To estimate the second term of the right-hand side of (42), let (αn) and (βn)

be sequences from Lemma 12 satisfying α0 ≤ ε1(m − 1) and β0 ≥ (1 − ε2)m. Let
κ∗ be small enough for Theorem 1 and Theorem 2 to apply. Let N0 be the num-
ber from Lemma 12 such that, for all n ≥ N0, we have αn/((1 − δ̃)λ0), βn/((1 +
δ̃)λ0) ∈ I (m,λ0, δ). Recall that in the formulation of Lemma 12 we have chosen
λ0 = 1, but it holds for general λ0. We assume N0 ≤ N . If for all x ∈ NRλ+Rp(0)

we have ξ0(x) ∈ [αn/λ0, βn/λ0], where ξ is a version of the processes considered,
then there exist positive constants c2 and δ2 such that, for all n ≤ N0, we have

P

[
ξ1(0) /∈

[
αn+1

λ0
,
βn+1

λ0

]]
= P

[
N(0,0)(F (0; ξ0)) /∈

[
αn+1

λ0
,
βn+1

λ0

]]

≤ exp
(
−c2δ

2
2

λ0

)
,

because F(0; ξ0) ∈ [αn+1/((1 − δ̃)λ0), βn+1/((1 + δ̃)λ0)]. It follows that

P[Xc
N,2 ∩ �N |X0] ≤ N |A7N \ A4N | exp

(
−c2δ

2
2

λ0

)
.(46)
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The upper bound for the third term on the right-hand side of (42) is obtained as
follows:

P[Xc
N,3|X0] = P

[∃x ∈ A7N,N/n∗ : ξ (1)
N (x), ξ

(2)
N (x) /∈ J (m,λ0)|X0

]
≤ P

[
∃k ∈

{
1, . . . ,

N

n∗ − 1
}

(47)

∃x ∈ A7N,k \ A6N : ξ (1)
kn∗(x) or ξ

(2)
kn∗(x) /∈ J (m,λ0)|X0

]
≤ 2N |A7N,N/n∗−1 \ A6N |

n∗ θ(λ0),

where θ(λ0) ≤ exp(−c3/λ0) for some positive c3 is defined in (22).
Let N be the smallest multiple of n∗ larger than 1/λ0. Using the above esti-

mates, one can choose some positive c and r ∈ N such that

P[Xc
N |X0] ≤ exp

(
− c

λ0

)
Nr.

The right-hand side goes to zero as λ0 goes to zero. Thus, (38) follows. �

Before we turn to the proof of Theorem 3, we need a result about oriented
percolation. Let θ ∈ (0,1) be given and let A(x,n), (x, n) ∈ Z

d × Z+ be i.i.d.
Bernoulli random variables with parameter θ . For k < n, we say that (x, k) is
connected to (y, n), this will be denoted by (x, k) → (y, n), if there is a sequence
x = x0, . . . , xn−k = y such that ‖xi − xi−1‖∞ ≤ 1 and A(xi, k + i) = 1 for i =
1, . . . , n − k. Let C0 = {(x, n) : (0,0) → (x, n)} be the cluster of the origin. We
call a space time-point (y, n) C0-exposed if there exists a sequence yn, . . . , y0
such that yn = y, ‖yk − yk−1‖∞ ≤ 1, and (yk, k) /∈ C0, k = 1, . . . , n.

The next lemma follows from [6]. The idea behind the proof is as follows: With
the “usual” percolation interpretation in mind, let us call a site (x, n) wet if there
is a backward path (x, n) = (x0, n), (x1, n − 1), . . . , (xn,0) with ‖xi − xi−1‖ ≤ 1
consisting only of open sites, that is, A(xi, n − i) = 1, i = 0,1, . . . , n − 1. Oth-
erwise, the site will be called dry. Lemma 7 in [6] shows, using a contour-
counting argument, that if θ is sufficiently close to 1, the dry sites do not per-
colate. In fact, this lemma even obtains an exponential bound on the tail of the
size of the cluster of dry sites containing a given site. The next ingredient is
complete convergence for oriented percolation ([6], Lemma 8): When θ is close
enough to 1, there is a fixed c > 0 and a random N0 such that on {|C0| = ∞},
{(x, n) : (x, n) wet and ‖x‖ ≤ cn} ⊂ C0 for all n ≥ N0. In words, any wet site in-
side the “cone” {(x, n) :‖x‖ ≤ cn,n ≥ N0} is also connected to (0,0) by an open
path. Fix c′ ∈ (0, c). Assume that {|C0| = ∞}, consider (y, n) with ‖y‖ ≤ c′n and
n ≥ 2N0, say. If (y, n) is C0-exposed, there must be a backward path (y, n) =
(y0, n), (y1, n − 1), . . . , (yn,0) with (yi, n − i) /∈ C0. By the above, at least the
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initial n(c − c′)/2 of these sites must be dry [for otherwise, they would be in C0,
as they must satisfy ‖yi‖ ≤ c(n − i)]. Hence, there must be a cluster of dry sites
containing a point in {(x, n) :‖x‖ ≤ c′n} of size at least n(c − c′)/2. By the expo-
nential bound on the cluster size distribution and the Borel–Cantelli lemma, this
does not occur for n sufficiently large.

LEMMA 14. If θ is sufficiently close to 1, then there is a positive constant
c such that, for large enough times n conditional on {|C0| = ∞}, there are no
C0-exposed sites in {x ∈ Z

d :‖x‖∞ ≤ cn}.

PROOF OF THEOREM 3. Recall the definition of the event X(y, n) from (36).
Theorem 1 implies that, conditioned on nonextinction of (ξ

(1)
n ) and (ξ

(2)
n ), with

probability one, there exist some finite time N0 such that the event X(0,N0) holds.
Therefore, we may assume a priori that X(0,0) holds.

We set Ñ = [N/(2n∗)], B = {(x, n) ∈ Z
d × Z+|‖x‖∞ ≤ N,n ≤ N}, L = ÑZ

d

and K = NZ+. Then we have

Z
d × Z+ = ⋃

(α,ν)∈L×K

(
(α, ν) + B

)
.

Let ‖ · ‖L be the norm on L defined by ‖α‖L = ‖α‖∞/Ñ . To prove the theorem,
it is enough to show that for each x∗ ∈ Z

d there is time T , such that ξ
(1)
n (x∗) =

ξ
(2)
n (x∗) holds for all n ≥ T . Let us fix an arbitrary x∗ ∈ Z

d and let α∗ ∈ L be
such that ‖α∗ − x∗‖∞ ≤ Ñ . We define a process (ην) on the coarse-grained lattice
L × K by

η0(α) = 1X(α,0) and ην(x) = 1X(α,ν−N), ν > 0.

Note that 1X(α,ν−N) = 1 for ν > 0 ensures that ξ
(1)
k (y) = ξ

(2)
k (y) holds for all

(y, k) ∈ (α, ν − N) + B , because any backward in time path starting in (y, k)

will at time ν − N be inside α + AN , where ξ (1) and ξ (2) are the same on the
event X(α, ν − N). In particular, ην(α

∗) = 1 implies ξ
(1)
k (x∗) = ξ

(2)
k (x∗) for all

k ∈ {ν − N, . . . , ν}. We aim at showing that, for suitable choice of parameters, the
process (ην) dominates oriented percolation on L × K . To this end, we need to
estimate

P[ην+N(β) = 1,‖α − β‖L ≤ 1|ην(α) = 1],
whereas, due to translation invariance, it is enough to consider the corresponding
probability for (α, ν) = (0,0). By the construction of (ην) and Lemma 13 for each
positive ε̃, one can choose λ0, κ and N such that

P[ηN(β) = 1,‖β‖L ≤ 1|η0(0) = 1]
≥ P

[
X(z,N),‖z‖∞ ≤ N

n∗
∣∣∣X(0,0)

]
≥ 1 − ε̃.
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From the proofs of Theorem 1 and Lemma 13, it can be seen that for x with
‖x‖∞ ≤ 1 the event X(Ñx,N) is independent of the Poisson processes [which
generate (ξ

(1)
n ) and (ξ

(2)
n )] outside the box {(y, k) ∈ Z

d × Z+ :k ≤ N,‖y‖∞ ≤
(8N + 2)(Rλ + Rp)}. Therefore, (ην) can be considered as M-dependent oriented
percolation on L×K , where M = 20n∗(Rλ +Rp) ≥ (8N +2)(Rλ +Rp)/Ñ . Note
that M does not depend on N and λ0. Thus, the fact that we need to make λ0 small
does not affect the comparison.

Let θ be close enough to 1 such that Lemma 14 holds. For ε̃ ∈ (0, (1 − √
θ)�),

where � = |{(α, ν) ∈ L × K :ν ∈ {0,N},‖α‖L ≤ M}|, we have

P[ηN(β) = 1,‖β‖L ≤ 1|η0(0) = 1] ≥ 1 − (
1 − √

θ
)�

.

As in the proof of Theorem 1, according to Theorem B26 in [15], (ην) dominates
the nearest neighbor oriented percolation build from the product measure νθ on
{0,1}L×K . Thus, we obtain P[|Cη| = ∞] > 0, where Cη ⊂ L × K is the cluster of
the origin generated by (ην). By Lemma 14, conditioned on {|Cη| = ∞}, there is
a time T such that the points (α∗, ν) ∈ L × K with ν ≥ T are not Cη-exposed.

We claim that, for each n ≥ T , conditioned on {|Cη| = ∞}, we have ξ
(1)
n (x∗) =

ξ
(2)
n (x∗). If we assume the contrary, then there must be a path (x∗, n) =

(xn, n), (xn−1, n − 1), . . . , (x0,0) in Z
d × Z+ such that ‖xi+1 − xi‖∞ ≤ Rλ + Rp

and ξ
(1)
i (xi) �= ξ

(2)
i (xi) for all i ∈ {0, . . . , n − 1}. From this path, we discard the

points (xi, i) for which i is not a multiple of N , thus obtaining for some inte-
ger k the path (xkN, kN), (x(k−1)N , (k − 1)N), . . . , (x0,0). To this path belongs
a path (α∗, (k + 1)N), (αkN, kN), . . . , (α0,0) in L × K where for j ∈ {1, . . . , k}
we choose αjN such that (x(j−1)N , (j − 1)N) ∈ (αjN, jN) + B and α0 such that
‖α0 − x0‖∞ ≤ N . The assumption means that ηiN(αiN) = 0 for all i ∈ {0, . . . , k}.
This contradicts the fact that (α∗, (k + 1)N) is not Cη-exposed. �

PROOF OF COROLLARY 4. The sequence (ξn), seen as a sequence of random
measures on Z

d , is relatively compact with respect to convergence in distribution in
the vague topology because the expectation of ξn(x) is bounded uniformly by m∗

λ0
.

It is clear that Dirac measure in 0 ∈ Z
Z

d

+ is invariant. If there were two invari-
ant distributions assigning probability 0 to the configuration 0, then Theorem 3
would imply that they coincide on finite subsets of Z

d and, therefore, they must be
equal.

It remains to prove the existence of a limiting invariant distribution µ satisfying
µ(0) = 0. Let the initial distribution µ0 be the product measure on Z

d such that
ξ0(x) = N(0,x)(m̄(λ0, κ)) for all x ∈ Z

d . Let µn be the distribution of ξn. Then the
Cesaro average 1/N

∑N
n=0 µn converges along some subsequence {Nk} to some

measure µ̄. This measure is invariant for (ξn) (see, e.g., [14], Proposition I.1.8).
To show µ̄(0) = 0, it is enough to prove that the restriction of (ξn) to Z survives

with probability 1. At time 0, each site is occupied in the sense of Definition 6 with
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probability

P
[
N(0,0)(m̄(λ0, κ)) ∈ [ε1m̄λ0, (1 − ε2)Mλ0]

]
,

where ε1 and ε2 are as in the proof of Lemma 7. In particular, at time 0, there are
infinitely many occupied sites. Again, by comparison with oriented percolation, we
have Pξ0[ξn = 0 for some n] = 0 because supercritical percolation starting from
infinitely many wet sites does not die out (see, e.g., Theorem B24 in [15]). �
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