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STATIONARY DISTRIBUTION FOR DIOECIOUS BRANCHING
PARTICLE SYSTEMS WITH RAPID STIRRING

BY FENG YU1

University of Oxford

We study dioecious (i.e., two-sex) branching particle system models,
where there are two types of particles, modeling the male and female pop-
ulations, and where birth of new particles requires the presence of both male
and female particles. We show that stationary distributions of various dioe-
cious branching particle models are nontrivial under certain conditions, for
example, when there is sufficiently fast stirring.

1. The particle models. We consider a type of particle system that can be
used to model sexual reproduction of a certain species. This work was inspired in
part by Dawson and Perkins [1], which studied the following system of stochastic
partial differential equations:

∂u

∂t
(t, x) = 1

2
�u(t, x) + (

γ u(t, x)v(t, x)
)1/2

Ẇ1(t, x),

∂v

∂t
(t, x) = 1

2
�v(t, x) + (

γ u(t, x)v(t, x)
)1/2

Ẇ2(t, x),

where � = ∑
i ∂

2/∂x2
i is the Laplacian, γ > 0 and Ẇi(t, x) (i = 1,2) are inde-

pendent space-time white noises on R+ × R. One can associate u(x, t) and v(x, t)

with the male and female populations of particles, respectively, at spatial location
x and time t . Loosely speaking, the above SPDE system says that individual male
or female particles move around according to Brownian motion, but branching is
only possible when both male and female particles are present at the same spa-
tial location. Notice that at spatial locations where the female population is 0, the
branching rate for the male population is also 0, therefore the male population does
not die and the only effect on the male population at those spatial locations is the
diffusive effect of the heat kernel. This behavior is not very realistic, since one
would expect a natural death rate for male particles, even without the presence of
any female particles. In this work, we study models involving a finite number of
male and female particles with more realistic behavior.
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The model we study involves two types of particles, male and female, residing
on the grid S = Z

d . Each site x ∈ S contains two nests, one for the male particle
and the other for the female particle. Each nest can be inhabited by at most one
particle, either male or female. Let E = {0,1} and F = E×E be the set of possible
states at each site in S. For x ∈ S, we write

ξ(x) = (ξ1(x), ξ2(x)),

where ξ1(x) denotes the number (0 or 1) of male particles at site x and ξ2(x)

denotes the number of female particles at site x. We define the interaction neigh-
borhood

N = {0, y1, . . . , yN }
and the neighborhood of x

Nx = x + N .

For example, N = {0,−1,1} if the interaction is nearest-neighbor on Z. Let
ci(x,m, ξ) denote the rate at which nest m (m = 1,2) of site x flips to state i

(i = 0,1) and assume that ci(x,m, ξ) depends only on the neighborhood Nx , that
is,

ci(x,m, ξ) = hi,m

(
ξ(x), ξ(x + y1), . . . , ξ(x + yN)

)
for some function hi,m :FN+1 → R

+. The death rate c0 is always constant,

c0(x,m, ξ) =
{

δ, if ξm(x) = 1,
0, otherwise,

(1)

while the birth rate c1(x,m, ξ) is positive only if both male and female particles
can be found in Nx . In this work, we take δ = 1. Note that this simply means that
the unit of time we take is the average lifetime of an individual. For example, the
dioecious branching particle model which we will consider in Section 1.1 has

c1(x,m, ξ) =
{

λn1(x, ξ)n2(x, ξ), if ξm(x) = 0,
0, otherwise,

(2)

where

nm′(x, ξ) = |{z ∈ Nx : ξm′
(x + z) = 1}|,

that is, at rate λ, each pair of male and female particles in Nx give birth to a particle
at nest m of site x if that nest is not already occupied. A more stringent condition,
as in the particle model with rapid stirring which we will consider in Section 1.2,
is to require both parent particles to reside at the same site, that is,

c1(x,m, ξ) =
{

λn1+2(x, ξ), if ξm(x) = 0,
0, otherwise,

(3)

where

n1+2(x, ξ) = |{z ∈ Nx : ξ1(x + z) = 1 and ξ2(x + z) = 1}|.
This more stringent condition should not alter the behavior of the particle system if
one allows a larger λ than in (2), but it does help to simplify the analysis somewhat.
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1.1. Dioecious branching particle model. We first describe the model with
birth and death rates as in (1) and (2), for which we will establish the existence
of nontrivial stationary distribution(s) and, consequently, a phase transition (Sec-
tion 2). The birth and death rates at site x depend only on ξ in a neighborhood of x,
therefore birth (and death) rates at x and y where Nx ∩ Ny = ∅ are independent.
First, we restate the model:

1. Birth. For each nest (x,m) and each pair (z1, z2) ∈ Nx ×Nx such that ξ1(z1) =
1 and ξ2(z2) = 1, where z1 and z2 need not be distinct, with rate λ, a child of
(z1, z2) is born into nest m of site x if (x,m) is not already occupied.

2. Death. Each particle dies at rate 1.

We can think of this particle system as a generalized spin system, generalized
in the sense that the phase space at each site is {0,1}2 rather than {0,1}. One can
refer to Chapter 3 of Liggett [5] for a detailed introduction to classic spin systems.
We observe that the all-0 state [i.e., ξ1(x) = ξ2(x) = 0 for all x] is an absorbing
state, therefore the probability measure that concentrates only on the all-0 state is
a trivial stationary distribution. We say that a stationary distribution is nontrivial
if it does not concentrate only on the all-0 state. A major goal of this work is
to establish the existence of nontrivial stationary distributions for various particle
systems.

The interacting particle system involving the birth and death mechanisms de-
scribed above can be constructed using a countable number of Poisson processes,
similar to the construction found in Chapter 2 of Durrett [2]. Define

c∗ = sup
ξ,m

∑
i

ci(x,m, ξ).

We assume c∗ < ∞. Let {T x,i,m
n :n ≥ 1} be the arrival times of independent rate c∗

Poisson processes and {Ux,i,m
n :n ≥ 1} be independent uniform random variables

on [0,1]. At time t = T x,i,m
n , nest (x,m) flips to state i if Ux,i,m

n ≤ ci(x,m, ξt−)/c∗
and stays unchanged otherwise.

Alternatively, one can explicitly write down the generators G1 and G2 associated
with the particle system with death rates (1) and birth rates (2) and (3), respectively,
as follows:

G1f (ξ) = ∑
(x,m)∈S×{1,2}

[
ξm(x)

(
f (ξ − δx,m) − f (ξ)

)
+ ∑

y,z∈Nx

λξ1(y)ξ2(z)
(
1 − ξm(x)

)
(4)

× (
f (ξ + δx,m) − f (ξ)

)]
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and

G2f (ξ) = ∑
(x,m)∈S×{1,2}

[
ξm(x)

(
f (ξ − δx,m) − f (ξ)

)
+ ∑

y∈Nx

λξ1(y)ξ2(y)
(
1 − ξm(x)

)
(5)

× (
f (ξ + δx,m) − f (ξ)

)]
,

where f is a function on FS (endowed with the product topology) with compact
support (in this case, compact support implies that f depends on only finitely
many sites) and δx,m is a function on S × {1,2} that is one at (x,m) and zero
elsewhere, and apply Theorem B3 in Liggett [6] to see that the closure of G [in
C(FS)×C(FS), with respect to the sup-norm topology] generates a Feller Markov
process. Summarizing results from the two preceding paragraphs, we have the
following theorem.

THEOREM 1.1. There exists a unique Feller Markov process ξt constructed
as before with generator (4) or (5).

The particle system ξ with generator (4) or (5) is attractive in the sense that ξ

is monotonic in initial conditions. One can check that if ξ0(x) ≤ ξ̄0(x) for all x ∈
S, where ≤ denotes the partial order (0,0) ≤ (0,1), (1,0) ≤ (1,1), then ξt (x) ≤
ξ̄t (x) for all x and t . This is true since every birth or death event preserves ≤.
For example, if ξt−(x) = (0,0), ξ̄t−(x) = (0,1) and at time t there is a male birth
event at site x, then ξt (x) = (1,0) and ξ̄t (x) = (1,1), so the inequality ξt (x) ≤
ξ̄t (x) has been maintained. Similarly, one can check that the particle system ξ is
increasing in the birth rate λ by coupling the random variables T x,i,m

n and Ux,i,m
n

involved in the constructions in the obvious way. Because of this monotonicity,
along with the existence of nontrivial stationary distributions for sufficiently large
λ and extinction for sufficiently small λ which we will establish later in this work,
we may conclude that there is a phase transition in the behavior of the particle
system ξ .

1.2. Description of the particle model with rapid stirring. If we add rapid stir-
ring to the particle system, that is, we scale the integer grid Z

d by ε and stir neigh-
boring particles at rate ε−2 in addition to performing the birth and death mech-
anisms, then the particle system converges to the solution of a reaction-diffusion
PDE as ε → 0 (see Theorems 8.1 and 8.2 in Durrett [2] and the beginning of
Section 1.3 of this work). This PDE represents the mean-field behavior of the par-
ticle system and is usually easier to analyze than the particle system itself. As
promised earlier, we will establish in Section 2 that there is a phase transition for
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the dioecious branching particle model (i.e., without rapid stirring), but obtaining
any reasonable estimates on exactly where this transition occurs seems to be dif-
ficult. One advantage of adding rapid stirring mechanisms is that one can get a
reasonably good idea of where the phase transition occurs in the rapidly stirred
particle model by analyzing the limiting PDE, or simulating this PDE on a com-
puter.

Moreover, this convergence establishes a connection between the particle model
and PDE systems, which is of independent interest. Since many PDE’s arise out
of natural systems, this connection justifies the study of the PDE. The underlying
stochastic system can also yield information about the PDE; for example, as we
will see in Section 1.3, the monotonicity of the particle system will lead to the
monotonicity of the PDE. Information about the PDE will similarly yield infor-
mation about the particle model. In Section 4, we will establish a condition on the
PDE that implies the existence of nontrivial stationary distributions for the particle
system with sufficiently small ε.

For the particle models with rapid stirring, we work with S = εZ
d and denote

the corresponding process by ξε . We also assume the birth rates in (3) and death
rate δ = 1, while the neighborhood N is nearest-neighbor: N = {y :‖y‖ = 0 or ε}.
Here, we use the L1-norm: ‖y‖ = ∑d

k=1 |yk|. In addition to the transitions in the
dioecious branching model, we introduce spatial movement of particles between
neighboring sites called rapid stirring. We consider two rapid stirring mechanisms
in this work, one called lily-pad stirring and the other called individual stirring:

• Lily-pad stirring. For each x, y ∈ εZ
d with ‖x − y‖1 = ε, ξε(x) = (ξε,1(x),

ξε,2(x)) and ξε(y) = (ξε,1(y), ξε,2(y)) are exchanged at rate ε−2.
• Individual stirring. For each i ∈ {1,2} and x, y ∈ εZ

d with ‖x−y‖1 = ε, ξε,i(x)

and ξε,i(y) are exchanged at rate ε−2.

Just as in the particle model without rapid stirring described in Section 1.1,
one can construct the particle model with either lily-pad stirring or individual stir-
ring using a countable number of Poisson processes. Alternatively, one can write
down the generator explicitly and again apply Theorem B3 in Liggett [6] to estab-
lish:

THEOREM 1.2. Let S = εZ
d and N = {y :‖y‖ = 0 or ε}. There exists a

unique Feller process ξt with generator GL for the particle model with lily-pad
stirring or generator GI for the particle model with individual stirring,

GLf (ξ) = G2f (ξ) + ∑
x,y∈S,x∈Ny

ε−2(
f (ξx↔y) − f (ξ)

)
,(6)

GI f (ξ) = G2f (ξ) + ∑
m∈{1,2},x,y∈S,x∈Ny

ε−2(
f

(
ξ (x,m)↔(y,m)) − f (ξ)

)
,(7)
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where

ξx↔y(z,m′) =


ξ(z,m′), if z �= x, y,
ξ(x,m′), if z = y,
ξ(y,m′), if z = x

and

ξ (x,m)↔(y,m)(z,m′) =


ξ(z,m′), if (z,m′) �= (x,m), (y,m),
ξ(x,m), if (z,m′) = (y,m),
ξ(y,m), if (z,m′) = (x,m).

For lily-pad stirring, instead of thinking of a site that consists of two nests, as in
the dioecious branching model, we can view each site as having for states in

F = {0,1}2 = {(0,0), (0,1), (1,0), (1,1)}.
We restate the dynamics of the particle model in terms of these four states. At any
site x ∈ εZ

d , only the following transitions are possible: (0,0) ↔ (0,1), (0,1) ↔
(1,1), (0,0) ↔ (1,0) and (1,0) ↔ (1,1), that is, only one particle is born or dies
at a particular time. The rates of these transitions are as follows:

c(0,0)(x, ξε) = 1, if ξε(x) = (0,1) or ξε(x) = (1,0),

c(0,1)(x, ξε) = c(1,0)(x, ξε) = 1, if ξε(x) = (1,1),

c(0,1)(x, ξε) = c(1,0)(x, ξε) = λn1+2(x, ξε),

if ξε(x) = (0,0),

c(1,1)(x, ξε) = λn1+2(x, ξε), if ξε(x) = (0,1) or ξε(x) = (1,0).

The difference between these two stirring mechanisms is that lily-pad stirring
forces male and female particles at a site to move together, but individual stir-
ring allows independent movement of male and female particles. Every exchange
of particles, in both lily-pad stirring and individual stirring, is monotonicity pre-
serving, thus neither stirring mechanism disrupts the monotonicity property of the
particle system.

1.3. Convergence to a PDE for lily-pad stirring. Consider the particle system
with lily-pad stirring and its generator given by (6). For i ∈ F , if we define

uε
i (t, x) = P

(
ξε
t (x) = i

)
,

then Theorem 8.1 in Durrett [2] (or its generalization, Theorem 3.1 of this work)
shows that if gi(x) is C1 and uε

i (0, x) = gi(x) for all i, then

ui(t, x) = lim
ε→0

uε
i (t, x)(8)
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exists and satisfies the following system of PDEs:
∂u(0,0)

∂t
= �u(0,0) + u(0,1) + u(1,0) − 4λdu(0,0)u(1,1),

∂u(0,1)

∂t
= �u(0,1) + u(1,1) − u(0,1) + 2λd

(
u(0,0) − u(0,1)

)
u(1,1),

(9)
∂u(1,0)

∂t
= �u(1,0) + u(1,1) − u(1,0) + 2λd

(
u(0,0) − u(1,0)

)
u(1,1),

∂u(1,1)

∂t
= �u(1,1) − 2u(1,1) + 2λd

(
u(0,1) + u(1,0)

)
u(1,1).

In order for the limit in (8) to make sense, we extend the definition of uε
i (t, x) to all

x ∈ R
d by requiring uε

i (t, x) = uε
i (t, ε�x/ε) where, �q denotes the integer part

of q . Obviously, ui must lie in [0,1] for all i and t since it is a limit of probabilities.
The reaction terms of the equation involving ∂u(0,0)/∂t say roughly that sites enter
state (0,0) at rate u(0,1) + u(1,0), that is, when the only male or female particle at
the site dies; sites leave state (0,0) at rate 4λdu(0,0)u(1,1), that is, when a particular
site has no particles and a particle (male or female) is born by a pair of male and
female particles at one of the 2d neighboring sites.

We also observe that, strictly speaking, one should require the initial condition
of (9) to be C2, for otherwise, the PDE system may not make sense at t = 0.
This issue can be remedied by considering the corresponding integral equation, as
in equation (15.1.2) of Taylor [7]. Furthermore, Proposition 15.1.2 of Taylor [7]
shows that solutions to (9) are C∞ at any t > 0 as long as the initial condition
is C1. Thus we only require our initial conditions to be C1 from this point on.

We transform the parameter space of the 3-dimensional system in (9) to obtain
a monotone 2-dimensional system, which will be easier to analyze. First, define
v0 = u(0,0), v1 = u(0,1) + u(1,0) and v2 = u(1,1), (v0, v1, v2) then satisfies

∂v0

∂t
= �v0 + v1 − 4λdv0v2,

∂v1

∂t
= �v1 + 2v2 − v1 + 2λd(2v0 − v1)v2,

∂v2

∂t
= �v2 − 2v2 + 2λdv1v2,

where v0 + v1 + v2 = 1. The above system can be written as the limiting PDE
under rapid stirring of another particle system ζ ε , still on S = εZ

d , with state
space F = {0,1,2} and transitions 0 ↔ 1 and 1 ↔ 2 at rates

c0(x, ζ ε) = 1, if ζ ε(x) = 1,

c1(x, ζ ε) = 2, if ζ ε(x) = 2,

c1(x, ζ ε) = 2λn2(x, ζ ε), if ζ ε(x) = 0,

c2(x, ζ ε) = λn2(x, ζ ε), if ζ ε(x) = 1,
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where

n2(x, ξε) = |{z ∈ N : ζ ε(x + z) = 2}|.
One can interpret ζ ε(x) as the total number of ξε-particles at x and check
that monotonicity in initial condition holds for ζ ε . Let (vε

1(0, x), vε
2(0, x)) =

(g1(x), g2(x)) and (v̄ε
1(0, x), v̄ε

2(0, x)) = (ḡ1(x), ḡ2(x)) be two sets of initial dis-
tributions such that g2 ≤ ḡ2 and g1 + g2 ≤ ḡ1 + ḡ2, with g1, g2, g1 + g2, ḡ1, ḡ2,
ḡ1 + ḡ2 all lying in [0,1]. It is then possible to set up two initial conditions ζ ε

0 and
ζ̄ ε

0 such that P(ζ ε
0 (x) = i) = vε

i (0, x) and P(ζ̄ ε
0 (x) = i) = v̄ε

i (0, x), i = 1,2, and
ζ ε

0 (x) ≤ ζ̄ ε
0 (x) holds for all x and ω. The monotonicity property of ζ ε implies that

ζ ε
t (x) ≤ ζ̄ ε

t (x) for all t and x and therefore

P
(
ζ ε
t (x) ≥ 1

) ≤ P
(
ζ̄ ε
t (x) ≥ 1

)
and P

(
ζ ε
t (x) ≥ 2

) ≤ P
(
ζ̄ ε
t (x) ≥ 2

)
,

that is, for all t and x,

vε
2(t, x) ≤ v̄ε

2(t, x),

vε
1(t, x) + vε

2(t, x) ≤ v̄ε
1(t, x) + v̄ε

2(t, x).

We now transform the parameter space a second time by defining (u, v) = (v1 +
v2, v2) and writing c = 2λd . (ut , vt ) is then monotone in initial conditions since
vε
i (t, x) → vi(t, x). We observe that u can be interpreted as the density of occupied

sites (where either one or both nests are occupied) and v as the density of doubly
occupied sites (where both nests are occupied). Straightforward calculation shows
that (u, v) satisfies the following system:

∂u

∂t
= �u + (

2c(1 − u) + 1
)
v − u,

(10)
∂v

∂t
= �v + (

c(u − v) − 2
)
v.

We summarize this paragraph in the following lemma.

LEMMA 1.3. The PDE system (10) is monotone in initial conditions that lie
in

R = {(u, v) : 0 ≤ v ≤ u ≤ 1},
that is, if there are two initial conditions (u0, v0) ∈ R and (ū0, v̄0) ∈ R, with
u0 ≤ ū0 and v0 ≤ v̄0 everywhere, then ut ≤ ūt and vt ≤ v̄t everywhere, for all t .
Furthermore, both (ut , vt ) and (ūt , v̄t ) lie in R for all t .

In Section 4, we will analyze (10) to establish the following result.

THEOREM 1.4. If λ is sufficiently large and ε is sufficiently small, then there
exists a nontrivial translation invariant stationary distribution for the dioecious
branching particle model with lily-pad stirring with generator (6).
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1.4. Convergence to a PDE for individual stirring. We consider the particle
system with individual stirring and with its generator given by (7). Unlike lily-pad
stirring, Theorem 8.1 in Durrett [2] cannot be directly applied to obtain conver-
gence to a PDE system for individual stirring. We can, however, follow the ideas
used in the proof of that theorem to establish a corresponding result, Theorem 3.1.
For the process ξε with generator (7) and i ∈ E, define

uε
i,m(t, x) = P

(
ξε
t (x,m) = i

)
.

Theorem 3.1 then implies that if gi,m : R → [0,1] is C1 and uε
i,m(0, x) = gi,m(x),

then ui,m(t, x) = limε→0 uε
i,m(t, x) exists and satisfies the following system of

PDEs:
∂u1,1

∂t
= �u1,1 − u1,1 + 2λd(1 − u1,1)u1,1u1,2,

∂u1,2

∂t
= �u1,2 − u1,2 + 2λd(1 − u1,2)u1,1u1,2,

where u0,1 +u1,1 = u0,2 +u1,2 = 1. Notice that if we start with a symmetric initial
condition, that is, gi,1 = gi,2, then the solution to the above PDE is also symmetric.
And if we define u = u1,1 = u1,2, then we obtain the following PDE for u:

∂u

∂t
= �u + f (u), f (u) = −u + 2λd(1 − u)u2.(11)

This PDE has been analyzed in Durrett and Neuhauser [3] as their sexual repro-
duction model (Example 3 on page 291). In fact, it is not difficult to see that if
u1,1 = u1,2, then choosing the “father” from the male population is exactly the
same as choosing the “father” from the female population, hence it is quite natural
for this reduction to occur. Theorem 4 of Durrett and Neuhauser [3] states that if
2λd > 4.5 and ε is sufficiently small, then their sexual reproduction model has
nontrivial stationary distribution(s). Although this theorem does not directly apply
to our particle system ξε with two types of particles because of the difference in
stirring mechanisms, one can nevertheless work through the proof of Lemma 3.3
of Durrett and Neuhauser [3], while making obvious changes, to establish the fol-
lowing, similar, result.

• Let 0 < ρ1 < ρ0 < 1 be the two nonzero roots of f (u). Define β = (ρ0 −ρ1)/10
and Ik = 2Lke1 + [−L,L)d . If ε is small, L is large, and ξε(0) has density at
least ρ1 +β of both male particles and female particles in I0, then for sufficiently
large T , with high probability, ξε(T ) will have density at least ρ0 − β in I1 and
I−1.

This result can then be fed into a comparison argument, comparing the particle
system with oriented percolation, as on page 312 of Durrett and Neuhauser [3] or
in the proof of Theorem 4.3 in Durrett [2], to establish the existence of nontrivial
stationary distribution(s) for the particle system ξε under individual stirring with
sufficiently small ε. We then have the following theorem.
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THEOREM 1.5. If λ is sufficiently large and ε is sufficiently small, then there
exists a nontrivial translation invariant stationary distribution for the dioecious
branching particle model with generator (7).

1.5. Discussion. We can numerically solve PDEs using standard finite differ-
ence methods to obtain rough values of λc for d = 2, where λc is, as in Dur-
rett and Neuhauser [3], the critical value of λ necessary for longterm survival in
the rapid stirring limit (ε → 0). We recall that (10) and (11) are the rapid stir-
ring limits of the particle systems with generators GL and GI in (6) and (7), re-
spectively, both with birth-death mechanisms described by G2 that require par-
ents to be at the same site. We can replace G2 with G1 (which only requires one
parent to be in the neighborhood of the other parent) in (4) and obtain slightly
different generators G̃Lf (ξ) = G1f (ξ) + ∑

x,y∈S,x∈Ny
ε−2(f (ξx↔y) − f (ξ)) and

G̃I f (ξ) = G1f (ξ)+∑
m∈{1,2},x,y∈S,x∈Ny

ε−2(f (ξ (x,m)↔(y,m))−f (ξ)). The rapid

stirring limit of G̃I is exactly the PDE in (11) but with 2d replaced by 2d(2d + 1)

because there are 2d(2d + 1) “potential parent-nest pairs” involved in G1. The
rapid stirring limit of G̃L satisfies the following PDE:

∂u(0,0)

∂t
= �u(0,0) − 2λ(2d)2u(0,0)

(
u(0,1) + u(1,1)

)(
u(1,0) + u(1,1)

)
,

∂u(0,1)

∂t
= �u(0,1) − λ(2d)(2d + 1)u(0,1)

(
u(0,1) + u(1,1)

)(
u(1,0) + u(1,1)

)
+ λ(2d)2u0

(
u(0,1) + u(1,1)

)(
u(1,0) + u(1,1)

)
,

∂u(1,0)

∂t
= �u(1,0) − λ(2d)(2d + 1)u(1,0)

(
u(0,1) + u(1,1)

)(
u(1,0) + u(1,1)

)
(12)

+ λ(2d)2u0
(
u(0,1) + u(1,1)

)(
u(1,0) + u(1,1)

)
,

∂u(1,1)

∂t
= �u(1,1) − λ(2d)(2d + 1)

(
u(0,1) + u(1,0)

)
× (

u(0,1) + u(1,1)

)(
u(1,0) + u(1,1)

)
.

For individual stirring, the limiting PDE is (11) and Theorem 4 from Durrett and
Neuhauser [3] shows that λc = 4.5/2d = 1.125 for GI and λc = 4.5/2d(2d +1) =
0.225 for G̃I . For lily-pad stirring, we do not have a readily available theorem to
tell us the exact value of λc. We obtained the range of values of λc in the rightmost
column of Table 1 by simulating (10) and (12) using progressively finer grids and
stopping once changes in the estimates of λc become smaller than 10−3.

Curiously, free movement of all individuals (individual stirring) seems to work
better (to ensure survival at least) when mating occurs between all pairs of indi-
viduals in the neighborhood, as in G1, but restricting male and female individuals
to move together (lily-pad stirring) seems to work better when mating occurs only
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TABLE 1

Individual stirring Lily-pad stirring

G1 λc = 0.225 λc ∈ [0.271,0.272]
G2 λc = 1.125 λc ∈ [1.114,1.115]

between male and female individuals at the same site, as in G2. A possible expla-
nation is that matching of movement of individuals and the mating strategy helps
survival: when the mating strategy is to mate with any individual of the opposite
sex in the neighborhood, free movement of all individuals helps everyone to find
mating partners more easily; but when the mating strategy is to mate with only
individuals at the same site, free movement of all individuals only helps to break
up “marriages.”

In the single-sex scenario where the birth and death mechanisms are the same
as those of the contact process with rate of infection λ and rate of recovery 1, we
obtain the following PDE in the rapid stirring limit:

∂u

∂t
= �u + f (u), f (u) = −u + 2λd(1 − u)u,

which has λc = 1/2d (i.e., λc = 0.25) by Theorem 2 from Durrett and Neuhauser
[3]. This λc is roughly the same as the λc for birth-death mechanisms G1, although
much smaller than the λc for birth-death mechanisms G2 since the birth mecha-
nism in G2 is much more restrictive. With birth-death mechanisms G1 and d = 2,
the density of individuals (male or female) at equilibrium when λ is only slightly
higher than the λc is roughly 0.66 for individual stirring and 0.79 for lily-pad stir-
ring. Thus, in the two-sex scenario G1, although each individual can only give birth
if there is any individual of the opposite sex in the neighborhood, finding a mate in
the neighborhood should not prove to be a problem and it is not terribly surprising
that the λc for G1 with individual stirring is smaller than the λc for the single-sex
scenario.

In the remainder of this paper, we will establish various results as promised in
this section. In Section 2, we prove a few results on the dioecious branching par-
ticle system without rapid stirring. In Section 3, we present, without proof, a con-
vergence theorem for particle system with individual stirring. Finally, in Section 4,
we prove Theorem 1.4 by establishing a condition on (10), similar to condition (*)
on page 180 of Durrett [2].

2. Results on the dioecious branching particle model. In this section, we
assume the model with generator (4) where we take S = Z

d , that is, the particle
system with birth and death mechanisms, but no stirring. We briefly restate the
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model: the rate at which nest m of site x flips to state i, ci(x,m, ξ), is

c0(x,m, ξ) =
{

1, if ξm(x) = 1,
0, otherwise,

c1(x,m, ξ) =
{

λn1(x, ξ)n2(x, ξ), if ξm(x) = 0,
0, otherwise,

where nm′(x, ξ) = |{z ∈ Nx : ξm′
(x + z) = 1}| and Nx contains the site x and its

2d nearest neighbors. The goal is to establish the existence of a phase transition.

2.1. Existence of stationary distributions. We first establish that stationary
distributions exist. This is a generalization of Theorem 2.7 in Durrett [2] or The-
orem III.2.3 in Liggett [5]. We use a method along the lines of Theorem 2.7 in
Durrett [2]. Define

ξ̄0(x) = (1,1) for all x

and let ξ̄t be the process started with initial condition ξ̄0. Let Ttf (ξ0) = Eξ0f (ξt )

be the semigroup corresponding to the particle system. Tt is then a Feller semi-
group by Theorem 1.1. We begin with a lemma.

LEMMA 2.1. For any A,B ⊂ S = Z
d , the function

t �→ P
(
ξ̄1
t (x) = 0 ∀x ∈ A, ξ̄2

t (y) = 0 ∀y ∈ B
)

(13)

is increasing.

PROOF. Let α0 = ξ̄1
s and β0 = ξ̄2

s for an arbitrary fixed s. Then ξ̄1
0 (x) ≥ α0(x)

and ξ̄2
0 (x) ≥ β0(x). Let (αt , βt ) be the state at time t of the particle system that

started with initial condition (α0, β0). Then, by the fact that the particle system is
monotone in initial conditions, we have

ξ̄1
t (x) ≥ αt(x) and ξ̄2

t (x) ≥ βt (x)

for all t and x. The Markov property of ξ then implies that the function in (13) is
increasing in t . �

THEOREM 2.2. As t → ∞, ξ̄t converges weakly to ξ̄∞. The limit is a station-
ary distribution that stochastically dominates all other stationary distributions and
is called the upper invariant measure.

PROOF. Let A and B be arbitrary subsets of S. For C = {x1, . . . , xm} ⊂ S and
D = {y1, . . . , yn} ⊂ S, we write

P
(
ξ̄1
t (z) = 0 ∀z ∈ A, ξ̄2

t (w) = 0 ∀w ∈ B, ξ̄1
t (x) = 1 ∀x ∈ C, ξ̄2

t (y) = 1 ∀y ∈ D
)

= P
(
ξ̄1
t (z) = 0 ∀z ∈ A, ξ̄2

t (w) = 0 ∀w ∈ B
) − P

(
m+n⋃
i=1

Ei

)
,
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where

Ei = {
ξ̄1
t (z) = 0 ∀z ∈ A ∪ {xi}, ξ̄2

t (w) = 0 ∀w ∈ B
}

if i = 1, . . . ,m

and

Ei = {
ξ̄1
t (z) = 0 ∀z ∈ A, ξ̄2

t (w) = 0 ∀w ∈ B ∪ {yi−m}}
if i = m + 1, . . . ,m + n.

We can use the inclusion-exclusion formula on P(
⋃m+n

i=1 Ei), that is,

P

(
m+n⋃
i=1

Ei

)
=

m+n∑
i=1

P(Ei) − ∑
i<j

P (Ei ∩ Ej)

+ · · · + (−1)m+n+1P(E1 ∩ · · · ∩ Em+n).

Every term in the above expansion is in the form

P
(
ξ̄1
t (z) = 0 ∀z ∈ ·, ξ̄2

t (w) = 0 ∀w ∈ ··),
which is increasing in t by Lemma 2.1. Therefore,

P
(
ξ̄1
t (z) = 0 ∀z ∈ A, ξ̄2

t (w) = 0 ∀w ∈ B, ξ̄1
t (x) = 1 ∀x ∈ C, ξ̄2

t (y) = 1 ∀y ∈ D
)

converges for all A, B , C and D where C and D are finite, hence all finite-
dimensional distributions converge. Thus, a weak limit (ξ̄1∞, ξ̄2∞) exists and since
Tt is a Feller semigroup, (ξ̄1∞, ξ̄2∞) is a stationary distribution. We can also eas-
ily see, via a monotonicity argument, that (ξ̄1∞, ξ̄2∞) dominates all other stationary
distributions. See the proof of Theorem 2.7 in Durrett [2] for a simpler version of
this type of argument. �

2.2. Extinction for sufficiently small λ.

THEOREM 2.3. If λ|N |2 < 1, then the particle system ξ with generator (4)
has no nontrivial stationary distribution.

PROOF. We compare a modification of the particle system ξ with the contact
process. Theorem 2.6 of Durrett [2] states that if α|N | < 1, where α is the rate of
infection, then the contact process has no nontrivial stationary distribution.

We modify the birth rates c1(x,m, ξ) in (2) and (3) of the particle model to
obtain

c′
1(x,m, ξ) =

λ|N |n1(x, ξ), if ξ1(x) = 0,
λ|N |n2(x, ξ), if ξ2(x) = 0,
0, otherwise,

that is, birth of male (female) offspring no longer requires the presence of female
(male) parents in the neighborhood. We denote this modified process ξ̃ = (ξ̃1, ξ̃2).
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The result of the modification is that ξ̃1 and ξ̃2 are now decoupled and ξ̃ i behaves
in the same way as the contact process with birth rate α = λ|N |. Furthermore,
the modified process (ξ̃1, ξ̃2) can also be constructed using the Poisson processes
{T x,i,m

n :n ≥ 1} and {Ux,i,m
n :n ≥ 1}, just as in Section 1.1. Since c′

1(x,m, ξ) ≥
c1(x,m, ξ) for all x, m and ξ [with the definition in either (2) or (3)], (ξ̃1, ξ̃2)

stochastically dominates the original process (ξ1, ξ2). If α|N | < 1, then ξ̃ has no
nontrivial stationary distribution and (ξ̃1

t , ξ̃2
t ) converges weakly to the all-0 state

as t → ∞ for any initial condition. Thus, (ξ1
t , ξ2

t ) also converges to the all-0 state
for any initial condition if α|N | = λ|N |2 < 1, as required. �

2.3. Survival for sufficiently large λ. We use the idea of Chapter 4 of Durrett
[2], that is, we compare the particle system to an oriented percolation process,
see Durrett [2] for more details on the oriented percolation process. A particularly
useful result that will be used in the proof below is Theorem 4.2 of Durrett [2].

THEOREM 2.4. Let W
p
n be an M-dependent oriented percolation process with

density at least 1 − γ , starting from the initial configuration W
p
0 in which the

events {x ∈ W
p
0 }, x ∈ 2Z, are independent and have probability p. If p > 0 and

γ ≤ 6−4(2M+1)2
, then

lim inf
n→∞ P(0 ∈ W

p
2n) ≥ 19

20 .

This theorem shows that if the density of open sites 1 − γ is sufficiently close
to 1 and we start with a Bernoulli initial condition for W0, then the probability that
0 is wet at time t does not go to 0 as t → ∞, hence the upper invariant measure is
nontrivial.

THEOREM 2.5. If λ is sufficiently large, then the particle system ξ with gen-
erator (4) has a nontrivial stationary distribution.

PROOF. We follow the method of proof as in Chapter 4 of Durrett [2]. First,
we describe a construction of the particle system ξ that is more specialized than
the one given in Section 1.1. Recall that S = Z

d and N = {x ∈ S : |x1| + · · · +
|xd | = 0 or 1}. Let m ∈ {1,2}, x, y, z ∈ S, {Rx,m

n ,n ≥ 1} be independent Poisson
processes with rate 1 and {T x,m,y,z

n , n ≥ 1}, with y, z ∈ Nx , be independent Pois-
son processes with rate λ. At time Rx,m

n , any particle residing at (x,m) is killed.
And at time T

x,m,y,z
n , a particle is born at (x,m) if (x,m) is not already occupied

and nests (y,1) and (z,2) are both occupied.
We will select an event Gξ0 , measurable with respect to the filtration generated

by all of the Poisson arrivals {Rx,m
n } and {T x,m,y,z

n } at

x ∈ {(−1,0, . . . ,0), (0,0, . . . ,0), (1,0, . . . ,0)}
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during the time interval [0, t). For any γ > 0, regardless of how small, there exists
λ and T and an event Gξ0 with

P(Gξ0) > 1 − γ,

so that on Gξ0 , if ξ0(0,0, . . . ,0) = (1,1), then ξT (1,0, . . . ,0) = ξT (−1,

0, . . . ,0) = (1,1). One can achieve this by choosing T so small that the proba-
bility of any death occurring at any nests at sites (−1,0, . . . ,0), (0,0, . . . ,0) and
(1,0, . . . ,0) is less than γ /2; one can then choose λ sufficiently large so that the
probability of having birth events from ((0,0, . . . ,0),1) and ((0,0, . . . ,0),2) to
each of the four nests at sites (−1,0, . . . ,0) and (1,0, . . . ,0) during [0, T ) is larger
than 1 − γ /2. In other words, if we define the event

Gξ0 = {There are no death events during [0, T )

at sites (−1,0, . . . ,0), (0,0, . . . ,0)

or (1,0, . . . ,0); and there are birth events from ((0,0, . . . ,0),1)

and ((0,0, . . . ,0),2) to each of the four nests at sites (−1,0, . . . ,0)

and (1,0, . . . ,0) during [0, T )},
then Gξ0 satisfies the requirement and P(Gξ0) > 1 − γ for some λ and T . Gξ0 is
the “good event” that will ensure male and female particles get born at sites x − 1
and x + 1 provided site x is inhabited by both a male and a female particle.

Using this “good event” Gξ0 , we can construct an oriented percolation process
of density at least 1 − γ that is stochastically dominated by the particle system ξ ,
such that existence of nontrivial stationary distribution(s) for the oriented percola-
tion process, as provided by Theorem 2.4, implies existence of nontrivial stationary
distribution for the particle system. This part of the proof follows the proof of The-
orem 4.3 in Durrett [2]. We therefore omit the details and instead refer interested
readers to the proof of Theorem 3.3.2 in Yu [9]. �

3. Convergence theorem for individual stirring. In this section, we present
the convergence result for the individual stirring model, as promised in Section 1.4.
We work in a slightly more general setting and consider random processes

ξε
t : εZ

d × {1,2, . . . ,M} → {0,1, . . . , κ − 1}.
We call each x ∈ εZ

d a site and each (x,m) ∈ εZ
d × {1,2, . . . ,M} a nest. There

are M nests at each site. We think of the set of spatial locations Z
d ×{1,2, . . . ,M}

as consisting of M floors of Z
d . Let

N = {0, εy1, . . . , εyN }
be the interaction neighborhood of site 0. The process ξε

t evolves as follows.
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1. Birth and death. The state of nest (x,m) flips to i, i = 0, . . . , κ − 1, at rate

ci(x,m, ξ) = hi,m

(
ξ(x,m), ξ(x + εz1,m1), . . . , ξ(x + εzL,mL)

)
,

where L is a positive integer, z1, . . . , zL ∈ N , m1, . . . ,mL ∈ {1,2, . . . ,M} and

hi,m : {0,1, . . . , κ − 1}L+1 → R
+

with hi,m(i, . . .) = 0.
2. Rapid stirring. For each m ∈ {1,2, . . . ,M} and x, y ∈ εZ

d with ‖x − y‖1 = ε,
ξε(x,m) and ξε(y,m) are exchanged at rate ε−2.

This individual stirring model differs from the lily-pad stirring model described
in Section 1.2 in that the stirring actions between corresponding nests at neighbor-
ing sites are now independent. More specifically, exchanges are allowed between
neighboring nests on the same floor only, that is, between (0,1) and (ε,1), but not
between (0,1) and (ε,2).

As an example, for d = 1, in the particle model with individual stirring with
generator (7), we have κ = 2, M = 2, L = 4, N = {0,−ε, ε},

c0(x,m, ξ) =
{

1, if ξ(x,m) = 1
0, otherwise,

c1(x,m, ξ) =
λ

(
ξ(x − ε,1)ξ(x − ε,2) + ξ(x + ε,2)ξ(x + ε,1)

)
,

if ξ(x,m) = 0,
0, otherwise.

In particular, we should define

(z1,m1) = (−1,1), (z2,m2) = (−1,2),

(z3,m3) = (1,1), (z4,m4) = (1,2)

and hi = hi,m as

h0(α0, α1, α2, α3, α4) = α0,

h1(α0, α1, α2, α3, α4) = λ(α1α2 + α3α4)(1 − α0).

THEOREM 3.1. Suppose {ξε
0 (x,m), (x,m) ∈ εZ

d × {1,2, . . . ,M}} are in-
dependent and let uε

i,m(t, x) = P(ξε
t (x,m) = i). If uε

i,m(0, x) = gi,m(x) and

gi,m : Rd → [0,1] is C1 for all i and m with
∑

i gi,m = 1, then, for any smooth
function φ with compact support, as ε → 0,

εd
∑

y∈εZd

φ(y)1{ξε
t (y,m)=i} →

∫
φ(y)ui,m(t, y) dy in probability,(14)

where ui,m(t, x) is the bounded solution of

∂ui,m

∂t
= �ui,m + fi,m(u), ui,m(0, x) = gi,m(x),

fi,m(u) = 〈
ci(0,m, ξ)1

(
ξ(0,m) �= i

)〉
u − ∑

j �=i

〈
cj (0,m, ξ)1

(
ξ(0,m) = i

)〉
u
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and 〈φ(ξ)〉u denotes the expected value of φ(ξ) under the product measure in
which state j at nest m has density uj,m, that is, ξ(x,m), with x ∈ εZ

d and 1 ≤
m ≤ M , are independent, with P(ξ(x,m) = j) = uj,m.

We refer interested readers to Theorem 4.0.5 of Yu [9] for its proof, which
follows the approach used in the proof of Theorem 8.1 in Durrett [2]: first, a dual
process is defined for the particle system, then this dual process is shown to be
almost a branching random walk that converges to a branching Brownian motion
as ε → 0; furthermore, two different duals are asymptotically independent of each
other. This asymptotic independence implies (14), as well as the convergence of
the particle system itself to ui,m.

In the proof of Theorem 3.1, the definition of the dual is the only part that differs
from the proof of Theorem 8.1 in Durrett [2] in any significant way: each nest at
a site requires a dual process and it is affected by any birth or death events that
happen to any nests at that site, but dual processes for any two nests (even at the
same site) are asymptotically independent.

4. Invariant stationary distribution for lily-pad stirring. In this section, we
establish the existence of nontrivial stationary distribution(s) of the particle system
with lily-pad stirring (as promised by Theorem 1.4) by showing that for sufficiently
large c, the solution to

∂u

∂t
= �u + (

2c(1 − u) + 1
)
v − u,

(15)
∂v

∂t
= �v + (

c(u − v) − 2
)
v,

with initial condition u0 = f, v0 = g, f ≥ g satisfies the following condition:

CONDITION (∗). There are constants 0 < D1 < d1 < d2 < D2 < 1, M and
T such that if v0(x) ∈ (D1,D2) for x ∈ [−M,M], then vT (x) ∈ (d1, d2) for x ∈
[−3M,3M].

According to Chapter 9 of Durrett [2], this is a sufficient condition for the exis-
tence of nontrivial invariant stationary distribution(s) for the particle system with
sufficiently fast stirring, so Theorem 1.4 will follow once Condition (∗) is es-
tablished. Recall that Theorem 2.5 establishes that the dioecious particle model
without rapid stirring has a nontrivial stationary distribution if the birth rate λ is
sufficiently large. If one works through the proof, however, one will find that “suf-
ficiently large” in that argument means that λ is larger than a number on the order
of 6100, which is not too informative as to where exactly the critical λ for the phase
transition is. On the other hand, in the model with rapid stirring, one can obtain a
far better idea of the range of λ for which Condition (∗) holds.
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In this work, we also establish Condition (∗) for sufficiently large c (recall that
c = λd), but here, “sufficiently large” means that c is only larger than a number
on the order of 104. We assume dimension d = 1; extension to d > 1 is straight-
forward. The proof consists of two parts: the first part, Section 4.1, establishes the
existence of constants d1 and D1 and the second part, Section 4.2, establishes the
existence of constants d2 and D2; the second part will be easy once the first part
has been established.

4.1. Lower bounds: Existence of d1 and D1 in Condition (∗). Let

R = {(u, v) : 0 ≤ v ≤ u ≤ 1}
and η be a vector field on R that generates a flow (F t

η )t≥0 on R, that is, if
(u0, v0) ∈ R, then F t

η (u0, v0) ∈ R for all t ≥ 0. We assume F t
η is monotone (in

initial conditions), that is, it preserves the partial order on R given by

(u1, v1) ≤ (u2, v2) ⇐⇒ (u1 ≤ u2 and v1 ≤ v2).

In other words, if (u1, v1) ≤ (u2, v2), then F t
η (u1, v1) ≤ F t

η (u2, v2). The scenario
for η that we consider is the following: the ODE system

du

dt
= η1(u, v),

dv

dt
= η2(u, v)

has a stable fixed point P+ close to the top corner of R with a relatively large basin
of attraction, but (0,0) is also a stable fixed point (with a much smaller basin of
attraction), and there is another unstable fixed point P− lying “between” these two
stable ones; see Figure 1 for two examples of the vector field η found in (15).

FIG. 1. Phase space of the ODE: η1 = 0 on γ1 and η2 = 0 on γ2.
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Theorem 9.2 in Durrett [2] establishes Condition (∗) for a specific predator-prey
system with phase space {0,1,2} at each site. The critical fact used in the proof
is that the associated ODE system has only one interior equilibrium point and has
a global Lyapunov function. The phase portrait of the ODE associated with (15),
however, shows that it has two interior equilibrium points, P+ and P−, where P−
is always a saddle point. Hence, we have a scenario where there is little hope
of finding a global Lyapunov function and, in general, even finding an explicit
Lyapunov function that works inside the domain of attraction of P+ is difficult.

For general scalar reaction-diffusion equations (i.e., where the reaction terms
are 1-dimensional), Chapter 15.4 of Taylor [7] provides an overview of meth-
ods and results. Convergence results in the scalar case, such as Condition (∗) in
Chapter 9 of Durrett [2], can be established using techniques found in Fife and
McLeod [4], just as in Durrett and Neuhauser [3]. For multidimensional reaction-
diffusion equations, results regarding the existence of traveling wave solutions
are more limited. Theorems 1.1, 1.2 and 4.2 of Chapter 3 of Volpert, Volpert
and Volpert [8] provide existence results for traveling wave solutions for certain
classes of monotone reaction-diffusion systems. Indeed, Theorem 1.1 of Chap-
ter 3 of Volpert, Volpert and Volpert [8] applies to equation (13), but estimating
the speed of the wave [which is essential for ensuring that Condition (∗) expands
rather than shrinks] is still nontrivial and must be done on a case-by-case basis.
An alternative approach to establishing Condition (∗) for equation (13) may be to
use Theorem 1.1 of Volpert, Volpert and Volpert [8], which implies existence of
traveling waves for (13), and then to try to obtain estimates for the speed of the
wave (probably also a result involving sufficiently large c). With this estimate on
the wave speed, one may then be able to use generalization of techniques in Fife
and McLeod [4] to establish a convergence result.

The method we use to establish Condition (∗) for solutions of (15) is much more
elementary and only requires the monotonicity property. Thus, it even applies to
cases where the existence of traveling wave solutions is not known.

Consider the PDE system in one spatial dimension,

∂u

∂t
= �u + η1(u, v),

∂v

∂t
= �v + η2(u, v).(16)

We first define the shape of the initial conditions (u0, v0), which is a smoothed
indicator function of a suitable interval. Let

f0(x) =


1, if x ∈ [−L + l,L − l],
h(x + L), if x ∈ [−L − l,−L + l],
h(L − x), if x ∈ [L − l,L + l],
0, if x ∈ (∞,−L − l] ∪ [L + l,∞),

(17)
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FIG. 2. The functions h and f0.

where f0 ∈ H 2(R) and

h(x) =



0, x < −l,
1

2

(
x + l

l

)2

, −l ≤ x ≤ 0,

1 − 1

2

(
l − x

l

)2

, 0 < x ≤ l,

1, x > l,

(18)

see Figure 2. In the above definition, the choice of L is arbitrary, provided L > l,
but later, we will choose l small such that |�f0| is large in [−L− l,−L+ l]∪ [L−
l,L + l]. We call the intervals [−L − l,−L + l] and [L − l,L + l] the transition
regions. We observe that both h and h′ are continuous at x = 0, with

h′′(x) =


1

l2 , if −l < x < 0,

− 1

l2 , if 0 < x < l,

so the graph of h in the plane is symmetric about the point (0,1/2) and also

|�f0| ≤ 1

l2(19)

everywhere.
We assume the solution (u(t), v(t)) to (16) starts with initial condition

(a0f0, b0f0). We would like to show that the interval over which the v-coordinate
of the solution to (16) is ≥ b0 expands with time. Thus, intuitively, we would like
to see the v-coordinate of (u(t), v(t)) increase, at least when v(t) is larger than
some threshold but smaller than πv(P+), where πv(u

′, v′) = v′. If this were the
case, we could use the v-coordinate as a “partial Lyapunov function” inside a sub-
set of the basin of attraction of P+. Unfortunately, this does not always hold, as is
the case considered in this work where η = ((2c(1−u)+1)v−u, (c(u−v)−2)v)

and η2(u, v) < 0 when u − v is close to 0.
To overcome this difficulty, we define a convex family of nested subsets of R

into which the flow Fη contracts at a sufficiently large rate. The upper boundary
of these nested subsets consists of lines u = v and u = 1, while the lower bound-
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ary consists of curves from the family {γθ }θ∈[0,θ0], where γθ = (1 + θ)γ ∩ R and
γ is a nonincreasing (i.e., with nonincreasing v-coordinate when parameterized
according to increasing u-coordinate) curve whose exact definition may change
depending on the exact form of η. Assume, furthermore, that there is a family
of continuous mappings ϕθ : [0, θ0] × γθ → γθ such that Fη satisfies the follow-
ing.

ASSUMPTION 4.1. There exist ε,K1,K2 > 0 (K1 is large and K2 is small)
and sufficiently small s0 such that for θ ∈ [0, θ0], (a0, b0) ∈ γθ and s ∈ [0, s0], we
have

F s
η (αa0, αb0) ≥

{ (
(1 + K1s)αas, (1 + K1s)αbs

)
, if αb0 ≥ ε,(

(1 − K2s)αas, (1 − K2s)αbs

)
, if αb0 < ε,

where (as, bs) = ϕθ(s, (a0, b0)).

For each s, the mapping ϕθ(s, ·) maps points on the curve γθ to other points
still on γθ . Under Fη, the upper part (the part above the horizontal line v = ε)
of the line segment {(αa0, αb0) : 0 ≤ α ≤ 1} is pulled above (αas, αbs), while its
lower part is not pushed too far beneath (αas, αbs); see Figure 3 for a schematic
illustration. Note that ((1 + K1s)as, (1 + K1s)bs) again lies on a curve γθ̄ , where
θ̄ > θ + δs and δ depends on K1, K2 and the geometry of γ .

FIG. 3. Illustration of Assumption 4.1.
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PROPOSITION 4.2. Assume that Fη satisfies Assumption 4.1 with
min{v : (u, v) ∈ γ } ≥ 0.5, ε ≤ 0.24 and

K1

K2
> 21

(
200

199

)2

.(20)

There then exists l > 0 [as in the definition of h in (18)], δ1, δ2, s0 > 0 such that
for θ ∈ [0, θ0], (a0, b0) ∈ γθ and s ∈ [0, s0],

es�F s
η (a0f0, b0f0) ≥ (

(1 + δ2s)asfs, (1 + δ2s)bsfs

)
,

where (as, bs) = ϕθ(s, (a0, b0)) as above, f0 is defined as in (17) and fs is f0 with
the transition regions translated outward by δ1s:

fs(x) =


1, x ∈ [−L + l − δ1s,L − l + δ1s],
h(x + L + δ1s), x ∈ [−L − l − δ1s,−L + l − δ1s],
h(L + δ1s − x), x ∈ [L − l + δ1s,L + l + δ1s],
0, x ∈ (∞,−L − l − δ1s] ∪ [L + l + δ1s,∞).

(21)

REMARK 4.3. By abuse of notation, we again let Fη denote the time evolution
of the spatial system where each (u(x), v(x)), x ∈ R, flows independently along
the vector field η.

For any (u, v) ∈ R, the set of values {(uf0(x), vf0(x)) :x ∈ R} forms a line
segment in R with endpoints O and (u, v). Proposition 4.2 above combines the
properties of the flow F s

η for small s with the spatial distribution generated by
the heat flow. Before we prove Proposition 4.2, we state two technical lemmas
necessary for its proof.

LEMMA 4.4. If l is fixed and f = f0 is defined as in (17), then for

x ∈
(
−L − l − s,−L − l

200

)
∪

(
L + l

200
,L + l + s

)
and s small, we have

es�f (x) ≥ f (x) + s

5l2 .

LEMMA 4.5. Let s > 0 be fixed, f0 as defined in (17) and

f̂ (x) =
{

f0(x) + ms, −L − l − s < x < L + l + s,
0, otherwise,

where m > 0. Then there exist positive constants δ2 depending on m but indepen-
dent of s such that for all x, f̂ (x) ≥ (1 + δ2s)fs(x), where fs is defined as in (21).
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Lemma 4.4 says that the lower part of the transition region in f0 increases
at a rate proportional to 1/l2, which is the case since in that part of the tran-
sition region, f0 is convex and �f0 = O(1/l2). It can be proved by work-
ing with the solution to the heat equation in convolution form es�g(x) =

1√
4πs

∫
exp(−y2/4s)g(x−y)dy, or working with Brownian motions if one prefers

to calculate probabilities. Lemma 4.5 involves only elementary calculus. We refer
interested readers to Yu [9] (Lemmas 5.1.6 and 5.1.7) for full details of proofs of
these two lemmas.

PROOF OF PROPOSITION 4.2. By virtue of (20), we can choose l > 0 such
that

K1 >

(
200

199

)2 4.02

l2 , K2 <
1

5.05l2 .

Hence, we can select m > 0 such that

m ≥ K1

2

(
199

200

)2

− 2.01

l2(22)

and

m ≥ 1

5l2 − 1.01K2.(23)

Fix θ ∈ [0, θ0], (a0, b0) ∈ γθ and s ∈ [0, s0] for the moment.
First, consider x ∈ [−L − 1

200 ,L + 1
200 ], where the definition of f0 in (17) im-

plies that

a0f0(x) ≥ b0f0(x) ≥ 1
2f0

(
L + 1

200

) = 1
2

1
2

(199
200

)2 ≥ 0.24 ≥ ε.

Hence, by the first half of Assumption 4.1,

F s
η

(
a0f0(x), b0f0(x)

)
≥ (

(1 + K1s)asf0(x), (1 + K1s)bsf0(x)
)

for s ∈ [0, s0] and x ∈ [−L − 1
200 ,L + 1

200 ]. Furthermore, by (19), we have
es�f0(x) ≥ f0(x)−2s/ l2 for all x and s ≥ 0. This, together with the monotonicity
of es�, shows that

(es�F s
η )(a0f0, b0f0)(x)

≥ es�(
(1 + K1s)asf0(x), (1 + K1s)bsf0(x)

)
≥

(
(1 + K1s)as

(
f0(x) − 2s

l2

)
, (1 + K1s)bs

(
f0(x) − 2s

l2

))
.
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Using the fact that f0(x) ≥ f (L + 1
200) = 1

2(199
200)2 for x ∈ [−L − 1

200 ,L + 1
200 ],

we can bound the v-coordinate in the above as follows:

bs(1 + K1s)

(
f0(x) − 2s

l2

)
= bs

(
f0(x) + K1f0(x)s − 2s

l2 − 2K1s
2

l2

)

≥ bs

[
f0(x) + K1

2

(
199

200

)2

s − 2s

l2 − 2K1s
2

l2

]

≥ bs

[
f0(x) +

(
K1

2

(
199

200

)2

− 2.01

l2

)
s

]
,

if s is sufficiently small. The u-coordinate can be treated analogously, therefore

(es�F s
η )(a0f0, b0f0)(x) ≥ (

as

(
f0(x) + ms

)
, bs

(
f0(x) + ms

))
,(24)

by (22).
We now consider x ∈ [−L − l − s,−L − 1

200 ] ∪ [L + 1
200 ,L + l + s]. By the

second half of Assumption 4.1, we have

F s
η (αa0, αb0) ≥ (

(1 − K2s)asf0(x), (1 − K2s)bsf0(x)
)

for such x. Combining this with Lemma 4.4 and the monotonicity of es�, we
obtain

(es�F s
η )(a0f0, b0f0)(x) ≥ es�(

(1 − K2s)asf0(x), (1 − K2s)bsf0(x)
)

≥
(
(1 − K2s)as

(
f0(x) + s

5l2

)
, (1 − K2s)bs

(
f0(x) + s

5l2

))
(25)

≥
(
as

[
f0(x) +

(
1

5l2 − 1.01K2

)
s

]
, bs

[
f0(x) +

(
1

5l2 − 1.01K2

)
s

])
≥ (

as

(
f0(x) + ms

)
, bs

(
f0(x) + ms

))
by (23), where the third inequality requires s to be sufficiently small. Combin-
ing (24), (25) and Lemma 4.5 then yields the claim. �

COROLLARY 4.6. Suppose that η satisfies Assumption 4.1 with
min{v : (u, v) ∈ γ } = D1 < d1 < min{v : (u, v) ∈ (1 + θ0)γ }. If T is sufficiently
large and v0(x) > D1 for x ∈ [−L+ l,L− l], then vT (x) > d1 for x ∈ [−3L,3L].

PROOF. This is an easy consequence of Proposition 4.2 and the nonlinear
Trotter product formula (Proposition 15.5.2 from Taylor [7])

(ut , vt ) = lim
n→∞

(
e(t/n)�F t/n)n

(f, g).

Here, the convergence occurs in the space BC1(R), which consists of functions f

such that f ′ is bounded and continuous on R and both f and f ′ can be extended



1532 F. YU

to be continuous on the compactification R̂ via the point at infinity; the norm used
here is ‖ · ‖∞ + ‖∂/∂x(·)‖∞. For sufficiently large n, Proposition 4.2 says that
application of e(1/n)�F 1/n to the function (a0f0, b0f0) with (a, b) ∈ γθ yields a
result that is larger than (ãf̃ , b̃f̃ ), where (ã, b̃) ∈ γθ+δ/n for some δ > 0 (whose
exact value depends on δ2 and θ ) and the “flat region” in f̃ is at least 2δ1/n larger
than that of f0. �

It remains to check that if c is sufficiently large, then the vector field

η1(u, v) = (
2c(1 − u) + 1

)
v − u,

(26)
η2(u, v) = (

c(u − v) − 2
)
v

as in (15) satisfies Assumption 4.1.

LEMMA 4.7. If c is sufficiently large, then we can find s0, θ0, K1, K2, ε > 0
and a curve γ such that Assumption 4.1 and the assumptions of Proposition 4.2
are satisfied for the flow generated by (26).

PROOF. For c ≥ 8,800, we construct a vector field ξ = (ξ1(u, v), ξ2(u, v)) for
(u, v) ∈ R such that

ξ1(u, v) ≤ η1(u, v), ξ2(u, v) ≤ η2(u, v), (u, v) ∈ R

and we will show that the flow Fξ generated by ξ satisfies Assumption 4.1 and
the assumptions of Proposition 4.2 with ε = 0.24, K1 = 44 and K2 = 2. Note that
there is a fair amount of leeway in the choice of the constants, as we have not
striven for optimality in that respect.

Define A = (0.51,0.51), B = (0.55,0.5), C = (0.9,0.5), D = (1.0,0.5) and let
the curve γ be given be γ = γ0 = AB ∪ BD (see Figure 4), where AB is the line
segment connecting A and B . For θ ∈ [−0.54,0.2], let

Aθ = (1 + θ)A, Bθ = (1 + θ)B,

Cθ = (
0.9, (1 + θ)0.5

)
, Dθ = (

1.0, (1 + θ)0.5
)

and

γθ = AθBθ ∪ BθCθ .

Hence, γθ = (1 + θ)γ ∩ R. Put

A′ = A−0.54, B ′ = B−0.54, C′ = C−0.54, D′ = D−0.54,

A′′ = A0.2, B ′′ = B0.2, C′′ = C0.2, D′′ = D0.2.

If we let ε′ = 0.23, then B ′, C′ and D′ lie on the horizontal line {v = ε′}, while
B ′′, C′′ and D′′ lie on the horizontal line {v = 0.6} and πv(A

′′) = 0.2346 < ε. We
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FIG. 4. (a) sketch of the curves γθ . (b) sketch of ξ , arrow sizes and directions not drawn to scale.

define the vector field ξ as a piecewise linear function in the following way: let
F1 = 400 and F2 = 75. This implies that

1
2
√

17

(
(F1 − 8) ∧ 5.1F2

) ≥ K1,(27)

which will be needed later on. For (u, v) ∈ R, let ξ = (ξ1(u, v), ξ2(u, v)) be given
by

(F1u,−2v) in R1 = {ε′u < v ≤ ε′, u ≤ 0.9}
or R2 = {ε′ < v ≤ 0.6, u < 1.1v},

(1.1F2v,F2v) on L1 = B ′B ′′,
(0,F2v) in R3 = (interior of the trapezoid B ′C′C′′B ′′) ∪ C′C′′,

(−u,F2v) in R4 = interior of rectangle C′D′D′′C′′,
(η1(u, v), η2(u, v)) in the rest of R;
see Figure 4. To verify that ξ ≤ η on R if c ≥ 8,800, we first observe that η1 ≥ −u

and η2 ≥ −2v are trivial bounds that hold for all of R. The other definitions of ξ

can be verified region by region, as follows.

R1 ∪ R2: Since v ≥ ε′u and u ≤ 0.9, we have

η1 ≥ (0.2c + 1)ε′u − u ≥ (0.046c − 1)u ≥ 400u,

if c ≥ 8,800.
L1: The validity of η1 ≥ ξ1 comes from the same argument as for R1 ∪R2.

For ξ2, since v ≥ ε′ = 0.23 and u = 1.1v, we have

η2(u, v) = (0.1cv − 2)v ≥ 75v,



1534 F. YU

if c ≥ 3,400.
R3: Since u ≤ 0.6 and v ≥ ε′u, we have

η1(u, v) ≥ (
2c(0.4) + 1

)
ε′u − u,

if c ≥ 5. The validity of η2 ≥ ξ2 comes from the same argument as
for L1.

R4: The validity of η2 ≥ ξ2 comes from the same argument as for L1.

Let s0 = [(log(12/11))/F2]∧[(log(45/23))/(F1 +2)]. These choices guarantee
that for s ∈ [0, s0], πv(F

s
ξ (u0, v0)) ≤ 0.6 if v0 ≤ 0.55 and

F s
ξ (u0, v0) = (eF1su0, e

−2sv0) ∈ {
v ≥ 23

90u
}

if v0 ≥ 0.5u0. For θ ∈ [0,0.2], s ∈ [0, s0] and (u0, v0) ∈ γθ , define

(us, vs) = ϕθ(s, (u0, v0)) = intersection of OF s
ξ (u0, v0) and γθ .(28)

Let �A′B ′E′ denote the triangle with vertices A′, B ′ and E′ = (ε′, ε′) (a subset
of R2). We claim that

α(u0, v0) /∈ R1 ∪ �A′B ′E′ �⇒ F s
ξ (αu0, αv0) ≥ α(1 + K1s)(us, vs),(29)

α(u0, v0) ∈ R1 ∪ �A′B ′E′ �⇒ F s
ξ (αu0, αv0) ≥ α(1 − K2s)(us, vs).(30)

Notice that this implies the required inequality in Assumption 4.1 because R1 ∪
�A′B ′E′ lies beneath the horizontal line v = ε = 0.24.

PROOF OF (29). First, consider the case (u0, v0) ∈ AθBθ . As ξ is linear in
R1 and R2, it suffices to restrict to θ = 0 and α = 1 in this case, that is, consider
(u0, v0) = λA + (1 − λ)B ∈ γ for some λ ∈ [0,1]. Note that (1/

√
17,4/

√
17) is a

unit normal vector perpendicular to AB . Provided F s
ξ (u0, v0) is to the left of B ′B ′′,

the rate of increase of F s
ξ (u0, v0)− (u0, v0) in the direction of (1/

√
17,4/

√
17) is(

F1πu(F
s
ξ (u0, v0)),−2πv(F

s
ξ (u0, v0))

) · (
1/

√
17,4/

√
17

)t
≥ (F1 − 8)πv(F

s
ξ (u0, v0))√

17
≥ (F1 − 8)0.5√

17
≥ K1,

by (27), where we can use the lower bound πv(F
s
ξ (u0, v0)) ≥ 0.5 since the trajec-

tory F s
ξ (u0, v0) for (u0, v0) ∈ AθBθ stays above AθBθ . On the other hand, once

the trajectory F s
ξ (u0, v0) hits B ′B ′′, the rate of increase of F s

ξ (u0, v0) − (u0, v0)

in the direction of (1/
√

17,4/
√

17) is

πv(F
s
ξ (u0, v0))(1.1F2,F2) · (

1/
√

17,4/
√

17
)t

= 5.1F2πv(F
s
ξ (u0, v0))√

17
≥ 5.1F2 · 0.5√

17
≥ K1,
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by (27). Therefore,

F s
ξ (u0, v0) ≥ (1 + K1s)(us, vs),

if (u0, v0) ∈ AθBθ .
Now, consider (u0, v0) ∈ BθCθ , with θ ∈ [0,0.2] and α ∈ (0,1] such that

αv0 ≥ ε′. Then (u0, v0) and (αu0, αv0) are in R3. Hence,

F s
ξ (αu0, αv0) = (αu0, αeF2sv0)

until, possibly, the trajectories hit B ′B ′′ (which will happen simultaneously by the
linearity of ξ in R3), when the u-coordinate will also start to increase. Further-
more, for (u0, v0) ∈ BθDθ , vs = v0 by the geometry of γθ and the definition of ϕ

in (28), thus

F s
ξ (αu0, αv0) ≥ α(1 + K1s)(us, vs)

in this case as well since F2 > K1. Similar reasoning applies when (u0, v0) ∈
CθDθ :

F s
ξ (αu0, αv0) ≥ (αu0e

−s, αv0e
F2s),

where we have equality provided F s
ξ (αu0, αv0) ∈ R4. Thus, before Fξ (u0, v0)

hits C′C′′, we have (us, vs) = (u0e
−(F2+1)s, v0) and

F s
ξ (αu0, αv0) ≥ αeF2s(us, vs) ≥ α(1 + K1s)(us, vs).

Notice that if (αu0, αv0) ∈ R4, then the u-coordinates of F s
ξ (αu0, αv0) will stop

decreasing once C′C′′ is hit. �

PROOF OF (2.5). According to the definition of ξ in R1 ∪ R2,

F s
ξ (αu0, αv0) = α(u0e

F1s, v0e
−2s)(31)

for α(u0, v0) ∈ R1 ∪�A′B ′E′, provided the trajectories remain in R1 ∪�A′B ′E′,
which is the case by the choice of s0. Assume, first, that (u0, v0) ∈ AθBθ . If
Fξ (u0, v0) does not hit B ′B ′′ [i.e., Fξ (αu0, αv0) does not hit OB ′] by time s,
then

F s
ξ (αu0, αv0) = αF s

ξ (u0, v0),

hence, in particular, even

F s
ξ (αu0, αv0) ≥ α(us, vs),

which implies (30). On the other hand, if Fξ (u0, v0) does hit B ′B ′′ by time s, then
(us, vs) = ϕθ(s, (u0, v0)) = Bθ and, hence,

F s
ξ (αu0, αv0) ≥ α(us, vse

−2s) ≥ α(1 − K2s)(us, vs),
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which establishes (30).
Now, consider the case (u0, v0) ∈ BθDθ , where we always have (us, vs) ≤

(u0, v0) (us decreases with s until the trajectory hits B ′B ′′, after which both us

and vs remain constant). Thus, (31) implies

F s
ξ (αu0, αv0) ≥ αe−2s(u0, v0) ≥ α(1 − K2s)(us, vs),

so (30) also holds in this case. The proof of Lemma 4.7 is now complete. �

4.2. Upper bounds: Existence of d2 and D2 in Condition (∗). We first establish
the following proposition.

PROPOSITION 4.8. If c is sufficiently large, then there exist constants d2 <

D2 < 1 and T such that if v0(x) < D2 for x ∈ [−L + l,L − l], then vt (x) < d2 for
x ∈ [−3L,3L] for all t ≥ T , where (ut , vt ) solves the PDE (15).

PROOF. Because of the monotonicity of (15), it suffices to consider the uni-
form initial condition u0 ≡ 1, v0 ≡ 1 and to show that vt < d2 for large t . There-
fore, we need only concern ourselves with the ODE

du

dt
= (

2c(1 − u) + 1
)
v − u,

dv

dt
= (

c(u − v) − 2
)
v.

We can bound η2(u, v) = (c(u − v) − 2)v for any v > 1 − 1/c as follows:

η2(u, v) = (
c(u − v) − 2

)
v ≤

(
c

(
1 −

(
1 − 1

c

))
− 2

)
v

= −v < −
(

1 − 1

c

)
< 0,

if c > 1. Thus, for any d2 satisfying 1 > d2 > 1 − 1/c, there exists T , such that if
u0 = v0 ≡ 1, then vt < d2 for t ≥ T . �

PROOF OF THEOREM 1.4. If we let M = L − l, then Corollary 4.6,
Lemma 4.7 and Proposition 4.8 show that Condition (∗) from the beginning of
Section 4 holds for the PDE system (15). This, in turn, implies the conclusion of
the theorem by section 3 of Durrett and Neuhauser [3]. �
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