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In [1] we introduced a class of positive recurrent Markov chains, named tame
chains. A perfect simulation algorithm, based on the method of dominated CFTP,
was then shown to exist in principle for such chains. The construction of a suitable
dominating process was flawed, in that it relied on an incorrectly stated lemma
([1], Lemma 6). This claimed that a geometrically ergodic chain, subsampled at
a stopping time σ , satisfies a geometric Foster–Lyapunov drift condition with co-
efficients not depending on σ . This is true if σ is a stopping time independent of
the chain, but not if this independence does not hold. Reference [1], Lemma 6 is
therefore false as stated.

We now indicate a corrected construction of a dominating process. As described
in [1], Section 3.1, the process D is defined by starting with a process Y and paus-
ing it using a function S. In the following modified construction this is simplified
by taking S = F , where F is the function taming X. We restate [1], Theorem 16,
and give a shorter proof, which avoids the faulty Lemma 6 but pays a price in
terms of consequences for the perfect simulation algorithm of Section 3.3. The
discussion of tameness (Section 4) is unaffected.

THEOREM 16. Suppose X satisfies the weak drift condition PV ≤ V + b1C ,
and that X is tamed with respect to V by the function

F(z) =
{ �λzδ�, z > d ′,

1, z ≤ d ′,
with the resulting subsampled chain X′ satisfying a drift condition PV ≤ βV +
b′1[V ≤d ′], with logβ < δ−1 log(1 − δ). Then there exists a stationary ergodic
process D which dominates V (X) at the times {σn} when D moves.

PROOF. Suppose that Dσn = z, and that V (Xσn) = V (x) ≤ z. We wish to show
that Dσn+1 can dominate V (Xσn+1), where σn+1 = σn+F(z) is the time at which D

next moves. Domination at successive times σj at which D moves then follows
inductively. For simplicity in the calculations below we set σn = 0.

First choose β∗ > β such that

logβ < logβ∗ < δ−1 log(1 − δ).(1)
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Our aim is to control Ex[V (XF(z))], recalling that F(z) is deterministic and that
F(V (x)) ≤ F(z):

Ex

[
V

(
XF(z)

)] = Ex

[
V

(
XF(V (x))

)] + Ex

[
V

(
XF(z)

) − V
(
XF(V (x))

)]
= Ex[V (X′

1)] + Ex

[
V

(
XF(z)

) − V
(
XF(V (x))

)]
≤ βV (x) + b′1[V (x)≤d ′] + b[F(z) − F(V (x))]
≤ βz + b′ + b(λ + 1)zδ

≤ β∗z for z ≥ h∗,(2)

where h∗ < ∞ is a constant chosen sufficiently large for inequality (2) to hold.
The first inequality in this sequence holds due to the drift conditions satisfied by
X′ and X. The second follows from the definition of F and the assumption that
V (x) ≤ z.

Now define the process Y = h∗ exp(U), where U is the system workload of
a D/M/1 queue with arrivals every log(1/β∗) time units and service times be-
ing independent and of unit Exponential distribution. As in the original proof of
Theorem 16, Y may be paused using F to obtain the process D which is positive
recurrent and has a proper equilibrium distribution by virtue of inequality (1).

Finally, observe that D takes values in [h∗,∞). As in the proof of Theorem 5
of [2], it follows from inequality (2) that V (XF(z)) can be dominated by DF(z), as
required. �

The majority of Section 3.3 remains valid when the dominating process is con-
structed as above. The only issue is that by taking S = F in this new method we are
no longer assured that S(h∗) ≥ m, where the set C∗ = {x : V (x) ≤ h∗} is m-small.
Unfortunately, there no longer seems to be a simple way to ensure this since our
attempts to increase S in the above always result in an increased value of h∗.

If it so happens that F(h∗) ≥ m for a given chain, then the original perfect simu-
lation algorithm remains unchanged. If this is not the case, then the algorithm must
be altered. It now becomes necessary, when D0 = h∗, for D to dominate V (X) not
at time σ1 = F(h∗) but at time

σ ∗ = inf
j≥2

{σj :σj ≥ m}.

This is an example of the composite nondeterministic sampling schemes we had
originally hoped to avoid (cf. the comment before [1], Theorem 15]). Furthermore,
we need to be able to couple target chains and dominating process at σ ∗ in such
a way that the target chains may regenerate at this time (using the fact that C∗ is
σ ∗-small). This unfortunately reduces the impact of the result, which is an issue
that we are currently trying to resolve.
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