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Let L be a multidimensional Lévy process under P in its own filtra-
tion. The f q -minimal martingale measure Qq is defined as that equiva-
lent local martingale measure for E(L) which minimizes the f q -divergence
E[(dQ/dP )q ] for fixed q ∈ (−∞,0) ∪ (1,∞). We give necessary and suffi-
cient conditions for the existence of Qq and an explicit formula for its den-
sity. For q = 2, we relate the sufficient conditions to the structure condition
and discuss when the former are also necessary. Moreover, we show that Qq

converges for q ↘ 1 in entropy to the minimal entropy martingale measure.

1. Introduction. Lévy models are very popular in finance due to their
tractability and their good fitting properties. However, Lévy models typically yield
incomplete markets. This raises the question of which measure one should choose
for valuation or pricing of nonhedgeable payoffs. Very often, a measure is chosen
which minimizes a particular functional over the set Me(S) of equivalent local
martingale measures for the underlying assets S. This choice can be motivated by
a dual formulation of a primal utility maximization problem; see Kramkov and
Schachermayer [15] and Frittelli [7]. If P denotes the subjective measure, then
the functional on Me(S) is typically of the form Q �→ EP [f (dQ/dP )], where f

is a convex function on (0,∞). Then f (Q|P) := EP [f (dQ/dP )], known as the
f -divergence of Q with respect to P , is a measure for the distance between Q

and P ; see Liese and Vajda [18] for a textbook account. Hence, one chooses as
pricing measure the martingale measure which is closest to P with respect to some
f -divergence.

In this article, we consider f q(Q|P) corresponding to f q(z) = zq for q ∈
(−∞,0)∪ (1,∞). The optimal measure Qq is then called the f q -minimal martin-
gale measure. More precisely, we work on a probability space (�,F ,P ) equipped
with a filtration which is the P -augmentation of that generated by a d-dimensional
Lévy process L and model the traded assets S as the stochastic exponential
S = E(L). Based on an explicit formula for f q(Q|P) in terms of the Girsanov
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parameters (β,Y ) of Q, we show that f q(Q|P) is reduced if Q is replaced by
some Q ∈ Me(S), which is defined via its Girsanov parameters (β,Y ); see Theo-
rem 2.6. The measure Q preserves the Lévy property of L, that is, L is a Q-Lévy
process. We deduce that Qq also has this property and that for minimization of
f q(Q|P), it suffices to consider those Q ∈ Me(S) which preserve the Lévy prop-
erty of L. As illustrated in Theorem 2.7, this allows the reduction of the mini-
mization of f q(Q|P) to a deterministic convex optimization problem (Pq) whose
solution corresponds to the Girsanov parameters of Qq and hence provides an ex-
plicit formula for Qq . In particular, (Pq) has a solution if and only if Qq exists. By
formally applying the Kuhn–Tucker theorem to (Pq), we obtain, in Theorem 2.9,
conditions (Cq), which are sufficient for the existence of a solution to (Pq) and
which can easily be verified in practice. From (Cq), one can immediately deduce
the solution to (Pq) and hence obtain the explicit formula for Qq . For q = 2, we
relate Q2 to the variance optimal signed martingale measure and (C2) to the struc-
ture condition (SC). In Theorem 3.1, we specify some cases in which (C2) is not
only sufficient, but also necessary for the existence of Q2; this requires an addi-
tional integrability condition for L. Finally, we prove that, under some technical
assumptions, Qq converges for q ↘ 1 in entropy to the minimal entropy martin-
gale measure Pe and also that the corresponding Girsanov parameters converge;
Pe is defined as that measure Q which minimizes the divergence corresponding to
f (z) := z log z over all local martingale measures for S. The convergence is shown
by an application of the implicit function theorem; for this, (Cq) must be rewrit-
ten as the root of an appropriate function. A concluding example illustrates that
the technical conditions we must impose for convergence can all be satisfied in a
reasonable model.

Some of the results and concepts have been studied before. In [6], Esche and
Schweizer use an approach similar to our Theorem 2.6, but for Pe instead of Qq .
However, we define (β,Y ) above by a pointwise criterion, whereas they obtain
them from averaging the Girsanov parameters of the original measure Q with re-
spect to an appropriate measure on �×[0, T ]. Therefore, they require an extensive
approximation procedure in order to prove that Q is, in fact, a martingale measure.
We thus do not only generalize their approach to Qq , but, more importantly, sig-
nificantly simplify it. Although problem (Pq) itself seems not to have been studied
before, the sufficient conditions (Cq) for q ∈ (−∞,0) also appear in Kallsen [14]
and Goll and Rüschendorf [10]. However, they do only state (Cq) without mo-
tivating its definition, which is done in our approach. Very recently, we became
familiar with an article by Choulli, Stricker and Li [4] in which they obtain (Cq)

for general q , but for the minimal Hellinger martingale measure qQ of order q

instead of Qq . In Section 2, we show that Qq and qQ coincide in our Lévy set-
ting. Convergence of Qq to Pe for q ↘ 1 was studied for continuous processes by
Grandits and Rheinländer in [11], but an extension to processes which also have
a jump part seems to be missing. The discussion of the conditions when (C2) is
even necessary for the existence of Q2 also seems to be new. Finally, we think it is
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remarkable that our approach is very intuitive and accessible to anyone interested
in risk-neutral measures.

The paper is structured as follows. In Section 2, we give necessary and suffi-
cient conditions for the existence of Qq and an explicit formula for its density.
Section 3 covers additional results for the special case q = 2. Convergence of Qq

to Pe is presented in Section 4. Appendix A contains the required results on Lévy
processes, Appendix B some auxiliary calculations and Appendix C some proofs
omitted from the main body the article.

2. Structure and existence of the f q -minimal martingale measure. In this
section, we give necessary and sufficient conditions for the existence of the f q -
minimal martingale measure (qMMM) Qq for an exponential Lévy process S; in
the entire section, q ∈ I := (−∞,0) ∪ (1,∞) is arbitrary but fixed. In particular,
we provide explicit formulas for the density of Qq .

To begin with, some notation and conventions are introduced; our basic refer-
ence is Jacod and Shiryaev [13]. Throughout the article, we work on a filtered
probability space (�,F ,F,P ), where F = F

L is the P -augmentation of the fil-
tration generated by a d-dimensional Lévy process L = (Lt )0≤t≤T with charac-
teristic triplet (b, c,K) with respect to the truncation function h(x) := xI{‖x‖≤1}
and where T is a finite time horizon. If it exists, we choose a right-continuous
version of any process. The random measure associated with the jumps of L

is denoted by µL and νP (dx, dt) = K(dx)dt is the predictable P -compensator
of µL; all required background on Lévy processes and unexplained terminol-
ogy can be found in Appendix A. The stochastic exponential of L is denoted by
S := E(L) = (E(L1), . . . ,E(Ld))∗, where ∗ indicates the transpose of a vector.
We assume that the process S is strictly positive, that is, that �Li > −1, P -a.s.
for i ∈ {1, . . . , d}. By Me(S), we denote the set of all equivalent local martingale
measures for S; note that Me(S) = Me(L) due to Ansel and Stricker [1], Corol-
lary 3.5. For f q(z) := zq and q ∈ I , the qMMM Qq ∈ Me(S) is characterized by
the property that it minimizes the f q -divergence

f q(Q|P) := E[f q(Z
Q
T )] = E[(ZQ

T )q]
over all Q ∈ Me(S); by E[·], we denote the expectation with respect to P

and for any Q 
 P , its real-valued density process ZQ = (Z
Q
t )0≤t≤T with

Z
Q
t := E[dQ/dP |Ft ] is defined with respect to P . In particular, we require that

f q(Qq |P) < ∞, that is, that Qq is contained in the set

Qq := {Q ∈ Me(S)|f q(Q|P) < ∞}.
In the present Lévy setting, any Q ≈ P can be fully described by its Girsanov
parameters (β,Y ) with respect to L and we write Q = Q(β,Y ) to emphasize this;
see Proposition A.3 in Appendix A. It is well known that the P -Lévy process L

is also a Q(β,Y )-Lévy process for some Q(β,Y ) equivalent to P , if and only if β
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and Y are time-independent and deterministic; see Corollary A.5 in Appendix A.
The set of all Q ∈ Me(S) having this property will be of importance later and we
denote it by

Q := {
Q(β,Y ) ∈ Me(S)|(β,Y ) time-independent and deterministic

}
.

REMARK 2.1. All results are stated for S = E(L). However, we could equiva-
lently work with S = eL̃, where L̃ is a P -Lévy process with P -characteristic triplet
(b̃, c̃, K̃) since eL̃ = E(L) if L has characteristic triplet

b = b̃ + 1
2(c̃11, . . . , c̃dd)∗ +

∫
Rd

(
h(ex − 1) − h(x)

)
K̃(dx),

c = c̃,

K(G) =
∫

Rd
I{(ex−1)∈G}K̃(dx),

where 1 = (1, . . . ,1)∗; this holds by Itô’s formula and is stated explicitly in Goll
and Kallsen [9], Lemma A.8. Analogously, discounting with respect to some nu-
meraire can also be captured by a modification of the characteristic triplet of L;
see Corollary A.7 in Goll and Kallsen [9].

2.1. Reducing the problem. In this subsection, we simplify the characteriza-
tion of the qMMM Qq ∈ Qq

f q(Qq |P) = inf
Q∈Me(S)

f q(Q|P) < ∞.(2.1)

More precisely, we show that Qq can be fully described as the solution to a deter-
ministic optimization problem in R

d which has a solution if and only if Qq exists.
For this, we exploit the fact that the dynamics of the Lévy process L, and hence
those of S, are time-independent; this becomes apparent in (b, c,K). In fact, we
show that it does not only suffice to minimize the f q -divergence f q(Q|P) over the
set Qq , but over those Q = Q(β,Y ) with deterministic, time-independent Girsanov
parameters, that is, those which are contained in Q.

As a first step in this direction, we give a nice formula for f q(Q|P). For this,
we introduce the strictly convex, nonnegative function

gq(y) := yq − 1 − q(y − 1), y ∈ (0,∞).

PROPOSITION 2.2. Let Q = Q(β,Y ) ∈ Qq with density process Z = ZQ =
E(N). The canonical P -decomposition of the P -submartingale f q(Z) = Zq =
1 + M + A is

M =
∫

Z
q
− dM̂ =

∫
f q(Z−) dM̂ with

M̂ := qN + gq(Y ) ∗ (µL − νP ) = qNc + (Y q − 1) ∗ (µL − νP )
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and

A =
∫

Z
q
− dÂ =

∫
f q(Z−) dÂ with

Â := q(q − 1)

2
〈Nc〉 + gq(Y ) ∗ νP .

Its multiplicative decomposition is f q(Z) = E(M̂)E(Â), where E(M̂) is a strictly
positive uniformly integrable P -martingale and E(M̂)0 = 1. With dRq

dP
:= E(M̂)T ,

the process E(Â) = eÂ is increasing and Rq -integrable and

f q(Q|P) = ERq [E(Â)T ] = ERq

[
exp

(∫ T

0
kq(βt , Yt ) dt

)]
,(2.2)

where kq(βt , Yt ) := q(q−1)
2 β∗

t cβt + ∫
Rd gq(Yt (x))K(dx).

PROOF. See Appendix C. �

The distinctive feature of Proposition 2.2 is formula (2.2). Note that for Q ∈ Q∩
Qq , the dependence on Rq vanishes, and that the formula reduces to the following
expression.

COROLLARY 2.3. If, in Proposition 2.2, we have Q(β,Y ) ∈ Qq ∩ Q, then

f q(Q|P) = eT kq(β,Y ) = exp
(
T

(
q(q − 1)

2
β∗cβ +

∫
Rd

gq(Y (x))K(dx)

))
.

PROOF. This is obvious from the definition of Q and k. �

As mentioned above, the Lévy structure is essentially time-independent. This
suggests that Qq should also be of this form, that is, that Qq ∈ Q ∩ Qq . We will
prove this as follows. By (2.2), we can find, for any Q(β,Y ) ∈ Qq , a pair (ω, t) ∈
� × [0, T ] such that β := βt(ω) and Y(x) := Yt (x,ω) satisfy

eT kq(β,Y ) ≤ f q(
Q(β,Y )|P )

.

However, we must ensure that (β,Y ) can be identified with the Girsanov parame-
ters of some Q = Q(β,Y ) ∈ Q ∩ Qq so that, by Corollary 2.3,

eT kq(β,Y ) = f q(Q|P).

This is the content of our next result.

PROPOSITION 2.4. Let β ∈ R
d and Y : Rd → R+ be a measurable function

such that Y > 0, K-a.e.,

kq(β,Y ) < ∞(2.3)
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and the martingale condition holds, that is,∫
Rd

|xY (x) − h(x)|K(dx) < ∞,

(M)
b + cβ +

∫
Rd

(
xY (x) − h(x)

)
K(dx) = 0.

(β,Y ) are then the Girsanov parameters of some Q := Q(β,Y ) ∈ Q ∩ Qq .

PROOF. See Appendix C. �

REMARK 2.5. Proposition A.7 in Appendix A justifies why we refer to (M)
as a martingale condition.

THEOREM 2.6. Let Qq �= ∅. Then:

1. for any Q ∈ Qq , there exists Q ∈ Q such that

f q(Q|P) ≤ f q(Q|P);
2. for every ε > 0, there exists Q ∈ Q such that

f q(Q|P) ≤ inf
Q∈Me(L)

f q(Q|P) + ε;

3. if the qMMM Qq exists, then Qq ∈ Q.

PROOF. 1. By part 1 of Remark A.2, Propositions 2.2 and A.7, and since Q =
Q(β,Y ) ∈ Qq , there exists (ω, t) ∈ �×[0, T ] and such that β := βt(ω) and Y (x) :=
Yt (x,ω) satisfy Y(x) > 0, K-a.e., (M) and

eT kq(β,Y ) ≤ ERq

[
exp

(∫ T

0
kq(βt , Yt ) dt

)]
= f q(Q|P) < ∞;

note that β and Y satisfy Yt (x,ω) > 0 K-a.e. and (M) for dP ⊗ dt-a.e. (ω, t) ∈
� × [0, T ]. The claim then follows from Proposition 2.4 and Corollary 2.3.

2. Since Qq �= ∅ and by the definition of the infimum, there exists Q′ ∈ Qq

such that f q(Q′|P) ≤ infQ∈Me(L) f
q(Q|P) + ε. Thus 2 follows from 1 applied to

Q′.
3. Since z �→ zq is strictly convex on R+, Qq is unique. Thus 3 follows imme-

diately from 1 applied to Qq . �

The proof of Theorem 2.6 is similar to the ansatz used by Esche and Schweizer
in [6] for the minimal entropy martingale measure Pe; the latter is defined as
that local martingale measure Q for S which minimizes the relative entropy
EQ[log(dQ/dP )]. However, for Q(β,Y ) ∈ Qq we define the Girsanov parame-
ters of a measure Q with f q(Q|P) ≤ f q(Q(β,Y )|P) by fixing (ω, t) ∈ � × [0, T ],
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that is, we set β := βt(ω) and Y(x) := Yt (x,ω), whereas they average β and Y

with respect to an appropriate measure on �×[0, T ]; in our setting, this would be
dRq ⊗ dt with Rq from Proposition 2.2. The advantage of our pointwise approach
is that it ensures that Q ∈ Me(S), whereas Esche and Schweizer apply Fubini’s
theorem to prove that Q is again a local martingale measure. The latter requires
an additional integrability condition on L which is not satisfied in general. Thus
they must show that there is a dense subset of local martingale measures with this
integrability condition and apply additional approximation procedures. This can
all be avoided by our approach.

Next, we state the aforementioned deterministic optimization problem. It uses
the fact that Proposition 2.4 provides us with a complete characterization of the set
Q∩Qq ; necessity of (2.3) and (M) follow from Corollary 2.3 and Proposition A.7
in Appendix A. Since we know from Theorem 2.6 that Qq , if it exists, is contained
in Q ∩ Qq , we can thus describe Qq as the solution to the following optimization
problem which has a solution if and only if Qq exists.

(Pq): Find a solution (β̂q, Ŷq) to

minimize kq(β,Y ) = q(q − 1)

2
β∗cβ +

∫
Rd

gq(Y (x))K(dx)

over

Aq := {
(β,Y )|β ∈ R

d, Y : Rd → R+ measurable,

Y > 0, K-a.e., (β,Y ) satisfies (M), kq(β,Y ) < ∞}
.

THEOREM 2.7. (i) If the qMMM Qq = Q(βq,Yq) exists in Qq , then (βq, Yq)

solves (Pq), that is, (βq, Yq) = (β̂q, Ŷq).
(ii) If (β̂q, Ŷq) solves (Pq), then Qq exists and has Girsanov parameters

(β̂q, Ŷq), that is, Qq = Q(β̂q,Ŷq ).

PROOF. (i) By 3 of Theorem 2.6, we have Qq ∈ Q and Proposition A.7 im-
plies that (βq, Yq) satisfies (M), so (βq, Yq) ∈ Aq by Corollary 2.3. Suppose
that there exists (β,Y ) ∈ Aq with kq(β,Y ) < kq(βq,Yq) < ∞. Then, by Propo-
sition 2.4 and Corollary 2.3, there exists Q := Q(β,Y ) ∈ Q ∩ Qq such that

f q(Q|P) = eT kq(β,Y ) < eT kq(βq,Yq) = f q(Qq |P),

which contradicts the definition of Qq .

(ii) By Proposition 2.4, (β̂q, Ŷq) defines some Q̂ := Q(β̂q,Ŷq ) ∈ Qq ∩ Q and by

Corollary 2.3, we have f q(Q̂|P) = eT kq(β̂q ,Ŷq ). Suppose that there exists Q′ =
Q(β ′,Y ′) ∈ Qq such that

f q(Q′|P) < f q(Q̂|P).(2.4)
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By 1 of Theorem 2.6, we may assume that Q′ ∈ Q, so by Proposition A.7, we
have (β ′, Y ′) ∈ Aq and by Corollary 2.3, f q(Q′|P) = eT kq(β ′,Y ′). However, (2.4)
then implies that kq(β ′, Y ′) < kq(β̂q, Ŷq), a contradiction to (β̂q, Ŷq) solving (Pq).
Consequently, Q̂ = Qq . �

REMARK 2.8. Existence results for Qq can also be found in Bellini and Frit-
telli [2], but they do not give an explicit formula for Qq ; also see the related article
[15] of Kramkov and Schachermayer.

2.2. Sufficient conditions. In this section, we introduce and discuss conditions
(Cq) which are sufficient for the existence of a solution to (Pq). In particular,
(Cq) yields an explicit expression for this solution and hence also for the Girsanov
parameters of Qq . Although (Cq) is, in general, only a sufficient condition, it has
the advantage that in explicit models it is usually easier to check (Cq) than to find
a solution to (Pq). We now deduce (Cq) via a formal application of the Kuhn–
Tucker theorem to (Pq); see Theorem 28.3 in Rockafellar [19]. It then remains to
check that (Cq) implies a solution to (Pq).

(Cq): There exists λ̃q ∈ R
d with Ỹq(x) := ((q − 1)̃λ∗

qx + 1)1/(q−1) > 0, K-a.e.
and such that (M) is satisfied for (β̃q, Ỹq), where β̃q := λ̃q .

THEOREM 2.9. Let Qq �= ∅ and let (Cq) hold. (β̃q, Ỹq) then solves (Pq), that
is, (β̃q, Ỹq) = (β̂q, Ŷq).

PROOF. We show that (β̃q, Ỹq) solves (Pq). First, note that Aq �= ∅ since
Qq �= ∅. In fact, the latter implies, by Theorem 2.6, that Qq ∩Q �= ∅ and Aq �= ∅

follows from Corollary 2.3 and Proposition A.7 in Appendix A. Let (β,Y ) ∈ Aq .
Convexity and the definition of (β̃q, Ỹq) imply that

β∗cβ − β̃∗
q cβ̃q ≥ 2β̃∗

q c(β − β̃q) = 2̃λ∗
qc(β − β̃q)(2.5)

and

gq(Y (x)) − gq(Ỹq(x)) ≥ g′
q(Ỹq(x))

(
Y(x) − Ỹq(x)

)
= q(Ỹ q−1

q − 1)
(
Y(x) − Ỹq(x)

)
= q(q − 1)̃λ∗

qx
(
Y(x) − Ỹq(x)

)
.

Next, we average both sides of the previous expression with respect to K ; note
that everything is well defined (possibly −∞) since kq(β,Y ) < ∞ and gq(·) ≥ 0
on (0,∞). Since (β,Y ) and (β̃q, Ỹq) satisfy (M), we thus obtain∫

Rd

(
gq(Y (x)) − gq(Ỹq(x))

)
K(dx) ≥ q(q − 1)̃λ∗

qc(β̃q − β).

This, together with (2.5) and kq(β,Y ) < ∞, implies that kq(β,Y ) ≥ kq(β̃q, Ỹq)

and the proof is complete. �
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REMARK 2.10. (i) In (Cq), we assumed Ỹq(x) > 0, K-a.e. but not that
Ỹq(x) ≥ 0 for all x ∈ R

d , which is presumed for (β̃q, Ỹq) to be a solution to (Pq).
However, we identify all functionals on R

d which are K-a.e. equal since they will
describe the same probability measure.

(ii) The assumption Ỹq(x) > 0, K-a.e. in (Cq) looks very restrictive since it
holds if and only if (q − 1)̃λ∗

qx > −1, K-a.e. However, we assumed that S = E(L)

is strictly positive, that is, that �Li > −1 for i ∈ {1, . . . , d}, so that supp(K) ⊆
[−1,∞)d .

(iii) In Theorem 2.9, Qq �= ∅ can be replaced by∫
Rd

gq(Ỹq(x))K(dx) < ∞.(2.6)

In fact, Qq �= ∅ enters only via Aq �= ∅. However, (2.6) implies that (β̃q, Ỹq) ∈
Aq , that is, that Aq �= ∅.

(iv) For q = 2, condition (2.6) holds if and only if
∫
(̃λ∗

2x)2K(dx) < ∞. In
particular, if d = 1 (and λ̃2 �= 0), this is equivalent to (local) P -square integrability
of L; see Proposition II.2.29 of Jacod and Shiryaev [13].

Condition (Cq) appears for q ∈ (−∞,0) also in Kallsen [14] and in Goll and
Rüschendorf [10]. However, they do not explain their motivation for the definition
of (Cq). Instead, they prove by direct calculation that (Cq) determines the qMMM
since the conditions which yield an optimal strategy for power utility (resp. an f -
projection) are satisfied. In a very recent work, Choulli, Stricker and Li [4] state
(Cq) for general q , but for the minimal Hellinger martingale measure qQ of or-
der q instead of Qq . We finish this section by linking qQ and Qq in the present
Lévy setting. This is not only interesting per se, but gives a better understanding of
(Cq). For the entire discussion, we assume that Qq �= ∅. By Propositions 3.3 and
3.5 in Choulli, Stricker and Li [4], qQ = Q(qβ,qY ) can be characterized as that local
martingale measure for S (or L) such that

∫
kq(βt , Yt ) dt − ∫

kq(qβt ,
qYt ) dt is an

increasing process for all local martingale measures Q = Q(β,Y ) with dQ/dP =
E(N) and N locally q-integrable. Applying analogous arguments as for Theo-
rem 2.6, one can show that it suffices to consider Qq ∩ Q and conclude that (the
Girsanov parameters of) Qq can also be obtained as the solution to (Pq). Conse-
quently, qQ and Qq correspond in the present Lévy setting, provided they exist.
Thus, it is no surprise that the sufficient condition given in [4] is also very sim-
ilar to (Cq ). More precisely, with D := {λ ∈ R

d |1 + infx∈supp(K) λ
∗x ≥ 0}, their

condition reads int(D) �= ∅ and∫
Rd

∣∣(1 + λ∗x)1/(q−1)x − h(x)
∣∣K(dx) < ∞ for all λ ∈ int(D).(2.7)

However, they use (2.7) only to ensure the existence of some λ ∈ int(D) satisfying
(M); see Lemma 4.4 in [4]. Moreover, in Corollary 4.6, they show that if q > 1 and
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int(D) �= ∅, then S (or equivalently L) is locally p-integrable for p := q/(q − 1)

if and only if (2.7) holds. Consequently, if q > 1 and S is locally p-integrable, then
(Cq ) holds as soon as int(D) �= ∅.

3. The variance minimal martingale measure. In this section, we study the
important special case q = 2 and refer to Q2 as the variance minimal martingale
measure (VMMM). We relate Q2 and (C2) to the variance optimal signed martin-
gale measure (VOSMM) P̃ and the so-called structure condition (SC). Moreover,
we discuss in which cases the (easily checked) condition (C2) is not only sufficient
but also necessary for the existence of Q2.

3.1. Connection to the variance optimal signed martingale measure. The
VMMM Q2 is obviously related to the variance optimal signed martingale mea-
sure P̃ which arises in the mean-variance hedging approach; see Schweizer [21]
for an overview and terminology not explained here. The measure P̃ is obtained
by minimizing the variance of the density dQ/dP over all signed local martingale
measures Q for S. Therefore, Q2 and P̃ coincide if and only if P̃ is a proba-
bility measure equivalent to P . In a Lévy setting, P̃ corresponds to the minimal
signed martingale measure P̂ which appears in the local risk minimizing hedging
approach. It is well known that P̂ exists (even in a more general setting) if the
structure condition (SC) is satisfied; (SC) also provides an explicit formula for the
density of P̂ . Consequently, there should be a link between (SC) and (C2). The
latter is discussed in this section.

We first introduce (SC) in the Lévy setting. For this, we need L to be a special
semimartingale so that by Jacod and Shiryaev ([13], Corollary II.2.38 and Propo-
sition II.2.29), we have

Lt = (
Lc

t + x ∗ (µL − νP )t
) +

(
b +

∫
Rd

(
x − h(x)

)
K(dx)

)
t

=: Mt + γ t =: Mt + At .

In addition, (SC) requires that the (local) martingale M is locally P -square inte-
grable, that is,

∫ ‖x‖2K(dx) < ∞. M is then P -square integrable and

〈M〉t =
(
c +

∫
Rd

xx∗K(dx)

)
t =: σ t.

(SC) is satisfied if there exists a d-dimensional predictable process λ with

A =
∫

d〈M〉λ and K̂T :=
∫

λ∗ d〈M〉λ < ∞;(3.1)

see Definition 1.1 in Choulli and Stricker [3] and Section 12.3 in Delbaen and
Schachermayer [5] for a related discussion. Since At = γ t and 〈M〉t = σ t , (3.1)
holds if and only if there exists λ ∈ R

d such that γ = σλ or, equivalently, such that

b +
∫

Rd

(
x − h(x)

)
K(dx) =

(
c +

∫
Rd

xx∗K(dx)

)
λ.(3.2)
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Under (SC), we can define N̂ := − ∫
λ∗ dM . If Ẑ := E(N̂) is a P -martingale,

then dP̂
dP

:= ẐT defines a signed measure called the minimal signed martingale
measure for L. By Proposition 2 of Schweizer [20], it is a local martingale measure
for L in the sense that ẐL is a local P -martingale. Note that if Ẑ > 0, that is,
if −λ∗�M > −1, then Ẑ = E(N̂) is a local martingale and, as in the proof of
Proposition A.6, an application of Theorem II.5 of Lépingle and Mémin [17] yields
that it is a P -martingale, that is, P̂ ∈ Me(L). Since the mean-variance trade-off
process

K̂t :=
∫ t

0
λ∗ dAs =

〈∫
λ∗ dM

〉
t

= λ∗σλt

is deterministic, Theorem 8 of Schweizer [20] implies that P̂ is equal to the
variance-optimal signed martingale measure P̃ . The measures P̃ and Q2 coincide
if P̃ = P̂ is an equivalent probability measure, that is, if ẐT > 0.

We next show that if
∫ ‖x‖2K(dx) < ∞, then (SC) together with ẐT > 0 is

equivalent to (C2). In fact, (SC) with ẐT > 0 holds by (3.2) if and only if there
exists λ ∈ R

d such that

Y(x) := −λ∗x + 1 > 0, K-a.e.,∫
Rd

|x(−λ∗x + 1) − h(x)|K(dx) < ∞,

b − cλ +
∫

Rd

(
x(−λ∗x + 1) − h(x)

)
K(dx) = 0.

With the replacement λ̃2 := −λ, this equals (C2); note that the assumption∫ ‖x‖2K(dx) < ∞ implies (2.6). By Theorem 1 of Schweizer [20], if either L is
continuous and Me(S) �= ∅, or

∫ ‖x‖2K(dx) < ∞ and Q2 �= ∅, then (SC) holds
and P̂ exists. In the first case, we have ẐT > 0, so (C2) equals (SC); in that case,
Q2 always exists. In the second case, (C2) reduces to ẐT > 0; see also the discus-
sion at the end of Section 2.2.

3.2. Necessary conditions. In this section, we give conditions under which
(C2) is also necessary for the existence of Q2. As suggested by part 4 of Re-
mark 2.10, we assume for the rest of the section that L is (locally) P -square inte-
grable, that is, we make the following assumption.

ASSUMPTION.
∫
Rd ‖x‖2K(dx) < ∞. Recall that (b, c,K) denotes the char-

acteristic triplet of L. To state the main theorem of this section, we introduce the
following condition.

(D): The Girsanov parameters (β2, Y2) of Q2 = Q(β2,Y2) are such that

H1(Y2) :=
{

 ∈ L2(K)

∣∣∣ ∫ 
(x)xK(dx) = 0 ∈ R
d,

|
(x)| ≤ aY2(x) K-a.e. for some a > 0
}
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is L2(K)-dense in

H2 :=
{

 ∈ L2(K)

∣∣∣ ∫ 
(x)xK(dx) = 0 ∈ R
d

}
;

elements of L2(K) are R-valued.

THEOREM 3.1. If the VMMM Q2 = Q(β2,Y2) exists in Q2, then (C2) is satis-
fied for some λ̃2 and (̃λ2, Ỹ2) = (β2, Y2) in both of the following cases:

1. c is invertible;
2. c = 0 and (D) holds.

REMARK 3.2. By Theorem 2.7, we could equivalently state condition (D)

and Theorem 3.1 in terms of the solution (β̂2, Ŷ2) to (P2) instead of the Girsanov
parameters (β2, Y2) of Q2 = Q(β2,Y2).

Before we prove Theorem 3.1, we show that if c = 0 and d = 1, that is, if L is
one-dimensional and has no Brownian part, then condition (D) is automatically
satisfied.

LEMMA 3.3. If Q2 = Q(β2,Y2) exists in Q2, d = 1, c = 0 and supp(K) �= ∅,
then (D) holds true.

PROOF. For an arbitrary 
 ∈ H2, we construct a sequence (
n)n∈N ⊆
H1(Y2) converging to 
 in L2(K). To this end, we define, for n ∈ N,

An := {x ∈ R||
(x)| ≤ nY2(x)} and αn :=
∫

R


(x)IAn(x)xK(dx).

By the dominated convergence theorem, limn→∞ αn = ∫

(x)xK(dx) = 0; this

uses the fact that
∫

x2K(dx) < ∞. Set δ(x) := sign(x)(|x| ∧ Y2(x)) and note that
|δ(x)| ≤ Y2(x) and that δ ∈ L2(K) implies δ(x)|x| ∈ L1(K). Therefore,

γ :=
∫

R

δ(x)xK(dx) =
∫

R

|x|(|x| ∧ Y2(x)
)
K(dx) < ∞

and γ > 0 since supp(K) �= ∅ and K({0}) = 0 implies that xδ(x) > 0, K-a.e. Let

n(x) := 
(x)IAn − αn

γ
δ(x) so that 
n ∈ L2(K),

|
n(x)| ≤ |
(x)IAn | +
|αn|
γ

|δ(x)| ≤
(
n + |αn|

γ

)
Y2(x)

and ∫
R


n(x)xK(dx) = αn − αn

γ

∫
R

δ(x)xK(dx) = 0,
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so that 
n ∈ H1(Y2). Moreover, by the dominated convergence theorem and since
limn→∞ αn = 0, we have

lim
n→∞

∫
R

|
(x) − 
n(x)|2K(dx)

≤ lim
n→∞ 2

(∫
R

|
(x)IAc
n
|2K(dx) +

∫
R

∣∣∣∣αn

γ
δ(x)

∣∣∣∣2K(dx)

)
= 0.

This completes the proof. �

PROOF OF THEOREM 3.1. The main idea is to exploit Theorem 2.7, that is,
the fact that (β2, Y2) solves (P2), and deduce that under the assumptions of Theo-
rem 3.1, the solution of (P2) has the form as in (C2). First, we construct elements
in (A2) close to (β2, Y2). Fix φ ∈ R

d and 
 ∈ L2(K) with |
(x)| ≤ aY2(x), K-
a.e. for some a > 0 and

cφ +
∫

Rd

(x)xK(dx) = 0;(3.3)

if c = 0, this means that 
 ∈ H1(Y2). For ε > 0 sufficient small, (β2 + εφ,Y2 +
ε
) is in A2; 
 can be modified on a set of K-measure zero. Since g2(y) =
(y − 1)2 and

∫
g2(Y2(x))K(dx) < ∞, we can define

Hφ,
(ε) := (β2 + εφ)∗c(β2 + εφ) +
∫

Rd

(
Y2(x) + ε
(x) − 1

)2
K(dx)

and obtain
d

dε
Hφ,
(ε) = 2

(
εφ∗cφ + β∗

2 cφ +
∫

Rd

(x)

(
Y2(x) + ε
(x) − 1

)
K(dx)

)
.

Since (β2, Y2) solves (P2), we have

0 = d

dε
Hφ,
(0) = 2

(
β∗

2 cφ +
∫

Rd

(x)

(
Y2(x) − 1

)
K(dx)

)
.(3.4)

We now proceed separately for the two cases of Theorem 3.1, starting with 1. Here,
(3.4), together with (3.3), yields∫

Rd

(
β∗

2 x − (
Y2(x) − 1

))

(x)K(dx) = 0.(3.5)

Moreover, 
 ∈ L2(K) can be chosen arbitrarily under the condition that |
(x)| ≤
aY2(x), K-a.e., for some a > 0 because (3.3) can always be satisfied by setting
φ := −c−1 ∫

x
(x)K(dx). Consequently, (3.5) implies that

β∗
2 x − (

Y2(x) − 1
) = 0, K-a.e.(3.6)

In fact, suppose that β∗
2 x − (Y2(x)− 1) > 0 on a set A ⊆ R

d with K(A) > 0. Then


̃(x) := (

√
‖x‖2 ∧ 1 ∧ Y2(x))IA ∈ L2(K), 
̃ > 0, K-a.e., |
̃| ≤ Y2 and∫

Rd

(
β∗

2 x − (
Y2(x) − 1

))

̃(x)K(dx) > 0
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contradicts (3.5). Since (β2, Y2) solves (P2), we thus obtain from (3.6) that
λ̃2 := β2 satisfies (C2). This proves part 1. For part 2, we introduce L0 ⊆ L2(K)

as the subspace of all (equivalence classes of) linear functionals. Since L0 is d-

dimensional, it is closed and L0 = (L0⊥
)⊥ = H2⊥

. Therefore, (3.4) with c = 0
and (D) yield (Y2(x) − 1) ∈ H2⊥ = L0 and hence (Y2(x) − 1) = α∗x, K-a.e. for
α ∈ R

d . Setting λ̃2 := α implies 2 since (β2, Y2) solves (P2). �

4. Convergence to the minimal entropy martingale measure. In this sec-
tion, we discuss the relationship between Qq and the minimal entropy martin-
gale measure (MEMM) Pe which minimizes the relative entropy H(Q|P) =
E[dQ/dP logdQ/dP ] over all local martingale measures Q for S. More pre-
cisely, we show that under some technical assumptions, Qq converges for q ↘ 1
in entropy to Pe; this extends a result of Grandits and Rheinländer from continuous
to Lévy processes. In particular, we prove convergence of the Girsanov parame-
ters. At the end of this section, we give a general example in which all assumptions
we impose are satisfied.

We first describe Qq and Pe via roots of functions. Assume that (Cq) holds for
all q ∈ (1,1 + ε] for some ε > 0 and that either Qq ′ �= ∅ or (2.6) is satisfied for
q ′ := 1 + ε. Then, for q ∈ (1,1 + ε], there exists λ̃q ∈ R

d such that

(q − 1)̃λ∗
qx + 1 > 0, K-a.e.,(4.1)∫ |x((q − 1)̃λ∗

qx + 1)1/(q−1) − h(x)|K(dx) < ∞ and �(̃λq, q) = 0 with

�(λ,q) := b + cλ +
∫

Rd

(
x
(
(q − 1)λ∗x + 1

)1/(q−1) − h(x)
)
K(dx).(4.2)

By Theorem 2.9 and Remark 2.10, Qq = Q(βq,Yq) exists for q ∈ (1, q ′] with βq =
λ̃q and Yq(x) := ((q − 1)̃λ∗

qx + 1)1/(q−1). A similar existence criterion is known
for Pe; see Theorem 3.1 of Fujiwara and Miyahara [8] or Esche and Schweizer [6],
Theorem B and Lemma 15. In fact, if λe ∈ R

d exists with
∫ |xeλ∗

ex −h(x)|K(dx) <

∞ and �e(λe) = 0 for

�e(λ) := b + cλ +
∫

Rd

(
xeλ∗x − h(x)

)
K(dx),

then Pe exists and its Girsanov parameters are

βe := λe and Ye(x) := eλ∗
ex .

For any λ ∈ R
d , we have limq↘1((q − 1)λ∗x + 1)1/(q−1) = eλ∗x . If, in addition,

(q ′ − 1)λ∗x + 1 > 0, K-a.e., and sufficient integrability conditions hold, then
limq↘1 �(λ,q) = �e(λ). Consequently, it is natural to expect that the solutions
λ̃q to �(λ,q) = 0 also converge to the solution λe to �e(λ) = 0. We show this
by an application of the implicit function theorem. Therefore we further assume
the existence of some open set G ⊆ R

d+1 such that {(q, λ̃q)|q ∈ (1,1 + ε)} ⊆ G,
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� is well defined and continuously differentiable on G and det( d
dλ

�(q, λ̃q)) �= 0
for all q ∈ (1,1 + ε). There then exists a continuously differentiable function
λ(q) defined on (1,1 + ε) such that λ(q) = λ̃q there. Moreover, we assume that
λ̃1 := limq↘1 λ(q) exists and that limq↘1 �(q,λ(q)) = �e(̃λ1); this holds if λ(·)
is bounded on (1,1 + ε) and if we can interchange limit and integration in (4.2).
Since �(q,λ(q)) ≡ 0 we then have �e(̃λ1) = 0 and hence λ̃1 = λe, as required.
Obviously, we also have

lim
q↘1

βq = lim
q↘1

λ(q) = λe = βe,(4.3)

lim
q↘1

Yq(x) = lim
q↘1

(
(q − 1)λ∗(q)x + 1

)1/(q−1) = eλ∗
ex = Ye(x), K-a.e.(4.4)

In particular, the Lévy measure of Qq converges to that of Pe, that is,

lim
q↘1

KqMMM(dx) = lim
q↘1

Yq(x)K(dx) = Ye(x)K(dx) = KMEMM(dx);

see Proposition A.1 below. Finally, we show that Qq converges to Pe in entropy,
that is, that the relative entropy of Qq with respect to Pe,

H(Qq |Pe) = EQq

[
log

dQq

dPe

]
= EQq [logZ

Qq

T − logZ
Pe

T ],

converges to 0 if q decreases to 1. From Proposition A.3, the formula for the sto-
chastic exponential and Proposition II.1.28 of Jacod and Shiryaev [13] together
with Lemma B.4, 3 of Theorem 2.6 and Corollary 2.3, we obtain

logZ
Qq

T = β∗
qLc

T + (Yq − 1) ∗ (µL − νP )T

− 1
2Tβ∗

q cβq + (
logYq − (Yq − 1)

) ∗ µL
T

= β∗
qLc

T + (logYq) ∗ (µL − νP )T

− 1
2Tβ∗

q cβq + (
logYq − (Yq − 1)

) ∗ νP
T .

Applying the same arguments and replacing Theorem 2.6 and Corollary 2.3 by
Esche and Schweizer [6], Theorem A and Lemma 12, we obtain for logZ

Pe

T the
same expression with (βq, Yq) replaced by (βe, Ye). Thus,

log
dQq

dPe

= (β∗
q − β∗

e )Lc
T + (logYq − logYe) ∗ (µL − νP )T

− 1

2
T (β∗

q cβq − β∗
e cβe) + (logYq − Yq − logYe + Ye) ∗ νP

T .

Recall from Girsanov’s theorem that νQq := Yqν
P is the Qq -compensator of µL

and that L̃ with L̃t := Lc
t − tcβq is a Qq -martingale. If (logYq − logYe) ∗ νQq is
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the Qq -compensator of (logYq − logYe) ∗ µL, then

log
dQq

dPe

= (β∗
q − β∗

e )L̃T + (logYq − logYe) ∗ (µL − νQq )T

− 1

2
T (β∗

q cβq − β∗
e cβe) + T (β∗

q − β∗
e )cβq

+ (
(logYq − logYe)Yq − (Yq − Ye)

) ∗ νP
T ;

see Proposition II.1.28 of Jacod and Shiryaev [13]. The first two terms on the
right-hand side are local Qq -martingales and Qq -Lévy processes and thus Qq -
martingales, so

H(Qq |Pe) = −1
2T (β∗

q cβq − β∗
e cβe) + (β∗

q − β∗
e )cβqT

+ EQq

[(
(logYq − logYe)Yq − (Yq − Ye)

) ∗ νP
T

]
.

Thus, if integration and limit are interchangeable, (4.3) and (4.4) imply that

lim
q↘1

H(Qq |Pe) = 0.

EXAMPLE. We finish with an example which satisfies all assumptions of this
section. Assume that K is of the form K(dx) = f (x) dx, where f is a bounded
density such that supp(K) ⊆ (−1, �) with 0 < � < ∞. Moreover, let L be of di-
mension one and if L has no Brownian part, that is, if c = 0, then let it have jumps
of positive and negative heights, that is, K((−1,0)) > 0 and K((0, �)) > 0. We
show that there exists ε > 0 such that (Cq) has a solution λ̃q for all q ∈ (1,1 + ε]
and such that we can take

G := G(ε) := {(q, λ)|q ∈ (1,1 + ε), q ∈ (γ1(q), γ2(q))}
with γ1(q) := − 1

�(q−1)
and γ2(q) := 1

q−1 . All integrability conditions of Section 4
are then satisfied due to boundedness of f and of supp(K); note that y �→ y logy

is bounded from below and that Y e(x) = exp(λ∗
ex) is K-a.e. bounded away from 0.

For q ∈ (1,2) and λ ∈ (γ1(q), γ2(q)), condition (4.1) is satisfied and

d

dλ
�(λ, q) = c +

∫ �

−1

(
x2(

(q − 1)λx + 1
)(2−q)/(q−1))

f (x) dx

≥




c +
∫ 0

−1
x2f (x) dx =: δ1 > 0, if λ ∈ (γ1(q),0],

c +
∫ �

0
x2f (x) dx =: δ2 > 0, if λ ∈ [0, γ2(q)).

Thus, d
dλ

�(λ, q) ≥ δ := min{δ1, δ2} > 0. Let

b0 := �(λ,0) = �e(λ) = b +
∫ �

−1

(
x − h(x)

)
f (x) d(x)
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and note that limq↘1 γ1(q) = −∞ and limq↘1 γ2(q) = ∞. If b0 < 0, we can hence
find ε1 > 0 such that γ2(q) > |b0|/δ for all q ∈ (1,1 + ε1]. Then for all q ∈ (1,1 +
ε1), there exists a solution λ̃q ∈ (0, |b0|/δ) ⊆ (0, γ2(q)) to �(λ,q) = 0 and we can
take G = G(ε1); note, in addition, that q �→ λ̃q is bounded. Analogously, if b0 > 0,
we select ε2 > 0 such that |γ1(q)| > b0/δ for all q ∈ (1,1 + ε2], which implies for
these q the existence of a solution λ̃q ∈ (−b0/δ,0) ⊆ (γ1(q),0) to �(λ,q) = 0
and that we can take G = G(ε2). Finally, b0 = 0 is a trivial case, since we then
have �(0, q) = 0 for all q > 1 so that βq = 0 and Yq = 1, that is, Qq = P = Pe.
This concludes the example.

APPENDIX A: CHANGE OF MEASURE AND LÉVY PROCESSES

In this appendix we gather the required results on changes of measure and Lévy
processes. In particular, we give conditions under which two processes are the
Girsanov parameters of an equivalent local martingale measure. For unexplained
notation, we refer to Jacod and Shiryaev [13].

We fix a filtered probability space (�,F ,F,P ) with F = (Ft )0≤t≤T satisfying
the usual conditions under P and F0 trivial. Moreover, we work throughout with
the truncation function h(x) := xI{‖x‖≤1}. By P, we denote the predictable σ -field
on � × [0, T ] and by (B,C, ν), the P -characteristics of the semimartingale X

with respect to h. As in Proposition II.2.9 of [13], we can and do always choose a
version of the form

B =
∫

b dA, C =
∫

c dA,

(A.1)
ν(ω;dx, dt) = Kω,t (dx) dAt(ω),

where A is a real-valued, predictable, increasing and locally integrable process,
b an R

d -valued predictable process, c a predictable process with values in the
set of all symmetric nonnegative definite d × d-matrices and Kω,t (dx) a transi-
tion kernel from (� × [0, T ],P) into (Rd,Bd) with Kω,t ({0}) = 0 and

∫
Rd (1 ∧

‖x‖2)Kω,t (dx) ≤ 1 for all t ≤ T .
We now turn to the description of absolutely continuous probability measures.

The following Girsanov-type result shows that any Q 
 P can be described by
two parameters β and Y .

PROPOSITION A.1 (Theorem III.3.24 of Jacod and Shiryaev [13]). Let X be
a semimartingale with P -characteristics (BP ,CP , νP ) and denote by c, A the
processes from (A.1). For any probability measure Q 
 P , there exist a P ⊗ Bd -
measurable function Y ≥ 0 and a predictable R

d -valued process β satisfying

‖(Y − 1)h‖ ∗ νP
T +

∫ T

0
‖csβs‖dAs +

∫ T

0
β∗

s csβs dAs < ∞, Q-a.s.
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and such that the Q-characteristics (BQ, cQ, νQ) of X are given by

B
Q
t = BP

t +
∫ t

0
csβs dAs + (

(Y − 1)h
) ∗ νP

t ,

C
Q
t = CP

t ,

νQ(dx, dt) = Yt (x)νP (dx, dt).

We call β and Y the Girsanov parameters of Q (with respect to P , relative to X)
and write Q = Q(β,Y ) to emphasize the dependence.

REMARK A.2. (i) In Proposition A.1, we have Y(x) > 0dP ⊗ dt-a.e. for K-
a.e. x if and only if Q ≈ P .

(ii) Note that β and Y are not unique. In fact, Y is unique only νP -a.e., and
for fixed c and A, we have A-a.e. uniqueness only for cβ . In the whole article,
we fix a process L and express the Girsanov parameters of any Q 
 P relative
to L. We then identify all versions of Girsanov parameters (β,Y ) which describe
the same Q. In particular, if we say that the Girsanov parameters (β,Y ) of Q are
time-independent, we mean that there exists one version with this property.

A.1. Lévy processes. Let Q ≈ P and L = (Lt )0≤t≤T be an F-adapted sto-
chastic process with RCLL paths and L0 = 0. Then L is called a (Q,F)-Lévy
process if for all s ≤ t ≤ T , the increment Lt − Ls is independent of Fs under
Q and has a distribution which depends on t − s only. Recall that a Lévy process
is a Feller process, so that F

L,Q, the Q-augmentation of the filtration generated
by L, automatically satisfies the usual conditions under Q. If Q = P , we some-
times even omit the mention of P , that is, refer to L simply as a Lévy process
and write F

L. In particular, if Q = P and F = F
L for quantities depending on P

and L, we often do not write this dependence explicitly; this is done, for example,
for Girsanov parameters. We will frequently use the fact that for Q ≈ P , every
(Q,F)-Lévy process is an F-semimartingale and a (Q,F)-martingale if and only
if it is a (Q,F)-local martingale; see He, Wan and Yan [12], Theorem 11.46. In
addition, Lévy processes have the weak predictable representation property; see
[13], Theorem III.4.34. This implies an explicit formula for the density process of
any Q ≈ P .

PROPOSITION A.3 (Proposition 3 of Esche and Schweizer [6]). Let L be a
P -Lévy process and F = F

L. If Q ≈ P with Girsanov parameters (β,Y ), then the
density process of Q with respect to P is given by ZQ = E(NQ), with

N
Q
t =

∫ t

0
β∗

s dLc
s + (Y − 1) ∗ (µL − νP )t .

REMARK A.4. We frequently use the fact that for f : (−1,∞) → R suffi-
ciently integrable, we have

∑
s≤t f (�N

Q
s ) = f (Y − 1) ∗ µL

t .
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It is well known that a Lévy process can be characterized by the particular struc-
ture of its characteristics; see Corollary II.4.19 of [13]. In fact, let Q ≈ P and L

be a (Q,F)-semimartingale. L is then a (Q,F)-Lévy process if and only if there
exists a version of its Q-characteristics such that

B
Q
t (ω) = bQt, C

Q
t (ω) = cQt, νQ(ω;dx, dt) = KQ(dx)dt,(A.2)

where bQ ∈ R
d , cQ is a symmetric nonnegative definite d × d-matrix and KQ is a

positive measure on R
d . We call (bQ, cQ,KQ) the characteristic triplet of L (with

respect to Q). For a P -Lévy process, we drop the mention of P and simply write
(b, c,K). Moreover, we always use the notation

νP (dx, dt) = K(dx)dt.

As an immediate consequence of Girsanov’s theorem and (A.2), we obtain, for any
(P,F)-Lévy process L, the following well-known characterization of the set of all
probability measures Q ≈ P under which L is a (Q,F)-Lévy process.

COROLLARY A.5. Let L be an (P,F)-Lévy process and Q = Q(β,Y ) ≈ P .
L is then a (Q,F)-Lévy process if and only if β and Y(x) are dP ⊗ dt-a.e. time-
independent and deterministic for K-a.e. x ∈ R

d .

A.2. Change of measure. So far, we described for any Q ≈ P the corre-
sponding Girsanov parameters. We now want to start with arbitrary predictable
processes β and Y and give conditions under which they define a probability
measure Q ≈ P and can be identified as the Girsanov parameters of Q. We for-
mulate sufficient integrability conditions in terms of the strictly convex function
gq : (0,∞) → R+, gq(y) := yq −1−q(y −1), where q ∈ I := (−∞,0)∪ (1,∞).

This function arises in the computation of f q(Q|P) = E[(ZQ
T )q]; see Proposi-

tion 2.2.

PROPOSITION A.6. Let L be a P -Lévy process with characteristic triplet
(b, c,K), F = F

L, q ∈ I , β a predictable process and Y ≥ 0 a P⊗Bd -measurable
function with Y(x) > 0, K-a.e. If∫

Rd
gq(Ys(x))K(dx) ≤ const, dP ⊗ dt-a.e.,(A.3)

then Y − 1 is integrable with respect to µL − νP . If, in addition,

β∗
s cβs ≤ const, dP ⊗ dt-a.e.,(A.4)

then Z := E(N) with

Nt =
∫ t

0
β∗

s dLc
s + (Y − 1) ∗ (µL − νP )t(A.5)

is a strictly positive P -martingale. In particular, for dQ/dP := ZT , we have
Q = Q(β,Y ), that is, β and Y are the Girsanov parameters of Q.
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PROOF. The integrability of Y − 1 with respect to µL − νP follows from
Lemma B.1 together with Theorem II.1.33 d) in [13]. Thus, by (A.4), N is a
local martingale and, in addition, quasi-left-continuous, so by Theorem II.5 in
Lépingle and Mémin [17], E(N) is a martingale if the predictable compensator
of 〈Nc〉· + ∑

s≤·((�Ns)
2 ∧ |�N |s) is bounded; note that for Theorem II.5 of [17],

it suffices for N to be a local martingale. In addition, E(N) is strictly positive since
Y > 0 implies that �N > −1, so it only remains to show boundedness of the com-
pensator. For 〈Nc〉 = ∫

β∗
t cβt dt , which is already the predictable compensator of

itself, the claim is trivial by (A.4). The jump term can be rewritten as∑
s≤t

(
(�Ns)

2 ∧ |�Ns |) = (
(Y − 1)2 ∧ |Y − 1|) ∗ µL

t .(A.6)

Since N is, in particular, a special semimartingale, (A.6) defines, by Propositions
II.1.28 and II.2.29 a) of [13], a locally integrable process. Also, by Proposition
II.1.28, the latter has (Y − 1)2 ∧ |Y − 1| ∗ νP as predictable P -compensator. This
compensator is then bounded thanks to Lemma B.3 and Assumption (A.3). Finally,
Q = Q(β,Y ) holds by Proposition 7 of Esche and Schweizer [6]. This completes
the proof. �

We finish this section with a result which gives conditions for the Girsanov pa-
rameters (β,Y ) of Q = Q(β,Y ) ≈ P to imply that Q is a local martingale measure
for a P -Lévy processes L, that is, for Q ∈ Me(L).

PROPOSITION A.7 (Theorem 3.1 of Kunita [16]). Let L be a P -Lévy process
with characteristic triplet (b, c,K), F = F

L and Q = Q(β,Y ) ≈ P . Then Q ∈
Me(L) if and only if∫ T

0

∫
Rd

|xYt (x) − h(x)|K(dx) < ∞, P -a.e.,

b + cβt +
∫

Rd

(
xYt (x) − h(x)

)
K(dx) = 0, dP ⊗ dt-a.e. on � × [0, T ];

this condition is called the martingale condition for L.

APPENDIX B: AUXILIARY RESULTS

This section contains some simple auxiliary results.

LEMMA B.1. Fix q ∈ I . There then exists c = c(q) > 0 such that(
1 − √

y
)2 ≤ cgq(y) for all y > 0.

PROOF. We need to find c > 0 such that f (y) := cgq(y) − (1 − √
y)2 is non-

negative on (0,∞). For q < 0, we can take c = − 1
q

since f (1) = 0, d
dy

f (y) < 0
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on (0,1) and d
dy

f (y) > 0 on (1,∞). For q > 1, take c > 1
q−1 > 1

2q(q−1)
and define

y := (2cq(q −1))1/(1/2−q). Calculating d2

dy2 f yields strict concavity of f on (0, y)

and strict convexity on (y,∞). Moreover, y < 1, d
dy

f (1) = 0 and f (1) = 0. Since
f is continuous, it is thus nonnegative on (0,∞) if f (0) ≥ 0, which holds true by
the choice of c. �

LEMMA B.2. Fix q ∈ I and y > 1. There then exists a constant C =
C(y, q) > 0 such that for all c ≥ C,

(y − 1)2 ≤ cgq(y) for all y ∈ (0, y].

PROOF. Define f (y) := cgq(y) − (y − 1)2. For q < 2, let C := 2y2−1

q(q−1)
. Then

f is convex on (0, y) with minimum in y = 1, where f (1) = 0, so f is nonnegative
on (0, y]. For q ≥ 2, set C := 2

q
so that d

dy
f (y) ≤ 0 on (0,1) and d

dy
f (y) ≥ 0 on

(1, y]. Since f (1) = 0, we have f (y) ≥ 0 on (0, y]. �

LEMMA B.3. For q ∈ I , there exists C = C(q) > 0 such that

(y − 1)2 ∧ |y − 1| ≤ Cgq(y) for all y > 0.

PROOF. Lemma B.2 with y = 2 implies the claim for 0 ≤ y ≤ 2. For y > 2,
note that (y−1)2 ≥ |y−1| = y−1 and define f (y) := Cgq(y)−(y−1), with C ≥
max{− 2

q
, 1

gq(2)
} for q < 0 and C ≥ max{ 1

q(2q−1−1)
, 1

gq(2)
} for q > 1. The function

f is then increasing on [2,∞) and f (2) ≥ 0. �

LEMMA B.4. For q ∈ I and y > 0, we have

logy − (y − 1) ≤ gq(y) and logy − (y − 1) ≤ y logy − (y − 1).

PROOF. Both y �→ gq(y) − (logy − (y − 1)) and y �→ y logy − (y − 1) −
(logy − (y − 1)) are strictly convex functions on R+. Their unique minimum is in
y = 1, where they are equal to 0, so they are nonnegative on R+. �

APPENDIX C: OMITTED PROOFS

This section contains the proofs omitted in Section 2.

PROOF OF PROPOSITION 2.2. Itô’s formula applied to Z = ZQ = E(N)

yields

Z
q
t = 1 +

∫ t

0
Z

q
s−

(
q dNs + q(q − 1)

2
d〈Nc〉s

)

+ ∑
s≤t

Z
q
s−

(
(�Ns + 1)q − q(�Ns + 1) − 1 + q

)
.
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Recall from Proposition A.3 the expression for N and note that 〈Nc〉 = ∫
β∗

t cβt dt

and N are locally P -integrable and, since Q ∈ Qq , so is Zq . Thus, we also have∑
s≤t Z

q
s−((�Ns + 1)q − q(�Ns + 1) − 1 + q) and∑

s≤t

(
(�Ns + 1)q − q(�Ns + 1) − 1 + q

) = (
Yq − 1 − q(Y − 1)

) ∗ µL

= gq(Y ) ∗ µL

are locally P -integrable. Since gq is nonnegative, Proposition II.1.28 of [13] then
implies that the predictable compensator of gq(Y ) ∗ µL is gq(Y ) ∗ νP . Moreover,(
Yq − 1 −q(Y − 1)

)∗ (µL − νP )+q(Y − 1)∗ (µL − νP ) = (Y q − 1)∗ (µL − νP )

since both sides are local martingales having the same jumps; see Definition II.1.27
in [13]. From this and the formula for N from Proposition A.3, we obtain the
canonical decomposition

dZq = Z
q
−

(
q dNc + d

(
(Y q − 1) ∗ (µL − νP )

)

+ q(q − 1)

2
d〈Nc〉 + d

((
Yq − 1 − q(Y − 1)

) ∗ νP ))

= Z
q
−(dM̂ + dÂ)(C.1)

= dE(M̂ + Â)

= d
(
E(M̂)E(Â)

)
,

where the last equality holds by Yor’s formula since Â is of finite variation
and continuous so that [M̂, Â] ≡ 0. Moreover, Q ∈ Qq implies that Zq is a
positive submartingale and thus of class (D) since 0 ≤ Z

q
τ ≤ E[Zq

T |Fτ ] for
all stopping times τ ≤ T . Since Â is nonnegative and continuous, we have
E(Â) = eÂ ≥ 1, so (C.1) implies that E(M̂) is a local P -martingale of class (D)

and thus a martingale; this uses the fact that E(M̂) is (strictly) positive since
�M̂ > −1 [because Y(x) > 0 K-a.s. implies that Yq(x) − 1 > −1 K-a.s.]. More-
over, (C.1) then implies the Rp-integrability of E(Â). This completes the proof.

�

PROOF OF PROPOSITION 2.4. Propositions A.6 and A.7 imply that (β,Y )

are the Girsanov parameters of some Q = Q(β,Y ) ∈ Me(L) = Me(S). It remains
to show that Q ∈ Qq . This can be done, as in the proof of Proposition 2.2, by
an application of Itô’s formula to obtain the canonical decomposition and, in par-

ticular, that f q(Z
Q
T ) = eÂT (Q)E(M̂(Q))T . The only difference in the proof is the

way one obtains the fact that gq(Y ) ∗ µL is locally P -integrable; this cannot be
done as before since we do not know that Q ∈ Qq . However, since gq is nonneg-
ative, we obtain from (2.3) that gq(Y ) ∗ νP is locally P -integrable and this is, by
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Proposition II.1.28 of [13], equivalent to local P -integrability of gq(Y )∗µL. Thus,

it only remains to show that f q(Q|P) = E[eÂT (Q)E(M̂(Q))T ] < ∞. This holds
true since �M̂(Q) > −1 implies that E(M̂(Q)) is a P -supermartingale and since
ÂT (Q) is a constant. �
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