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We study Markov chains which model genome rearrangements. These
models are useful for studying the equilibrium distribution of chromosomal
lengths, and are used in methods for estimating genomic distances. The pri-
mary Markov chain studied in this paper is the top-swap Markov chain. The
top-swap chain is a card-shuffling process with n cards divided over k decks,
where the cards are ordered within each deck. A transition consists of choos-
ing a random pair of cards, and if the cards lie in different decks, we cut each
deck at the chosen card and exchange the tops of the two decks. We prove
precise bounds on the relaxation time (inverse spectral gap) of the top-swap
chain. In particular, we prove the relaxation time is �(n + k). This resolves
an open question of Durrett.

1. Introduction. Genome rearrangements play an important role in a vari-
ety of biological studies, for example, genomic distance [8, 9], phylogenetic stud-
ies [11] and cancer biology [7]. Rearrangements refer to chromosomal fissions
and fusions, reciprocal translocations between chromosomes and inversions within
a chromosome. Fissions, fusions and reciprocal translocations are examples of
translocations. In this paper we study Markov chains which model genomic re-
arrangements by translocations and inversions.

Stochastic models of chromosomal rearrangements by translocations were in-
troduced by Sankoff and Feretti [10]. Such models are useful for studying the
equilibrium distribution of chromosomal lengths. De, Durrett, Ferguson and Sindi
[3] studied refinements of the models, including the introduction of a fitness func-
tion on chromosomal lengths, and showed that these models have a reasonable fit
with data for many species. These models were used by Durrett, Nielsen and York
[6] in a Bayesian approach for estimating genomic distance.

Various of the above models being simply Markov chains, Durrett [5] consid-
ered estimating the rate of convergence to stationarity of the corresponding Markov
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chains. One of the open problems raised by Durrett pertains to the analysis of,
what we call henceforth, the top-swap chain. We study the so-called relaxation
time of the chain, which is the inverse of the spectral gap of the transition matrix
of the chain. The relaxation time is the key quantity in the rate of convergence, and
hence, it is of utmost importance in the efficiency of any simulations of the model.
Beyond its computational significance, the convergence rate also has biological
significance since it addresses the rate at which genomes reach equilibrium.

The top-swap chain has two parameters: the number of chromosomes, denoted
as k, and the number of genes, denoted as n. The chain can be viewed as a card
shuffling problem with k decks. More precisely, the state space of the chain is a
partition of n distinct cards into k decks. The cards have some ordering within
each deck, and the decks are labeled. At each transition we choose two random
positions, where if the size of the ith deck is ni , there are ni + 1 positions to
choose from in the ith deck. If the positions are in the same deck we do nothing.
Otherwise, we cut both decks at the chosen positions. We then exchange the tops of
the two decks. The figure below illustrates a sample transition (for k = 4, n = 12)
where the chosen pair of positions is marked:

4
9 3

4 7 2 7 5
3 1 11 8 �⇒ 9 1 11 8
5 10 6 12 2 10 6 12.

The Markov chain allows empty decks, hence, fusions and fissions are mod-
eled by this stochastic process. Translocations with nonempty decks are known as
reciprocal translocations. As we note below, inversions can also be included in the
above Markov chain.

Let τ(n, k) denote the inverse of the spectral gap of the top-swap chain. This is
known as the relaxation time. We prove tight bounds, up to constant factors, on the
spectral gap of the top-swap Markov chain.

THEOREM 1.1. There exist constants C1 > C2 > 0 such that

C1(n + k) ≥ τ(n, k) ≥ C2(n + k).

REMARK 1.1. Durrett [5] proposes a Markov chain which is identical to the
top-swap chain, except when the chosen pair of positions is in the same deck,
this interval of cards is inverted. The above upper bound on the relaxation time
immediately applies to this chain, since comparison of Dirichlet forms shows that
extra transitions can only decrease the relaxation time.

As a byproduct of our proof, we also obtain tight bounds on the relaxation time
of a k-deck random transposition chain; this chain is a natural extension of the
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classical (1-deck) random transposition chain to k-decks, for k > 1. For a precise
statement of the result, see Theorem 5.2.

Before giving a high-level description of our proof, we need to introduce some
notation. Let � denote the state space of the top-swap chain, and P denote its
transition matrix. We let ν denote the uniform distribution over �. Since P is
symmetric, ν is reversible. Therefore, ν is the stationary distribution of the chain.
For any f :� → R, the Dirichlet form of the process is defined as

E(f ) = 1
2

∑
σ,η∈�

ν(σ)P (σ, η)
(
f (σ) − f (η)

)2

and the variance is

Var(f ) = ∑
σ∈�

ν(σ)
(
f (σ) − Eν(f )

)2

= 1
2

∑
σ,η∈�

ν(σ)ν(η)
(
f (σ) − f (η)

)2
.

We then have that the relaxation time is

τ(n, k) = sup
f

Var(f )

E(f )
,

where the supremum is taken over all nonconstant functions f .
The lower bound on the relaxation time is easy to show by taking f as the

indicator function for whether the first deck is empty. We give a high-level sketch
of the proof outline in Section 2 before presenting a detailed proof in Sections 3, 4
and 5.

2. High-level proof description. The analysis of the spectral gap of the top-
swap chain has two major parts. The first part shows that it suffices to analyze the
spectral gap for the 2-deck version of top-swap. (The 2-deck version of top-swap
is simply the top-swap chain with k = 2.) We then analyze the 2-deck top-swap
chain in the second part of our proof. Within both parts of the analysis, our proof
relies on comparison arguments with other auxiliary chains.

2.1. Reducing to two decks. We use 2 auxiliary chains: a weighted and un-
weighted deck-averaging process. The use of a deck-averaging process is similar
to the proof approach of Cancrini, Caputo and Martinelli [1] for the analysis of the
so-called L-reversal chain.

The deck-averaging process is a continuous time Markov chain where the state
space is again all the possible partitions of the n cards into k decks. For each pair
of decks, there is an independent Poisson clock. In the unweighted process, all
clocks have the same rate, whereas for the weighted process, the clock for decks i

and j has rate ni + nj , where n� denotes the number of cards in deck �. The proof
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approach of [1] immediately yields that the unweighted deck-averaging process
has a spectral gap of 1.

Our goal is to express the Dirichlet form and variance of the top-swap chain in
terms of the sum of the 2-deck projections of the top-swap chain. It is straightfor-
ward to bound the Dirichlet form in terms of a sum over 2-deck Dirichlet forms,
that is, where the configuration is fixed outside the two decks. Recall that the vari-
ance is independent of the chain. Thus, we can bound the variance by looking at
the spectral gap of the unweighted deck-averaging process. This leaves us with the
Dirichlet form for the unweighted deck-averaging process. We then use a nontrivial
comparison argument to obtain the Dirichlet form for the weighted deck-averaging
process. Finally, it is straightforward to bound the Dirichlet form of the weighted
deck-averaging process as a sum over 2-deck variances. The result is a bound on
the spectral gap of the (k-deck) top-swap chain in terms of the spectral gap of the
2-deck top-swap chain.

2.2. Analysis of the 2-deck top-swap. The basic idea is to compare the 2-deck
top-swap with random transpositions. However, transpositions of two cards within
the same deck are a problem. Roughly speaking, we can not efficiently “simulate”
these transitions by top-swap transitions (see Remark 3.1 below for more details).
Hence, we consider a transposition chain which only allows transpositions of cards
in different decks. Moreover, if one of the cards is at the top of either deck, then
instead of a transposition, the chain does the corresponding top-swap transition. It
is straightforward to compare this modified transposition chain with the top-swap
chain. To analyze this modified transposition chain, we compare to a final chain,
which we call here the balanced-swap chain. The balanced-swap chain is also de-
fined on two decks and has two types of transitions: swapping and rearranging.
The swapping transition changes the size of the decks. In particular, we choose
a random position in a deck, and move the cards above it, to the top of the other
deck. The rearranging transition randomizes the card order while maintaining the
current deck size. However, we only perform the second transition if the decks
are balanced, that is, close to the same size. (This is made precise with the no-
tion of δ-balanced, for appropriately chosen 0 < δ < 1.) It turns out that this later
restriction is crucial for the comparison with the modified transposition chain.

Finally, we analyze the gap of the balanced-swap chain by adapting an analytical
argument given by Cancrini, Martinelli, Roberto and Toninelli in their work on
kinetically constrained models [2].

In the following we first describe the solution to the 2-deck problem in Sec-
tion 3, then proceed with the deck-averaging process in Section 4, and finally in
Section 5 we return to the analysis of the k-deck top-swap process. The matching
upper bounds on the spectral gap are briefly discussed at the end of Section 5.

3. Analysis of the 2-deck problem. We consider two decks I1, I2 and we let
n1, n2 denote the number of cards in each deck. Also, let n = n1 + n2 denote the
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total number of cards and let �n be the set of all (n+1)! arrangements of n labeled
cards in the two decks. We denote by η a generic element of �n (a configuration)
and call µ the uniform probability measure on �n.

The 2-deck top-swap Markov chain is described as follows. At each step we
choose two positions r, s, with each position drawn at random from the n + 2
available positions, n1 + 1 from the first deck and n2 + 1 from the second deck. As
explained in the Introduction, if r and s belong to the same deck we do nothing.
Otherwise, we swap the tops identified by positions r, s. The extra position added
to each deck allows to swap an empty top. If the current configuration is η, we
denote by Tr,sη the updated configuration. The Dirichlet form of the Markov chain
can then be written as

E2(f ) = 1

2(n + 2)2

n+2∑
r,s=1

µ[(Tr,sf − f )2],(3.1)

where Tr,sf (η) := f (Tr,sη) for arbitrary functions f :�n → R, and µ[f ] stands
for expectation of a function f w.r.t. the uniform probability µ. The main result
in this section is the following O(n) estimate on the relaxation time τ(n,2) of the
Markov chain described above.

THEOREM 3.1. There exists C > 0 such that, for every n ∈ N,

τ(n,2) ≤ Cn.(3.2)

Recall that the estimate (3.2) is equivalent to showing that, for every function f ,

Varµ(f ) ≤ CnE2(f ).(3.3)

We start by introducing a convenient notation. We add a card ∗ to mark the sepa-
ration between the two decks and we call x∗ = x∗(η) the position of the ∗ in η; see
Figure 1.

With this representation the top-swap transformations Tr,s can be rewritten by
means of the transformations η → Ti,j η, i, j = 1, . . . , n + 1, described below.

3.1. Top-swap operators Ti,j . If i < x∗ < j , we call Ti,j η the new config-
uration obtained by the ordinary top-swap. Namely, we collect the cards on top
of j from the second deck (including j ) in a deck Dj and the cards on top of

FIG. 1. Two decks with n = 6. The configuration η = (3,4,∗,5,2,1,6), with n1 = 2, n2 = 4 and
x∗ = 3.
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i from the first deck (including i) in a deck Di . We then swap their positions,
namely, Dj goes above the position (i − 1) in the first deck and Di goes above
the position (j − 1) in the second deck. Consider, for instance, the configura-
tion η = (3,4,∗,5,2,1,6) given in Figure 1 with x∗ = 3. If we pick i = 1 and
j = 5, we obtain T1,5η = (2,1,6,∗,5,3,4). If we choose i = 2 and j = 7, then
T2,7η = (3,6,∗,5,2,1,4).

If i = x∗ < j , then we move the deck Dj above the position (i − 1) in the
first deck. Therefore in our example, if i = x∗ = 3 and, say, j = 6, then T3,6η =
(3,4,1,6,∗,5,2).

Also, if i < x∗ = j , we move the deck Di above the last card in the second deck.
Thus, in our example if, say, i = 1 and j = x∗ = 3, then T1,3η = (∗,5,2,1,6,3,4).

Finally, if i = j or 1 ≤ i < j < x∗ or 1 ≤ x∗ < i < j , we do nothing, that is,
we define Ti,j η = η in these cases. To finish the definition of Ti,j for all i, j =
1, . . . , n + 1, we set Tj,i := Ti,j for every i ≤ j .

Note that with these definitions we may rewrite the Dirichlet form (3.1) as

E2(f ) = 1

2(n + 2)2

n+1∑
i,j=1

µ[(Ti,j f − f )2],(3.4)

where Ti,j f (η) := f (Ti,j η). Here we use the fact that the transformations T and T
coincide when the chosen positions correspond to ordinary cards and are different
if one of the tops to be swapped is empty. Note that the positions range from 1 to
n + 2 in (3.1) and from 1 to n + 1 in (3.4). However, when one of the positions is
the top of a deck in (3.1), then the second position must be in the other deck and
there is no overcounting since in (3.4) we always perform the swap when one of
the positions coincides with x∗.

3.2. Modified transpositions. A first step in the proof of Theorem 3.1 is to
compare the process described above to a random transposition-type Markov chain
that is defined as follows. Let Ei,j denote the ordinary transposition operator be-
tween positions i and j . Namely, (Ei,j η)� = η� for i, j �= � and (Ei,j η)i = ηj ,
(Ei,j η)j = ηi . Next, define the modified transposition Ẽi,j , for i < j , by

Ẽi,j =


Ei,j , if i < x∗ < j ,
Ti,j , if i = x∗ < j or i < x∗ = j ,
1, if i < j < x∗ or x∗ < i < j .

(3.5)

Also, set Ẽi,i = 1 and Ẽi,j = Ẽj,i if i > j . Here Ti,j is the top-swap operation de-
fined previously. In words, Ẽi,j is an ordinary transposition if the two chosen cards
(in position i and j resp.) are in different decks. If they are in the same deck, noth-
ing happens. Finally, if one of the cards is the ∗, then a top-swap transformation
is performed. In analogy with (3.4), we define the Dirichlet form of the modified
random transpositions by

D2(f ) = 1

2(n + 2)2

n+1∑
i,j=1

µ[(Ẽi,j f − f )2].(3.6)
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It turns out (see Lemma 3.4 below) that the comparison D2 ≤ CE2 is easy. We
then have to show that D2 has a spectral gap not smaller than constant times n−1.
This is accomplished by a further comparison with a new process with Dirichlet
form Fδ(f ) defined below.

REMARK 3.1. We observe that comparison with ordinary random transposi-
tions is not sufficient for our purpose. Let us call ERT

2 (f ) the Dirichlet form

ERT
2 (f ) = 1

2(n + 2)2

n+1∑
i,j=1

µ[(Ei,j f − f )2],

associated to pure transpositions Ei,j . Note that cards are not required to belong
to different decks. The natural normalization here, as in (3.6), would be 2(n + 1)2

instead of 2(n + 2)2. However, the latter has been preferred to make the analogy
with (3.4) more apparent. Then it is simple to check that taking, for example,
f (η) = 1 if η = (1,2, . . . , n,∗) and f (η) = 0 otherwise, the ratio ERT

2 (f )/E2(f )

is of order n.

3.3. The balanced-swap chain. In words, this new process is described as fol-
lows. Let us fix δ ∈ (0,1/2). We have two independent Poisson processes σ and
τ with mean 1. At the arrival times of σ we choose uniformly at random a posi-
tion i and then update the current configuration η by means of the transformation
Ẽi,x∗ = Ti,x∗ [recall that x∗(η) denotes the position of the ∗ in the configuration η].
At the arrival times of τ we look at the current value of x∗(η) and, if

δ ≤ x∗(η)

n + 1
≤ (1 − δ),(3.7)

then, conditioned on this value we put the system in equilibrium, that is, we choose
the new configuration η′ uniformly at random among all the n! configurations with
the ∗ in the current position x∗(η). If, instead, (3.7) does not hold, then we do
nothing. We say that η is δ-balanced if (3.7) holds. We call pδ the µ-probability
that this happens. Since µ is uniform, pδ = 1 − 2δ + O(1/n).

We write Varµ(f |x∗) for the variance of a function f : �n → R w.r.t. the con-
ditional probability µ(·|x∗) obtained from µ by conditioning on the position of
the ∗. The Dirichlet form Fδ of the process described above is then given by

Fδ(f ) = µ[χ Varµ(f |x∗)] + 1

2(n + 1)

n+1∑
i=1

µ[(Ti,x∗f − f )2],(3.8)

where

χ(η) =
{

1, if η is δ-balanced,
0, otherwise.

(3.9)

We will show (see Lemma 3.3) that one has the comparison Fδ ≤ CnD2. The
original problem (3.3) is then reduced to estimating from below the spectral gap
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of Fδ . To this end, one can use a coupling argument, but the following proof seems
to give a better estimate.

LEMMA 3.2. For all n ∈ N, f :�n → R, we have

Varµ(f ) ≤ γδFδ(f ),(3.10)

where γδ := (1 − √
1 − pδ)

−1.

PROOF. We have to prove that the spectral gap λ∗ of the Dirichlet form Fδ(·)
satisfies

λ∗ ≥ 1 −
√

1 − pδ.(3.11)

The generator associated to Fδ(·) is the operator L acting on functions f as

Lf = χ(µ[f |x∗] − f ) + Af − f, Af := 1

n + 1

n+1∑
i=1

Ti,x∗f.(3.12)

Note that L is self-adjoint and nonnegative in L2(µ) and

−µ[f Lf ] = Fδ(f ).(3.13)

We consider the eigenvalues λ and eigenfunctions fλ of −L:

−Lfλ = λfλ.(3.14)

Here λ = 0 corresponds to fλ = constant and any fλ in (3.14) with λ �= 0 satisfies
µ[fλ] = 0. By definition, λ∗ is the smallest nonzero λ such that (3.14) holds.

Observe that λ = 1 is an eigenvalue. Indeed, it suffices to consider f (η) =
ϕ(x∗(η)) for an arbitrary ϕ : {1, . . . , n + 1} → R such that 1

n+1
∑n+1

i=1 ϕ(i) = 0. In
this case, f is a function of x∗ only and, therefore, µ[f |x∗] = f and the mean-zero
property implies Af = 0, thus, (3.14) gives λ = 1.

We may assume without loss of generality that λ∗ < 1, since otherwise there is
nothing to prove in (3.11). We claim that fλ∗ is such that

µ[fλ∗ |x∗] = 0.(3.15)

We first need the following property. For any function g :�n → R, we have

µ[Ag|x∗] = µ[g],(3.16)

that is, µ[Ag|x∗] does not depend on the value of x∗. To prove (3.16), we write,
for every j ,

µ[Ag|x∗ = j ] = 1

n + 1

n+1∑
i=1

µ[(Ti,j g)1{x∗=j}]
Pµ[x∗ = j ] .
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Now we show that for any pair of positions i, j ,

µ
[
(Ti,j g)1{x∗=j}

] = µ
[
g1{x∗=i}

]
.(3.17)

Indeed, if ��
n := {η ∈ �n :x∗(η) = �}, then it is not hard to see that Ti,j :�j

n → �i
n

is a bijection: namely, if, for example, i < j , for every η ∈ �
j
n and for every ξ ∈

�i
n, we have Ti,n+i−j+2ξ ∈ �

j
n,Ti,j η ∈ �i

n and

Ti,n+i−j+2Ti,j η = η,
(3.18)

Ti,jTi,n+i−j+2ξ = ξ.

Therefore,

µ
[
(Ti,j g)1{x∗=j}

] = 1

(n + 1)!
∑

η∈�
j
n

g(Ti,j η)

= 1

(n + 1)!
∑

ξ∈�i
n

g(ξ) = µ
[
g1{x∗=i}

]
.

This proves (3.17). Using Pµ[x∗ = j ] = 1
n+1 and (3.17), we see that

µ[Ag|x∗ = j ] =
n+1∑
i=1

µ
[
g1{x∗=i}

] = µ[g],

which implies (3.16).
We turn to the proof of (3.15). Taking the µ[·|x∗]-expectation in (3.14), using

(3.16) and µ[fλ∗] = 0, we see that

λ∗µ[fλ∗ |x∗] = −µ[Lfλ∗ |x∗]
= µ[(fλ∗ − Afλ∗)|x∗] = µ[fλ∗ |x∗].

Since λ∗ < 1, this implies (3.15).
Using (3.15) in (3.14), we obtain

Afλ∗ = (1 − λ∗ + χ)fλ∗ =: ψfλ∗ .(3.19)

Note that ψ is a positive function of x∗ only. In particular, taking absolute values
in (3.19), we have

µ[|Afλ∗ ||x∗] = ψ(x∗)µ[|fλ∗ ||x∗].(3.20)

Now, using |Afλ∗ | ≤ A|fλ∗ | and (3.16),

µ[|Afλ∗ ||x∗] ≤ µ[A|fλ∗ ||x∗] = µ[|fλ∗ |].
Therefore, dividing by ψ and taking µ-expectation in (3.20), we arrive at

µ[ψ−1] ≥ 1.(3.21)
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Inequality (3.21) can be written explicitly as

pδ

1

2 − λ∗
+ (1 − pδ)

1

1 − λ∗
≥ 1.

It is easily seen that this is satisfied iff λ2∗ − 2λ∗ + pδ ≤ 0, or λ∗ ≥ 1 − √
1 − pδ

(since λ∗ < 1 by assumption). This ends the proof of Lemma 3.2. �

REMARK 3.2. The result in Lemma 3.2 shows that if pδ = 1, that is, if there
is no constraint and χ = 1 (or δ = 0), then the gap is equal to 1. It is, however,
crucial for us that we are able to prove the spectral gap bound of Lemma 3.2 with
the constraint χ < 1, since we rely on this constraint to perform the comparison of
Lemma 3.3 below.

3.4. From balanced-swap moves to modified transpositions. The next lemma
shows how to “simulate” balanced-swap moves by means of modified transposi-
tions.

LEMMA 3.3. For each δ ∈ (0,1/2), there exists Cδ > 0 such that, for every n

and every function f on �n,

Fδ(f ) ≤ CδnD2(f ).(3.22)

PROOF. Let us fix an arbitrary value of x∗. We want to estimate Var(f |x∗) by
using only terms of the form µ[(Ei,� − f )2|x∗] with i < x∗ < �.

Since µ(·|x∗) is nothing but the uniform probability on n! permutations
(arrangements of n cards in two decks of given size), recalling the spectral gap
of the ordinary random transposition chain (see, e.g., [1]) we know that

Varµ(f |x∗) ≤ 1

n

∑
i �=x∗

∑
j �=x∗

µ[(Ei,jf − f )2|x∗].(3.23)

We now assume that δn ≤ x∗ ≤ (1 − δ)n, for δ ∈ (0,1/2) [see (3.7)]. Consider the
case where i, j are such that i < x∗ and j < x∗ (both cards are in the first deck).
We observe that, for any � > x∗ we can write

Ei,jf − f = Ei,�Ej,�Ei,�f − f

= (Ei,�f2 − f2) + (Ej,�f1 − f1) + (Ei,�f − f ),

where f1 := Ei,�f and f2 := Ej,�Ei,�f . Therefore,

µ[(Ei,jf − f )2|x∗]
≤ 3µ[(Ei,�f2 − f2)

2|x∗]
+ 3µ[(Ej,�f1 − f1)

2|x∗] + 3µ[(Ei,�f − f )2|x∗].
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From the invariance of µ(·|x∗) under transpositions we see that

µ[(Ei,�f2 − f2)
2|x∗] = µ[(Ei,�f − f )2|x∗],

µ[(Ej,�f1 − f1)
2|x∗] = µ[(Ej,�f − f )2|x∗].

Therefore, averaging over all n + 1 − x∗ positions � such that � > x∗, we obtain

µ[(Ei,jf − f )2|x∗]

≤ 1

(n + 1 − x∗)
∑
�>x∗

µ[6(Ei,�f − f )2 + 3(Ej,�f − f )2|x∗].

Symmetrizing over i, j , the inequality above becomes

µ[(Ei,jf − f )2|x∗]

≤ 9

2(n + 1 − x∗)
∑
�>x∗

µ[(Ei,�f − f )2 + (Ej,�f − f )2|x∗].

Summing over all pairs i, j with i < x∗ and j < x∗, we obtain∑
i<x∗

∑
j<x∗

µ[(Ei,j f − f )2|x∗]

≤ 9(x∗ − 1)

(n + 1 − x∗)
∑
i<x∗

∑
�>x∗

µ[(Ei,�f − f )2|x∗],(3.24)

since there are x∗ − 1 positions j such that j < x∗.
Repeating the reasoning leading to (3.24) for pairs i, j with i > x∗ and j > x∗,

we have ∑
i>x∗

∑
j>x∗

µ[(Ei,j f − f )2|x∗]
(3.25)

≤ 9(n + 1 − x∗)
(x∗ − 1)

∑
i>x∗

∑
�<x∗

µ[(Ei,�f − f )2|x∗].

Inserting (3.24) and (3.25) in (3.23), we obtain

Var(f |x∗) ≤ 2

n

∑
i<x∗

∑
j>x∗

µ[(Ei,jf − f )2|x∗]

+ 9

n

{
(n + 1 − x∗)

(x∗ − 1)
+ (x∗ − 1)

(n + 1 − x∗)

} ∑
i<x∗

∑
j>x∗

µ[(Ei,jf − f )2|x∗]

≤ 1

n

{
2 + 9n2

(n + 1 − x∗)(x∗ − 1)

} ∑
i<x∗

∑
j>x∗

µ[(Ei,j f − f )2|x∗],
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where we used (n − t)/t + t/(n − t) ≤ n2/t (n − t), for t ∈ (0, n). Note that if
x∗ satisfies (3.7), then (n + 1 − x∗)(x∗ − 1) ≥ δ(1 − δ)(n + 1)2. In conclusion,
recalling that χ forces x∗ to satisfy (3.7), we see that, for any value of x∗,

χ Var(f |x∗) ≤ 1

n

{
2 + 9n2

δ(1 − δ)(n + 1)2

} ∑
i<x∗

∑
j>x∗

µ[(Ei,j f − f )2|x∗].

Taking µ-expectation and recalling the definition (3.8) of Fδ(f ), we see that

Fδ(f ) ≤
{

2 + 9n2

δ(1 − δ)(n + 1)2

}
(n + 2)2

n
D2(f ) =: CδnD2(f ).(3.26)

Note that Cδ ≤ 2 + 9/[δ(1 − δ)] + O(1/n). �

3.5. From modified transpositions to top-swaps. Here we use the path-
comparison technique of Diaconis and Saloff-Coste [4] to estimate the Dirichlet
form D2 in terms of the Dirichlet form E2; see (3.4) and (3.6) for their definitions.
The next lemma is based on the rather obvious fact that an ordinary transposition
can be “simulated” by two top-swap moves.

LEMMA 3.4. For any function f ,

D2(f ) ≤ 5E2(f ).(3.27)

PROOF. Let η be a given configuration of cards and let i, j be two given po-
sitions such that i < j . If i < x∗(η) = j , then Ẽi,j = Ti,j , so we only need to take
care of the case i < x∗(η) < j . In this case Ẽi,j is an ordinary transposition Ei,j

and this can be written by way of two top-swap operations. Namely, suppose that
η ∈ ��

n, that is, η ∈ �n is such that x∗(η) = �. Then it is not hard to see that

Ei,j η = Ti+1,n+i−�+3Ti,j η.(3.28)

Note that n + i − � + 3 ≤ n + 2 since we are assuming i < x∗(η) = �. We adopt
the convention that if n + i − � + 3 = n + 2, then Ti+1,n+i−�+3ξ changes the
configuration ξ by moving the top above (and including) i + 1 from deck 1 to the
top of deck 2.

The identity (3.28) is easily understood with the help of a picture. For in-
stance, consider the configuration η = (3,4,∗,5,2,1,6) of Figure 1. E1,6η (i.e.,
the transposition of cards labeled 3 and 1) is obtained by first applying T1,6 to
obtain T1,6η = (1,6,∗,5,2,3,4) and then applying T2,7. To see a case where
n + i − � + 3 = n + 2, consider, for example, E2,5η (the transposition of cards
labeled 4 and 2). This is obtained by doing first T2,5η = (3,2,1,6,∗,5,4) and
then applying T3,8 to this last configuration, since, by our convention, T3,8 is the
same as T3,5.
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Using (3.28), we have, for all i < � < j ,(
Ei,jf (η) − f (η)

)21{x∗=�}
(3.29)

≤ 2(Ti+1,n+i−�+3f1 − f1)
21{x∗=�} + 2(Ti,j f − f )21{x∗=�},

where f1(η) := f (Ti,j η) for every η ∈ �n. An argument similar to that used in the
proof of (3.17) gives

µ
[
(Ti+1,n+i−�+3f1 − f1)

21{x∗=�}
]

(3.30)
= µ

[
(Ti+1,n+i−�+3f − f )21{x∗=n+i−j+2}

]
.

From (3.30) it follows that

∑
i,j :i<j

j−1∑
�=i+1

µ
[
(Ti+1,n+i−�+3f1 − f1)

21{x∗=�}
]

= ∑
i,j :i<j

j−1∑
�=i+1

µ
[
(Ti+1,n+i−�+3f − f )21{x∗=n+i−j+2}

]
(3.31)

≤ ∑
i,j :i<j

µ[(Ti,j f − f )2].

Inserting (3.31) in (3.29), we have shown that

n+1∑
i,j=1

µ
[
(Ẽi,j f − f )21{i<x∗<j}

] ≤ 4
∑

i,j :i<j

µ[(Ti,j f − f )2].(3.32)

The identity

D2(f ) = 1

(n + 2)2

n+1∑
i,j=1

µ
[
(Ẽi,j f − f )21{i<x∗<j}

]

+ 1

(n + 2)2

n+1∑
i=1

µ[(Ti,x∗f − f )2]

and (3.32) then imply

D2(f ) ≤ 2

(n + 2)2

n+1∑
i,j=1

µ[(Ti,j f − f )2]

+ 1

(n + 2)2

n+1∑
i

µ[(Ti,x∗f − f )2] ≤ 5E2(f ).
�
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3.6. Proof of Theorem 3.1 completed. As a consequence of Lemma 3.2,
Lemma 3.3 and Lemma 3.4, we know that, for all n and all f :�n → R,

Varµ(f ) ≤ 5CδγδnE2(f ).(3.33)

We can still choose the value of δ ∈ (0,1/2) (Cδ is minimized at δ = 1/2, while γδ

is minimized at δ = 0).
Note that for δ = 0.25 one has pδ = 0.5 + O(1/n), γδ =

√
2√

2−1
+ O(1/n) and

Cδ ≤ 50 + O(1/n). Therefore, (3.33) gives Varµ(f ) ≤ CnE2(f ) with C ≤ 875 +
O(1/n). This ends the proof of Theorem 3.1.

3.7. Random transpositions with constraint. The analysis above can be used
to obtain a spectral gap estimate for a random transposition model with the con-
straint that two cards need to be in two different decks to be transposed. This is the
process with Dirichlet form DT

2 (f ) as defined in (3.6), with the only difference
that here the transformations Ẽi,j are given by

ẼT
i,j =

{
Ei,j , if i ≤ x∗ ≤ j ,
1, if i < j < x∗ or x∗ < i < j ,

(3.34)

with ẼT
i,i = 1 and ẼT

i,j = ẼT
j,i if i > j . Namely, when i = x∗, we simply transpose

rather than doing the top-swap as in (3.5).

THEOREM 3.5. There exists C < ∞ such that, for every n ∈ N, for every
function f :�n → R, we have

Varµ(f ) ≤ CnDT
2 (f ).(3.35)

PROOF. We repeat the same arguments used in the proof of Theorem 3.1. We
only need to modify the definition of the Dirichlet form Fδ(f ) which we replace
here with

F T
δ (f ) = µ[χ Varµ(f |x∗)] + 1

2(n + 1)

n+1∑
i=1

µ[(Ei,x∗f − f )2].(3.36)

It is not difficult to check that all our arguments in Lemma 3.2 apply with no
modifications to this case. Moreover, the same applies to Lemma 3.3. Note that
here we do not need the extra comparison of Lemma 3.4. In particular, one has
that the constant C in (3.35) satisfies C ≤ 175 + O(1/n). �

4. Deck-averages. We consider the following setting. There are k decks
I1, . . . , Ik and a total of n cards. The state space � is the set of all

(n + k − 1)!
(k − 1)!

arrangements of n cards in k decks. η will denote the general random element of
� and ν will be the uniform probability over �. Also, we use πiη to denote the
projection of the configuration η onto the configuration of cards in deck Ii .
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4.1. Deck-averaging process. The deck-averaging process is the continuous
time Markov chain obtained as follows. At each deck independently there is a
rate-1 Poisson clock. When deck Ii rings, we choose uniformly another deck Ij

and the cards in the two decks Ii ∪ Ij are rearranged uniformly at random (among
the two decks). The Dirichlet form of this process is

D̄(f ) = 1

k

k∑
i=1

k∑
j=1

ν[(Ai,j f )2],(4.1)

where the averaging gradient is defined by

Ai,jf (σ ) = ∑
ξ∈�

(
f (ξ) − f (σ)

)
ν[η = ξ |π�η = π�σ, � �= i, j ]

= ν[f |π�η, � �= i, j ](σ ) − f (σ)(4.2)

=: νi,j [f ](σ ) − f (σ),

for i �= j and σ ∈ �. We set Ai,if = 0. Here νi,j = ν[·|π�η, � �= i, j ] is the condi-
tional probability obtained by freezing the configuration in all decks I�, � �= i, j .
Also, note that

ν[(Ai,j f )2] = ν[Vari,j (f )],(4.3)

where Vari,j stands for the variance with respect to the probability νi,j , with the
convention that Vari,i(f ) = 0.

The result of Proposition 2.3 in [1] is that the spectral gap of the deck-average
Markov chain equals 1. In particular, for every f :� → R, we have

Varν(f ) ≤ D̄(f ),(4.4)

with Varν(f ) denoting the variance of f w.r.t. ν. Strictly speaking, the proof of
Proposition 2.3 in [1] does not apply here because the sizes of the decks are not
fixed in our model. However, it is not hard to adapt that proof to show that the
result (4.4) holds. This only requires small modifications, the point being that the
spectrum of the operator K used there satisfies the right bounds in our setting; see
Lemma 4.13 below and the remark following it for more details.

4.2. Weighted deck-averaging process. The weighted version of the deck-
averaging chain is defined by the Dirichlet form

D(f ) = 1

k

k∑
i=1

k∑
j=1

ν[(ni + nj )Vari,j (f )],(4.5)

where ni = ni(η) stands for the number of cards in deck i. A possible interpre-
tation for (4.5) is that each card is equipped with a rate-1 Poisson clock; when
a card c rings a deck, Ij is chosen uniformly at random; if c ∈ Ij , then nothing
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happens, while if c /∈ Ij , that is, c ∈ Ii for some i �= j , then all the cards in Ii ∪ Ij

are rearranged uniformly at random. Apart from a factor 2, the Dirichlet form of
this process is given by (4.5). The main result here is the following spectral gap
estimate.

PROPOSITION 4.1. For every f :� → R,

Varν(f ) ≤ 6k

n
D(f ).(4.6)

PROOF. Since
∑k

i=1 ni = n, (4.4) and (4.3) imply

Varν(f ) ≤ 1

kn

k∑
i,j=1

k∑
�=1

ν[n� Vari,j (f )].(4.7)

We claim that, for every fixed triple i, j, �,
1
2ν[n� Vari,j (f )] ≤ ν[(ni + nj )Vari,j (f )]

+ ν[(ni + n�)Vari,�(f )](4.8)

+ ν[(nj + n�)Varj,�(f )].
Once we have (4.8), from the estimate in (4.7), we obtain

Varν(f ) ≤ 6

n

k∑
i,j=1

ν[(ni + nj )Vari,j (f )],

which is the same as (4.6).
We turn to the proof of the claim (4.8). We can assume that i, j, � are three

distinct labels (i.e., � �= i, � �= j , i �= j ) since the statement is obviously true
otherwise. Let m = ni + nj + n� and let µ� denote the conditional probability
ν[·|πvη, v �= i, j, �] obtained by freezing all the decks Iv , v �= i, j, �. We are going
to prove that

m

2
Varµ�(f ) ≤ µ�[(ni + nj )Vari,j (f )]

+ µ�[(ni + n�)Vari,�(f )](4.9)

+ µ�[(nj + n�)Varj,�(f )].
Here Varµ�(f ) is the variance of f w.r.t. µ�. This depends on the given config-
uration η through the projections πvη for v �= i, j, �. Note that once the variables
πvη, v �= i, j, � are given, m becomes a constant, that is, m is µ�-a.s. constant.

Let us first show that (4.9) implies the claim (4.8). Take expectation w.r.t. ν in
(4.9) and use the fact that ν[h] = ν[µ�[h]] for any function h :� → R:

1
2ν[mVarµ�(f )] ≤ ν[(ni + nj )Vari,j (f )]

+ ν[(ni + n�)Vari,�(f )](4.10)

+ ν[(nj + n�)Varj,�(f )].
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Observe that

Varµ�(f ) = µ�

[
f (f − µ�[f ])]

= µ�

[
f (f − µ�[f |π�η])] + µ�

[
f (µ�[f |π�η] − µ�[f ])]

= µ�[Vari,j (f )] + Varµ�

[
µ�[f |π�η]]

≥ µ�

[
Vari,j (f )

]
,

where we use the fact that µ�[f |π�η] coincides with νi,j .
We can now use the obvious bound m ≥ n� to obtain

ν[mVarµ�(f )] ≥ ν
[
mµ�[Vari,j (f )]]

= ν[mVari,j (f )] ≥ ν[n� Vari,j (f )].
With (4.10), this implies (4.8).

It remains to prove (4.9). We introduce the projection Pi defined by

Pif = µ�[f |πiη].
Projectors Pj ,P� are defined in a similar way. Observe that with these definitions,
since µ�[·|π�η] = νi,j , we have

µ�[Vari,j (f )] = µ�[f (1 − P�)f ].(4.11)

Moreover, setting

� := (m − ni)(1 − Pi) + (m − nj )(1 − Pj ) + (m − n�)(1 − P�),

we see that the r.h.s. of display (4.9) coincides with the quadratic form µ�[f �f ].
We call P the average:

P = 1
3(Pi + Pj + P�).(4.12)

Lemma 4.2 below shows that

µ�[f Pf ] ≤ 1
2µ�[f 2],(4.13)

for any function f such that µ�[f ] = 0. For such f , the result (4.13) implies

µ�[f �f ] = 2mµ�[f 2] − 3mµ�[f Pf ] + µ�[nif Pif ]
+ µ�[njf Pjf ] + µ�[n�f P�f ]

≥ m

2
µ�[f 2],

where we use

µ�[nif Pif ] = µ�[ni(Pif )2] ≥ 0.

The claim (4.9) follows since, by subtracting the mean µ�[f ], we may restrict to
mean zero functions to obtain

Varµ�(f ) ≤ 2

m
µ�[f �f ]. �
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LEMMA 4.2. Let P denote the operator defined in (4.12). For every function
f such that µ�[f ] = 0, we have µ�[f Pf ] ≤ 1

2µ�[f 2].

PROOF. In the case of three decks, the proof of Proposition 2.2 of [1] [see
display (27) and display (32) there] shows that

µ�[f (1 − P)f ] ≥ min
{1

2 , 2
3(1 − λ2)

}
µ�[f 2],(4.14)

where λ2 is the largest positive eigenvalue (other than λ0 = 1; see below for more
details) of the stochastic matrix K(α,β) defined by

K(α,β) = µ�[πiη = β|πjη = α].
That is, K(α,β) is the µ�-conditional probability of having the configuration β

in Ii , given the configuration α in Ij .
The spectrum of K can be computed exactly as in Lemma 2.1 of [1]. The only

difference here is that the size of the decks is not fixed. This does not pose any
difficulty and we can proceed in the very same way. We have to compute the ac-
tion of K on functions of the kind χr1 · · ·χrn , where χr stands for the indicator
function of the event {the card labeled r belongs to deck i}. For instance, a simple
computation shows that for one card r one has

Kχr = 1
2(1 − χr).

Therefore, χr − 1
3 is an eigenfunction with eigenvalue λ1 = −1

2 . Similarly, for two
distinct cards r1, r2, one can compute

Kχr1χr2 = 1
4(1 − χr1)(1 − χr2).

Following the proof of Lemma 2.1 in [1], we then obtain that the spectrum of K
consists of the eigenvalues λ� = (−1

2)�, for � = 0,1, . . . ,m, where m is the total
number of cards in the three decks. In particular, λ2 = 1

4 so that (4.14) implies
µ�[f (1 − P)f ] ≥ 1

2µ�[f 2] or, equivalently,

µ�[f Pf ] ≤ 1
2µ�[f 2]. �

REMARK 4.1. More generally, for k decks and n cards, one obtains that the
spectrum of K is given by

λ� =
(
− 1

k − 1

)�

,

� = 0,1, . . . , n.
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5. Top-swap process with k decks. The setting is as in the previous section.
In analogy with the 2-deck process defined in (3.1), we consider here the Dirichlet
form

Ek(f ) = 1

2(n + k)2

n+k∑
r,s=1

ν[(Tr,sf − f )2],(5.1)

where we sum over all positions r, s between 1 and n + k, since we added to each
deck Ij an extra position to allow the swap of an empty top. We shall call Īj the
set of positions defined by the deck Ij and its extra position.

The main result is that the relaxation time of this chain is O(n + k):

THEOREM 5.1. There exists a constant C > 0 such that, for every n, k,
every f

Varν(f ) ≤ C(n + k)Ek(f ).(5.2)

PROOF. We start by decomposing Ek into 2-deck terms:

Ek(f ) = 1

4(n + k)2

k∑
i,j=1

ν

[ ∑
r,s∈Īi∪Īj

(Tr,sf − f )2

]
.(5.3)

If νi,j denotes the conditional probability in (4.2) (obtained by freezing all the
decks I�, � �= i, j ), then

Ek(f ) = 1

4(n + k)2

k∑
i,j=1

ν

[ ∑
r,s∈Īi∪Īj

νi,j [(Tr,sf − f )2]
]

(5.4)

= 1

2(n + k)2

k∑
i,j=1

ν[(ni + nj + 2)2Ei,j (f )],

where Ei,j (f ) is the Dirichlet form of the top-swap process on the two decks i, j

only:

Ei,j (f ) = 1

2(ni + nj + 2)2 ν

[ ∑
r,s∈Īi∪Īj

νi,j [(Tr,sf − f )2]
]
.

From Theorem 3.1, we know that for all f : � → R, for any pair of distinct decks
Ii, Ij with fixed total number of cards ni + nj ,

Ei,j (f ) ≥ 1

C(ni + nj )
Vari,j (f ).(5.5)

We can then use (5.4) to obtain

Ek(f ) ≥ 1

2C(n + k)2

k∑
i,j=1

ν[(ni + nj + 2)Vari,j (f )].(5.6)
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Recalling the definition (4.5) of the weighted deck-averaging Dirichlet form D(f )

we see that

Ek(f ) ≥ 1

2C(n + k)2

[
kD(f ) + 2

k∑
i,j=1

ν(Vari,j (f ))

]
.(5.7)

Now using (4.3), (4.1) and (4.4), we get that

Ek(f ) ≥ k

2C(n + k)2 [D(f ) + 2 Varν(f )].(5.8)

Proposition 4.1 then implies

Ek(f ) ≥ k

2C(n + k)2

[
n

6k
Varν(f ) + 2 Varν(f )

]

= n + 12k

12C(n + k)2 Varν(f )

≥ 1

12C(n + k)
Varν(f ).

This concludes the proof. �

5.1. k-deck random transpositions with constraints. Here we consider the ex-
tension to k decks of the problem discussed in Theorem 3.5. Namely, we define

ET
k (f ) = 1

2(n + k)2

n+k∑
r,s=1

ν[(Er,sf − f )2],(5.9)

where the transformations Er,s are interpreted as ordinary transpositions provided
r and s belong to different extended decks Īi , Īj . If r, s ∈ Īi for some i, then
Er,s = 1.

The computations in the proof given above can be repeated step by step. Using
Theorem 3.5, we can then obtain the following analogue of Theorem 5.1.

THEOREM 5.2. There exists C > 0 such that for every n, k and every f

Varν(f ) ≤ C(n + k)ET
k (f ).(5.10)

5.2. Matching upper bounds on spectral gap. Consider the k-deck top-swap
Dirichlet form given by (5.1). We now show that, up to a constant factor, Theo-
rem 5.1 is tight.

For η ∈ �, let n1(η) denote as usual the number of cards in the first deck. Con-
sider the indicator (test) function

f (η) =
{

1, if n1(η) = 0,
0, if n1(η) > 0.

(5.11)
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Then it is easy to check that ν[f ] = (k − 1)/(n + k − 1), and that

Varν(f ) = n(k − 1)/(n + k − 1)2.

On the other hand,

Ek(f ) = 1

2(n + k)2

[
2(k − 1)n

(n + k − 1)

]
(5.12)

= n(k − 1)

(n + k − 1)(n + k)2 ,

thus, showing that the spectral gap is at most

(n + k − 1)/(n + k)2 ≤ 1/(n + k).

Note that in the first equality above we used the fact that, for η with n1(η) = 0, the
contribution to the Dirichlet form comes from choosing r = 1 (viz., the position of
the first marker) and s to be any of the n card positions (viz., a nonmarker position).

Finally, note that the same test function (with an identical computation) shows
that the spectral gap of the k-deck random transpositions with constraints, defined
using the Dirichlet form (5.9), is also at most 1/(n + k).

Acknowledgment. We thank Fabio Martinelli for pointing out the connection
with [2] and for suggesting the argument of Lemma 3.2.
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