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EXISTENCE OF INDEPENDENT RANDOM MATCHING

BY DARRELL DUFFIE AND YENENG SUN

Stanford University and National University of Singapore

This paper shows the existence of independent random matching of a
large (continuum) population in both static and dynamic systems, which
has been popular in the economics and genetics literatures. We construct
a joint agent-probability space, and randomized mutation, partial matching
and match-induced type-changing functions that satisfy appropriate indepen-
dence conditions. The proofs are achieved via nonstandard analysis. The
proof for the dynamic setting relies on a new Fubini-type theorem for an infi-
nite product of Loeb transition probabilities, based on which a continuum of
independent Markov chains is derived from random mutation, random partial
matching and random type changing.

1. Introduction. Economists and geneticists, among others, have implicitly
or explicitly assumed the exact law of large numbers for independent random
matching in a continuum population, by which we mean a nonatomic measure
space of agents. This result is relied upon in large literatures within general equi-
librium theory, game theory, monetary theory, labor economics, illiquid financial
markets and biology, as discussed in [15], which provides extensive references.
Such a law of large numbers allows a dramatic simplification of the dynamics of
the cross-sectional distribution of properties among a large population of randomly
interacting agents. Mathematical foundations, however, have been lacking, as has
been noted by Green and Zhou [19].

Given the fundamental measurability problems associated with modeling a con-
tinuum of independent random variables,1 there has, up to now, been no theoreti-
cal treatment of the exact law of large numbers for independent random matching
among a continuum population. In [40], various versions of the exact law of large
numbers and their converses are proved by applying simple measure-theoretic
methods to an extension of the usual product probability space that has the Fubini
property.2 The measure-theoretic framework of [40] is adopted in our companion
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1See, for example, [12, 13, 24] and detailed discussions in [38] and [40].
2These results were originally stated on Loeb measure spaces in [38]. However, as noted in [40],

they can be proved for an extension of the usual product space that has the Fubini property; see also
Chapter 7 in [34] (and in particular, Sections 7.5 and 7.6), written by Sun.

386

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/105051606000000673
http://www.imstat.org
http://www.ams.org/msc/


INDEPENDENT RANDOM MATCHING 387

paper [15] to obtain an exact law of large numbers for random pairwise matching
by formulating a suitable independence condition in types.3

In particular, assuming independent random matching in a continuum popula-
tion, and some related independence assumptions regarding random mutation and
match-induced type changing, we prove in [15] that there is an almost sure deter-
ministic cross-sectional distribution of types in a large population for both static
and dynamic systems, a property that had been widely used without a proper foun-
dation. In addition, we show in [15] that the time evolution of the cross-sectional
distribution of types can be completely determined from the agent-level Markov
chain for type, with known transition matrices.

The main aim of this paper is to provide the first theoretical treatment of the
existence of independent random matching in a continuum population. In partic-
ular, we construct a joint agent-probability space, and randomized mutation, par-
tial matching and match-induced type-changing functions that satisfy the indepen-
dence conditions in [15]. Though the existence results of this paper are stated using
common measure-theoretic terms, their proofs make extensive use of nonstandard
analysis. One can pick up some background knowledge on nonstandard analysis
from the first three chapters of the book [34].

Since our dynamic system of independent random matching generates a de-
pendence structure across time (in particular, a continuum of independent Markov
chains of agents’ type), we need to construct an infinite product of Loeb transition
probabilities. Our proof of the existence result for the dynamic setting is based on
such an infinite product and an associated Fubini-type theorem that is derived from
Keisler [26]. Specifically, in order to prove the Fubini-type property of an infinite
product of Loeb transition probabilities, we first generalize Keisler’s Fubini theo-
rem for the product of two Loeb probability measures, from [26], to the setting of
a Loeb transition probability (i.e., a class of Loeb measures) in Theorem 5.1. In
constructing the internal transition probabilities for the step of random mutation in
Section 6, we use a hyperfinite product space and its coordinate functions, which
are closely related to those of Keisler [26], and in particular to the law of large
numbers for a hyperfinite sequence of ∗-independent random variables, as noted
in [26], page 56.

Historically, reliance on the exact law of large numbers for independent ran-
dom matching dates back at least to 1908, when G. H. Hardy [20] and W. Wein-
berg (see [6]) independently proposed that random mating in a large population

3The independence condition that we propose in [15] is natural, but may not be obvious. For ex-
ample, random matching in a finite population may not allow independence among agents since the
matching of agent i to agent j implies of course that j is also matched to i, implying some correlation
among agents. The effect of this correlation is reduced to zero in a continuum population. In other
words, one may obtain standard independence by rounding infinitesimals but not ∗-independence
for a hyperfinite population (see Section 4 below). A new concept, “Markov conditional indepen-
dence in types,” is proposed in [15] for dynamic matching, under which the transition law at each
randomization step depends on only the previous one or two steps of randomization.
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leads to constant and easily calculated fractions of each allele in the population.
Hardy wrote: “suppose that the numbers are fairly large, so that the mating may
be regarded as random,” and then used, in effect, an exact law of large numbers
for random matching to deduce his results. Consider, for illustration, a continuum
population of gametes consisting of two alleles, A and B , in initial proportions p

and q = 1−p. Then, following the Hardy–Weinberg approach, the new population
would have a fraction p2 whose parents are both of type A, a fraction q2 whose
parents are both of type B , and a fraction 2pq whose parents are of mixed type
(heterozygotes). These genotypic proportions asserted by Hardy and Weinberg are
already, implicitly, based on an exact law of large numbers for independent random
matching in a large population. We provide a suitable existence framework.

Going from a static to a dynamic environment, we also provide an existence
result that allows the computation of a steady-state constant deterministic popula-
tion distribution of types. For illustration, suppose in the Hardy–Weinberg setting
above that with both parents of allele A, the offspring are of allele A, and that with
both parents of allele B , the offspring are of allele B . Suppose that the offspring
of parents of different alleles are, say, equally likely to be of allele A or allele B .
The Hardy–Weinberg equilibrium for this special case is a population with steady-
state constant proportions p = 60% of allele A and q = 40% of allele B . With the
law of large numbers for independent random matching, this is verified by check-
ing that, if generation k has this cross-sectional distribution, then the fraction of
allele A in generation k + 1 is almost surely 0.62 + 0.5 × (2 × 0.6 × 0.4) = 0.6.
Our existence results for a dynamic model of random matching provide a mathe-
matical foundation for this Hardy–Weinberg law governing steady-state allelic and
genotypic frequencies.

In the field of economics, Hellwig [21] is the first, to our knowledge, to have re-
lied on the effect of the exact law of large numbers for random pairwise matching
in a market, in a 1976 study of a monetary exchange economy.4 Since the 1970s,
a large economics literature has routinely relied on an exact law of large numbers
for independent random matching in a continuum population. This implicit use
of this result occurs in general equilibrium theory (e.g., [17, 18, 35, 41]), game
theory (e.g., [4, 5, 8, 16, 22]), monetary theory (e.g., [11, 19, 21, 31]), labor eco-
nomics (e.g., [10, 23, 36, 37]) and financial market theory (e.g., [14, 32]). Mathe-
matical foundations, however, have been lacking, as has been noted by Green and
Zhou [19]. In almost all of this literature, dynamics are crucial. For example, in the

4Diamond [9] had earlier treated random matching of a large population with, in effect, finitely
many employers, but not pairwise matching within a large population. The matching of a large pop-
ulation with a finite population can be treated directly by the exact law of large numbers for a contin-
uum of independent random variables. For example, let N(i) be the event that worker i is matched
with an employer of a given type, and suppose this event is pairwise independent and of the same
probability p, in a continuum population of such workers. Then, under the conditions of [40], the
fraction of the population that is matched to this type of employer is p, almost surely.
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monetary and finance literature cited above, each agent in the economy solves a
dynamic programming problem that is based in part on the conjectured dynamics
of the cross-sectional distribution of agent types. An equilibrium has the property
that the combined effect of individually optimal dynamic behavior is consistent
with the conjectured population dynamics. In order to simplify the analysis, much
of the literature relies on equilibria with a stationary distribution of agent types.

The remainder of the paper is organized as follows. Section 2 considers exis-
tence of independent random matching, both full and partial, in a static setting,
after a brief introduction of the measure-theoretic framework in Section 2.1. The-
orem 2.4 of Section 2.2 shows the existence of random full matching with inde-
pendent types, meaning roughly that, for essentially every pair (i, j) of agents, the
type of the agent to be randomly matched with agent i is independent of the type
of the agent to be randomly matched with agent j . Theorem 2.6 of Section 2.3 then
considers existence for the case of random search and matching, that is, for random
partial matchings that are independent in types. Proofs of Theorems 2.4 and 2.6,
which use nonstandard analysis extensively in the computations, are given in Sec-
tion 4.

Section 3 considers a dynamical system for agent types, allowing for random
mutation, partial matching and match-induced random type changes. We borrow
from our companion paper [15] the inductive definition of such a dynamical sys-
tem given in Section 3.1, and the condition of Markov conditional independence
found in Section 3.2. The latter condition captures the idea that at every time pe-
riod, there are three stages: (1) an independent random mutation, (2) an indepen-
dent random partial matching, and (3) for those agents matched, an independent
random type change induced by matching. In economics applications, for exam-
ple, match-induced type changes arise from productivity shocks, changes in asset
holdings induced by trade between the matched agents, changes in credit positions,
or changes in money holdings. Theorem 3.1 of Section 3.3 shows the existence of
a dynamical system D with random mutation, partial matching and type changing
that is Markov conditionally independent in types with any given parameters. The-
orem 3 of [15] then implies that the type processes of individual agents in such
a dynamical system D form a continuum of independent Markov chains, and that
the time evolution of the cross-sectional distribution of types is deterministic and
completely determined from a Markov chain with explicitly calculated transition
matrices.5

We prove Theorems 2.4 and 2.6 in Section 4. Turning to Section 5, we first prove
in Section 5.1 a generalized Fubini theorem for a Loeb transition probability. Then,
a generalized Ionescu–Tulcea theorem for an infinite sequence of Loeb transition

5The models in [27, 28] and [29] assume that there is a set of individual agents and a single mar-
ketmaker. At each time, a randomly chosen individual agent trades with the marketmaker. References
[1] and [2] formalize a link between matching and informational constraints, which do not consider
random matching under the independence assumption as in the model here.
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probabilities is shown in Section 5.2. Finally, a Fubini extension based on Loeb
product transition probability systems is constructed in Section 5.3. Based on the
results in Section 5, we prove Theorem 3.1 in Section 6.

Finally, we emphasize again that we must work with extensions of the usual
product measure spaces (of agents and states of the world), since a process formed
by a continuum of independent random variables is never measurable with respect
to the completion of the usual product σ -algebra, except in the trivial case that
almost all of the random variables in the process are constants.6

2. Existence of independent random matchings in the static case. In this
section, we first give some background definitions in Section 2.1. Then, we con-
sider the existence of random matchings that are independent in types, for full and
partial matchings, in Sections 2.2 and 2.3, respectively. Proofs of the two exis-
tence theorems, Theorems 2.4 and 2.6, are given in Sections 4.1 and 4.2. The full
and partial matching models in Theorems 2.4 and 2.6 satisfy the respective con-
ditions in Theorems 1 and 2 in [15], which means that the respective conclusions
of Theorems 1 and 2 in [15], characterizing the implications of the law of large
numbers for process describing the cross-sectional distribution of types, hold for
these matching models.

2.1. Some background definitions. Let probability spaces (I,I, λ) and (�,

F ,P ) be our index and sample spaces, respectively.7 In our applications, (I,I, λ)

is an atomless probability space that indexes the agents.8 Let (I ×�,I⊗F , λ⊗P)

be the usual product probability space. For a function f on I × � (not necessarily
I⊗F -measurable), and for (i,ω) ∈ I ×�, fi represents the function f (i, ·) on �,
and fω the function f (·,ω) on I .

In order to work with independent type processes arising from random match-
ing, we need to work with an extension of the usual measure-theoretic product that
retains the Fubini property. A formal definition, as in [40], is as follows.

DEFINITION 2.1. A probability space (I × �,W ,Q) extending the usual
product space (I × �,I ⊗ F , λ ⊗ P) is said to be a Fubini extension of (I × �,

I ⊗ F , λ ⊗ P) if for any real-valued Q-integrable function g on (I × �,W), the
functions gi = g(i, ·) and gω = f (·,ω) are integrable respectively on (�,F ,P )

6See, for example, Proposition 1.1 in [39].
7All measures in this paper are countably additive set functions defined on σ -algebras.
8A probability space (I,I, λ) is atomless if there does not exist A ∈ I such that λ(A) > 0, and

for any I-measurable subset C of A, λ(C) = 0 or λ(C) = λ(A). For those interested in the case of
a literal continuum of agents, it is noted in the beginning of Section 4 that one can indeed take I to
be the unit interval with some atomless probability measure. Corollary 4.3 in [40] shows, however,
that, in general, it makes no sense to impose the Lebesgue measure structure when an independent
process is considered.



INDEPENDENT RANDOM MATCHING 391

for λ-almost all i ∈ i and on (I,I, λ) for P -almost all ω ∈ �; and if, moreover,∫
� gi dP and

∫
I gω dλ are integrable respectively on (I,I, λ) and on (�,F ,P ),

with
∫
I×� g dQ = ∫

I (
∫
� gi dP )dλ = ∫

�(
∫
I gω dλ)dP . To reflect the fact that the

probability space (I × �,W ,Q) has (I,I, λ) and (�,F ,P ) as its marginal
spaces, as required by the Fubini property, it will be denoted by (I × �,I � F ,

λ � P).

An I�F -measurable function f will also be called a process, while fi is called
a random variable of the process and fω is called a sample function of the process.

We now introduce the following crucial independence condition. We state the
definition using a complete separable metric space X for the sake of generality; in
particular, a finite space or a Euclidean space is a complete separable metric space.

DEFINITION 2.2. An I � F -measurable process f from I × � to a com-
plete separable metric space X is said to be essentially pairwise independent if for
λ-almost all i ∈ I , the random variables fi and fj are independent for λ-almost all
j ∈ I .

2.2. Existence of independent random full matchings. We follow the notation
in Section 2.1. Below is a formal definition of random full matching.

DEFINITION 2.3 (Full matching).

1. Let S = {1,2, . . . ,K} be a finite set of types, α : I → S an I-measurable type
function of agents and p its distribution on S. For 1 ≤ k ≤ K , let Ik = {i ∈ I :
α(i) = k} and pk = λ(Ik) for each 1 ≤ k ≤ K .

2. A full matching φ is a bijection from I to I such that for each i ∈ I , φ(i) �= i

and φ(φ(i)) = i.
3. A random full matching π is a mapping from I × � to I such that (i) πω is a

full matching for each ω ∈ �; (ii) if we let g be the type process α(π), then g

is measurable from (I × �,I � F , λ � P) to S; (iii) for λ-almost all i ∈ I , gi

has distribution p.
4. A random full matching π is said to be independent in types if the type process

g is essentially pairwise independent.

Condition (1) of this definition says that a fraction pk of the population is of
type k. Condition (2) says that there is no self-matching, and that if i is matched
to j = φ(i), then j is matched to i. Condition (3)(iii) means that for almost every
agent i, the probability that i is matched to a type-k agent is pk , the fraction of
type-k agents in the population. Condition (4) says that for almost all agents i and
j ∈ I , the event that agent i is matched to a type-k agent is independent of the
event that agent j is matched to a type-l agent for any k, l ∈ S.
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The following theorem shows the existence of an independent random full
matching model that satisfies a few strong conditions that are specified in foot-
note 4 of [35], and is universal in the sense that it does not depend on particular
type functions.9 Note that condition (1)(ii) below implies that for any i, j ∈ I ,
P(πi = j) = 0 since λ({j}) = 0, which means that the probability that agent i is
matched with a given agent j is zero.

THEOREM 2.4. There exists an atomless probability space (I,I, λ) of agents,
a sample probability space (�,F ,P ), a Fubini extension (I × �,I � F , λ � P)

of the usual product probability space, and a random full matching π from (I ×�,

I � F , λ � P) to I such that

1. (i) for each ω ∈ �, λ(π−1
ω (A)) = λ(A) for any A ∈ I, (ii) for each i ∈ I ,

P(π−1
i (A)) = λ(A) for any A ∈ I, (iii) for any A1,A2 ∈ I, λ(A1 ∩π−1

ω (A2)) =
λ(A1)λ(A2) holds for P -almost all ω ∈ �;

2. π is independent in types with respect to any given type function α from I to
any finite type space S.

2.3. The existence of independent random partial matchings. We shall now
consider the case of random partial matchings. The following is a formal definition.

DEFINITION 2.5. Let α : I → S be an I-measurable type function with type
distribution p = (p1, . . . , pK) on S. Let π be a mapping from I × � to I ∪ {J },
where J denotes “no match.”

1. We say that π is a random partial matching with no-match probabilities
q1, . . . , qK in [0,1] if:

(i) For each ω ∈ �, the restriction of πω to I −π−1
ω ({J }) is a full matching

on I − π−1
ω ({J }).10

(ii) After extending the type function α to I ∪ {J } such that α(J ) = J , and
letting g = α(π), we have g measurable from (I ×�,I�F , λ�P) to S ∪{J }.

(iii) For λ-almost all i ∈ Ik , P(gi = J ) = qk and11

P(gi = l) = (1 − qk)pl(1 − ql)∑K
r=1 pr(1 − qr)

.

9When (I,I, λ) is taken to be the unit interval with the Borel algebra and Lebesgue measure,

property (1)(iii) of Theorem 2.4 can be restated as “for P -almost all ω ∈ �, λ(A1 ∩ π−1
ω (A2)) =

λ(A1)λ(A2) holds for any A1,A2 ∈ I” by using the fact that the countable collection of rational
intervals in [0,1] generates the Borel algebra. Footnote 4 of [35] shows the nonexistence of a random
full matching π that satisfies (i)–(iii) of part (1).

10This means that an agent i with πω(i) = J is not matched, while any agent in I − π−1
ω ({J }) is

matched. This produces a partial matching on I .
11If an agent of type k is matched, its probability of being matched to a type-l agent should be

proportional to the type distribution of matched agents. The fraction of the population of matched
agents among the total population is

∑K
r=1 pr(1 − qr ). Thus, the relative fraction of type-l matched
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2. A random partial matching π is said to be independent in types if the process g

(taking values in S ∪ {J }) is essentially pairwise independent.12

The following theorem generalizes Theorem 2.4 to the case of random partial
matchings. Because the given parameters for no-matching probabilities may be
type-dependent, it is not possible to produce a universal matching model for ran-
dom partial matchings as in the case of full matchings.

THEOREM 2.6. There is an atomless probability space (I,I, λ) of agents
such that for any given I-measurable type function β from I to S, and for any
q ∈ [0,1]S , (1) there exists a sample space (�,F ,P ) and a Fubini extension
(I × �,I � F , λ � P) of the usual product probability space; (2) there exists an
independent-in-types random partial matching π from (I ×�,I�F , λ�P) to I

with q = (q1, . . . , qK) as the no-match probabilities.

3. The existence of a dynamical system with random mutation, partial
matching and type changing that is Markov conditionally independent in
types. A discrete-time dynamical system D with random mutation, partial match-
ing and type changing that is Markov conditionally independent in types is intro-
duced in Section 4 of our companion paper [15]. The purpose of this section is
to show the existence of such a dynamical system D with any given parameters.
In Sections 3.1 and 3.2, we reproduce respectively the inductive definition of a
dynamical system with random mutation, partial matching and type changing and
the condition of Markov conditional independence, which originated with [15].
The general existence of the dynamical system D is presented in Theorem 3.1 in
Section 3.3 and its proof in Section 6.

3.1. Definition of a dynamical system with random mutation, partial matching
and type changing. Let S = {1,2, . . . ,K} be a finite set of types. A discrete-time
dynamical system D with random mutation, partial matching and type changing in
each period can be defined intuitively as follows. The initial distribution of types
is p0. That is, p0(k) (denoted by p0

k ) is the initial fraction of agents of type k.
In each time period, each agent of type k first goes through a stage of random
mutation, becoming an agent of type l with probability bkl . In models such as [14],
for example, this mutation generates new motives for trade. Then, each agent of
type k is either not matched, with probability qk , or is matched to a type-l agent

agents to that of all matched agents is (pl(1 −ql))/
∑K

r=1 pr(1 −qr ). This implies that the probabil-

ity that a type-k agent is matched to a type-l agent is (1 − qk)(pl(1 − ql))/
∑K

r=1 pr(1 − qr ). When∑K
r=1 pr(1 − qr ) = 0, we have pk(1 − qk) = 0 for all 1 ≤ k ≤ K , in which case almost no agents

are matched, and we can interpret the ratio ((1 − qk)pl(1 − ql))/
∑K

r=1 pr(1 − qr ) as zero.
12This means that for almost all agents i, j ∈ I , whether agent i is unmatched or matched to a

type-k agent is independent of a similar event for agent j .
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with a probability proportional to the fraction of type-l agents in the population
immediately after the random mutation step. When an agent is not matched, she
keeps her type. Otherwise, when a pair of agents with respective types k and l are
matched, each of the two agents changes types; the type-k agent becomes type r

with probability νkl(r), where νkl is a probability distribution on S, and similarly
for the type-l agent.

We shall now define formally a dynamical system D with random mutation,
partial matching and type changing. As in Section 2, let (I,I, λ) be an atomless
probability space representing the space of agents, (�,F ,P ) a sample probabil-
ity space, and (I × �,I � F , λ � P) a Fubini extension of the usual product
probability space.

Let α0 : I → S = {1, . . . ,K} be an initial I-measurable type function with dis-
tribution p0 on S. For each time period n ≥ 1, we first have a random mutation that
is modeled by a process hn from (I ×�,I�F , λ�P) to S, then a random partial
matching described by a function πn from (I ×�,I�F , λ�P) to I ∪{J } (where
J represents no matching), followed by type changing for the matched agents that
is modeled by a process αn from (I × �,I � F , λ � P) to S.

For the random mutation step at time n, given a K × K probability transition
matrix13 b, we require that, for each agent i ∈ I ,

P(hn
i = l|αn−1

i = k) = bkl,(1)

the specified probability with which an agent i of type k at the end of time period
n − 1 mutates to type l.

For the random partial matching step at time n, we let pn−1/2 be the expected
cross-sectional type distribution immediately after random mutation. That is,

p
n−1/2
k = pn−1/2(k) =

∫
�

λ
({i ∈ I :hn

ω(i) = k})dP (ω).(2)

The random partial matching function πn at time n is defined by:

1. For any ω ∈ �, πn
ω(·) is a full matching on I − (πn

ω)−1({J }), as defined in
Section 2.3.

2. Extending hn so that hn(J,ω) = J for any ω ∈ �, we define gn : I × � →
S ∪ {J } by

gn(i,ω) = hn(
πn(i,ω),ω

)
,

and assume that gn is I � F -measurable.
3. Let q ∈ [0,1]S . For each agent i ∈ I ,

P(gn
i = J |hn

i = k) = qk,
(3)

P(gn
i = l|hn

i = k) = (1 − qk)(1 − ql)p
n−1/2
l∑K

r=1(1 − qr)p
n−1/2
r

.

13Here, bkl is in [0,1], with
∑K

l=1 bkl = 1 for each k.
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Equation (3) means that for any agent whose type before the matching is k, the
probability of being unmatched is qk , and the probability of being matched to
a type-l agent is proportional to the expected cross-sectional type distribution for
matched agents. When gn is essentially pairwise independent (as under the Markov
conditional independence condition in Section 3.2 below), the exact law of large
numbers in [38] and [40] implies that the realized cross-sectional type distrib-
ution λ(hn

ω)−1 after random mutation at time n is indeed the expected distribu-
tion pn−1/2, P -almost surely.14

Finally, for the step of random type changing for matched agents at time n,
a given ν :S ×S → 
 specifies the probability distribution νkl = ν(k, l) of the new
type of a type-k agent who has met a type-l agent. When agent i is not matched
at time n, she keeps her type hn

i with probability 1. We thus require that the type
function αn after matching satisfies, for each agent i ∈ I ,

P(αn
i = r|hn

i = k, gn
i = J ) = δr

k,
(4)

P(αn
i = r|hn

i = k, gn
i = l) = νkl(r),

where δr
k is 1 if r = k, and zero otherwise.

Thus, we have inductively defined a dynamical system D with random mutation,
partial matching and match-induced type changing with parameters (p0, b, q, ν).

3.2. Markov conditional independence in types. In this subsection, we con-
sider a suitable independence condition on the dynamical system D. For n ≥ 1,
to formalize the intuitive idea that given their type function αn−1, the agents ran-
domly mutate to other types independently at time n, and that their types in earlier
periods have no effect on this mutation, we say that the random mutation is Markov
conditionally independent in types if, for λ-almost all i ∈ I and λ-almost all j ∈ I ,

P(hn
i = k,hn

j = l|α0
i , . . . , α

n−1
i ;α0

j , . . . , α
n−1
j )

(5)
= P(hn

i = k|αn−1
i )P (hn

j = l|αn−1
j )

holds for all types k, l ∈ S.15

Intuitively, the random partial matching at time n should depend only on agents’
types immediately after the random mutation. One may also want the random par-
tial matching to be independent across agents, given events that occurred in the
first n−1 time periods and the random mutation at time n. We say that the random

14As noted in Footnote 11, if the denominator in (3) is zero, then almost no agents will be matched
and we can simply interpret the ratio as zero.

15We could include the functions hm and gm for 1 ≤ m ≤ n−1 as well. However, it is not necessary
to do so since we only care about the dependence structure across time for the type functions at the
end of each time period.
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partial matching πn is Markov conditionally independent in types if, for λ-almost
all i ∈ I and λ-almost all j ∈ I ,

P(gn
i = c, gn

j = d|α0
i , . . . , α

n−1
i , hn

i ;α0
j , . . . , α

n−1
j , hn

j )
(6)

= P(gn
i = c|hn

i )P (gn
j = d|hn

j )

holds for all types c, d ∈ S ∪ {J }.
The agents’ types at the end of time period n should depend on the agents’

types immediately after the random mutation stage at time n, as well as the results
of random partial matching at time n, but not otherwise on events that occurred in
previous periods. This motivates the following definition. The random type chang-
ing after partial matching at time n is said to be Markov conditionally independent
in types if for λ-almost all i ∈ I and λ-almost all j ∈ I , and for each n ≥ 1,

P(αn
i = k,αn

j = l|α0
i , . . . , α

n−1
i , hn

i , g
n
i ;α0

j , . . . , α
n−1
j , hn

j , g
n
j )

(7)
= P(αn

i = k|hn
i , g

n
i )P (αn

j = l|hn
j , g

n
j )

holds for all types k, l ∈ S.
The dynamical system D is said to be Markov conditionally independent in types

if, in each time period n, each random step (random mutation, partial matching and
type changing) is so.

3.3. The existence theorem. The following theorem shows the existence of a
dynamical system with random mutation, partial matching and type changing that
is Markov conditionally independent in types. Its proof will be given in Section 6
after the development of a generalized Fubini theorem for a Loeb transition prob-
ability and a Loeb product transition probability system in Section 5.

THEOREM 3.1. Fixing any parameters p0 for the initial cross-sectional type
distribution, b for mutation probabilities, q ∈ [0,1]S for no-match probabilities
and ν for match-induced type-change probabilities, there exists a Fubini extension
of the usual product probability space on which is defined a dynamical system D

with random mutation, partial matching and type changing that is Markov condi-
tionally independent in types with these parameters (p0, b, q, ν).

Note that the dynamic matching model D described in Theorem 3.1 above sat-
isfies the conditions in Theorem 3 of [15]. Thus, the conclusions of Theorem 3
in [15] also hold for the matching model D, including the statements that the type
processes of individual agents in such a dynamical system D form a continuum
of independent Markov chains, and that the time evolution of the cross-sectional
type process is completely determined from a Markov chain with known transition
matrices.
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4. Proofs of Theorems 2.4 and 2.6. In this section, we give the proofs for
Theorems 2.4 and 2.6 in Sections 4.1 and 4.2, respectively.

The space of agents used from this section onward will be based on a hyperfinite
Loeb counting probability space (I,I, λ) that is the Loeb space (see [33] and [34])
of internal probability space (I,I0, λ0), where I is a hyperfinite set, I0 its internal
power set, and λ0(A) = |A|/|I | for any A ∈ I0 (i.e., λ0 is the internal counting
probability measure on I ). Using the usual ultrapower construction as in [34], the
hyperfinite set I itself can be viewed as an equivalence class of a sequence of finite
sets whose sizes go to infinity, and the external cardinality of I is the cardinality
of the continuum. Thus, one can also take the unit interval [0,1] as the space
of agents, endowed with a σ -algebra and an atomless probability measure via a
bijection between I and the unit interval.

All of the internal probability spaces to be discussed from this section onward
are hyperfinite internal probability spaces. A general hyperfinite internal probabil-
ity space is an ordered triple (�,F0,P0), where � = {ω1,ω2, . . . ,ωγ } for some
unlimited hyperfinite natural number γ , F0 is the internal power set on �, and
P0(B) = ∑

1≤j≤γ,ωj∈B P0({ωj }) for any B ∈ F0. When the weights P0({ωj }),
1 ≤ j ≤ γ , are all infinitesimals, (�,F0,P0) is said to be atomless, and its Loeb
space (�,F ,P ), as a standard probability space, is atomless in the usual sense of
Footnote 8. Note that nonstandard analysis is used extensively from this section
onward. The reader is referred to the first three chapters of [34] for more details.

4.1. Proof of Theorem 2.4. Fix an even hyperfinite natural number in the
set ∗

N∞ of unlimited hyperfinite natural numbers. Let I = {1,2, . . . ,N}, let I0

be the collection of all the internal subsets of I , and let λ0 be the internal counting
probability measure on I0. Let (I,I, λ) be the Loeb space of the internal proba-
bility space (I,I0, λ0). Note that (I,I, λ) is obviously atomless.

We can draw agents from I in pairs without replacement, and then match them
in these pairs. The procedure can be the following. Take one fixed agent; this agent
can be matched with N − 1 different agents. After the first pair is matched, there
are N − 2 agents. We can do the same thing to match a second pair with N − 3
possibilities. Continue this procedure to produce a total number of 1 × 3 × · · · ×
(N − 3) × (N − 1), denoted by (N − 1)!!, different matchings. Let � be the space
of all such matchings, F0 the collection of all internal subsets of � and P0 the
internal counting probability measure on F0. Let (�,F ,P ) be the Loeb space of
the internal probability space (�,F0,P0).

Let (I × �,I0 ⊗ F0, λ0 ⊗ P0) be the internal product probability space of
(I,I0, λ0) and (�,F0,P0). Then I0 ⊗ F0 is actually the collection of all the in-
ternal subsets of I × � and λ0 ⊗ P0 is the internal counting probability measure
on I0 ⊗ F0. Let (I × �,I � F , λ � P) be the Loeb space of the internal product
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(I ×�,I0 ⊗F0, λ0 ⊗P0), which is indeed a Fubini extension of the usual product
probability space.16

Now, for a given matching ω ∈ � and a given agent i, let π(i,ω) be the unique j

such that the pair (i, j) is matched under ω. For each ω ∈ �, since πω is an internal
bijection on I , it is obvious that πω is measure-preserving from the Loeb space
(I,I, λ) to itself. Thus, (i) of part (1) is shown.

It is obvious that for any agent i ∈ I ,

P0
({ω ∈ � :πi(ω) = j}) = 1

N − 1
(8)

for any j �= i; that is, the ith agent is matched with equal chance to other agents.
Fix any i ∈ I . For any internal set C ∈ I0, (8) implies that P0(ω ∈ � :πi(ω) ∈

C) is |C|/(N −1) if i /∈ C, and (|C|−1)/(N −1) if i ∈ C, where |C| is the internal
cardinality of C. This means17 that

P0(π
−1
i (C)) � |C|

N
= λ0(C) � λ(C).(9)

Therefore, πi is a measure-preserving mapping from (�,F0,P ) to (I,I0, λ),
and is measure-preserving from the Loeb space (�,F ,P ) to the Loeb space
(I,I, λ).18 Thus, (ii) of part (1) is shown.

We can also obtain that

(λ0 ⊗ P0)(π
−1(C)) =

∫
i∈I

P0(π
−1
i (C)) dλ0(i) � λ0(C) � λ(C).(10)

A proof similar to that of Footnote 18 shows that π is a measure-preserving map-
ping from (I × �,I � F , λ � P) to (I,I, λ).

16For any given two Loeb spaces (I,I, λ) and (�,F ,P ), it is shown in [30] that the Loeb product
space (I ×�,I�F , λ�P) is uniquely defined by the marginal Loeb spaces. Anderson noted in [3]
that (I ×�,I�F , λ�P) is an extension of the usual product (I ×�,I⊗F , λ⊗P). Keisler proved
in [26] (see also [34]) that the Fubini property still holds on (I × �,I � F , λ � P). Thus, the Loeb
product space is a Fubini extension of the usual product probability space. In addition, it is shown in
Theorem 6.2 of [38] that when both λ and P are atomless, (I × �,I � F , λ � P) is rich enough to
be endowed with a process h whose random variables are essentially pairwise independent and can
take any variety of distributions (and in particular the uniform distribution on [0,1]).

17For two hyperreals α and β , α � β means that the difference α − β is an infinitesimal; see [34].
18For any Loeb measurable set B ∈ I and for any standard positive real number ε, there are internal

sets C and D in I0 such that C ⊆ B ⊆ D and λ0(D − C) < ε. Thus π−1
i (C) ⊆ π−1

i (B) ⊆ π−1
i (D),

and

P0
(
π−1

i (D) − π−1
i (C)

) � λ0(D − C) < ε,

which implies that π−1
i (B) is Loeb measurable in F . Also, λ(C) ≤ P(π−1

i (B)) ≤ λ(D), and thus

|P(π−1
i (B)) − λ(B)| ≤ λ(D − C) ≤ ε for any standard positive real number ε. This means that

P(π−1
i (B)) = λ(B).



INDEPENDENT RANDOM MATCHING 399

Next, for i �= j , consider the joint event

E = {
ω ∈ � :

(
πi(ω),πj (ω)

) = (i ′, j ′)
}
,(11)

that is, the ith agent is matched to the i ′th agent and the j th agent is matched to
the j ′th agent. In order to show the measure-preserving property of the mapping
(πi,πj ) in the following paragraph, we need to know the value of P0(E) in three
different cases. The first case is (i ′, j ′) = (j, i), that is, the ith agent is matched to
the j th agent and the j th agent is matched to the ith agent. In this case, P0(E) =
1/(N − 1). The second case is that of P0(E) = 0, which holds when i ′ = i or
j ′ = j (the ith agent is matched to herself, or the j th agent is matched to herself),
or when i ′ = j but j ′ �= i (the ith agent is matched to the j th agent, but the j th
agent is not matched to the ith agent), or when j ′ = i but i ′ �= j (the j th agent
is matched to the ith agent, but the ith agent is not matched to the j th agent), or
when i ′ = j ′ (both the ith agent and the j th agent are matched to the same agent).
The third case applies if the indices i, j and i ′, j ′ are completely distinct. In this
third case, after the pairs (i, i′), (j, j ′) are drawn, there are N − 4 agents left, and
hence there are (N −5)!! ways to draw the rest of the pairs in order to complete the
matching. This means that P0(E) = (N − 5)!!/(N − 1)!! = 1/((N − 1)(N − 3)).

Let (I × I,I0 ⊗ I0, λ0 ⊗ λ0) be the internal product of (I,I0, λ0) with itself,
and (I × I,I � I, λ � λ) the Loeb space of the internal product. Fix any i, j ∈ I

with i �= j . Let D be the diagonal {(i ′, i ′) : i′ ∈ I }. The third case of the above
paragraph implies that for any internal set G ∈ I0 ⊗ I0,

P0
({

ω ∈ � :
(
πi(ω),πj (ω)

) ∈ G − (
D ∪ ({i, j} × I ) ∪ (I × {i, j}))})

(12)

= |G − (D ∪ ({i, j} × I ) ∪ (I × {i, j}))|
(N − 1)(N − 3)

� |G|
(N)2 = (λ0 ⊗ λ0)(G).

By using the formula for P0(E) in the first two cases, we can obtain that

P0
({

ω ∈ � :
(
πi(ω),πj (ω)

) ∈ (
D ∪ ({i, j} × I ) ∪ (I × {i, j}))})

(13)

= 1

N − 1
� 0.

Equations (12) and (13) imply that

P0
({

ω ∈ � :
(
πi(ω),πj (ω)

) ∈ G
}) � (λ0 ⊗ λ0)(G).(14)

A proof similar to that of Footnote 18 shows that (πi,πj ) is a measure-preserving
mapping from (�,F ,P ) to (I × I,I � I, λ � λ).

Let α be an I-measurable type function with a distribution p on S, Ik =
α−1({k}) and pk = λ(Ik) for 1 ≤ k ≤ K . Let g = α(π). Then, for any 1 ≤ k ≤ K ,
g−1({k}) = π−1(Ik), which is Loeb product measurable in I � F with
λ � P -measure pk because of the measure-preserving property of π . Hence, g is
I � F -measurable. For each i ∈ I , the measure-preserving property of πi implies
that gi has the same distribution p as α.
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Fix any i, j ∈ I with i �= j . For any 1 ≤ k, l ≤ K , the measure-preserving prop-
erty of (πi,πj ) implies that

P(gi = k, gj = l) = P
({

ω ∈ � :
(
πi(ω),πj (ω)

) ∈ Ik × Il

})
(15)

= (λ � λ)(Ik × Il) = P(gi = k) · P(gj = l),

which means that the random variables gi and gj are independent.19 Hence,
part (2) is shown.

Finally, take any A1,A2 ∈ I, and let f (i,ω) = 1A2(π(i,ω)) for all (i,ω) ∈
I × �. Then, f is an i.i.d. process with a common distribution on {0,1} with
probabilities λ(A2) on {1} and 1−λ(A2) on {0}. By the exact law of large numbers
in Theorem 5.2 of [38] or Theorem 3.5 of [40],20 one has for P -almost all ω ∈ �,
λA1(f A1)−1

ω ({1}) = λ(A2), which implies that λ(A2) = λ(A1 ∩ π−1
ω (A2))/λ(A1).

Hence, (iii) of part (1) follows.

4.2. Proof of Theorem 2.6. Let M be any fixed unlimited hyperfinite natural
number in ∗

N∞, and let I = {1,2, . . . ,M} be the space of agents. Let I0 be the
collection of all the internal subsets of I , and λ0 the internal counting probability
measure on I0. Let (I,I, λ) be the Loeb space of the internal probability space
(I,I0, λ0).

Let β be any I-measurable type function from I to S = {1, . . . ,K}. We can
find an internal type function α from I to S such that λ({i ∈ I :α(i) �= β(i)}) = 0.
Let Ak = α−1(k) and |Ak| = Mk for 1 ≤ k ≤ K with

∑K
k=1 Mk = M . Then

λ(Ak) = pk � Mk/M for 1 ≤ k ≤ K . Without loss of generality, we can assume
that Mk ∈ ∗

N∞.21 For each k in {1, . . . ,K}, pick a hyperfinite natural number mk

such that Mk − mk ∈ ∗
N∞ and qk � mk/Mk , and such that N = ∑K

l=1(Ml − ml)

is an unlimited even hyperfinite natural number. It is easy to see that

N

M
=

K∑
l=1

Ml

M

(
1 − ml

Ml

)
�

K∑
l=1

pl(1 − ql).(16)

19When the type function α is internal, the type process is internal as well. However, the computa-
tions in (12)–(14) indicate that the random variables gi , i ∈ I , are in general not ∗-independent; see,
for example, [3] for the definition of ∗-independence.

20What we need in this paper is a special case of Theorem 3.5 in [40]. Let f be a process from
(I ×�,I�F , λ�P) to a complete separable metric space X. Assume that the random variables fi ,
i ∈ I are pairwise independent. Then, for P -almost all ω ∈ �, the sample function fω has the same
distribution as f in the sense that for any Borel set B in X, λ(f −1

ω (B)) = (λ � P)(f −1(B)). Fix
any A ∈ I with λ(A) > 0. Let f A be the restriction of f to A × �, λA and λA � P the probability
measures rescaled from the restrictions of λ and λ�P to {D ∈ I :D ⊆ A} and {C ∈ I�F :C ⊆ A×
�}, respectively. Then, for the case that the random variables fi, i ∈ I have a common distribution µ

on X, the sample function (f A)ω also has distribution µ for P -almost all ω ∈ �.
21When pk = 0, we may still need to divide some number mk by Mk so that the ratio is infinitely

close to a real number qk . We can take Mk ∈ ∗
N∞ with Mk/M � 0. We then take an internal subset

of I with Mk many points as Ak and adjust the rest Al, l �= k, on some λ-null internal sets. This will
produce a new internal type function α with the desired properties.



INDEPENDENT RANDOM MATCHING 401

For each k in {1,2, . . . ,K}, let Bk be an arbitrary internal subset of Ak with
mk elements, and let Pmk

(Ak) be the collection of all such internal subsets. For
given Bk ∈ Pmk

(Ak) f or k = 1,2, . . . ,K , let πB1,B2,...,BK be a (full) matching on
I −⋃K

k=1 Bk produced by the method described in the proof of Theorem 2.4; there
are (N − 1)!! = 1 × 3 × · · · × (N − 3) × (N − 1) such matchings.

Our sample space � is the set of all ordered tuples (B1,B2, . . . ,BK,

πB1,B2,...,BK ) such that Bk ∈ Pmk
(Ak) for each k = 1, . . . ,K , and πB1,B2,...,BK

is a matching on I − ⋃K
k=1 Bk . Then, � has ((N − 1)!!)∏K

k=1
(Mk

mk

)
many elements

in total. Let P0 be the internal counting probability measure defined on the collec-
tion F0 of all the internal subsets of �. Let (�,F ,P ) be the Loeb space of the
internal probability space (�,F0,P0). Note that both (I,I0, λ0) and (�,F0,P0)

are atomless. Let (I × �,I � F , λ � P) be the Loeb space of the internal prod-
uct (I × �,I0 ⊗ F0, λ0 ⊗ P0), which is a Fubini extension of the usual product
probability space by Footnote 16.

Let J represent nonmatching. Define a mapping π from I × � to I ∪ {J }.
For i ∈ Ak and ω = (B1,B2, . . . ,BK,πB1,B2,...,BK ), if i ∈ Bk , then π(i,ω) = J

(agent i is not matched); if i /∈ Bk , then i ∈ I − ⋃K
r=1 Br , agent i is to be matched

with agent πB1,B2,...,BK (i), and let π(i,ω) = πB1,B2,...,BK (i). It is obvious that
π−1

ω ({J }) = ⋃K
r=1 Br and that the restriction of πω to I − ⋃K

r=1 Br is a full match-
ing on the set. Let gβ be the matched type process from I × � to S ∪ {J } under
the type function β; that is, gβ(i,ω) = β(π(i,ω)) with β(J ) = J .

When
∑K

r=1 pr(1 − qr) = 0, we know that N/M � 0. For those i ∈ Ak with
pk > 0, it is clear that P0({ω ∈ � :πi(ω) = J }) = mk/Mk � qk = 1, and thus λ �
P(π(i,ω) �= J ) = 0, which means that λ � P(gβ(i,ω) �= J ) = 0, and g

β
i (ω) = J

for P -almost all ω ∈ �. Thus conditions (1) and (2) in Definition 2.5 are satisfied
trivially; that is, one has a trivial random partial matching that is independent in
types.

For the rest of the proof, assume that
∑K

r=1 pr(1 − qr) > 0. Let g be the
matched type process from I × � to S ∪ {J }, defined by g(i,ω) = α(π(i,ω)),
where α(J ) = J . Since both α and π are internal, the fact that I0 ⊗ F0 is the
internal power set on I × � implies that g is I0 ⊗ F0-measurable, and thus
I � F -measurable.

Fix an agent i ∈ Ak for some 1 ≤ k ≤ K . For any 1 ≤ l ≤ K , and for any Br ∈
Pmr (Ar), r = 1,2, . . . ,K , let N

B1,B2,...,BK

il be the number of full matchings on⋃K
r=1(Ar −Br) such that agent i is matched to some agent in Al −Bl . It is obvious

that N
B1,B2,...,BK

il depends only on the numbers of points in the sets Ar − Br , r =
1, . . . ,K , which are Mr − mr , r = 1, . . . ,K , respectively. Hence, N

B1,B2,...,BK

il is
independent of the particular choices of B1,B2, . . . ,BK, and so can simply be
denoted by Nil . Then, (9) implies that

Nil

(N − 1)!! � Ml − ml

N
.(17)
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It can be checked that the internal cardinality of the event {gi = l} is

|{ω ∈ � : i ∈ Ak − Bk,π
B1,B2,...,BK

i (ω) ∈ (Al − Bl)}|
(18)

=
(

Mk − 1
mk

)(∏
r �=k

(
Mr

mr

))
Nil,

for ω = (B1,B2, . . . ,BK,πB1,B2,...,BK ). Hence (17) and (18) imply that

P0(gi = l) = Mk − mk

Mk

Nil

(N − 1)!! � (1 − qk)
Ml − ml

N
(19)

= (1 − qk)
(1 − ml/Ml)Ml/M

(N/M)
� (1 − qk)pl(1 − ql)∑K

r=1 pr(1 − qr)
.

It is also easy to see that P0({ω ∈ � :gi(ω) = J }) = mk/Mk � qk . This means that
for i ∈ Ak ,

P(gi = l) = (1 − qk)pl(1 − ql)∑K
r=1 pr(1 − qr)

,

and that P(gi = J ) = qk . Hence, the distribution condition on gi is satisfied for
each i ∈ I .

We need to show that the random partial matching π is independent in types. Fix
agents i, j ∈ I with i �= j . For any 1 ≤ l, t ≤ K , and for any Br ∈ Pmr (Ar), r =
1,2, . . . ,K , let N

B1,B2,...,BK

ilj t be the number of full matchings on
⋃K

r=1(Ar − Br)

such that agents i and j are matched to some agents respectively in Al − Bl and
At − Bt . As in the case of N

B1,B2,...,BK

il , N
B1,B2,...,BK

ilj t is independent of the par-
ticular choices of B1,B2, . . . ,BK and can simply be denoted by Nilj t . By taking
G = (Al − Bl) × (At − Bt), (14) implies that

Nilj t

(N − 1)!! � Ml − ml

N

Mt − mt

N
.(20)

We first consider the case that both i and j belong to Ak for some k in
{1, . . . ,K}. It is easy to see that P0(gi = J,gj = J ) = mk(mk −1)/(Mk(Mk −1)),
and hence that

P(gi = J,gj = J ) = P(gi = J )P (gj = J ) = q2
k .(21)

As above, it can be checked that the internal cardinality of the event {gi = l,

gj = J } is

|{ω ∈ � : i ∈ Ak − Bk, j ∈ Bk,π
B1,...,BK

i (ω) ∈ (Al − Bl)}|
(22)

=
(

Mk − 2
mk − 1

)(∏
r �=k

(
Mr

mr

))
Nil,
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for ω = (B1, . . . ,BK,πB1,...,BK ). Hence (17) and (22) imply that

P0(gi = l, gj = J ) = mk(Mk − mk)

Mk(Mk − 1)

Nil

(N − 1)!!
� qk(1 − qk)

Ml − ml

N
(23)

� qk(1 − qk)pl(1 − ql)∑K
r=1 pr(1 − qr)

,

which implies that

P(gi = l, gj = J ) = P(gi = l)P (gj = J ).(24)

Similarly, the events (gi = J ) and (gj = l) are independent.
The event {gi = l, gj = t} is actually the set of all the ω = (B1, . . . ,BK,

πB1,...,BK ) such that both i and j are in Ak − Bk , and agents i and j are matched
to some agents in Al − Bl and At − Bt , respectively. Thus, the internal cardinality
of {gi = l, gj = t} is (

Mk − 2
mk

)(∏
r �=k

(
Mr

mr

))
Nilj t .(25)

Hence (20) and (25) imply that

P0(gi = l, gj = t) = (Mk − mk)(Mk − mk − 1)

Mk(Mk − 1)

Nilj t

(N − 1)!!
� (1 − qk)

2 Ml − ml

N

Mt − mt

N
(26)

� (1 − qk)
2pl(1 − ql)pt (1 − qt )

(
∑K

r=1 pr(1 − qr))2
,

which implies that

P(gi = l, gj = t) = P(gi = l)P (gj = t).(27)

Hence the random variables gi and gj are independent.
For the case that i ∈ Ak and j ∈ An with 1 ≤ k �= n ≤ K , one can first observe

that

P0(gi = l, gj = J ) = (Mk − mk)mn

MkMn

Nil

(N − 1)!! ,
(28)

P0(gi = l, gj = t) = (Mk − mk)(Mn − mn)

MkMn

Nilj t

(N − 1)!! .
In this case, one can use computations similar to those of the above two para-
graphs to show that the random variables gi and gj are independent. The details
are omitted here.
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We have proved the result for the type function α. We still need to prove it for β

[and for gβ = β(π)]. Fix any agent i ∈ Ak , for some 1 ≤ k ≤ K . For any internal
set A ∈ I0, and for any Br ∈ Pmr (Ar), r = 1,2, . . . ,K , let N

B1,B2,...,BK

iA be the
number of full matchings on

⋃K
r=1(Ar − Br) such that agent i is matched to some

agent in A − ⋃K
r=1 Br . Then, (9) implies that

N
B1,B2,...,BK

iA

(N − 1)!! � |A − ⋃K
r=1 Br |

N
.(29)

The internal event π−1
i (A) is, for ω = (B1,B2, . . . ,BK,πB1,B2,...,BK ),{

ω ∈ � : i ∈ Ak − Bk,π
B1,B2,...,BK

i (ω) ∈
(
A −

K⋃
r=1

Br

)}
.(30)

Hence (29) and (30) imply that

P0(π
−1
i (A)) = ∑

Bk∈Pmk
(Ak\{i}),Bl∈Pml

(Al) for l �=k

1∏K
r=1

(Mr

mr

) N
B1,B2,...,BK

iA

(N − 1)!!

� ∑
Bk∈Pmk

(Ak\{i}),Bl∈Pml
(Al) for l �=k

1∏K
r=1

(Mr

mr

) |A − ⋃K
r=1 Br |

N

(31)

≤ |A|
N

(Mk−1
mk

)
(
∏

r �=k

(Mr

mr

)
)∏K

r=1
(Mr

mr

) = Mk − mk

Mk

|A|
M

1

(N/M)

� (1 − qk)λ0(A)∑K
r=1 pr(1 − qr)

.

Let

c = max
1≤k≤K

(1 − qk)∑K
r=1 pr(1 − qr)

.

Then, for each i ∈ I and any A ∈ I0, P(π−1
i (A)) ≤ c · λ(A). Thus, Keisler’s Fu-

bini property as in [26] and [34] also implies that (λ � P)(π−1(A)) ≤ c · λ(A).
Let B = {i ∈ I :α(i) �= β(i)}. We know that λ(B) = 0, (λ � P)(π−1(B)) =
P(π−1

i (B)) = 0 for each i ∈ I . Since g and gβ agree on I ×�−π−1(B), gβ must

be I � F -measurable. For each i ∈ I , gi and g
β
i agree on �−π−1

i (B), and hence
the relevant distribution and independence conditions are also satisfied by gβ .

REMARK 4.1. The sample space � in the proof of Theorem 2.6 depends on
the choice of the internal type function α. In the proof of Theorem 3.1 in Section 6
below, it will be more convenient to construct a sample space � that depends only
on the agent space I , and not on the type function α.
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Let �̄ be the set of all internal bijections σ from I to I such that for each i ∈ I ,
σ(i) = i or σ(σ(i)) = i, and let F̄0 be its internal power set. Let qk ∈ [0,1] for
each 1 ≤ k ≤ K . We can define an internal one-to-one mapping ϕα from � to �̄

by letting ϕα(B1,B2, . . . ,BK,πB1,B2,...,BK ) be the internal bijection σ on I such
that σ(i) = i for i ∈ ⋃K

k=1 Bk and σ(i) = πB1,B2,...,BK (i) for i ∈ I −⋃K
k=1 Bk . The

mapping ϕα also induces an internal probability measure P̄ α
0 on (�̄, F̄0).

Define a mapping π̄ : (I × �̄) → (I ∪ J ) by letting π̄(i, ω̄) = J if ω̄(i) = i, and
π̄(i, ω̄) = ω̄(i) if ω̄(i) �= i. Extend α so that α(J ) = J and define ḡα : (I × �̄) →
(S ∪ {J }) by letting

ḡα(i, ω̄) = α
(
π̄(i, ω̄), ω̄

)
.

Then it is obvious that π̄ is still an independent-in-types random partial match-
ing π from (I × �̄,I � F̄ , λ � P̄ α) to I with q = (q1, . . . , qK) as the no-match
probabilities.

5. Generalized Fubini and Ionescu–Tulcea theorems for Loeb transition
probabilities. For the proof of Theorem 3.1 to follow in Section 6, we need to
work with a Loeb product transition probability system for a sequence of inter-
nal transition probabilities, based on the Loeb space construction in [33]. We first
prove a generalized Fubini theorem for a Loeb transition probability in Section 5.1.
Then, a generalized Ionescu–Tulcea theorem for an infinite sequence of Loeb tran-
sition probabilities is shown in Section 5.2. Finally, a Fubini extension based on
Loeb product transition probability system is constructed in Section 5.3.

5.1. A generalized Fubini theorem for a Loeb transition probability. Let
(I,I0, λ0) be a hyperfinite internal probability space with I0 the internal power
set on a hyperfinite set I , and � a hyperfinite internal set with F0 its internal
power set. Let P0 be an internal function from I to the space of hyperfinite internal
probability measures on (�,F0), which is called an internal transition probability.
For i ∈ I , denote the hyperfinite internal probability measure P0(i) by P0i . De-
fine a hyperfinite internal probability measure τ0 on (I × �,I0 ⊗ F0) by letting
τ0({(i,ω)}) = λ0({i})P0i ({ω}) for (i,ω) ∈ I × �. Let (I,I, λ), (�,Fi , Pi) and
(I × �,I � F , τ ) be the Loeb spaces corresponding respectively to (I,I0, λ0),
(�,F0,P0i) and (I ×�,I0 ⊗F0, τ0). The collection {Pi : i ∈ I } of Loeb measures
will be called a Loeb transition probability, and denoted by P . The measure τ will
be called the Loeb product of the measure λ and the Loeb transition probability P .
We shall also denote τ0 by λ0 ⊗ P0 and τ by λ � P .

When P0i = P ′
0 for some hyperfinite internal probability measure P ′

0 on
(�,F0), τ0 is simply the internal product of λ0 and P ′

0, and τ the Loeb prod-
uct measure λ � P ′, where P ′ is the Loeb measure of P ′

0. A Fubini-type theorem
for this special case was shown by Keisler in [26], which is often referred to as
Keisler’s Fubini theorem. The following theorem presents a Fubini-type theorem
for the general case.



406 D. DUFFIE AND Y. SUN

THEOREM 5.1. Let f be a real-valued integrable function on (I ×�,σ(I0 ⊗
F0), τ ). Then, (1) fi is σ(F0)-measurable for each i ∈ I and integrable on
(�,σ(F0),Pi) for λ-almost all i ∈ I ; (2)

∫
� fi(ω)dPi(ω) is integrable on

(I, σ (I0), λ); (3)
∫
I

∫
� fi(ω)dPi(ω)dλ(i) = ∫

I×� f (i,ω)dτ(i,ω).

PROOF. Let H be the class of functions g from I × � to R+ ∪ {+∞}
that satisfy (1) for every i ∈ I , gi(·) is σ(F0)-measurable; (2) the integral∫
� gi(ω)dPi(ω) as a function from I to R+ ∪ {+∞} is σ(I0)-measurable;

(3)
∫
I

∫
� gi(ω)dPi(ω)dλ(i) = ∫

I×� g(i,ω)dτ(i,ω). It is obvious that H is closed
under nonnegative linear combinations and monotone convergence.

Now, we consider E ∈ I0 ⊗ F0 and g = 1E . Then, for each i ∈ I , gi is
the indicator function of the internal set Ei = {ω ∈ � : (i,ω) ∈ E}, which is
F0-measurable [and hence σ(F0)-measurable]. The integral

∫
� gi(ω)dPi(ω) =

Pi(Ei) is the standard part ◦(P0i (Ei)). Since P0i (Ei) is I0-measurable as a func-
tion on I , Pi(Ei) is thus σ(I0)-measurable as a function on I . Thus, the usual
result on S-integrability (see, e.g., [34], Theorem 5.3.5, page 155) implies that∫

I

∫
�

gi(ω)dPi(ω)dλ(i) =
∫
I

◦P0i (Ei) dλ(i)(32)

=
∫◦
I
P0i (Ei) dλ0(i)(33)

= ◦τ0(E) =
∫
I×�

g dτ.(34)

Thus, g ∈ H , and hence H contains the algebra I0 ⊗ F0.
Therefore H is a monotone class. Then Theorem 3 on page 16 of [7] implies

that H must contain all the nonnegative σ(I0 ⊗ F0)-measurable functions.22

Since f is integrable on (I × �,σ(I0 ⊗ F0), τ ), so are both f + and f −.
Now the fact that

∫
I

∫
� f +

i (ω) dPi(ω)dλ(i) < ∞ implies that for λ-almost all
i ∈ I ,

∫
� f +

i (ω) dPi(ω) < ∞, and thus the σ(F0)-measurable function f +
i is in-

tegrable. Similarly, the σ(I0)-measurable function
∫
� f +

i (ω) dPi(ω) is integrable
since

∫
I

∫
� f +

i (ω) dPi(ω)dλ(i) < ∞. We have similar results for f −. The rest is
clear. �

For any B ∈ σ(F0), apply Theorem 5.1 to f = 1I×B to obtain that Pi(B) is
σ(I0)-measurable for each i ∈ I . This means that P = {Pi : i ∈ I } is indeed a tran-
sition probability in the usual sense (see [25]). One can define its usual product
λ ⊗ P with λ by letting λ ⊗ P(E) = ∫

I Pi(Ei) dλ(i) for each E in the usual prod-
uct σ -algebra σ(I0) ⊗ σ(F0). It is clear that (I × �,σ(I0 ⊗ F0), λ � P) is an
extension of (I × �,σ(I0) ⊗ σ(F0), λ ⊗ P).

22There is a typo in Theorem 3 on page 16 of [7]; D should be an algebra (not a σ -algebra as
stated).



INDEPENDENT RANDOM MATCHING 407

The following result extends Theorem 5.1 to integrable functions on (I ×�,I�
F , τ ), which is the completion of (I × �,σ(I0 ⊗ F0), τ ).

PROPOSITION 5.2. Let f be a real-valued integrable function on (I × �,

I � F , τ ). Then, (1) for λ-almost all i ∈ I , fi is integrable on the Loeb space
(�,Fi , Pi); (2)

∫
� fi(ω)dPi(ω) is integrable on (I,I, λ); and (3) we have∫
I

∫
�

fi(ω)dPi(ω)dλ(i) =
∫
I×�

f (i,ω)dτ(i,ω).

PROOF. First, let E ∈ I � F with τ(E) = 0. Then there is a set A ∈ σ(I0 ⊗
F0) such that E ⊆ A and τ(A) = 0. By Theorem 5.1, for λ-almost all i ∈ I ,
Pi(Ai) = 0, which implies that Pi(Ei) = 0.

There is a real-valued σ(I0 ⊗F0)-measurable function g on I ×� such that the
set E = {(i,ω) ∈ I × � :f (i,ω) �= g(i,ω)} has τ -measure zero. The above result
implies that for λ-almost all i ∈ I , fi is the same as gi . The rest is clear. �

Let (I ′,I′
0, λ

′
0) be a hyperfinite internal probability space with I′

0 the inter-
nal power set on a hyperfinite set I ′. One can define a new transition proba-
bility, {λ′

0 ⊗ P0i : i ∈ I }. Define a hyperfinite internal probability measure τ 1
0 on

(I ′ × I × �,I′
0 ⊗ I0 ⊗ F0) by letting

τ 1
0
({(i ′, i,ω)}) = λ0({i})(λ′

0 ⊗ P0i )
({(i ′,ω)}) = λ0({i})λ′

0({i ′})P0i ({ω})
for (i′, i,ω) ∈ I ′ ×I ×�. Then it is clear that τ 1

0 is exactly the same as λ′
0 ⊗τ0. Let

λ′ � τ be the Loeb measure of λ′
0 ⊗ τ0. By applying Theorem 5.1, we can obtain

the following corollary.

COROLLARY 5.3. Let h be a real-valued integrable function on (I ′ × I × �,

σ(I′
0 ⊗ I0 ⊗ F0), λ

′ � τ). Then, the following results hold.

(1) hi is σ(I′
0 ⊗ F0)-measurable for each i ∈ I and integrable on (�,σ(I′

0 ⊗
F0), λ

′ �Pi) for λ-almost all i ∈ I , where λ′ �Pi is the Loeb measure of λ′
0 ⊗P0i .

(2)
∫
I ′×� hi(i

′,ω) dλ′ � Pi(i
′,ω) is integrable on (I, σ (I0), λ).

(3)
∫
I

∫
I ′×� hi(i

′,ω) d(λ′ � Pi)(i
′,ω) dλ(i) = ∫

I ′×I×� h(i ′, i,ω) d(λ′ � τ)(i′,
i,ω).

One can also view {P0i : i ∈ I } as a transition probability from I ′ × I to �. Then
the following corollary is obvious.

COROLLARY 5.4. Let h be a real-valued integrable function on (I ′ × I × �,

σ(I′
0 ⊗ I0 ⊗ F0), λ

′ � τ). Then, the following results hold.

(1) h(i′,i) is σ(F0)-measurable for each (i ′, i) ∈ I ′ × I and integrable on
(�,σ(F0),Pi) for λ′ � λ-almost all (i ′, i) ∈ I ′ × I , where λ′ � λ is the Loeb
measure of λ′

0 ⊗ λ0.
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(2)
∫
� h(i′,i)(ω) dPi(ω) is integrable on (I ′ × I, σ (I′

0 ⊗ I0), λ
′ � λ).

(3)
∫
I ′×I

∫
� h(i′,i)(ω) dPi(ω)d(λ′ � λ)(i ′, i) = ∫

I ′×I×� h(i ′, i,ω) d(λ′ � τ)(i′,
i,ω).

By applying Proposition 5.2, one can also extend the results in Corollaries
5.3 and 5.4 to integrable functions on the Loeb space of (I ′ ×I ×�,I′

0 ⊗I0 ⊗F0,

τ 1
0 ).

5.2. A generalized Ionescu–Tulcea theorem for a Loeb product transition prob-
ability system. In Section 5.1, the subscript 0 is used to distinguish internal mea-
sures and algebras with their corresponding Loeb measures and Loeb algebras.
In this subsection, we need to work with infinitely many internal measure spaces
and the corresponding Loeb spaces. To avoid confusion with the notation, we shall
use Q with subscripts or superscripts to represent internal measures; when their
corresponding Loeb measures are considered, we use P to replace Q. Internal al-
gebras are denoted by F with subscripts or superscripts, and their external versions
by A with subscripts or superscripts.

For each m ≥ 1, let �m be a hyperfinite set with its internal power set Fm.
We shall use �n, �∞ and �∞

n to denote
∏n

m=1 �m,
∏∞

m=1 �m and
∏∞

m=n �m,
respectively; also {ωm}nm=1, {ωm}∞m=1 and {ωm}∞m=n will be denoted respectively
by ωn, ω∞ and ω∞

n when there is no confusion.
For each n ≥ 1, let Qn be an internal transition probability from �n−1 to

(�n,Fn); that is, for each ωn−1 ∈ �n−1, Qn(ω
n−1) (also denoted by Qωn−1

n ) is a
hyperfinite internal probability measure on (�n,Fn). In particular, Q1 is simply a
hyperfinite internal probability measure on (�1,F1), and Q2 an internal transition
probability from �1 to (�2,F2). Thus, Q1 ⊗ Q2 defines an internal probability
measure on (�1 ×�2,F1 ⊗F2). By induction, Q1 ⊗Q2 ⊗· · ·⊗Qn defines an in-
ternal probability measure on (�n,

⊗n
m=1 Fm).23 Denote Q1 ⊗ Q2 ⊗ · · · ⊗ Qn

by Qn, and
⊗n

m=1 Fm by F n. Then Qn is the internal product of the inter-
nal transition probability Qn with the internal probability measure Qn−1. Let
P n and Pn(ω

n−1) (also denoted by P ωn−1

n ) be the corresponding Loeb measures,
which are defined respectively on σ(F n) and σ(Fn). Using the notation in Sec-
tion 5.1, P n is the Loeb product P1 � P2 � · · · � Pn of the Loeb transition proba-
bilities P1,P2, . . . ,Pn.

Theorem 5.1 implies that for any set E ∈ σ(F n),

P n(E) =
∫
�n−1

P ωn−1

n (Eωn−1) dP n−1(ωn−1).(35)

23In fact, for each ωn ∈ �n, we have

n⊗
m=1

Qm
({(ω1, . . . ,ωn)}) =

n∏
m=1

Qm(ω1, . . . ,ωm−1)({ωm}).
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That is, P n is the product of the transition probability Pn with the probability
measure P n−1. Thus, we can also denote P n by P n−1 � Pn, and furthermore by
�n

m=1 Pm.
Let πn−1

n be the projection mapping from �n to �n−1; that is, πn−1
n (ω1, . . . ,

ωn) = (ω1, . . . ,ωn−1). Let F be any subset of �n−1 and E = F × �n. Then,
Eωn−1 = �n when ωn−1 ∈ F , and Eωn−1 = ∅ when ωn−1 /∈ F . If E ∈ σ(F n),

then Theorem 5.1 implies that P ωn−1

n (Eωn−1) = 1F is σ(F n−1)-measurable [i.e.,
F ∈ σ(F n−1)], and P n(E) = P n−1(F ). On the other hand, if F ∈ σ(F n−1), then
it is obvious that E ∈ σ(F n) and P n(E) = P n−1(F ). This means that the measure
space (�n−1, σ (F n−1),P n−1) is the projection of (�n,σ (F n),P n) under πn−1

n .
Similarly, let πk

n be the projection mapping from �n to �k for some k < n; then
(�k, σ (F k),P k) is the projection of (�n,σ (F n),P n) under πk

n .
For a collection D of sets and a set F , we use D × F to denote the collec-

tion {D × F :D ∈ D} of sets when there is no confusion. Thus, σ(F n) × �∞
n+1

denotes {En × �∞
n+1 :En ∈ σ(F n)}. Let E = ⋃∞

n=1[σ(F n) × �∞
n+1], which is

an algebra of sets in �∞. One can define a measure P ∞ on this algebra by
letting P ∞(En × �∞

n+1) = P n(En) for each En ∈ σ(F n). The projection prop-
erty stated in the above paragraph implies that P ∞ is well defined. Let F ∞ =⋃∞

n=1[F n × �∞
n+1]. Then, it is clear that σ(F ∞) = σ(E).

The point is how to extend P ∞ to a countably additive probability mea-
sure on the σ -algebra σ(F ∞). This is possible by using a proof similar to
that of Proposition 3.3 of [39]. The result is a version of the Ionescu–Tulcea
theorem (see [25], page 93) for the Loeb product transition probability system
{P1 � P2 � · · · � Pn}∞n=1.

THEOREM 5.5. There is a unique countably additive probability measure on
σ(F ∞) that extends the set function P ∞ on E ; such a unique extension is still
denoted by P ∞ and by �∞

m=1Pm.

PROOF. Let {Cn}∞n=1 be a decreasing sequence of sets in F ∞ with empty in-
tersection. By the construction of F ∞, one can find a sequence of internal sets
{An}∞n=1 and a nondecreasing sequence {kn}∞n=1 of nonnegative integers such that

Cn = An × �∞
kn+1 and An ∈ F kn . For � ≤ n, let π

kl

kn
be the mapping from �kn

to �kl by projecting a tuple in �kn to its first k� coordinates; then π
kl

kn
(An) ⊆ A�

because {Cn}∞n=1 is a decreasing sequence of sets. Take the transfer {kn}n∈∗N of the
sequence {kn}∞n=1, and the respective internal extensions {An}n∈∗N and {�n}n∈∗N

of the internal sequences {An}∞n=1 and {�n}n∈N. By spillover and ℵ1-saturation
(see [34]), one can obtain h ∈ ∗

N∞ such that for all n ≤ h, An ⊆ �kn and
π

kl

kn
(An) ⊆ A� for all � ∈ ∗

N with l ≤ n, where π
kl

kn
is defined in exactly the same

way as in the case of finite n.
We claim that An = ∅ for all n ∈ ∗

N∞ with n ≤ h; if not, one can find such an
n with ωkn = (ω1, . . . ,ωn) ∈ An. Then ωkl ∈ Al for any � ∈ N. If kn ∈ ∗

N∞, then
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it is obvious that {ωm}∞m=1 is in C� for all � ∈ N, which contradicts the assumption
that the intersection of all the C� is empty. If kn ∈ N, one can choose ωm arbitrarily
for any m > kn to obtain the same contradiction. Hence the claim is proven.

By spillover, we know that for some n ∈ N, An = ∅, and so is Cn. Thus, we ob-
tain a trivial limit, limn→∞ P ∞(Cn) = 0. This means that P ∞ is indeed countably
additive on F ∞. As in [33], the Carathéodory extension theorem implies that P ∞
can be extended to the σ -algebra σ(F ∞) generated by F ∞, and we are done. �

The following result considers sectional measurability for sets in σ(F ∞).

PROPOSITION 5.6. Let G be a σ(F ∞)-measurable subset of �∞. Then, for
any {ωm}∞m=1 ∈ �∞, the set Gω∞

n+1
= {ω′n ∈ �n : (ω′

1, . . . ,ω
′
n,ωn+1,ωn+2, . . .) ∈

G} belongs to σ(F n), while the set

Gωn = {ω′∞
n+1 ∈ �∞

n+1 : (ω1, . . . ,ωn,ω
′
n+1,ω

′
n+2, . . .) ∈ G}

belongs to σ(
⋃∞

m=n+1[(
⊗m

k=n+1 Fk) × �∞
m+1]).

PROOF. The collection of those sets G in σ(F ∞) with the properties is clearly
a monotone class of sets and contains the algebra F ∞; and hence it is σ(F ∞)

itself by Theorem 1 on page 7 of [7]. �

The following corollary follows from Proposition 5.6 immediately.

COROLLARY 5.7. Let πn be the projection mapping from �∞ to �n [i.e.,
πn(ω∞) = ωn]. Then the measure space (�n,σ (F n),P n) is the projection of the
measure space (�∞, σ (F ∞),P ∞) under πn in the sense that for any F ⊆ �n,
F ∈ σ(F n) if and only if (πn)−1(F ) = F × �∞

n+1 ∈ σ(F ∞) with P n(F ) =
P ∞((πn)−1(F )).

5.3. Fubini extensions based on a Loeb product transition probability system.
Let (I,I0, λ0) be a hyperfinite internal probability space with I0 the internal power
set on a hyperfinite set I . We follow the notation and construction in Section 5.2.
Denote (�0,F0,Q0) = (I,I0, λ0) and repeat the process of constructing a count-
ably additive measure �∞

m=0Pm on (I × �∞, σ (
⋃∞

n=1(I0 ⊗ F n) × �∞
n+1)).

The following lemma is a restatement of Keisler’s Fubini theorem to the particu-
lar setting. Since the marginals of �n

m=0Pm on I and �n are respectively λ and P n,
we can write �n

m=0Pm as λ � P n.

LEMMA 5.8. For any n ≥ 1, the space (I × �n,σ(I0 ⊗ F n),�n
m=0Pm) is a

Fubini extension over the usual product of (I, σ (I0), λ) and (�n,σ (F n),P n).

The following is a Fubini-type result for the infinite product.
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PROPOSITION 5.9. The space (I × �∞, σ (
⋃∞

n=1(I0 ⊗ F n) × �∞
n+1),

�∞
m=0Pm) is a Fubini extension over the usual product of the probability spaces

(I,I, λ) and (�∞, σ (F ∞),P ∞).

PROOF. We only check that the Fubini-type property holds for any set E ∈⋃∞
n=1(I0 ⊗ F n) × �∞

n+1. The rest of the proof is essentially the same as that of
Theorem 5.1.

It is clear that there exists a set F ∈ I0 ⊗ F n such that E = F × �∞
n+1. By

definition, �∞
m=0Pm(E) = �n

m=0Pm(F). By Lemma 5.8,

n

�
m=0

Pm(F) = λ � P n(F ) =
∫
I
P n(Fi) dλ(i) =

∫
�n

λ(Fωn) dP n(ωn).

On the other hand, Ei = Fi × �∞
n+1 and Eω∞ = Fωn . By the fact that P ∞(Ei) =

P n(Fi), the projection property in Corollary 5.7 implies that
n

�
m=0

Pm(F) =
∫
I
P ∞(Fi) dλ(i) =

∫
�∞

λ(Fω∞) dP ∞(ω∞).

This means that the Fubini property does hold for sets in
⋃∞

n=1(I0 ⊗F n)×�∞
n+1.

�

For simplicity, we denote σ(I0), σ(Fn), σ(I0 ⊗ Fn), σ(F n), σ(I0 ⊗ F n),
σ(F ∞) and σ(

⋃∞
n=1(I0 ⊗ F n) × �∞

n+1), respectively by I, An, I � An, An,
I � An, A∞ and I � A∞.

We restate some of the above results using the new notation. Corollary 5.7 im-
plies that (�n,An,P n) and (I × �n,I � An, λ � P n) are the respective pro-
jections of (�∞,A∞,P ∞) and (I × �∞,I � A∞, λ � P ∞). Since (I × �n,

I � An, λ � P n) is the Loeb product of two Loeb probability spaces (I,I, λ) and
(�n,An,P n), it is a Fubini extension of the usual product probability space. In ad-
dition, the Fubini property in Proposition 5.9 says that (I ×�∞,I�A∞, λ�P ∞)

is a Fubini extension of the usual product of the probability spaces (I,I, λ) and
(�∞,A∞,P ∞).

6. Proof of Theorem 3.1. Let (p0, b, q, ν) be the given parameters for the
dynamical system D. Let M be a fixed unlimited hyperfinite natural number in
∗
N∞, I = {1,2, . . . ,M}, I0 the internal power set on I , and λ0 the internal count-

ing probability measure on I0. Let α0 : I → S = {1,2, . . . ,K} be an internal initial
type function such that λ0(α

0 = k) � pk for each k = 1, . . . ,K .24 What we need
to do is to construct a sequence of internal transition probabilities and a sequence
of internal type functions. The results in Sections 5.2 and 5.3 can then be applied
to obtain a Loeb product transition probability system. Since we need to consider
random mutation, random partial matching and random type changing at each time

24This is possible since λ is atomless.
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period, three internal measurable spaces with internal transition probabilities will
be constructed at each time period.

Adopt the notation used in Section 5.2. Suppose that the construction for the
dynamical system D has been done up to time period n − 1. Thus, {(�m,Fm,

Qm)}3n−3
m=1 and {αl}n−1

l=0 have been constructed, where each �m is a hyperfinite
internal set with its internal power set Fm, Qm an internal transition probability
from �m−1 to (�m,Fm), and αl an internal function from I × �3l to the type
space S.

We shall now consider the constructions for time n. We first work with the ran-
dom mutation step. For each 1 ≤ k ≤ K , ρk is a distribution on S with ρk(l) = bkl ,
the probability for a type-k agent to mutate to a type-l agent. Let �3n−2 = SI (the
space of all internal functions from I to S) with its internal power set F3n−2.

For each i ∈ I , ω3n−3 ∈ �3n−3, let γ ω3n−3

i = ραn−1(i,ω3n−3). That is, if αn−1(i,

ω3n−3) = k, then γ ω3n−3

i = ρk . Define an internal probability measure Qω3n−3

3n−2

on (SI ,F3n−2) to be the internal product measure
∏

i∈I γ ω3n−3

i .25 Let hn : (I ×∏3n−2
m=1 �m) → S be such that hn(i,ω3n−2) = ω3n−2(i).
Next, we consider the step of random partial matching. Let (�3n−1,F3n−1) be

the internal sample measurable space (�̄, F̄0) in Remark 4.1.
For any given ω3n−2 ∈ �3n−2, the type function is hn

ω3n−2(·), denoted by α for

short. Let Qω3n−2

3n−1 be the internal probability measure corresponding to the internal
probability measure P̄ α

0 in Remark 4.1. Define a mapping πn : (I ×�3n−1) → (I ∪
J ) by letting πn(i,ω3n−1) = π̄(i,ω3n−1); thus, πn(i,ω3n−1) = J if ω3n−1(i) = i,
and πn(i,ω3n−1) = ω3n−1(i) if ω3n−1(i) �= i. Extend hn so that hn(J,ω3n−2) = J

for any ω3n−2 ∈ �3n−2. Define gn : (I × �3n−1) → (S ∪ {J }) by letting

gn(i,ω3n−1) = hn(
πn(i,ω3n−1),ω3n−2)

,

which means that gn(i,ω3n−1) = ḡα(i,ω3n−1).
Finally, we consider the step of random type changing for matched agents. Let

�3n = SI with its internal power set F3n; each point ω3n ∈ �3n is an internal
function from I to S. For any given ω3n−1 ∈ �3n−1, the space I of agents is divided
into K2 + K classes: those in type k who are not matched, or matched to some
type-l agents. For 1 ≤ k, l ≤ K , νkl is a distribution on S and νkl(r) the probability
for a type-k agent to change to a type-r agent when the type-k agent meets a type-l
agent.

25A hyperfinite product space is a common construction in nonstandard analysis, whose coordi-
nate functions also give a hyperfinite sequence of ∗-independent random variables. In general, for
a hyperfinite collection {Xi}ni=1 (with n infinitely large) of ∗-independent random variables on an
internal probability space (�,F0,P0) with mean zero and variances bounded by a common stan-
dard positive number C, the elementary Chebyshev’s inequality says that for any positive hyperreal
number ε, P0(|X1 + · · · + Xn|/n ≥ ε) ≤ C/nε2. By taking ε = 1/n1/4, it implies that for nearly all
ω ∈ �, |X1 + · · · + Xn|/n � 0, which was also noted in [26], page 56.
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Define a new type function αn : (I × �3n) → S by letting αn(i,ω3n) = ω3n(i).
Fix ω3n−1 ∈ �3n−1. For each i ∈ I , (1) if ω3n−1(i) = i (i is not matched at

time n), let τω3n−1

i be the probability measure on the type space S that gives prob-
ability 1 to the type hn(i,ω3n−2) and zero for the rest; (2) if ω3n−1(i) �= i (i is
matched at time n), hn(i,ω3n−2) = k and hn(ω3n−1(i),ω

3n−2) = l, let τω3n−1

i be

the distribution νkl on S. Define an internal probability measure Qω3n−1

3n on SI to

be the internal product measure
∏

i∈I τω3n−1

i .
By induction, we can construct a sequence {(�m,Fm,Qm)}∞m=1 of internal

transition probabilities and a sequence {αl}∞l=0 of type functions. By using the
constructions in Sections 5.2 and 5.3 via an infinite product of Loeb transition
probabilities, we can obtain a corresponding probability space (I ×�∞,I �A∞,

λ � P ∞).
From now on, we shall also use (�,F ,P ) and (I ×�,I�F , λ�P) to denote

(�∞,A∞,P ∞) and (I × �∞,I � A∞, λ � P ∞), respectively. Note that all the
functions, hn,πn, gn,αn, for n = 1,2, . . . , can be viewed as functions on I × �,
and hn, gn,αn are I � F -measurable for each n ≥ 1.

We still need to check that our internal constructions above lead to a dynam-
ical system D with random mutation, partial matching and type changing that is
Markov conditionally independent in types. We assume that the conditions for ran-
dom mutation, partial matching and type changing as well as Markov conditional
independence in types are satisfied up to time n − 1. As in the proof of Lemma 6
in [15], Lemma 5 in [15] implies that the random variables αn−1

i and αn−1
j are

independent for i �= j . It remains to check the conditions for random mutation,
partial matching and type changing as well as Markov conditional independence
in types for time n.

For the step of random mutation at time period n, we have for each agent i ∈ I ,
and k, l ∈ S,

P(hn
i = l, αn−1

i = k)

= P 3n−2(A3n−2)

= P 3n−2({ω3n−3 ∈ �3n−3 :αn−1
i (ω3n−3) = k} × (

SI−{i} × {l}{i}))(36)

=
∫
{αn−1

i (ω3n−3)=k}
ρk(l) dP 3n−3(ω3n−3) = bklP (αn−1

i = k),

where

A3n−2 = {(ω3n−3,ω3n−2) ∈ �3n−2 :αn−1
i (ω3n−3) = k,

hn(i,ω3n−3,ω3n−2) = ω3n−2(i) = l},
which implies that (1) is satisfied.
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When i �= j ∈ I , it is obvious that for any l, r ∈ S, and any (a0
i , . . . , a

n−1
i ) and

(a0
j , . . . , a

n−1
j ) in Sn, for the event

B1 = {hn
i = l, hn

j = r, (α0
i , . . . , α

n−1
i ) = (a0

i , . . . , a
n−1
i ),

(α0
j , . . . , α

n−1
j ) = (a0

j , . . . , a
n−1
j )},

we have

P(B1) = P 3n−2(B2)

= P 3n−2(
B3 × (

I × SI−{i,j} × {l}{i} × {r}{j}))(37)

= P 3n−3(B4) · ρ
an−1
i

(l) · ρ
an−1
j

(r),

where

B2 = {(ω3n−3,ω3n−2) ∈ �3n−2 : (α0
i , . . . , α

n−1
i )(ω3n−3) = (a0

i , . . . , a
n−1
i ),

(α0
j , . . . , α

n−1
j )(ω3n−3) = (a0

j , . . . , a
n−1
j ),

ω3n−2(i) = l,ω3n−2(j) = r},
B3 = {ω3n−3 ∈ �3n−3 : (α0

i , . . . , α
n−1
i )(ω3n−3) = (a0

i , . . . , a
n−1
i ),

(α0
j , . . . , α

n−1
j )(ω3n−3) = (a0

j , . . . , a
n−1
j )},

and

B4 = {ω3n−3 ∈ �3n−3 : (α0
m, . . . , αn−1

m )(ω3n−3) = (a0
m, . . . , an−1

m ),m = i, j}.
Equations (36) and (37) imply that for any l, r ∈ S,

P
(
hn

i = l, hn
j = r|(α0

m, . . . , αn−1
m ),m = i, j

)
= P(hn

i = l|αn−1
i )P (hn

j = r|αn−1
j ).

Hence (5) in the definition of Markov conditional independence for random muta-
tion is satisfied.

Equation (37) together with the independence of αn−1
i and αn−1

j implies that

hn
i (·) and hn

j (·) are independent. As in (2), pn−1/2 is the expected cross-sectional
type distribution immediately after random mutation. The exact law of large num-
bers in [38] and [40] (see Footnote 20 above) implies that for P 3n−2-almost all
ω3n−2 ∈ �3n−2,

λ
({i′ ∈ I :hn

ω3n−2(i
′) = l}) = p

n−1/2
l(38)

for any l ∈ S.
For the step of random partial matching, the definition of πn clearly shows that

for each ω ∈ �, the restriction of πn
ω(·) to I − (πn

ω)−1({J }) is a full matching on
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that set. We need to check that the function gn : (I × �) → (I ∪ {J }) satisfies the
required distribution and Markov conditional independence conditions.

For any given ω3n−2 ∈ �3n−2, take α = hn
ω3n−2(·) as in the construction Qω3n−2

3n−1
above. Then, for each i ∈ I and c ∈ S ∪ {J },

Qω3n−2

3n−1
({ω3n−1 ∈ �3n−1 :gn(i,ω3n−1) = c})

(39)
= P̄ α

0
({ω̄ ∈ �̄ : ḡα(i, ω̄) = c}).

Moreover, for each j ∈ I with j �= i and d ∈ S ∪ {J },
Qω3n−2

3n−1
({ω3n−1 ∈ �3n−1 :gn(i,ω3n−1) = c, gn(j,ω3n−1) = d})

= P̄ α
0

({ω̄ ∈ �̄ : ḡα(i, ω̄) = c, ḡα(j, ω̄) = d})(40)

� P̄ α
0 (ḡα

i = c) · P̄ α
0 (ḡα

j = d).

For each agent i ∈ I , k, l ∈ S, (39) implies that

P(gn
i = J,hn

i = k)

= P 3n−1({ω3n−1 ∈ �3n−1 :hn(i,ω3n−2) = k, gn(i,ω3n−1) = J })
(41)

=
∫
{hn(i,ω3n−2)=k}

qk dP 3n−2(ω3n−2)

= qkP (hn
i = k).

In addition, we obtain from (38) that

P(gn
i = l, hn

i = k)

= P 3n−1({ω3n−1 ∈ �3n−1 :hn(i,ω3n−2) = k, gn(i,ω3n−1) = l})
=

∫
{hn(i,ω3n−2)=k}

P̄
hn

ω3n−2
({

ω̄ ∈ �̄ : ḡhn

ω3n−2 (i, ω̄) = l
})

dP 3n−2(ω3n−2)

=
∫
{hn(i,ω3n−2)=k}

(1 − qk)(1 − ql)λ({i ′ ∈ I :hn
ω3n−2(i

′) = l})∑K
r=1(1 − qr)λ({i ′ ∈ I :hn

ω3n−2(i
′) = r)} dP 3n−2(ω3n−2)(42)

=
∫
{hn(i,ω3n−2)=k}

(1 − qk)(1 − ql)p
n−1/2
l∑K

r=1(1 − qr)p
n−1/2
r

dP 3n−2(ω3n−2)

= P(hn
i = k) · (1 − qk)(1 − ql)p

n−1/2
l∑K

r=1(1 − qr)p
n−1/2
r

.

Hence, (41) and (42) imply that (3) holds.
Fix i �= j ∈ I . Take any (a0

i , . . . , a
n−1
i ), (a0

j , . . . , a
n−1
j ) ∈ Sn, l, r ∈ S, and

c, d ∈ S ∪ {J }. Let D be the set of all ω3n−2 ∈ �3n−2 such that hn
i (ω

3n−2) = l,
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hn
j (ω

3n−2) = r , (α0
i , . . . , α

n−1
i )(ω3n−3) = (a0

i , . . . , a
n−1
i ) and (α0

j , . . . ,

αn−1
j )(ω3n−3) = (a0

j , . . . , a
n−1
j ). Then, (38) and (40) imply that

P
(
gn

i = c, gn
j = d,hn

i = l, hn
j = r,

(α0
m, . . . , αn−1

m ) = (a0
m, . . . , an−1

m ),m = i, j
)

=
∫
D

P ω3n−2

3n−1 (D1) dP 3n−2(ω3n−2)(43)

=
∫
D

P̄
hn

ω3n−2 (D2) · P̄ hn

ω3n−2 (D3) dP 3n−2(ω3n−2)

= P 3n−2(D)P (gn
i = c|hn

i = l)P (gn
j = d|hn

j = r),

where

D1 = {ω3n−1 ∈ �3n−1 :gn(i,ω3n−1) = c, gn(j,ω3n−1) = d},
D2 = {

ω̄ ∈ �̄ : ḡhn

ω3n−2 (i, ω̄) = c
}
,

D3 = {
ω̄ ∈ �̄ : ḡhn

ω3n−2 (j, ω̄) = d
}
,

which means that the Markov conditional independence condition as formulated
in (6) for random partial matching is satisfied.

Finally, we consider the step of random type changing for matched agents at
time n. For k ∈ S, let νkJ be the Dirac measure at k on S, that is, νkJ (r) = δr

k for
each r ∈ S. If hn(i,ω3n−2) = k for k ∈ S and gn

i (ω3n−1) = c for c ∈ S ∪ {J }, then

the measure τω3n−1

i in the definition of Qω3n−1

3n on SI is simply νkc.
For each agent i ∈ I , and for any r, k ∈ S, and c ∈ S ∪ {J }, we have

P(αn
i = r, hn

i = k, gn
i = c)

= P 3n({(ω3n−1,ω3n) ∈ �3n :hn
i (ω

3n−2) = k,

gn
i (ω3n−1) = c,ω3n(i) = r})(44)

=
∫
{ω3n−1∈�3n−1 : hn

i (ω3n−2)=k,gn
i (ω3n−1)=c}

νkc(r) dP 3n−1(ω3n−1)

= νkc(r)P (hn
i = k, gn

i = c),

which implies that (4) is satisfied.
Fix i �= j ∈ I . Take any (a0

i , . . . , a
n−1
i ), (a0

j , . . . , a
n−1
j ) ∈ Sn, k, l, r, t ∈ S, and

c, d ∈ S ∪ {J }. Let E be the set of all ω3n−1 ∈ �3n−1 such that gn
i (ω3n−1) =

c, gn
j (ω3n−1) = d , hn

i (ω
3n−2) = k, hn

j (ω
3n−2) = l, (α0

i , . . . , α
n−1
i )(ω3n−3) =

(a0
i , . . . , a

n−1
i ) and (α0

j , . . . , α
n−1
j )(ω3n−3) = (a0

j , . . . , a
n−1
j ). Then, letting

E1 = {αn
i = r, αn

j = t, gn
i = c, gn

j = d,hn
i = k,hn

j = l,

(α0
m, . . . , αn−1

m ) = (a0
m, . . . , an−1

m ),m = i, j},
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(44) implies that

P(E1) =
∫
E

P ω3n−1

3n

({ω3n ∈ �3n :ω3n(i) = r,ω3n(j) = t})dP 3n−1(ω3n−1)

=
∫
E

νkc(r)νld(t) dP 3n−1(ω3n−1)(45)

= P(E)P (αn
i = r|hn

i = k, gn
i = c)P (αn

j = t |hn
j = l, gn

j = d),

which means that the Markov conditional independence condition as formulated
in (7) for match-induced random type changing is satisfied.

Therefore, we have shown that D is a dynamical system with random mutation,
partial matching and type changing that is Markov conditionally independent in
types.
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