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READING POLICIES FOR JOINS: AN ASYMPTOTIC ANALYSIS

BY RALPH P. RUSSO AND NARIANKADU D. SHYAMALKUMAR1

University of Iowa

Suppose that mn observations are made from the distribution R and
n − mn from the distribution S. Associate with each pair, x from R and y

from S, a nonnegative score φ(x, y). An optimal reading policy is one that
yields a sequence mn that maximizes E(M(n)), the expected sum of the
(n − mn)mn observed scores, uniformly in n. The alternating policy, which
switches between the two sources, is the optimal nonadaptive policy. In
contrast, the greedy policy, which chooses its source to maximize the ex-
pected gain on the next step, is shown to be the optimal policy. Asymptotics
are provided for the case where the R and S distributions are discrete and
φ(x, y) = 1 or 0 according as x = y or not (i.e., the observations match).
Specifically, an invariance result is proved which guarantees that for a wide
class of policies, including the alternating and the greedy, the variable M(n)

obeys the same CLT and LIL. A more delicate analysis of the sequence
E(M(n)) and the sample paths of M(n), for both alternating and greedy,
reveals the slender sense in which the latter policy is asymptotically superior
to the former, as well as a sense of equivalence of the two and robustness of
the former.

1. Introduction. Suppose that samples of size mn and n−mn are drawn from
tables R and S in a database, table R containing information (age, interests, edu-
cation level, etc.) on a group of single males, and table S the same information
on a group of single females. Associate with each pair of records, x from R and
y from S, a nonnegative score φ(x, y) whose value depends on how closely the
two records agree. A male and female of similar age, with common interests and
education level, would have a high score (a value near 1 on a [0,1] scale, e.g.).
The goal is to choose mn to maximize E(M(n)), where M(n) is the sum of the
mn(n−mn) scores generated by the n records that have been read. In this way, the
expected overall interest level between the two groups (after n reads) is maximized.
Alternatively, R may contain information on a group of buyers in a marketplace
(specifically, which items each seeks to buy) and S information on a group of sell-
ers (which items each seeks to sell), the goal then being to maximize the level of
commerce between the groups.

The alternating and myopic policies. Suppose that observations are made se-
quentially and without replacement from each of two sources (populations) R
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and S. An algorithm that sequentially chooses the source for each observation
is referred to as a reading policy. An optimal reading policy (if existent) is one
that maximizes E(M(n)) uniformly in n. Two reading policies of interest are
the alternating, which alternately samples from R and S, and the myopic (or
greedy), which on each step chooses the source that maximizes the expected gain
E(M(n))−E(M(n−1)) for that step. The alternating policy is interesting because
it is easy to implement and requires no knowledge of R or S. Moreover, this pol-
icy is optimal in a restricted sense (see below). Any policy with a fixed sampling
order for which the R sample size is always within one of the S sample size is con-
sidered an alternating policy, as all such policies produce the same expected total
score at all steps. In contrast to the alternating policy, the greedy policy requires a
complete knowledge of R and S. It is a short term strategy that optimizes the ex-
pected gain on the next step, with no explicit regard to future gains. Note that there
may be more than one greedy policy, as occasionally the greedy criterion may be
ambivalent between R and S.

In the case of the equijoin, the records x from R and y from S can be catego-
rized by positive integer values r(x) and s(y) with φ(x, y) = 1 or 0 accordingly
as r(x) = s(y) or not. When φ(x, y) = 1, we say that records x and y match.
Optimality in the case of the equijoin was studied in [16]. When R or S is finite,
it was shown that an optimal policy need not exist, that the alternating policies
are optimal among the restricted class of nonadaptive policies (those that ignore
the information obtained from the samples), and that any greedy policy dominates
(and in most cases is strictly better than) any alternating policy. That alternating is
the optimal nonadaptive (R and S both infinite or not and φ arbitrary) and is easy
to show, so is stated here without proof.

When R and S are infinite, the problem reduces to i.i.d. sampling from those
distributions. In this case it is shown in [16] that alternating is again optimal among
the nonadaptives, and that greedy is optimal among all reading policies. In the
next section we provide a simpler proof of a much stronger result; namely, that
greedy is the optimal policy under the so-called total expected discounted reward
criterion, for any decreasing discount sequence. From this it follows that greedy is
the optimal policy in the φ arbitrary case. This case includes an interesting class of
score functions which satisfy φ(x, y) = 1 or 0 (like the equijoin), but (unlike the
equijoin) allows φ(x1, y1) = φ(x2, y1) = φ(x2, y2) �= φ(x1, y2). Such is the case
when all observations are points on a space and φ(x, y) = 1 or 0 accordingly as x

from R and y from S are within a prescribed distance t of each other.
Our interest in the alternating and greedy policies stems from the above opti-

mality properties. Our main focus is on the asymptotic properties of the alternating
and greedy policies in the i.i.d. (infinite populations) case. To simplify the presen-
tation, we confine our attention to the equijoin. A preview of the kinds of results
we seek is provided in the following example. Interestingly, even in this simple
scenario, the analysis is not trivial.
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An illustrative example. On each step of a coin tossing experiment suppose that
one may choose either of two coins to toss: one of them fair and the other two-
headed. Let MA(n) denote the numbers of matches formed by the policy that al-
ternates between the coins (starting with the fair) after a total of n tosses (nth
epoch) have been made. We have that MA(n) = (n/2)Bin(n/2;1/2) for n even
and MA(n) = [(n − 1)/2]Bin((n + 1)/2;1/2) for n odd; Bin(m;p) being a bi-
nomial random variable with parameters m ≥ 1 and p ∈ [0,1]. In particular, this
implies that at the nth epoch the expected numbers of matches equals n2/8 or
(n2 − 1)/8 accordingly as n is even or odd and that(

MA(n) − n2/8

n3/2

)
d−→ N

(
0,

1

32

)
.

It can be easily checked that the following is a member of the class of greedy
policies and therefore optimal: toss the fair coin until heads is obtained, toss the
two-headed coin twice, return to the fair coin and repeat the cycle. We denote the
number of matches at the nth epoch using this greedy policy by MG(n).

The derivation of a closed form expression for E(MG(n)) is a bit more involved
than it was for E(MA(n)). A method outlined in Section 4 yields

E(MG(n))

= n2

8
+ n

16
− 7

64
(1.1)

+ 3 sin((n − 1)β) + 16 sin((n − 3)β) − 9
√

7 cos((n − 1)β)

2(n+11)/2
√

7
,

where β := π − arctan(
√

7 ). In particular, this implies that(
1

n

)
E
(
MG(n) − MA(n)

)→ 1

16
,(1.2)

which in turn implies that E(MA(n)) < E(MG(n)) < E(MA(n + 1)) for n ≥ 3.
Thus, there exists a rather tight link between the expectations of the two processes.

An approach to understanding MG(n) [and not just E(MG(n))] uses an em-
bedded renewal counting process {N(n)}n≥1, with a renewal occurring upon the
observance of a tail, and an inter-arrival variable 3Z + 1, where Z is a unit
mean geometric random variable. The relation between MG(n) and N(n) de-
pends on the state occupied at the nth epoch; the states being a tail, heads with
fair coin, first heads (i.e., not preceded by another) with 2-headed coin and sec-
ond heads (i.e., preceded by another) with 2-headed coin. For example, MG(n) =
(2/9)(n − N(n) + 2)(n − N(n) − 1) when the process has just observed a tail. We
note that the state process is a doubly stochastic Markov chain.

The above with the approximation MG(n) ≈ (2/9)(n−N(n))2 and the CLT for
renewal counting processes (see [12], page 62) implies that MG(n) has the same
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weak limit as MA(n). Law of the iterated logarithm results for MG(·) and MA(·)
are likewise easily obtainable and again coincide. Also, the exact expressions relat-
ing N(n) and MG(n) along with the geometric rate of convergence to stationarity
of the state process Markov chain and the expectation of the residual lifetime (or
overshoot) of the renewal process yields (1.2).

Another phenomenon that we find interesting is the following: when both poli-
cies are driven by the same sequence of fair coin tosses, alternating beats (produces
more matches than) greedy on infinitely many epochs, with probability one—the
optimality of the greedy notwithstanding. The reason for this is that the coin se-
quence is obliged to transition (in two steps) from the state (k heads, k tails) to
(k heads, k + 2 tails) infinitely often. And when it does, we observe that alter-
nating produces k more matches than greedy upon completion of the 4k + 2nd
step. It can similarly be argued that greedy beats alternating infinitely often with
probability one.

1.1. Overview of results. Using a method from dynamic programming, we
prove in Section 2 that the greedy policy is optimal under the total expected reward
criterion for any finite horizon. This result extends our result in [16] (that greedy is
optimal in the i.i.d. equijoin case) to general score functions φ. For our asymptotic
analysis, rather than exploit a renewal structure (as in the example above), we
instead take advantage of an embedded martingale structure in order to produce a
broader range of results.

A key to the weak and strong limiting behavior of MG(n) is an invariance result
(proved in Section 3) which says that the asymptotic behavior of M(n) under any
policy is governed by the variable R(n), the number of records read from R from
among the first n records read. We prove a central limit theorem and law of the
iterated logarithm for RG(n), which yields (by invariance) a common CLT and
LIL for MA(n) and MG(n). Thus, an observer working with perfect knowledge
of the distributions of R and S can not do much better (produce more matches)
using the greedy policy than his counterpart who uses the alternating policy and is
ignorant of those distributions.

In Section 4 we take up the mathematical question of how much better is greedy
than alternating. Specifically, we find an expression for E(MG(n)) that is similar
to (1.1), but which contains a low order (linear) error term. As in the illustrative
example, this yields

lim
n→∞

E(MA(n) − MG(n))

n
> 0

and for a finite constant k computable from the distributions of R and S,

E(MA(n)) < E(MG(n)) < E
(
MA(n + k)

)
for all large n.

The former statement uncovers a measure by which greedy is asymptotically
superior to alternating, while the latter reveals how tightly connected the two
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processes are, in terms of their expectations. We next identify the weak limit of
(MG(n) − MA(n))/n5/4 as a scale mixture of normals, showing that MG(n) and
MA(n) differ by a higher order (than linear) stochastic term which is symmet-
ric about zero. Finally, we present a crude LIL type result for MG(n) − MA(n)

which shows that although E(MA(n)) and E(MG(n)) are tightly linked via the
above inequality, it takes an arbitrarily large number of epochs (infinitely often,
with probability one) for the sample path of one process to catch up with that of
the other.

1.2. Notation. All vectors carry a tilde. For two vectors, x̃ and ỹ, with the
same dimensions, x̃ · ỹ will denote their inner product. Almost sure convergence,

convergence in probability and weak convergence will be denoted by
a.s.−→,

P−→
and

d−→, respectively. We denote the iterated logarithm by log2, that is, log2(n) =
log(log(n)).

2. Preliminaries. We consider two sources R and S with both containing in-
finitely many records. A record from either source, R or S, carries a single positive
integer valued label. The probability that a record from the R source (resp., the S
source) carries the ith label is ri (resp., si). The probability vectors (r1, r2, . . .) and
(s1, s2, . . .) are denoted by r̃ and s̃, respectively. The inner product of r̃ with s̃ is
denoted by µ, that is, µ = r̃ · s̃. We shall assume µ to be positive, as otherwise there
will be no common label between the two sources. The labels on the nth records
read from the R and S sources are denoted by LR(n) and LS(n), respectively. The
above implies that {LR(n)}n≥1 and {LS(n)}n≥1 are sequences of independent and
identically distributed random variables with

Pr
(
LR(1) = i

)= ri and Pr
(
LS(1) = i

)= si, i = 1,2, . . . .

Associated with the sequences {LR(n)}n≥1 and {LS(n)}n≥1 are the discrete time
vector counting processes {ÑR(n)}n≥1 and {ÑS(n)}n≥1; the first is defined by

ÑR(n) = (
NR(n,1),NR(n,2), . . .

)
,

with NR(n, i) =
n∑

j=1

I{LR(j)=i}, i, n ≥ 1,

and the second is defined analogously.

2.1. Reading policies. A reading policy is a zero–one valued stochastic
process

C(n) =
{

1, if the nth selection is from R,
0, if the nth selection is from S,

n = 1,2, . . . .



READING POLICIES FOR JOINS 235

Associated with each reading policy are two counting processes {R(n)}n≥1 and
{S(n)}n≥1 defined by

R(n) :=
n∑

j=1

C(j) and S(n) := n − R(n), n = 1,2, . . . .

These processes keep track of the number of records read from R and S, respec-
tively. We shall refer to R(n)/n as the selection ratio. Also associated with a
reading policy is a nondecreasing process {M(n)}n≥1 which counts the number
of matches, generated by the first n records:

M(n) = ÑR(R(n)) · ÑS(S(n)), n = 1,2, . . . .

Observe that all of the processes {M(n)}n≥1, {R(n)}n≥1 and {S(n)}n≥1 depend on
the reading policy even though the notation does not make it explicit.

The filtration {Fn}n≥0 for a given reading policy is defined by

Fn := F0 ∨ σ 〈LR(1), . . . ,LR(R(n));LS(1), . . . ,LS(S(n))〉, n = 1,2, . . . ,

with F0 containing all the information needed for randomization and independent
of {LR(n)}n≥1 and {LS(n)}n≥1. All reading policies are required to be predictable
with respect to the above filtration—otherwise they would not be implementable.

DEFINITION 2.1. An alternating policy is a F0 measurable reading policy for
which

R(2n) = n, n = 1,2, . . . .(2.1)

In words, an alternating policy is one which does not use any information from
the records, and under which at any step the numbers of records read from the two
sources are within one of each other. There exists an infinite number of alternating
policies. One of the simplest alternating policies is defined by C(n) = nmod 2. In
fact, in the arguments we tacitly assume for convenience that we are working with
this version. From the point of view of implementation though, one may prefer the
alternating policy given by C(n) = I{nmod 4<2} as it, leaving apart the first record,
reads two records at a time from the chosen source.

Toward defining greedy policies, we observe that

E
(
M(n + 1) − M(n)

∣∣Fn

)= E
(
NS

[
S(n),LR

(
R(n) + 1

)]∣∣Fn

)
C(n + 1)

+ E
(
NR

[
R(n),LS

(
S(n) + 1

)]∣∣Fn

)(
1 − C(n + 1)

)
.

Hence, any reading policy C(·) maximizing the above conditional expectation
should satisfy, for n ≥ 1,

C(n + 1) =




1, if E
(
NS

[
S(n),LR

(
R(n) + 1

)]∣∣Fn

)
> E

(
NR

[
R(n),LS

(
S(n) + 1

)]∣∣Fn

)
,

0, if E
(
NS

[
S(n),LR

(
R(n) + 1

)]∣∣Fn

)
< E

(
NR

[
R(n),LS

(
S(n) + 1

)]∣∣Fn

)
,

(2.2)
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with no requirement on epochs where

E
(
NS

[
S(n),LR

(
R(n) + 1

)]∣∣Fn

)= E
(
NR

[
R(n),LS

(
S(n) + 1

)]∣∣Fn

)
.(2.3)

As {LR(n)}n≥1 and {LS(n)}n≥1 are sequences of i.i.d. random variables, we have

E
(
NS

[
S(n),LR

(
R(n) + 1

)]∣∣Fn

)= ÑS(S(n)) · r̃ , n = 1,2, . . . ,

and an analogous relation for ÑRR(n) · s̃.
Our analysis depends on the observation that ÑSS(n) · r̃ and ÑRR(n) · s̃ are both

partial sums of i.i.d. observations. To make this explicit, we define

XR(n) := sLR(n) and XS(n) := rLS(n), n = 1,2, . . . .

The two sequences {XR(n)}n≥1 and {XS(n)}n≥1 are sequences of i.i.d. random
variables with common mean µ and variances σ 2

R and σ 2
S , respectively. We shall

denote their partial sums by �R[·] and �S[·], that is,

�R[n] =
n∑

j=1

XR(j) and �S[n] =
n∑

j=1

XS(j), n = 1,2, . . . .

This leads to the relations

ÑS(S(n)) · r̃ = �S[S(n)] and ÑR(R(n)) · s̃ = �R[R(n)], n = 1,2, . . . .

Combining the above with (2.2) leads to the following definition.

DEFINITION 2.2. A reading policy C(·) is called a greedy policy if it satisfies

C(n + 1) =
{

1, if �S[S(n)] > �R[R(n)],
0, if �S[S(n)] < �R[R(n)], n = 1,2, . . . .(2.4)

Henceforth, all quantities with a subscript of G will pertain to a greedy policy
and those with a subscript of A to an alternating policy. An important consequence
of the definition of a greedy policy is that

|�R[RG(n)] − �S[SG(n)]| ≤ γ, n = 1,2, . . . ,(2.5)

where γ := max1≤i≤∞ ri ∨ max1≤i≤∞ si .
The case σR + σS = 0 is equivalent to having r̃ and s̃ as uniform distributions

with identical finite supports. And it is easily checked that identical uniform distri-
butions make the set of all greedy policies coincide with the set of all alternating
policies. Hence, in the following we will assume σR + σS > 0.



READING POLICIES FOR JOINS 237

2.2. Optimality of the greedy. Here we show using dynamic programming that
the greedy policy maximizes the expected number of matches at all epochs in the
case of infinite populations. A key observation to showing this is that the incremen-
tal gain of matches from the (n + 1)st record can be written in terms of �R[R(n)]
and �S[S(n)] as

E
(
M(n + 1) − M(n)|Fn

)= �S[S(n)]C(n + 1) + �R[R(n)](1 − C(n + 1)
)
.

This suggests a rather compact Markov Decision Problem (MDP) formulation—
at the nth epoch, the state is defined as (�R[R(n)],�S[S(n)]) and the action of
choosing the next record from the R source results in a reward of �S[S(n)] with
(�R[R(n)] + XR(R(n) + 1],�S[S(n)]) as the new state (when the next record is
chosen from S the reward and the new state are analogously defined). That this
compact representation fails in the case of finite population(s) is easily demon-
strated; see [16].

Abstractly, following the system of specifying a MDP as given in [11], consider
the MDP with decision epochs {1, . . . ,N} for some N ≥ 1, state space [0,∞) ×
[0,∞), action set (invariant to the current state) {0,1}, with time homogeneous
expected rewards

r(x̃i, a) = ξ1+a for a = 0,1; ξ̃ = (ξ1, ξ2) ∈ [0,∞) × [0,∞)

and time homogeneous transition probabilities

p(ξ̃
′ |ξ ;a) =




p2(ξ
′
2 − ξ2), a = 0 and ξ

′
1 = ξ1,

p1(ξ
′
1 − ξ1), a = 1 and ξ

′
2 = ξ2,

0, otherwise,

where p1(·) and p2(·) are probability densities (with respect to some σ -finite mea-
sure λ) on [0,∞) with a common mean, say, θ . In terms of our original problem,
action 1 (resp. 0) corresponds to picking the next record from R (resp. S), p1(·)
[resp., p2(·)] corresponds to the mass function of XR (resp. XS) and the reward is
the expected increment in the number of matches from the next record.

The above MDP, while reminiscent of a two-armed bandit (see, e.g., [11] and
[13]), is not quite so. Considering the renewal processes, with inter-arrival distrib-
utions p1(·) and p2(·), as the states of two projects, the expected reward generated
by choosing a project is equal to the state of the other. This dependence of the
reward on the state of the other (idle) project fails one of the requirements of the
bandit problem; see [11]. Nevertheless, it fits the formalism of the (two machine)
tax problem of [18] (ongoing bandits of [4]) of where the reward structure is in a
sense the reverse of the bandit problem.

In the tax problem, at any epoch, one of K machines can be operated with idle
machines generating a cost (the tax). The goal is to schedule the machines in order
to minimize, for example, the expected total discounted stream of costs. Interest-
ingly, from the point of view of a search for the optimal strategy, the tax problem
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(with infinite horizon and discounted rewards) and the bandit problem are equiv-
alent; see [18]. As shown in [1], such an equivalence holds even while allowing
all machines, active or inactive, to generate either a reward or a cost (negative re-
ward) with the goal of maximizing the total discounted stream of rewards. Also,
our MDP can be seen to be a particular case of the generalized bandit problem
of [10]. While [1, 10] and [18] look at an infinite horizon discounted reward cri-
terion, our interest is in the finite horizon analysis of our MDP. Below we show
by a simple inductive argument that the greedy (myopic) policy is optimal in the
finite horizon case under the total expected reward criterion. For an involved proof
using the interchange argument; see [16]. Also, it is not hard to construct a sim-
ple qualitative argument along the lines of the proof of the Gittin’s index theorem
of [19].

It should be no surprise, given the time homogeneity and two point action set,
that optimal deterministic Markov policies exist; see, for example, Theorem 4.4.2
of [11]. Moreover, it is easily argued from the reward structure that an optimal
deterministic Markov policy which is a function of ξ1 − ξ2 exists. Below we addi-
tionally show that this policy is given by I(−∞,0)(ξ1 − ξ2), the greedy policy.

THEOREM 2.1. The greedy policy is optimal under the total expected reward
criterion for any finite horizon.

REMARK 2.1. That the greedy policy maximizes the expected number of
matches at all epochs implies that it also maximizes the total expected discounted
incremental matches for all nonincreasing discount sequences.

REMARK 2.2. Note that the above theorem also implies that the greedy max-
imizes

E

(
R(n)∑
i=1

S(n)∑
j=1

φ
(
LR(i),LS(j)

))
,

where φ(·, ·) is nonnegative. This implies that optimality of the greedy extends
beyond equijoins. Moreover, the proof allows LR and LS to be random elements
on any space.

REMARK 2.3. The above theorem does not extend directly beyond two
sources. This is reminiscent of the bandit problem with different discount factors
for each bandit—Gittin’s index exists in the case of the two armed bandit, but not
beyond. For details, we refer to [4].

PROOF OF THEOREM 2.1. The proof is by induction. Let Vn(ξ) denote the
maximum total expected reward for the n-epoch (n more records to pick) problem
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at state ξ . Clearly, V1(ξ) = max(ξ1, ξ2), which is attained by the greedy policy.
Assume without loss of generality that ξ1 ≥ ξ2. Now, since

ξ1 +
∫

V1
(
(ξ1, ξ2 + ζ )

)
dp2(ζ ) ≥ ξ1 +

∫
(ξ2 + ζ ) dp2(ζ )

= ξ1 + ξ2 + θ

= ξ2 +
∫

(ξ1 + ζ ) dp1(ζ )

= ξ2 +
∫

V1
(
(ξ1 + ζ, ξ2)

)
dp1(ζ ),

we have the greedy policy is optimal for the 2-epoch problem too. Now assume that
the greedy policy attains Vi(ξ) for i = 1,2, . . . , (n−1) for all ξ ∈ [0,∞)×[0,∞).
That Vn(ξ) is also attained by a greedy follows from

ξ1 +
∫

Vn−1
(
(ξ1, ξ2 + ζ )

)
dp2(ζ )

≥ ξ1 +
∫ [∫

ξ2 + ζ + Vn−2
(
(ξ1 + ϑ, ξ2 + ζ )

)
dp1(ϑ)

]
dp2(ζ )

= ξ1 + ξ2 + θ +
∫ ∫

Vn−2
(
(ξ1 + ϑ, ξ2 + ζ )

)
dp1(ϑ) dp2(ζ )

= ξ2 +
∫ [∫

ξ1 + ϑ + Vn−2
(
(ξ1 + ϑ, ξ2 + ζ )

)
dp2(ζ )

]
dp1(ϑ)

= ξ2 +
∫

Vn−1
(
(ξ1 + ϑ, ξ2)

)
dp1(ϑ).

Hence, the proof. �

3. Basic weak and strong limit theorems. The heuristics in the introduc-
tion suggest (and the results of this section confirm) that for a policy to be
competitive, its selection ratio must converge to 1/2. However, in some appli-
cations the observer may not have control of the sampling order, or may find
it cost effective to sample unevenly from the two sources. Thus, the case where
R(n)/n

a.s.−→ α ∈ (0,1) is of interest. In this section we show that the number of
matches, when suitably centered and scaled, can be strongly approximated by a
standard Wiener process. From this approximation it is easy to obtain a CLT and
LIL for the number of matches.

THEOREM 3.1. Consider a reading policy that satisfies R(n)/n
a.s.−→ α ∈

(0,1) and the associated process Z(·) defined by

Z(t) :=



0, for 0 ≤ t < V1,
M(n)

n
− nα(1 − α)µ, for Vn ≤ t < Vn+1 and n ≥ 1,
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where Vn := (1 − α)2σ 2
RR(n) + α2σ 2

S S(n) for n ≥ 1. If for some β ≥ 0,√
n

[log2(n)](1−β)

(
R(n)

n
− α

)
a.s.−→ 0,(3.1)

then a probability space can be constructed which supports a standard Wiener
process W and a process Z′ such that,

{Z(t) : t ≥ 0} d= {Z′(t) : t ≥ 0} and
|Z′(t) − W(t)|√
t[log2(t)](1−β)

a.s.−→ 0.

In the case where α = 1/2, condition (3.1) may be replaced by the weaker condi-
tion [

n

[log2(n)](1−β)

]1/4(R(n)

n
− α

)
a.s.−→ 0.(3.2)

COROLLARY 3.1. For any reading policy satisfying

√
n

(
R(n)

n
− α

)
a.s.−→ 0, with α ∈ (0,1),(3.3)

we have

√
n

[
M(n)

α(1 − α)n2 − µ

]
d−→ N

(
0,

[
(1 − α)σ 2

R + ασ 2
S

α(1 − α)

])
.(3.4)

In the case where α = 1/2, condition (3.3) may be replaced by

n1/4
(

R(n)

n
− α

)
a.s.−→ 0.(3.5)

REMARK 3.1. In Corollary 3.1 almost sure convergence in (3.3) and (3.5)
may be replaced by convergence in probability. This follows from the proof of The-
orem 3.1 and the martingale central limit theorem (see, e.g., Theorem 7.4 of [3]).

COROLLARY 3.2. For any reading policy satisfying√
n

log2 n

(
R(n)

n
− α

)
a.s.−→ 0,(3.6)

we have, with probability one,

lim sup
n→∞

M(n) − n2α(1 − α)µ

n3/2
√

2κ log2 n
= 1 = − lim inf

n→∞
M(n) − n2α(1 − α)µ

n3/2
√

2κ log2 n
,(3.7)

where κ := α(1 − α)((1 − α)σ 2
R + ασ 2

S ). When α = 1/2, condition (3.6) may be
replaced by [

n

log2 n

]1/4(R(n)

n
− α

)
a.s.−→ 0.(3.8)
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From the above corollaries we see that the central limit and iterated logarithm
behavior of the number of matches are invariant among the class of policies whose
selection ratios converge to α sufficiently fast. Included in this class are the al-
ternating policies and (it will be shown) the greedy policies, both with α = 1/2.
Thus, these policies obey the same CLT and LIL, the optimality of the latter policy
notwithstanding.

We observe that conditions (3.3) and (3.6) fail under Bernoulli sampling, where
the source is determined by independent tosses of an α-coin, α �= 1/2. Before dis-
cussing this case further, we give a simple example showing that these conditions
can hold for a nondeterministic policy which imposes a restorative pressure to keep
its selection ratio close to α. Consider a reading policy with R(1) = 1 and which
for n > 1 chooses source R with probability α1 ∈ (0, α) [resp., α2 ∈ (α,1)] when
R(n − 1) ≥ α(n − 1) [resp., R(n − 1) < α(n − 1)]. For such a policy, we have

−U
st≤ R(n) − αn

st≤ V , where U and V are defined by

U := min

{
k :

k∑
j=1

X2,j ≥ αk + 1

}

and

V := min

{
k :

k∑
j=1

X1,j ≤ αk − 1

}
,

with {Xi,j : j ≥ 1} an i.i.d. Ber(αi) sequence for i = 1,2. By Bernstein’s inequality
(e.g., see [15]), U and V have exponential tails from which conditions (3.3) and
(3.6) follow.

We will see in the proof of Theorem 3.1 below that

√
n

[
M(n)

α(1 − α)n2 − µ

]
and

√
n

[
(1 − α)�R[R(n)] + α�S[S(n)]

α(1 − α)n
− 2µ

]
share the same weak limit quite generally and, in particular, under Bernoulli
sampling. Moreover, note that under the Bernoulli sampling the expression (1 −
α)�R[R(n)]+α�S[S(n)] is the nth partial sum of a sequence of independent vari-
ables, all with the distribution of (1 − α)R(1)XR(1) + α(1 − R(1))XS(1). Thus,
by the ordinary CLT for i.i.d. sequences, we obtain the CLT (and, by a similar
argument, the LIL) for M(n) with the asymptotic variance given by

µ2(1 − 2α)2

α(1 − α)
+ (1 − α)σ 2

R + ασ 2
S

α(1 − α)
.(3.9)

More generally, when {R(n)}n≥1 is independent of the labels, the CLT holds

under
√

n(R(n)/n − α)
d−→ N(0, σ 2), with the asymptotic variance given by[

µ(1 − 2α)

α(1 − α)

]2

σ 2 + (1 − α)σ 2
R + ασ 2

S

α(1 − α)
.
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The argument uses Kolmogorov’s maximal inequality to show that Yn in (3.12) is
sufficiently close to the partial sum of the first nα XR(·)’s and n(1 − α) XS(·)’s.
The CLT follows from the independence of this partial sum and R(n).

It is interesting to note the more stringent requirement in the above corollaries
on the rate of convergence of the selection ratio when the limit is other than 1/2.
This is to account for the phenomenon that while the policy which uses Bernoulli
sampling with α = 1/2 obeys the same CLT as an alternating policy (and, as we
shall see, a greedy policy), the policy which uses Bernoulli sampling with α �= 1/2
has a higher asymptotic variance than a policy for which R(n) = nα� [cf. the
asymptotic variance in (3.4) to the expression in (3.9) for the cases α = 1/2 and
α �= 1/2].

We now state the CLT and LIL for the selection ratio of a greedy policy, the latter
result yielding both the CLT and LIL for the number of matches via an application
of Corollary 3.1 and Corollary 3.2, respectively.

THEOREM 3.2. For the greedy reading policy CG, we have

(RG(n) − n/2)√
n

d−→ N
(
0, σ 2

RG

)
as n → ∞; σ 2

RG
:=

(
σ 2

R + σ 2
S

8µ2

)
.(3.10)

THEOREM 3.3. For the greedy reading policy CG, we have

lim sup
n→∞

RG(n) − n/2√
2σ 2

RG
n log2 n

= 1 = − lim inf
n→∞

RG(n) − n/2√
2σ 2

RG
n log2 n

, w.p. 1.(3.11)

COROLLARY 3.3. For both greedy and alternating policies, we have
√

n

[
M(n)

(n/2)2 − µ

]
d−→ N

(
0,2(σ 2

R + σ 2
S )
)
.

Moreover, for these policies, we also have (3.7) with α = 1/2.

While both of the above theorems are of independent interest, the former is
of interest also for the similarity of its derivation to that of the weak limit of a
sequence of stopping times needed in the next section, and the latter for its appli-
cation to the number of matches.

3.1. Proofs of Theorems 3.1–3.3.

PROOF OF THEOREM 3.1. First, we observe that
M(n)

n
− µαn − Yn

= µ[1 − 2α](R(n) − αn
)

(3.12)

+ α(1 − α)n

(
ÑR(R(n))

αn
− r̃

)
·
(

ÑS(S(n))

(1 − α)n
− s̃

)
,
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where µα := α(1 − α)µ and for n ≥ 1,

Yn := (1 − α)�R[R(n)] + α�S[S(n)] − [αn + (1 − 2α)R(n)]µ.(3.13)

Second, we show that
(M(n))/n − µαn − Yn√

n[log2(n)](1−β)

a.s.−→ 0.(3.14)

Let an :=
√

n/[log2(n)](1−β) for n ≥ 1. Toward showing (3.14), we observe that
when α = 1/2, the term anµ[1 − 2α](R(n)/n−α) is 0 and otherwise it converges
to 0 in the almost sure sense by (3.1). We note that this is the only reason for
requiring the stringent condition (3.1). Now the proof of (3.14) is completed if we
can show that (3.2) implies that∣∣∣∣an

(
ÑR(R(n))

αn
− r̃

)
·
(

ÑSS(n)

(1 − α)n
− s̃

)∣∣∣∣ a.s.−→ 0.

By the Cauchy–Schwarz inequality, we have∣∣∣∣an

(
ÑRR(n)

αn
− r̃

)
·
(

ÑS(S(n))

(1 − α)n
− s̃

)∣∣∣∣
(3.15)

≤
√√√√ ∞∑

i=1

[√
an

(
NR[R(n), i]

αn
− ri

)]2
√√√√ ∞∑

i=1

[√
an

(
NS[S(n), i]
(1 − α)n

− si

)]2

.

By symmetry, it suffices to show that the first term on the right-hand side of (3.15)
converges to zero in the almost sure sense:

∞∑
i=1

[√
an

(
NR[R(n), i]

αn
− ri

)]2

= an log2 R(n)

R(n)

(
R(n)

αn

)2

︸ ︷︷ ︸
a.s.−→0

R(n)

log2 R(n)

∞∑
i=1

(
NR[R(n), i]

R(n)
− ri

)2

︸ ︷︷ ︸
O(1) a.s. by Lemma A.1

+ 2

√
an log2 R(n)

R(n)

(
R(n)

αn

)
︸ ︷︷ ︸

a.s.−→0

√
an

(
R(n)

αn
− 1

)
︸ ︷︷ ︸

a.s.−→0 by (3.2)

×
√

R(n)

log2 R(n)

∞∑
i=1

(
NR[R(n), i]

R(n)
− ri

)
ri

︸ ︷︷ ︸
O(1) a.s. by Lemma A.1

+ an

(
R(n)

αn
− 1

)2

︸ ︷︷ ︸
a.s.−→0 by (3.2)

∞∑
i=1

(ri)
2 a.s.−→ 0.



244 R. P. RUSSO AND N. D. SHYAMALKUMAR

Third, we show that {Yn}n≥1 is a {Fn}n≥1 martingale with bounded increments.
Toward this, we note that, for n ≥ 2,

Dn := Yn − Yn−1 =
{

(1 − α)
(
XR(R(n)) − µ

)
, if C(n) = 1,

α
(
XS(S(n)) − µ

)
, if C(n) = 0,

with D1 := Y1.
Now as C(n) is Fn−1 measurable and both XR(R(n − 1) + 1) as well as

XS(S(n − 1) + 1) are independent of Fn−1, we have E(Dn|Fn−1) = 0. More-
over, as Dn is bounded and Yn is Fn measurable, we have the above description of
{Yn}n≥1. Further, observe that E(D2

n|Fn−1) = (1−α)2σ 2
RC(n)+α2σ 2

S (1−C(n)),
which implies that

1

n

n∑
k=1

E(D2
k |Fk−1) = (1 − α)2σ 2

R

R(n)

n
+ α2σ 2

S

S(n)

n

a.s.−→ α(1 − α)
(
(1 − α)σ 2

R + ασ 2
S
)
.

Fourth, we observe that the above description of {Yn}n≥1 along with Theo-
rem 3.2 of [8] implies that a probability space can be constructed (a suitably
augmented version of the one in [8]) which supports a Wiener process W and a
sequence {(R′(n),L′

R(n),L′
S(n))}n≥1 satisfying the following:

(i) {(R′(n),L′
R(n),L′

S(n))}n≥1
d= {(R(n),LR(n),LS(n))}n≥1,

(ii) If Y ′
n is the same function of {(R′(n),L′

R(n),L′
S(n))}n≥1 as Yn is of

{(R(n),LR(n),LS(n))}n≥1 and

Y ′(t) :=
{

0, for 0 ≤ t < V ′
1,

Y ′(n), for V ′
n ≤ t < V ′

n+1 and n ≥ 1,

where V ′
n := (1 − α)2σ 2

RR′(n) + α2σ 2
S S′(n) for n ≥ 1, then

|Y ′(t) − W(t)|√
t[log2(t)](1−β)

a.s.−→ 0.(3.16)

To complete the proof, let {M ′(n)}n≥1 be the sequence defined exactly
as {M(n)}n≥1 but using the sequence {(R′(n),L′

R(n),L′
S(n))}n≥1 instead of

{(R(n),LR(n),LS(n))}n≥1. Also, let Z′ be the process defined like Z but us-
ing {(M ′(n),V ′(n))}n≥1 instead of {(M(n),V (n))}n≥1. Then (3.14) and (3.16)
together imply

|Z′(t) − W(t)|√
t[log2(t)](1−β)

a.s.−→ 0.

Hence, the proof. �

To prove Theorems 3.2 and 3.3, we utilize the following lemma. This lemma
provides a tight connection with partial sums of i.i.d. variables that is key in the
proofs of the two theorems.
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LEMMA 3.1. In the case of the greedy algorithm we have, for 0 ≤ x ≤ n,

�R[x�] < �S[n − x�] − γ �⇒ RG(n) > x

�⇒ �R[�x�] ≤ �S[n − �x�] + γ.

PROOF. Since �S[·] and �R[·] are nondecreasing, for 0 ≤ x ≤ n, we have,
by (2.5),

RG(n) > x

�⇒ �S[�x�] ≤ �R[RG(n)] ≤ �S[SG(n)] + γ ≤ �S[n − �x�] + γ.

The other half follows by observing that, for 0 ≤ x ≤ n,

RG(n) ≤ x

�⇒ �R[x�] ≥ �R[RG(n)] ≥ �S[SG(n)] − γ ≥ �S[n − x�] − γ. �

PROOF OF THEOREM 3.2. First, we argue that

Z(n) := �R[kn] − �S[n − kn]√
n/2

(3.17)
d−→ N(23/2µx,σ 2

R + σ 2
S ), as n → ∞

for any sequence {kn}n≥1 satisfying

lim
n→∞

(
kn − n/2√

n

)
= x.

To this end, note that

Z(n) = an

[∑kn

j=1 XR(j) − knµ√
kn

]
︸ ︷︷ ︸

d−→N(0,σ 2
R)

(3.18)

− bn

[∑n−kn

j=1 XS(j) − (n − kn)µ√
n − kn

]
︸ ︷︷ ︸

d−→N(0,σ 2
S )

+ cn23/2µx,

where the three sequence {an}n≥1, {bn}n≥1 and {cn}n≥1 all converge to 1. The
above observed weak limits are due to the ordinary central limit theorem. By in-
dependence of the first two terms in (3.18) and Slutsky’s theorem, we have (3.17).
Now defining Z∗ and Z∗ as Z but with the sequence {kn}n≥1 taken as {n/2 +
x
√

n�}n≥1 and {�n/2 + x
√

n�}n≥1, respectively, we have, as n → ∞,

Z∗(n)
d−→ N(23/2µx,σ 2

R + σ 2
S ) and

(3.19)
Z∗(n)

d−→ N(23/2µx,σ 2
R + σ 2

S ).
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By Lemma 3.1, we have for large n

Pr
(
Z∗(n) <

−γ√
n/2

)
≤ Pr

(
(RGn − n/2)√

n
> x

)
(3.20)

≤ Pr
(
Z∗(n) <

γ√
n/2

)
,

which combined with (3.19) completes the proof. �

PROOF OF THEOREM 3.3. Let {kn}n≥1 be a sequence of nonnegative integers
and {an}n≥1 a sequence of reals such that, for n ≥ 1,

kn − n/2√
2σ 2

RG
n log2 n

n→∞−→ C > 0 and

(3.21)

an = 1√
2(σ 2

R + σ 2
S )(n − kn) log2(n − kn)

.

For such a sequence {kn}n≥1,

an(�R[kn] − �S[n − kn]) = an(�R[n − kn] − �S[n − kn])︸ ︷︷ ︸
lim infn→∞=−1

+ an

(
�R[kn] − �R[n − kn] − (2kn − n)µ

)︸ ︷︷ ︸
a.s.−→0

+ bn︸︷︷︸
n→∞−→ C

,

where the first limit infimum is due to the standard law of iterated logarithm, the
second limit is due to Theorem 5.1 of [6] on lag sums and the third limit is a
consequence of (3.21). Hence, for a sequence {kn}n≥1 satisfying (3.21), we have

lim inf
n→∞ an(�R[kn] − �S[n − kn]) = C − 1.(3.22)

Using (3.22) and Lemma 3.1, with kn = n/2 + (1 − ε)
√

2σ 2
RG

n log2 n�, we have

RG(n) − n/2√
2σ 2

RG
n log2 n

> 1 − ε infinitely often (i.o.) a.s. ∀ε > 0.(3.23)

Now similarly, working instead with kn = �n/2+ (1+ ε)
√

2σ 2
RG

n log2 n�, we have

RG(n) − n/2√
2σ 2

RG
n log2 n

> 1 + ε only finitely often a.s. ∀ε > 0.(3.24)

Statements (3.23) and (3.24) are equivalent to the first statement in (3.11). A sim-
ilar argument leads to the other. Hence, the proof. �
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4. Comparison of greedy and the alternating. The results of the last section,
which say that the weak limit and the law of the iterated logarithm for MG(·) and
MA(·) coincide, motivate asymptotic analysis of their difference—the goal of this
section.

In our problem the reward is unbounded and grows linearly. Hence, an ana-
logue to the average reward criterion in the bounded reward case would involve
E(M(n))/n2. We note that by Corollary 3.3 and the dominated convergence the-
orem we have the equality of limn→∞ n−2

E(MG(n)) and limn→∞ n−2
E(MA(n)).

This leads us to consider sensitive discount optimality criteria to distinguish the
performance of the alternating from that of the greedy. Let us denote by νA

λ

(resp., νG
λ ), for 0 ≤ λ < 1, the expected total λ-discounted incremental matches

under the alternating policy (resp., greedy policy). In the case of the alternating
policy an easy calculation yields νA

λ = (1 − λ)−2λ(1 + λ)−1µ. A study of the −1-
discount optimality of the alternating leads us to lim infλ↑1(1 − λ)(νG

λ − νA
λ ). It

follows by a Tauberian theorem of Hardy and Littlewood (see, e.g., Theorem 7.4
of [9]) that

lim
λ↑1

(1 − λ)(νG
λ − νA

λ ) = lim
n→∞

(
E(MG(n) − MA(n))

n

)

when either limit exists. The first theorem shows that the limit on the right ex-
ists and is positive, hence, showing that the alternating policy is not −1-discount
optimal.

THEOREM 4.1. For two chosen policies, one greedy and the other alternating,
we have

lim
n→∞

(
E(MG(n) − MA(n))

n

)
= σ 2

R + σ 2
S

8µ
.

REMARK 4.1. It is easily seen that E(max(�R[RG(n)],�S[SG(n)])) repre-
sents the expected incremental gain of matches from the (n+1)st pick by a greedy
policy. The proof of Theorem 3.1 then gives us

E
(
max

(
�R[RG(n)],�S[SG(n)]))=

(
1

2

)
E
(|�R[RG(n)] − �S[SG(n)]|)

+
(

1

2

)
E
(
�R[RG(n)] + �S[SG(n)])

=
(

1

2

)
E
(|�R[RG(n)] − �S[SG(n)]|)+ nµ

2
.

Interestingly, the greedy criterion implies that the process {�R[RG(n)] −
�S[SG(n)]}n≥1 is a bounded Markov chain on a subset of [−γ, γ ], leaving aside
the versions of greedy which introduce unnecessary path dependence on the
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epochs where the greedy criterion is ambivalent. This immediately leads to the
relation

E(MG(n)) =
(

1

2

) n−1∑
k=1

E
(|�R[RG(n)] − �S[SG(n)]|)+ n(n − 1)µ

4
.(4.1)

REMARK 4.2. In the case of ergodicity of {�R[RG(n)] − �S[SG(n)]}n≥1, the
above theorem yields

E
(
�MG(n) − �MA(n)

)→




σ 2
R + σ 2

S

8µ
− µ

4
, along odd n’s,

σ 2
R + σ 2

S

8µ
+ µ

4
, along even n’s,

where � is the difference operator. It is easily checked that there are examples
where E(�MG(n) − �MA(n)) for all large n is positive and where it oscillates in
sign.

REMARK 4.3. In the case of geometric ergodicity of {�R[RG(n)] −
�S[SG(n)]}n≥1, the above theorem together with (4.1) leads to an expansion of
the form {�R[RG(n)] − �S[SG(n)]}n≥1,

E(MG(n)) = n2µ

4
+ n

[
σ 2

R + σ 2
S

8µ

]
+ constant + εn,

where εn tends to zero exponentially fast. This relation for the illustrative ex-
ample is given in (1.1), and Figure 1 graphically describes the Markov chain
{�R[RG(n)] − �S[SG(n)]}n≥1.

REMARK 4.4. The above, in particular, implies that, for large n,

E(MA(n)) ≤ E(MG(n)) ≤ E
(
MA(n + k)

)
, where k :=

⌈
σ 2

R + σ 2
S

4µ2

⌉
.

FIG. 1. Embedded Markov chain of the illustrative example.
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An easy but informative upper bound for the k of the above equation is given by
[(1 −µ)/2µ]�. It can be easily shown that, in general, k cannot be bounded away
from infinity.

The first theorem, while able to distinguish between the greedy and the alter-
nating policies, also shows that the difference is rather slim. It would be inter-
esting to know whether these two policies, if implemented on the same sampled
sequence of labels, will yield (in some sense) more matches under the greedy than
the alternating? Such optimality is referred to in the literature as sample path op-
timality. Results on sample path optimality for the case of bounded rewards and
finite/countable state and action spaces under the assumption of uniform ergodic-
ity of the state process can be found in [7] and the references therein. The second
theorem shows that the weak limit of MG(n) − MA(n) under this coupling is a
scale mixture of normals centered at zero. The final theorem of this section throws
some light on its sample path behavior under the same coupling. A more precise
study of the sample path behavior of MG(n) − MA(n) is beyond the scope of this
paper.

THEOREM 4.2. For two chosen policies, one greedy and the other alternating,
we have (

MG(n) − MA(n)

n5/4

)
d−→ F as n → ∞,

where F is a scale mixture of normals centered at zero given by

F =
∫

N(0, σ 2) dG(σ 2), where G :=
∣∣∣∣N
(

0,
(σ 2

R + σ 2
S )3

128µ2

)∣∣∣∣.
THEOREM 4.3. For two chosen policies, one greedy and the other alternating,

we have

lim inf
n→∞

(
MG(n) − MA(n)

n5/4(log2 n)1/4

)
= −∞ a.s.,

(4.2)

lim sup
n→∞

(
MG(n) − MA(n)

n5/4(log2 n)1/4

)
= ∞ a.s.

and

MG(n) − MA(n)

n5/4(log2 n)1/4 = O((logn)1/2) a.s.(4.3)

In the following we will need the filtration {Gn}n≥0 defined as

Gn = G0 ∨ σ 〈LR(1), . . . ,LR(RG(n));LS(1), . . . ,LS(SG(n))〉, n ≥ 1,
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with G0 containing all the information needed for randomization by not only CG
but also CA. The argument for the above results depends on the sequence of ran-
dom times {Tn}n≥1, where Tn is essentially the epoch at which the greedy decides
to pick the first record (from R or S) which would not be seen following the alter-
nating policy by the nth epoch. Formally, they are defined as

Tn := min
(
n, inf

{
k ≥ 1

∣∣∣SG(k+1) =
⌈
n

2

⌉
+1 or RG(k+1) =

⌈
n

2

⌉
+1

})
(4.4)

for n ≥ 1. It is easily checked that {Tn}n≥1 is a sequence of {Gn}n≥0 stopping
times. Also, for convenience, we define the sequence of events {An}n≥1 by An :=
{RG(Tn) = n/2�} for n ≥ 1.

4.1. Study of stopping times {Tn}n≥1. We note that, similarly to Lemma 3.1, it
can be shown that, for positive x,

(n − Tn) > x �⇒ �R[n/2�] ≤ �S[�n/2� − �x�] + γ or
(4.5)

�S[n/2�] ≤ �R[�n/2� − �x�] + γ

and

(n − Tn) > x ⇐� �R[n/2�] < �S[�n/2� − x�] or
(4.6)

�S[n/2�] < �R[�n/2� − x�].
This leads to the first lemma which describes both the weak limit and sample path
behavior of Tn. The second lemma is the weak law of large numbers for the post
Tn (and pre-n) selection ratio. The third lemma derives exponential probability
inequalities for both Tn and RG(n) which are useful in establishing the required
uniform integrability results and the uniform central limit theorem of Lemma 4.6.

LEMMA 4.1. For the above defined stopping times {Tn}n≥1, the following
hold:

(i)

n − Tn

2
√

n

d−→ ∣∣N(0, σ 2
RG

)∣∣ as n → ∞,(4.7)

where σ 2
RG

, the asymptotic variance of RG(n), is defined in (3.10).
(ii)

lim inf (n − Tn) = 0 a.s. and lim sup
n − Tn√

8σ 2
RG

n log2 n
= 1 a.s.(4.8)
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PROOF. A proof of (4.7) and the second part of (4.8) follows along similar
lines as Theorem 3.2 and Theorem 3.3, respectively. The key difference being that
(4.5) and (4.6) are used instead of Lemma 3.1. The first part of (4.8) follows as
Theorem 3.3 implies that the event {RG(n) = SG(n) for infinitey many n} occurs
with probability one. The details are skipped to avoid repetition of similar argu-
ments. �

LEMMA 4.2. For the above defined stopping times {Tn}n≥1 corresponding to
the greedy reading policy CG, we have

RG(n) − RG(Tn)

n − Tn

P−→ 1

2
as n → ∞.(4.9)

PROOF. First, we show that

RG(n) − RG(Tn)

log(n)

P−→ ∞ as n → ∞.(4.10)

By a double application of (2.5), we have∣∣(�R[RG(n)] − �R[RG(Tn)])− (
�S[SG(n)] − �S[SG(Tn)])∣∣≤ 2γ,(4.11)

which implies that, for any positive K ,

RG(n) − RG(Tn) < K log(n) �⇒
(4.12)

n−Tn−K log(n)∑
i=1

XS
(
i + SG(Tn)

)− 2γ <

K log(n)∑
i=1

XR
(
i + RG(Tn)

)
.

The second expression can be rewritten as(n−Tn−K log(n)∑
i=1

XS(i + SG(Tn)) − µ√
n − Tn − K log(n)

)
−
(K log(n)∑

i=1

XR(i + RG(Tn)) − µ√
K log(n)

)

< 2γ − µ
(√

n − Tn − K log(n) −
√

K log(n)
)
.

As n−1/4(n − Tn)
P−→ ∞ (Lemma 4.1), we have the independent terms on the left

converging to normal distributions and the term on the right converging to negative
infinity. Hence, the probability of the above event converges to zero. Now using
(4.12), we obtain (4.10). Combining (4.10) with Theorem 3.3, we have

RG(n)
P−→ ∞ and

RG(n) − RG(Tn)

log(RG(n))

P−→ ∞ as n → ∞.(4.13)

Statement (4.13) together with Theorem 5.1 of [6] on lag sums gives us(
�R[RG(n)] − �R[RG(Tn)]

RG(n) − RG(Tn)

)
P−→ µ
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and (
�S[SG(n)] − �S[SG(Tn)]

SG(n) − SG(Tn)

)
P−→ µ,

where the second part follows by symmetry. This with (4.11) and (4.10) gives

RG(n) − RG(Tn)

SG(n) − SG(Tn)

P−→ 1,

which is equivalent to (4.9). �

REMARK 4.5. The above, in particular, implies that

RG(n) − RG(Tn)√
n

=
(

RG(n) − RG(Tn)

n − Tn

)(
n − Tn√

n

)
d−→ ∣∣N(0, σ 2

RG

)∣∣ as n → ∞,

where the convergence in probability of the first term follows from (4.9) and the
weak convergence of the second term to the folded normal follows from (4.7). In
fact, the stronger result

RG(n) − RG(Tn) − (n − Tn)/2√
n − Tn

d−→ N
(
0, σ 2

RG

)
as n → ∞

can be shown using an argument similar to that used to prove Theorem 3.2.

LEMMA 4.3. For a greedy policy, we have the following:

(i) For t ≥ 1 and n ≥ (2 + γ
µ
)2,

Pr
(∣∣∣∣RG(n) − n/2√

n

∣∣∣∣> t

)
≤ 2 exp

{
−
(

µ

2γ

)2

t

}
.(4.14)

(ii) The sequence {(
n − Tn√

n

)2}
n≥1

(4.15)

is uniformly integrable.

PROOF. Toward proving (4.14), let k = �n/2+ t
√

n�. By Lemma 3.1, we have

Pr
(
RGn > n/2 + t

√
n
)≤ Pr(�R[k] ≤ �S[n − k] + γ ).

Observe that

�S[n − k] − �R[k] + (2k − n)µ = [
�S[n − k] − �R[n − k]]
− [

�R[k] − �R[n − k] − (2k − n)µ
]
,
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which implies that the term on the left-hand side is a sum of k independent zero
mean random variables taking values in [−γ, γ ]. This along with Hoeffding’s in-
equality (see [15]) implies

Pr�R[k] ≤ �S[n − k] + γ ≤ exp
{−[(2k − n)µ − γ ]2

2kγ 2

}
.

Working with the upper bound above and using the inherent symmetry, we get the
simple upper bound in (4.14).

For the sequence in (4.15), we get an inequality similar to (4.14) by imitating
the above argument—the only change being that (4.5) and (4.6) are used instead
of Lemma 3.1. Since this bound is integrable and free of n, we have the uniform
integrability of the sequence in (4.15). �

4.2. Heuristics for the theorems. We find it convenient to divide the records
sampled by the nth epoch by either the alternating or the greedy into three sets. The
first set consists of the first Tn records sampled by the greedy. The second consists
of the last n − Tn records sampled by the greedy. The third consists of the records
sampled by the alternating and not contained in the first set. Observe that all of the
records in the first set (except possibly one) are sampled by the alternating by the
nth epoch. Also note that all of the records in the third set belong to a single source
and its cardinality is within one of the cardinality of the second set. The upshot of
this is that MG(n) − MA(n) is essentially the number of matches between records
of the first and the second set and the records of the second set with themselves
minus the number of matches between records of the first and the third set.

First, we argue that in the expected difference E(MG(n) − MA(n)) the signifi-
cant term comes from the matches generated among the records of the second set,
which by Lemmas 4.1 and 4.3 will be of order n. This is so as the expected num-
ber of matches between records of the first and the second set minus the expected
number of matches between the first and third set is at the most of order

√
n—

follows by observing that |�R[RG(Tn)]−�S[SG(Tn)]| ≤ γ and n−Tn = Op(
√

n)

(by Lemma 4.1). Second, by Lemma 4.2, roughly (n − Tn)/2 of the records in
the second set will be from each source and, hence, using the law of large num-
bers, the expected number of matches generated by these among themselves will
be approximately E((n−Tn)

2)µ/4 or by Lemma 4.1, approximately nµσ 2
RG

. This
completes the heuristic for Theorem 4.1. Lemma 4.4 formalizes the latter part of
the argument and the proof of Theorem 4.1 does the rest.

In contrast to the above, in the study of the sample path behavior and weak limit
of MG(n) − MA(n) we find that the insignificant terms of the above become sig-
nificant and vice-versa. First, the number of matches generated by the records of
the second set with themselves is comparable to MG(

√
n − Tn) which is Op(n),

using Corollary 3.1 and Lemma 4.1. On the other hand, the number of matches
between records of the first and the second set minus the number of matches be-
tween the first and third set is Op(n5/4). Toward an argument, suppose without loss
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of generality that the greedy picks more R records than the alternating. Now the
above difference is easily checked to be the difference in the numbers of matches
generated by the excess R records sampled by the greedy and the excess S records
sampled by the alternating, both with records from the first set. And divided by n,
by the law of large numbers, the distribution of labels on the records from both
sources in the first set approaches their respective vectors (r̃ or s̃). This then makes
the difference resemble nGn, where the sequence of random variables {Gn}n≥1 is
defined as

2Gn :=
{ (

�R[RG(n)] − �R[n/2�])− (
�S[�n/2�] − �S[SG(n)]), on An,(

�S[SG(n)] − �S[n/2�])− (
�R[�n/2�] − �R[RG(n)]), on Ac

n.

Finally, Gn being the (n − Tn)th term of a bounded increment martingale is of
order

√
n − Tn (Op(n1/4)) and, more importantly, normalized by

√
n − Tn should

converge to a normal limit. This is essentially the argument for Theorem 4.2, while
Theorem 4.3 follows as an application of the above with a Borel–Cantelli type ar-
gument. Lemma 4.5 proves that n−5/4(MG(n) − MA(n)) ≈ n−1/4Gn, Lemma 4.6
provides a uniform central limit theorem for the martingales behind Gn and the
proofs of the theorems complete the rest of the arguments.

4.3. Proofs of the theorems.

LEMMA 4.4. For a greedy policy and the sequence of stopping times {Tn}n≥1
defined in (4.4), we have(

1

n

)
[ÑR(RG(n)) − ÑR(RG(Tn))]

(4.16)

× [ÑS(SG(n)) − ÑS(SG(Tn))] d−→
(

σ 2
R + σ 2

S

8µ

)
χ2(1).

Moreover, we also have L1 convergence.

PROOF. First, we will show that[
ÑR(RG(n)) − ÑR(RG(Tn))

RG(n) − RG(Tn)

]
(4.17)

×
[
ÑS(SG(n)) − ÑS(SG(Tn))

SG(n) − SG(Tn)

]
P−→ µ.

Note that by inherent symmetry, Slutsky’s theorem and the fact that both terms
above are probability vectors, it suffices to show that[

NR[RG(n), j ] − NR[RG(Tn), j ]
RG(n) − RG(Tn)

]
P−→ rj , j ≥ 1.(4.18)
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Now (4.13) combined with Theorem 5.1 of [6] on lag sums gives us (4.18) and,
hence, (4.17).

Second, by Lemma 4.2 and Slutsky’s theorem,(
RG(n) − RG(Tn)

(n − Tn)

)(
SG(n) − SG(Tn)

(n − Tn)

)
P−→ 1

4
.(4.19)

Combining (4.17) and (4.19) with Lemma 4.1, and using Slutsky’s theorem,
we have (4.16). Now observe that (4.17) and (4.19) are nonnegative sequences
bounded above by one. This together with the uniform integrability of the sequence
{n−1(n−T(n))2}n≥1 provided by Lemma 4.3 gives us the L1 convergence. Hence,
the proof. �

PROOF OF THEOREM 4.1. Working on the set {RG(Tn) = n/2�}, we have

MG(n) − MA(n)

= (
ÑR(RG(n)) − ÑR(n/2�)) · ÑS(SG(Tn))

+ (
ÑR(RG(n)) − ÑR(n/2�))(4.20)

× (
ÑS(SG(n)) − ÑS(SG(Tn))

)
− ÑR(n/2�) · (ÑS(�n/2�) − ÑS(SG(n))

)
.

The first term on the right-hand side can be written as(
ÑR(RG(n)) − ÑR(n/2�) − [RG(n) − n/2�]r̃)

(4.21)
× ÑS(SG(Tn)) + [RG(n) − n/2�]�S[SG(Tn)].

The first expression in (4.21) has zero conditional expectation given GTn on the
set An, as it is the (n − Tn)th term of a zero martingale. The argument for this
assertion is similar to that found in the proof of Theorem 3.1. The third term on
the right-hand side of (4.20) can be written as

ÑR(n/2�) · (ÑS(�n/2�) − ÑS(SG(n)) − [RG(n) − n/2�]s̃)
(4.22)

+ [RG(n) − n/2�]�R[n/2�].
The first expression in (4.22) has a conditional expectation of zero on the set An

as it is independent of Gn(⊇ GTn) and conditioned on Gn, has zero mean. Using
symmetry together with (4.21) and (4.22), we have

1

n

∣∣E(MG(n) − MA(n)
)

− E
([ÑR(RG(n)) − ÑR(RG(Tn))] · [ÑS(SG(n)) − ÑS(SG(Tn))])∣∣

≤ 1

n
E
(|�R[RG(Tn)] − �R[SG(Tn)]||RG(n) − n/2�|)

≤ γ E

( |RG(n) − n/2�|
n

)
→ 0,
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where the convergence to zero of the last term follows by Theorem 3.2 and the
dominated convergence theorem. The theorem follows now by using Lemma 4.4.

�

LEMMA 4.5.(
MG(n) − MA(n)

n5/4

)
− Gn

n1/4
a.s.−→ 0 as n → ∞.

PROOF. We start with a decomposition analogous to (4.20),

MG(n) − MA(n)

n
− Gn

=
(

1

n

)(
ÑR(RG(n)) − ÑR(RG(Tn))

)
×(

ÑS(SG(n)) − ÑS(SG(Tn))
)

+ IAn

[(
ÑR(RG(n)) − ÑR(RG(Tn))

) ·
(

ÑS(SG(Tn))

n
− s̃

2

)
(4.23)

− (
ÑS(�n/2�) − ÑS(SG(n))

) ·
(

ÑR(RG(Tn))

n
− r̃

2

)]

+ IAc
n

[(
ÑS(SG(n)) − ÑS(SG(Tn))

) ·
(

ÑR(RG(Tn))

n
− r̃

2

)

− (
ÑR(�n/2�) − ÑR(RG(n))

) ·
(

ÑS(SG(Tn))

n
− s̃

2

)]
.

We now show that each term on the right-hand side of (4.23), upon division
by n1/4, converges almost surely to zero. For the first term, using(

ÑR(RG(n)) − ÑR(RG(Tn))
) · (ÑS(SG(n)) − ÑS(SG(Tn))

)
≤ (n − Tn)

2

4
,

the result follows from Lemma 4.1. The second and third terms on the right-hand
side of (4.23) are similar (by symmetry) and, hence, it suffices to deal solely
with the second. We observe that similar arguments exist to show that each of
the two expressions forming the second term, when divided by n1/4, converges
almost surely to zero. Hence, we give only the argument for the first. Since
RG(Tn) + SG(Tn) = Tn, we observe that on An

n/2 − SG(Tn)

n5/8 =
(

n/2 − SG(Tn)

max(n − Tn,1)

)
︸ ︷︷ ︸

bounded by 1

[
max(n − Tn,1)

n5/8

]
︸ ︷︷ ︸

a.s.−→0 (Lemma 4.1)

a.s.−→ 0.(4.24)
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Second, we define two sequences of random variables converging almost surely to
zero. Let {Un}n≥1 be defined as

Un :=
[
RG(n) − RG(Tn)

n − Tn

]√
SG(Tn)

n︸ ︷︷ ︸
bounded by 1

(
n − Tn

n5/8

)
︸ ︷︷ ︸

a.s.−→0 (Lemma 4.1)
(4.25)

×
√

log2 SG(Tn)

n1/4︸ ︷︷ ︸
a.s.−→0

∀n ≥ 1

and {Wn}n≥1 as

Wn :=
[
RG(n) − RG(Tn)

n − Tn

]
︸ ︷︷ ︸

bounded by 1

(
n − Tn

n5/8

)
︸ ︷︷ ︸

a.s.−→0 (Lemma 4.1)
(4.26)

×
(

n/2 − SG(Tn)

n5/8

)
︸ ︷︷ ︸

a.s.−→0 by (4.24)

∀n ≥ 1.

Third, using the above, we decompose the expression of interest as(
ÑR(RG(n)) − ÑR(RG(Tn))

n1/4

)
·
(

ÑS(SG(Tn))

n
− s̃

2

)

= Un

(
ÑR(RG(n)) − ÑR(RG(Tn))

RG(n) − RG(Tn)

)

×
√

SG(Tn)

log2 SG(Tn)

(
ÑS(SG(Tn))

SG(Tn)
− s̃

)

− Wn

(
ÑR(RG(n)) − ÑR(RG(Tn))

RG(n) − RG(Tn)

)
· s̃︸ ︷︷ ︸

bounded by 1

.

In view of (4.25) and (4.26), to show that the above converges almost surely to
zero, it suffices to show that, with probability one,

lim sup
n→∞

∣∣∣∣
(

ÑR(RG(n)) − ÑR(RG(Tn))

RG(n) − RG(Tn)

)

×
√

SG(Tn)

log2 SG(Tn)

(
ÑS(SG(Tn))

SG(Tn)
− s̃

)∣∣∣∣< ∞.
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But this follows from the Cauchy–Schwarz inequality and Lemma A.1 since the
first term is a probability vector. Hence, the proof. �

The proof of Theorems 4.2 and 4.3 will require a uniform central limit theorem
for a class of policies which can be described as greedy with offsets. This is the
content of the next lemma; below we describe some needed notation. Let Gδ , for
δ ∈ [−γ, γ ], be a policy satisfying

CGδ
(n + 1) =

{
1, if �S[S(n)] > �R[R(n)] + δ,
0, if �S[S(n)] < �R[R(n)] + δ,

n = 1,2, . . . .

Let {X∗
R(n)}n≥1 and {X∗

S(n)}n≥1 denote two auxiliary sequences of i.i.d. random

variables with X∗
R

d= XR and X∗
S

d= XS, and let �∗
R(·) and �∗

S(·) denote their re-
spective partial sums. For δ ∈ [−γ, γ ], we define the sequence of random variables
{Y δ

n }n≥1 and {Zδ
n}n≥1 as

Y δ
n :=

(√
2

(σ 2
R + σ 2

S )n

)[
�R[RGδ

(n)] − �∗
S
(
RGδ

(n)
)]

, n ≥ 1

and

Zδ
n :=

(√
2

(σ 2
R + σ 2

S )n

)[
�S[SGδ

(n)] − �∗
R
(
SGδ

(n)
)]

, n ≥ 1.

LEMMA 4.6. There exists a K > 0 such that

max
δ∈[−γ,γ ]

[
sup
t∈R

|Pr(Y δ
n ≤ t) − �(t)|, sup

t∈R

|Pr(Zδ
n ≤ t) − �(t)|

]
(4.27)

≤ Kn−1/4 log(n).

PROOF. It suffices, by symmetry, to show that the first of the two expressions
in (4.27) satisfies the bound. We use a filtration {Hm}m≥0 defined for m ≥ 1 as

Hm = H0 ∨ σ
〈
LR(1), . . . ,LR

(
RGδ

(m)
);

LS(1), . . . ,LS
(
SGδ

(m)
);X∗

R(1), . . . ,X∗
R
(
RGδ

(m)
)〉
,

with H0 containing all the information needed for randomization by CGδ
. Also,

we define, for a fixed n ≥ 1,

Dm :=



XR(RGδ
(m)) − X∗

S(RGδ
(m))√

(σ 2
R + σ 2

S )n/2
, if CGδ

(m) = 1,

0, if CGδ
(m) = 0,

m = 2,3, . . . , n,

with D1 := Y1√
n

. By construction,

n∑
i=1

Di = Y δ
n and max

i≤n
Di ≤ n−1/2

(
γ√

(σ 2
R + σ 2

S )/2

)
.(4.28)
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As CGδ
(m) is Hm−1 measurable and both XR(RGδ

(m)) and X∗
S(RGδ

(m)) are in-
dependent of Hm−1, we have

E(Dm|Hm−1) = 0 and E(D2
m|Hm−1) =

(
2

n

)
CGδ

(m),

(4.29)
1 ≤ m ≤ n.

Hence, as Dδ
m is Hm measurable, {∑m

i=1 Di}1≤m≤n is a martingale. As a conse-
quence of (4.29), we have

V 2
n :=

n∑
i=1

E(D2
i |Hi−1) =

(
2

n

)
RGδ

(n).

This implies that

Pr
(|V 2

n − 1| > n−1/2(log(n))2)
(4.30)

= Pr
(∣∣∣∣RGδ

(n) − n/2√
n

∣∣∣∣>
(

1

2

)
(log(n))2

)
.

By an argument similar to that in the proof of Lemma 4.3, we get, analogous to
(4.14), for t ≥ 1 and n ≥ 4(1 + γ

µ
)2,

Pr
([

RGδ
(n) − n/2√

n

]2

> t

)
≤ 2 exp

{
−
(

µ

4γ

)2√
t

}
.(4.31)

Combining (4.30) and (4.31), we get

Pr
(|V 2

n − 1| > n−1/2(log(n))2)≤ exp
(

32γ 2

µ2

)(
1

n

)
∀n ≥ 1.(4.32)

Inequalities in (4.28) and (4.32) imply that the two conditions of Lemma A.2 are
satisfied in our case. Hence, we have (4.27), for some K free of δ. Hence, the
proof. �

PROOF OF THEOREM 4.2. In view of Lemma 4.5, it suffices to derive the
weak limit of n−1/4Gn. We start by observing that, for u ∈ R on An,

Pr
(

(�R[RG(n)] − �R[n/2�]) − (�S[�n/2�] − �S[SG(n)])√
(σ 2

R + σ 2
S )(n − Tn)/2

≤ u
∣∣∣GTn

)

= Pr
(
Y

�n

n−Tn
≤ u

)
and on Ac

n,

Pr
(

(�S[SG(n)] − �S[n/2�]) − (�R[�n/2�] − �R[RG(n)])√
(σ 2

R + σ 2
S )(n − Tn)/2

≤ u
∣∣∣GTn

)

= Pr
(
Z

�n

n−Tn
≤ u

)
,
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where �n := �R[RG(Tn)] − �S[SG(Tn)]. This, along with Lemma 4.6, leads to∣∣∣∣Pr
(

Gn√
0.125(σ 2

R + σ 2
S )(n − Tn)

≤ u

)
− �(u)

∣∣∣∣
=
∣∣∣∣
∫
An

Pr
(
Y

�n

n−Tn
≤ u

)
dP +

∫
Ac

n

Pr
(
Z

�n

n−Tn
≤ u

)
dP − �(u)

∣∣∣∣
≤ KE

(
min[1, (n − Tn)

−1/4 log(n − Tn)])→ 0 as n → ∞.

In other words, we have shown that

Gn√
n − Tn

d−→ N
(

0,
σ 2

R + σ 2
S

8

)
as n → ∞.

This with the asymptotic independence between the terms on the right of(
Gn

n1/4

)
=
(

Gn√
n − Tn

)(√
n − Tn√

n

)

and Lemma 4.1 completes the proof. �

PROOF OF THEOREM 4.3. In view of Lemma 4.5, to prove (4.2), it suffices
to show that

lim inf
Gn

(n log2(n))1/4 = −∞ and lim sup
Gn

(n log2(n))1/4 = ∞.

Due to the similarity of the arguments, we prove only the latter. Toward this end,
we define a sequence of stopping times {T ∗

n }n≥1 as

T ∗
n =




inf
{
T2k ≥ T ∗

n−1|k ≥ 2;RG(T2k) = k;
2k − T2k ≥ σRG

√
2k log2(2k)

}
, n odd,

inf{k ≥ T ∗
n−1|RG(k) = SG(k)}, n even.

The stopping times are easily checked to be well defined using the definition of
{Tn}n≥1 and Theorem 3.3. Let C > 0 be an arbitrary constant and {Bi}i≥1 be a
sequence of events defined by

Bi :=
{ G2RG(T ∗

2i−1)

(2σ 2
RG

RG(T ∗
2i−1) log2(2RG(T ∗

2i−1)))
1/4

> C

}
, i = 1,2, . . . .

Also let {Hi}i≥0 be a filtration with Hi := GT ∗
2i+1

for i ≥ 0. By construction,
Bi ∈ Hi for i ≥ 1 and, moreover, applying Lemma 4.6 as in Theorem 4.2, we
have

Pr(Bi |Hi−1) ≥ Pr
( G2RG(T ∗

2i−1)√
2RG(T ∗

2i−1) − T ∗
2i−1

> C
∣∣∣Hi−1

)

>
1 − �(C)

2
> 0, for large i.
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Now Lemma A.3 implies that, with probability one, Bi occurs infinitely often. This
completes the proof of (4.2).

To show (4.3), it suffices to look at the subsequence of even epochs. If
RG(2n) = n, then MG(2n) = MA(2n). Suppose that RG(2n) = n + Kn > n (swap
R with S in the contrary). This leads to

MG(2n) − MA(2n) ≤ n(�R[n + Kn] − �R[n])
+ (

ÑS(n) − ns̃
) · (ÑR(n + Kn) − ÑR(n)

)
− n(�S[n] − �S[n − Kn])
− (

ÑR(n) − nr̃
) · (ÑS(n) − ÑS(n − Kn)

)
.

All statements which follow are to be understood as holding eventually, with prob-
ability one. By Theorem 3.3, Kn ≤ B(n log2 n)1/2 for some constant B and by
Lemma A.1, the components of (ÑS(n) − ns̃) are uniformly bounded by n9/16.
Since the components of (ÑR(n + Kn) − ÑR(n)) are bounded by Kn, we have
the second term above is of order at most n9/8. The same holds true for the fourth
term. By Theorem 5.1 of [6] on lag sums, we have, for 0 ≤ k ≤ B(n log2 n)1/2 and
for some constant C,

n(�R[n + k] − �R[n]) − n(�S[n] − �S[n − k])
≤ n

(
kµ + C

√
k logn

)− n
(
kµ − C

√
k logn

)
≤ 2Cn5/4

√
logn(log2 n)1/4.

This implies that MG(2n) − MA(2n) ≤ 3Cn5/4√logn(log2 n)1/4. Similarly, the
difference MG(2n) − MA(2n) can be bounded from below. Hence, the proof. �

APPENDIX

The first lemma, on the rate of l2 convergence of empirical probabilities to the
true probabilities, derives from [14] and is included here for the reader’s conve-
nience.

LEMMA A.1. Let {Zi}i≥1 be a random sample from a discrete distribution
described by

pj := Pr(Z1 = zj ), j = 1,2, . . . with
∑
j≥1

pj = 1.

Defining the empirical probability vector (pn
j )j≥1, for n ≥ 1, by

pn
j =

(
1

n

)
#{1 ≤ k ≤ n :Xk = zj }, j = 1,2, . . . ,



262 R. P. RUSSO AND N. D. SHYAMALKUMAR

we have

lim sup
(

n

log2(n)

) ∞∑
j=1

(pn
j − pj )

2 a.s.−→ C < ∞.

PROOF. Without loss of generality, we assume that zj = j , for j ≥ 1. Defining
the kernel h(·, ·) by

h(i, j) = I{i=j} − (pi + pj ) + ∑
k≥1

(pk)
2, i, j = 1,2, . . . ,

we have (
n

log2(n)

) ∞∑
j=1

(pn
j − pj )

2 =
(

2

n log2(n)

) ∑
1≤i<j≤n

h(Xi,Xj )

+
(

1

log2(n)

)(
1 + ∑

k≥1

(pk)
2

)

−
(

2

log2(n)

)(∑n
i=1 pXi

n

)
.

It is easy to check that the first term on the right is a canonical U -statistic of order 2.
By [2], we have

lim sup
(

2

n log2(n)

) ∑
1≤i<j≤n

h(Xi,Xj )
a.s.−→ C < ∞

for some constant C. The third term on the right converges to zero in the almost
sure sense by the usual SLLN. Hence, the proof. �

The following uniform central limit theorem for martingales is a restatement
of Theorem 3.7 of [5] for a noncanonical filtration [see Remark (ii) on page 84
following the theorem].

LEMMA A.2. Let {Si = ∑i
1 Xj,Hi ,1 ≤ i ≤ n} be a zero-mean martingale.

Let

V 2
i =

i∑
1

E(X2
j |Hj−1), 1 ≤ i ≤ n

and suppose that

max
i≤n

|Xi | ≤ n−1/2M a.s.

and

Pr
(|V 2

n − 1| > 9M2Dn−1/2(logn)2)≤ Cn−1/4 logn
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for constants M , C and D(≥ e). Then for n ≥ 2,

sup
x∈R

|Pr(Sn ≤ x) − �(x)| ≤ Kn−1/4 logn,

where K is a universal function of M , C and D.

The last result is a conditional Borel–Cantelli lemma which appears as Theo-
rem 2.8.5 in [17].

LEMMA A.3. Let {Bi, i ≥ 1} be a sequence of events and {Hi , i ≥ 1} an in-
creasing sequence of σ -fields such that Bi ∈ Hi for each i ≥ 1. Then

{Bi i.o.} =
{ ∞∑

i=1

Pr(Bi |Hi−1) = ∞
}
,

that is,
∑∞

i=1 Pr(Bi |Hi−1) < ∞ implies the Bi occur at most finitely often and∑∞
i=1 Pr(Bi |Hi−1) = ∞ implies the Bi occur infinitely often.
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