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For two decades, the Colless index has been the most frequently used
statistic for assessing the balance of phylogenetic trees. In this article, this
statistic is studied under the Yule and uniform model of phylogenetic trees.
The main tool of analysis is a coupling argument with another well-known
index called the Sackin statistic. Asymptotics for the mean, variance and co-
variance of these two statistics are obtained, as well as their limiting joint
distribution for large phylogenies. Under the Yule model, the limiting dis-
tribution arises as a solution of a functional fixed point equation. Under the
uniform model, the limiting distribution is the Airy distribution. The corner-
stone of this study is the fact that the probabilistic models for phylogenetic
trees are strongly related to the random permutation and the Catalan models
for binary search trees.

1. Introduction. Phylogenetic trees (PT) represent the shared history of ex-
tant species. The idea of using trees to model evolution dates back to Darwin ([10],
see his diagram on page 117). In a (rooted) PT, there is a common ancestral species
called the root and each branching represents the time at which a divergence has
occured. A PT is usually reconstructed using data from n different species (or taxa)
which are located at the leaves. The tree has n − 1 internal nodes that correspond
to the ancestors of the sample. There are two distinct features of rooted PTs. First
is the branching structure or topology of the tree. Second is the branch lengths
which correspond to periods of time separating major evolutionary events. The
shape of such trees carries useful information about the history of diversification
rates among species by reflecting the footprint left by evolutionary processes.

Biologists have extensively investigated the ways in which the shapes of PTs can
be measured [20]. Mooers and Heard [25] wrote an exhaustive review concerning
tree balance in systematic biology and Aldous [5] gave an introduction in a more
mathematical setting. How these measures are related to macroevolution processes
has been studied by Rogers [31] and Agapow and Purvis [1], relying upon intensive
computer simulations. Thus far, several statistics have been introduced to measure
the shapes of PTs (see Agapow and Purvis [1], for eight of them). Among these
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statistics, the most widespread are Sackin’s and the Colless indices. Sackin’s index
[34, 36] counts the number of ancestors crossed in the path from each leaf to
the root. Colless’ index [9] looks at the internal nodes, partitioning the leaves that
descend from them into groups of sizes L and R, and computes the sum of absolute
values |L − R| for all ancestors.

The probability distributions of the Sackin and the Colless statistics have been
investigated for various models of biologically plausible random trees. Two ran-
dom models of PT are often considered in the literature. The most famous is the
Yule model [38]. The Yule model is a branching process with constant speciation
rate where the number of extant species is specified. The assumption of a constant
speciation rate may be weakened by assuming that the diversification rate could
vary in time but is the same for all species at any time. This assumption does not
modify the distribution of PT shape. An alternative model considered by biologists
is called the uniform model. It assumes that all PTs are equally likely. This model is
biologically motivated, as it arises from a large family of Galton–Watson processes
conditioned by the total size of the trees (see [2]). In addition, McKenzie and Steel
[24] have shown that when speciation events are constrained to occur before a
time τ after their previous speciation event, the resulting process converges to the
uniform model as τ tends to zero. In both models, Rogers [31] studied the joint
distribution of the Sackin and the Colless statistics using numerical computations.
He concluded that these statistics were strongly correlated in large PTs. The lim-
iting distribution of the Colless statistic was also conjectured to be non-Gaussian
[30].

This article describes the mean, the (co)variance and the limiting joint distrib-
ution of Sackin’s and Colless’ indices for large PTs under the Yule and uniform
models. Because this study is mainly concerned with the topology of PTs, branch
lengths can be ignored. A PT is then a cycle-free connected graph with vertices
of degree one (the leaves), two (the root) or three (all ancestors except the root).
Leaves are usually labeled, whereas ancestors are not. This simplified model of
phylogeny without branch lengths is sometimes called a cladogram (see [4]). Our
proofs use the connection to recent results in theoretical computer science, as well
as the correspondence between PTs and random binary search trees (BST). This
approach extends results by Blum and François [6] who showed that Sackin’s index
has the same limit distribution as the number of comparisons used by the quick-
sort algorithm [16]. More specifically, we deal with the Yule and uniform models
separately. For the Yule model, our analysis relies on the recursive structure of the
tree and makes use of the fixed-point method (see, e.g., [17]). This method was
introduced in the probabilistic analysis of algorithms by Rösler [32]. In the uni-
form model, the results are based on the connection between uniform trees and
Bernoulli excursions [37]. A large family of statistics similar to Sackin’s and Col-
less’ indices have been studied by Fill and Kapur [12] under the Catalan model for
BSTs.
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In Section 2, we shall present our main results. Section 3 explains how proba-
bilistic models for PTs are related to probabilistic models for BSTs. Section 4 is
dedicated to the Yule model, while Section 5 deals with the uniform model.

2. The Sackin and the Colless statistics. Consider a PT with n leaves. The
Sackin statistic adds the number of internal nodes between each leaf and the root
of the tree to produce the index

Sn =
n∑

i=1

di,

where the sum runs over the n leaves of the tree and di is the number of ancestors
crossed in the path from i to the root (including the root). The Colless statistic
looks at the internal nodes, partitioning the leaves that descend from them into
groups of sizes Lj and Rj and computing

Cn =
n−1∑
j=1

|Lj − Rj |,

where the sum runs over the internal nodes and Lj (resp. Rj ) corresponds to the
number of leaves in the left (resp. right) subtree under node j .

Denote by M2 the space of all bivariate, centered probability measures with
finite second moments, and by L(X) an element of M2. We have the following
result:

THEOREM 1. Assume the Yule model of PT. Consider the map T :M2 → M2
such that for all ν ∈ M2, we have

T (ν) = L

([
U 0
0 U

](
S

C

)
+

[
1 − U 0

0 1 − U

](
S′
C′

)
+

(
bS

bC

))
,

with (
bS

bC

)
=

(
2U logU + 2(1 − U) log(1 − U) + 1

U logU + (1 − U) log(1 − U) + 1 − 2 min(U,1 − U)

)
,

where (S,C), (S′,C′) and U are independent random variables such that
L(S,C) = L(S′,C′) = ν and U is uniform over the interval (0,1). Then we have(

Sn − E[Sn]
n

,
Cn − E[Cn]

n

)
d→ (S,C), n → ∞,

where the convergence holds in distribution and the limiting probability distribu-
tion is the unique fixed point of the map T .

REMARK 1. The convergence in Theorem 1 will actually be proven for a
stronger topology than convergence in distribution. As can be seen from Section 4,
it indeed holds for the Wasserstein–Mallows d2-metric [29] which guarantees the
existence and convergence of the second moments.
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REMARK 2. This result extends the fact that the normalized Sackin index

S̄n = Sn − E[Sn]
n

(1)

converges in distribution to the same limit as the number of comparisons in the
quicksort algorithm. According to Rösler [32], the limit S satisfies a (functional)
fixed-point equation of the type

S
d= US + (1 − U)S′ + 2U logU + 2(1 − U) log(1 − U) + 1,(2)

where S,S′ and U are independent random variables, S and S′ are identically dis-
tributed, U is uniformly distributed over the inverval (0,1) and the identity holds
for distributions. Regarding Colless’ index, the functional fixed-point equation be-
comes

C
d= UC + (1 − U)C′ + U logU

(3)
+ (1 − U) log(1 − U) + 1 − 2 min(U,1 − U).

A well-known result in systematic biology is that the expectation of Sn is of
order 2n logn. More precisely, Kirkpatrick and Slatkin [20] showed that

E[Sn] = 2n

n∑
j=2

1

j

and

E[Sn] = 2n lnn + (2γ − 2)n + o(n),

where γ is Euler’s constant. Using the connection to the quicksort algorithm, the
variance of the limiting distribution can be obtained according to Knuth [21] as

Var[Sn] ∼
(

7 − 2
π2

3

)
n2, n → ∞.

These results can be extended to the case of Colless index as follows, taking into
account that Sn and Cn are strongly correlated for large PTs:

THEOREM 2. Assume the Yule model of PT. Then we have

E[Cn] = n logn + (γ − 1 − log 2)n + o(n),(4)

Var[Cn] ∼
(

3 − π2

6
− log 2

)
n2,(5)

Cor[Sn,Cn] ∼ 27 − 2π2 − 6 log 2√
2(18 − π2 − 6 log 2)(21 − 2π2)

≈ 0.98,(6)

as n goes to infinity.
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Regarding the uniform model of PT, mathematical results have received less
attention than for the Yule model. After an appropriate rescaling, we prove the
convergence of both Sn and Cn to the same marginal probability distribution and
identify this distribution as

√
8 times the integral of the standard Brownian excur-

sion e(t),

ω =
∫ 1

0
e(t) dt.

The distribution of random variable A = √
8ω is known as the Airy distribution.

A formula for the moments of A has been given by Flajolet and Louchard [13]. In
particular, we have

E[A] = √
π

and

Var[A] = 10 − 3π

3
.

THEOREM 3. Assume the uniform model of PT. Then we have

Sn − Cn

n3/2

p→ 0(7)

and

Sn

n3/2
d→ A,

as n goes to infinity.

REMARK 3. Regarding Sn, the connection to the internal path length of a BST
enables us to immediately state that

Sn

n3/2
d→ A.

This result was actually established by Takacs [37] using the method of moments.
In addition, we find that

E[Sn] ∼ √
πn3/2

and

Var[Sn] ∼
(

10

3
− π

)
n3.

The moments of Cn follow from the next theorem.



2200 M. G. B. BLUM, O. FRANÇOIS AND S. JANSON

THEOREM 4. Assume the uniform model of PT. Then we have

E[Cn] ∼ √
πn3/2

and

Var[Cn] ∼ 10 − 3π

3
n3

as n goes to infinity. In addition, the variables Sn and Cn are asymptotically cor-
related, that is,

Cor[Sn,Cn] ∼ 1

and we have, for any k, � ≥ 0,

E[Ck
nS�

n] ∼ n3(k+�)/2
E[Ak+�]

as n goes to infinity.

REMARK 4. While Cn and Sn are by far the most popular statistics used in
studies of phylogenetic imbalance, other measures have also been considered (see
[1]). Some of these can also be studied in the Yule model using the contraction
method, mainly because they are defined as sums of elementary functions of sub-
trees over all nodes. For example, the result for the Fusco and Conk statistic, mod-
ified by Purvis, Katzouralus and Agapov [28], is left to the reader. In the same
spirit, we believe that the B1 index of Shao and Sokal [36] could be studied with-
out difficulties. Studying the remaining statistics (B2 and σ 2

N ) would nevertheless
require considerably more effort.

REMARK 5. In a recent large-scale study of the phylogenetic database, Blum
and François [7] considered the shape statistic

Fn =
n−1∑
j=1

log(Nj − 1),

where the sum runs over all internal nodes and Nj represents the number of extant
descendants of internal node j . A similar statistic had been previously proposed
by Chan and Moore [8], but the logarithm was omitted. Once the normalizing
constant has been removed, Fn corresponds to the logarithm of the probability
of a tree in the Yule model. In particular, the statistical test based on Fn is the
most powerful test for rejecting the Yule model against the uniform model and
conversely (Neyman–Pearson theorem). Fill [11] showed that Fn has a Gaussian
distribution (for large trees) and gave asymptotic expansions for the means and
variances under both the Yule and the uniform models (see also [12]).
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3. Phylogenetic and binary search trees. Trees are often encountered in the-
oretical computer science as data structures associated with divide and conquer al-
gorithms. In this section, we explain how binary search trees can be mapped onto
phylogenetic trees univoquely and how probabilistic models for BSTs are trans-
ported on probabilistic models for PTs.

Mapping binary search trees. A binary tree can be defined recursively. It is ei-
ther empty or it is a node (the root) with left and right subtrees. A binary search
tree is a binary tree where labels are associated with the vertices. These labels are
constrained: the label of a vertex is greater than or equal to all labels contained in
the left subtree and less than or equal than all labels contained in the right subtree
(Section 5.5, [35]). The transformation that maps BSTs into PTs can be found in
[4]. Given a BST with n − 1 vertices, the structure is modified as follows. Vertices
in the BST become ancestors in the PT. To accomplish this, two leaves are con-
nected to each vertex of degree one and one leaf is connected to each vertex of
degree two. The root has a special status. If the degree is 0, 1 or 2, then 2, 1 or 0
leaves are added. The labels of leaves are chosen arbitrarily from the n! possible
orders.

Two obtained PTs are equivalent if their left and right subtrees can be inter-
changed recursively (see Figure 1). The set of PTs is the set of equivalence classes
for this equivalence relation. Figure 2 gives a graphical representation of these
transformations.

A PT may therefore arise from the construction of 2n−1 equivalent modified
BSTs. Because there are Cn−1 BSTs with n − 1 vertices, we obtain Cn−1n!/2n−1

possible PTs. This number coincides with the total number of PTs, which equals
(2n − 3)!!, where

(2n − 3)!! = (2n − 3)(2n − 5) · · ·3 · 1.

Probabilistic models. The mapping described in the above paragraph also trans-
fers probabilistic models for BSTs to probabilistic models for PTs. For instance,
there will be an equivalence between the random permutation model for BSTs [22]
and the Yule model for PTs. Probabilistic models for BSTs (with n − 1 vertices)
can be described as a general class of models called branching Markov processes.

FIG. 1. Two graphical representations of the same PT. They are seen to be identical by interchang-
ing left and right subtrees.
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FIG. 2. The transformation of two binary search trees to the same PT. The extension consists of
connecting two leaves to vertices with outdegree 0 and one leaf to vertices with outdegree 1. The two
resulting trees represent the same PT.

A definition of branching Markov processes can be found in [4]. We recall this
definition here. Let q̂n−1 be a symmetric probability distribution on {0, . . . , n−2}:

q̂n−1(i) = q̂n−1(n − 2 − i), i = 0, . . . , n − 2.

In the branching Markov process, the size of the left subtree is chosen accord-
ing to the probability distribution q̂n−1. This procedure is repeated recursively
in subtrees, assuming local independence. The probability distribution q̂n−1 is
called the splitting distribution. In the same way, probability distributions on
PTs with n leaves can be associated with splitting probability distributions qn on
{1, . . . , n − 1}. At each step, the labels of the left subtree, of size i, are sampled
uniformly from the

(n
i

)
possible labels. At the end of the construction, left–right

distinctions are simply suppressed in the building of the PT.

LEMMA 1. Assume that T̂n−1 is a BST, sampled according to a branching
Markov process with splitting probability q̂n−1. Denote by �n the transformation
which consists of extending a BST with n − 1 vertices to a PT with n leaves. Then
Tn = �n(T̂n−1) is a PT, sampled according to a branching Markov process with
splitting probability qn such that

qn(i) = q̂n−1(i − 1), i = 1, . . . , n − 1.

PROOF. This is a consequence of the basic properties of �n. If a BST has
i vertices in its left subtree, the resulting PT has i + 1 leaves in one of the two
subtrees of the root. The symmetry property of q̂n ensures that all members of the
same equivalence class have the same probability of occurrence. �
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Lemma 1 has the interesting consequence that well-studied models of BSTs can
be transposed into models on PTs. The Yule and uniform models for PTs then get
associated with special cases of branching Markov processes.

On one hand, the random permutation model for BSTs with n − 1 vertices is a
branching Markov process with splitting probability

q̂n−1(i) = 1

n − 1
, i = 0, . . . , n − 2.

This model is mapped by �n into the Yule model for PTs with n leaves with
splitting probability

qn(i) = 1

n − 1
, i = 1, . . . , n − 1.

The splitting distribution for Yule trees was found by Harding [15]. Note that the
same splitting property also holds for n-coalescent tree topologies [19].

On the other hand, the Catalan model for binary BSTs with n − 1 vertices as-
sumes that all Cn−1 binary trees have the same probability of occurrence. The
number of trees with a left subtree of size i is equal to CiCn−2−i . The Catalan
model is a branching Markov process where the splitting distribution is given by

q̂n−1(i) = CiCn−2−i

Cn−1
, i = 0, . . . , n − 2.

The transformation �n maps the Catalan model into the uniform model for PTs
with n leaves. The splitting distribution for PTs is then

qn(i) = 1

2

(
n

i

)
(2i − 3)!!(2(n − i) − 3)!!

(2n − 3)!! , i = 1, . . . , n − 1.

This formula can also be found in [4].

LEMMA 2. Let qn be a splitting distribution on {1, . . . , n − 1}. Let h be a
function of pairs of integers. Denote by Xn an additive random variable, defined
recursively as

Xn
d= XIn + XJn + h(In, Jn),

where the I�’s are sampled under a branching Markov process of splitting distrib-
ution qn and where In + Jn = n. Define X̂n by

X̂n
d= X̂

În
+ X̂

Ĵn
+ h(În + 1, Ĵn + 1),

where the Î�’s are sampled under the branching Markov process of splitting dis-
tribution q̂n with

q̂n(i) = qn+1(i + 1), i = 0, . . . , n − 1,

and where În + Ĵn = n − 1. Then we have

Xn
d= X̂n−1.
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PROOF. Note that În
d= In+1 − 1, that is, the distribution of În is given by q̂n.

Similarly, we have

Xn
d= X

În−1+1 + X
Ĵn−1+1 + h(În−1 + 1, Ĵn−1 + 1).

Setting X̂n−1 = Xn, we prove the result. �

REMARK 6. This lemma states that for additive random variables built from
a Markov branching PT of splitting distribution qn, there exist additive random
variables X̂n built from a Markov branching BST of distribution q̂n. In addition,
Xn and X̂n−1 have the same distribution. This lemma can obviously be generalized
to multivariate random variables. In the next sections, all random variables are
studied in the context of BSTs. Applying Lemma 2, the results can be transposed
to PTs without difficulties.

4. Yule model. The Yule model is a branching Markov process for PTs with
splitting probability

qn(i) = 1

n − 1
for i = 1, . . . , n − 1.

Sackin’s index Sn has been defined as a sum of depths over the leaves. Sackin’s
index Sn can also be expressed as a sum over the internal nodes [31],

Sn =
n−1∑
j=1

Nj,

where Nj is the number of leaves descending from the internal node j . Applying
Lemma 2, we obtain that Sn has the same distribution as Ŝn−1 + 2(n − 1), where
Ŝn is defined by

Ŝn
d= ŜIn + Ŝ′

Jn
+ n − 1,(8)

In is distributed uniformly over {0, . . . , n − 1} and Jn = n − 1 − In. The recursion
satisfied by Ŝn is well studied since it arises from the analysis of the quicksort al-
gorithm or the internal path length of a BST under the random permutation model.
Similarly, Cn has the same distribution as Ĉn−1, where

Ĉn
d= ĈIn + Ĉ′

Jn
+ |In − Jn|.(9)

In order to describe the joint distribution of (Ŝn, Ĉn) under the random permuta-
tion model, we shall follow the same lines of proof as Neininger [27] who studied
the joint convergence of the Wiener index and the internal path length of a BST.

PROOF OF THEOREM 1. Step 1. Computing expectations. Denote ĉn = E[Ĉn]
and ŝn = E[Ŝn]. We have

ŝn = 2n logn + (2γ − 4)n + o(n).(10)



PHYLOGENETIC TREE BALANCE 2205

We rewrite equation (9) as

Ĉn
d= ĈIn + Ĉ′

Jn
+ n − 1 − 2 min(In, Jn).(11)

Conditioning on In in the above equation, we find that

ĉn = (n − 1 − 2tn) + 2

n

n−1∑
k=0

ĉk,

where

tn = E[min(In, Jn)] =




n − 2

4
, if n is even,

(n − 1)2

4n
, if n is odd.

Applying Lemma 1 of [17], page 1691, we obtain that

ĉn = (n − 1 − 2tn) + 2(n + 1)

n−1∑
k=1

k − 1 − 2tk

(k + 1)(k + 2)
.

An asymptotic expansion of the above expression leads to the following result:

ĉn = n logn + (γ − 1 − log 2)n + o(n).(12)

Step 2. Limit distribution. Let us consider the rescaled quantities

X̂n =




Ŝn − ŝn

n
Ĉn − ĉn

n




and X̂′
n, an independent copy of X̂n. From equations (8) and (11), we have

X̂n = A
(n)
1 X̂In + A

(n)
2 X̂′

Jn
+ b(n),(13)

where

A
(n)
1 = 1

n

(
In 0
0 In

)
,

A
(n)
2 = 1

n

(
Jn 0
0 Jn

)

and (
b

(n)
S

b
(n)
C

)
= 1

n

(
ŝIn + ŝJn − ŝn + n − 1

ĉIn + ĉJn − ĉn + n − 1 − 2 min(In, Jn)

)
.

Since In/n converges in L2 toward U , a uniform variable over (0,1), we have

A
(n)
1

L2→ A∗
1 =

(
U 0
0 U

)
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and

A
(n)
2

L2→ A∗
2 =

(
1 − U 0

0 1 − U

)
.

Using the asymptotic expansion of ĉn given by (12) and the asymptotic expansion
of ŝn given by (10), we find that

b
(n)
S = 1

n

(
2In log

(
In

n

)
+ 2Jn log

(
Jn

n

)
+ n

)
+ o(1)

and

b
(n)
C = 1

n

(
In log

(
In

n

)
+ Jn log

(
Jn

n

)
+ n − 2 min(In, Jn)

)
+ o(1).

Thus, we have(
b

(n)
S

b
(n)
C

)
L2→ b∗ =

(
2U logU + 2(1 − U) log(1 − U) + 1

U logU + (1 − U) log(1 − U) + 1 − 2 min(U,1 − U)

)
.

Assuming that X̂n converges in distribution, the limiting distribution L(X̂) must
satisfy the condition

X̂
d= A∗

1X̂ + A∗
2X̂

′ + b∗,(14)

where X̂, X̂′ and (A∗
1,A

∗
2, b

∗) are independent and X̂′ d= X̂.
The multivariate contraction theorem [26] states that there is a unique proba-

bility distribution L(X̂) satisfying (14) in M2. Moreover, it states that the distri-
bution of X̂n converges toward the distribution of X̂ in the Wasserstein–Mallow
d2-metric. The convergence in this metric is the same as the convergence in dis-
tribution and the convergence of second moments. Neininger’s theorem can be
applied provided that the following four conditions hold:

(i) (A
(n)
1 ,A

(n)
2 , b(n))

L2→ (A∗
1,A

∗
2, b

∗), n → ∞,
(ii) E[‖(A∗

1)
tA∗

1‖op] + E[‖(A∗
2)

tA∗
2‖op] < 1,

(iii) E[1{In≤�}∪{In=n}‖(A∗
1)

tA∗
1‖op] → 0, for all � ∈ N, n → ∞,

(iv) E[1{Jn≤�}∪{Jn=n}‖(A∗
2)

tA∗
2‖op] → 0, for all � ∈ N, n → ∞,

where ‖A‖op = sup‖x‖=1 ‖Ax‖ is the operator norm of A. For symmetric matrices
(which we are considering here) this equals the spectral radius.

(i) Has already been proved. (ii) Holds because

E[‖(A∗
1)

tA∗
1‖op] + E[‖(A∗

2)
tA∗

2‖op] = E[U2 + (1 − U)2] = 2
3 < 1.

(iii) and (iv) are obvious because ‖(A∗
r )

tA∗
r‖op ≤ 1 for r = 1,2 and

P({In ≤ �} ∪ {In = n}) = P({Jn ≤ �} ∪ {Jn = n}) ≤ � + 1

n
→ 0

for all � ∈ N and n → ∞. �
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PROOF OF THEOREM 2. According to Theorem 1, equation (14) has a unique
solution, so we can consider (S,C) and (S′,C′), two independent copies with
L(S,C) = L(S′,C′) being the fixed point of (14) and U being uniform over (0,1).
By definition, we have

L

(
S

C

)
d= T L

(
S

C

)
.

Using the fact that all random variables (except U ) are centered, we find that

E[C2] = E[U2C2] + E[(1 − U)2C′2]
+ E

[(
U logU + (1 − U) log(1 − U) + 1 − 2 min(U,1 − U)

)2]
.

Thus, we have

Var[C2] = E[C2] =
(

3 − π2

6
− log 2

)
.

In the same way, we find that

E[SC] = E[U2SC] + E[(1 − U)2S′C′]
+ E

[(
2U logU + 2(1 − U) log(1 − U) + 1

)
× (

U logU + (1 − U) log(1 − U) + 1 − 2 min(U,1 − U)
)]

.

This leads to

Cov(S,C) = E[SC] = 9

2
− π2

3
− log 2.

Using the fact that E[S2] = 7 − 2π2/3 [32], we find that

Cor(S,C) = 27 − 2π2 − 6 log 2√
2(18 − π2 − 6 log 2)(21 − 2π2)

.

Theorem 1 holds in the Wasserstein–Mallows d2-metric, which implies the con-
vergence of second moments. This leads to

Var[Sn] ∼ Var[S]n2, Var[Cn] ∼ Var[C]n2

and

Cov(Sn,Cn) ∼ Cov(S,C)n2, Cor(Sn,Cn) ∼ Cor(S,C). �

REMARK 7. Lemma 2 suggests that a more general class of statistics could
be studied using the same technique. When the toll function tn = h(In, Jn) varies,
general limit laws for recursive random variables can be found in [17]. Note that
we have started the proof with the guess that the variance was of order n (which
may not be obvious in general). Readers interested in multivariate distributional
recursion and convergence to a functional fixed-point solution could refer to the
recent survey by Rüschendorf and Neininger [33].
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5. Uniform model. For a given n, the uniform model assumes that all PTs
with n leaves are equally likely. Again, we use the fact that Sackin’s and Colless’
indices for a PT with n leaves drawn according to the uniform model have the
same probability distribution as Ŝn−1 + 2(n − 1) and Ĉn−1, which are defined
by equations (8) and (9), respectively. Under the Catalan model for BSTs, In is
distributed according to q̂n, where

q̂n(i) = CiCn−1−i

Cn

, i = 0, . . . , n − 1.

Conditional on In, (ŜIn, ĈIn ) is independent of (Ŝ′
Jn

, Ĉ′
Jn

).

Clearly, Ŝn has the same distribution as the internal path length of a BST un-
der the Catalan model and Ĉn has the same distribution as the random variable∑n−1

j=1 |L̂j − R̂j |, where the sum is over the n − 1 vertices of a BST drawn under

the Catalan model. Note that Ĉn can be rewritten as

n−1∑
j=1

(N̂j − 1) − 2 min(L̂j , R̂j ),

where N̂j is the number of vertices of the subtree rooted at j (including j ) and L̂j

(R̂j ) is the number of vertices of the left (right) subtree. Then we have

Ĉn = Ŝn − 2
n−1∑
j=1

min(L̂j , R̂j ).

It is well known [37] that Ŝn/n3/2 converges in distribution to the Airy distribu-
tion. The proof relies on the one-to-one correspondence between binary trees and
Bernoulli excursions. Takacs [37] computed the moments of Ŝn/n3/2 and their
limiting values to establish convergence using the method of moments. The goal
of this section is to prove the convergence

E

[∑n−1
j=1 min(L̂j , R̂j )

n3/2

]
→ 0, n → 0.

This implies that (Ĉn − Ŝn)/n3/2 converges in probability to 0 and completes the
proof of Theorem 3.

LEMMA 3. Let n ≥ 2 and consider a BST with n vertices under the Catalan
model. Denote by j0 the root of the tree. We have

E
[
min

(
L̂j0, R̂j0

)] ≤ K
√

n,

for some constant K .
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PROOF. Stirling’s formula yields a well-known asymptotic expansion for the
Catalan number Cn:

Cn = 4n

√
πn3

(
1 + O

(
1

n

))
.(15)

The expectation of min(L̂j0, R̂j0) is given by

E
[
min

(
L̂j0, R̂j0

)] =

n/2�−1∑

k=1

2k
CkCn−1−k

Cn

+ 1{n∈2N+1}
(n − 1)C2

(n−1)/2

2Cn

.

Using (15), we find that


n/2�−1∑
k=1

2k
CkCn−1−k

Cn

= 4n−1

πCn(n − 1)

1

n − 1

×

n/2�−1∑

k=1

2
(1 + O(1/k) + O(1/n))√

k/(n − 1)(1 − k/(n − 1))3/2
.

The sum in the right-hand side of the above equation is a Riemann sum. Using
the fact that ∫ 1/2

0

1√
x(1 − x)3/2 = 2,

we have


n/2�−1∑
k=1

2k
CkCn−1−k

Cn

= 4n

πCn(n − 1)

(
1 + o(1)

)
.

Using (15) again leads to

E
[
min

(
L̂j0, R̂j0

)] ∼ √
n/π,(16)

which concludes the proof of the result. �

By conditioning on the sizes of the two subtrees of the root and using induction
on n, it follows that

E

[∑n−1
j=1 min(L̂j , R̂j )

n3/2

]
≤ KE

[∑
j

√
N̂j

n3/2

]
.

In the following, we prove that the right-hand side of the above inequality con-
verges to 0 as n goes to ∞.

A lemma which is interesting in its own right provides the key argument. In the
following, we use the standard convention that

(0
0

) = 1.
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LEMMA 4. Let n ≥ 1. Consider a BST with n vertices sampled according
to the Catalan model. Pick a vertex V at random from the n vertices. Denoting
K̂n = N̂V , we have

P(K̂n = k) = Ck

(2n−2k
n−k

)
nCn

if k = 1, . . . , n.

PROOF. The proof relies on combinatorial arguments. Let us denote by νk(T )

the number of subtrees with k vertices in the BST T having |T | = n vertices. For
k = 1, . . . , n, we have

P(K̂n = k) = 1

n

n∑
j=1

P(N̂j = k)

= 1

n
E

[
n∑

j=1

1{N̂j=k}

]
= 1

n
E[νk(T )].

νk(T ) satisfies the linear recursion

νk(T ) = δ|T |,k + ∑
S

νk(S),(17)

where δ denotes the Kronecker symbol and the sum is over the subtrees of the root
of T . Let us denote by B the set of all BSTs. We now introduce the cumulative
generating function defined by

Fk(z) = ∑
T ∈B

νk(T )z|T |

and

Gk(z) = ∑
T ∈B

δ|T |,kz|T | = Ckz
k.

From the linear recurrence equation (17), Theorem 5.7 in [35] establishes the fol-
lowing relationship between cumulative generating functions Fk and Gk :

Fk(z) = Gk(z)√
1 − 4z

.

Using the fact that

1√
1 − 4z

= ∑
i≥0

(
2i

i

)
zi,

we find that

Fk(z) = ∑
i≥k

(
2i − 2k

i − k

)
Ckz

i,
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since the expectation of νk(z) is given by

E[νk(T )] = [zn]Fk(z)/Cn,

this completes the proof of the lemma. �

COROLLARY 1. Let n ≥ 2. Consider a PT with n leaves sampled from the
uniform model. Let Kn denotes the number of leaves descending from a uniformly
chosen random ancestor. We then have

P(Kn = k) = Ck−1
(2n−2k

n−k

)
(n − 1)Cn−1

for k = 2, . . . , n.

PROOF. This is a direct consequence of Lemma 2. �

REMARK 8. As n goes to infinity, the distribution of K̂n converges to

P(K̂ = k) = 4−kCk ∼ 1√
πk3/2 , for large k.

The tail of the distribution of K̂ has a power law with parameter 3/2. This can be
compared to a similar result in the context of BSTs [23] under the random permu-
tation model. In this case, K̂n has power law distribution with parameter 2. Since
3/2 is less than 2, large random subtrees are more likely in the Catalan model than
in the random permutation model. It was an expected result since Catalan binary
trees are known to be more unbalanced than BSTs under the random permutation
model (Section 5.6, [35]).

REMARK 9. Actually, the limiting distribution in the preceding comment is
equal to the size of the critical Galton–Watson process with a binomial Bi(2, 1/2)
offspring distribution (Lemma 9, [3]). This is the Galton–Watson process corre-
sponding to binary trees.

We are now ready to prove that E[∑j

√
N̂j ]/n3/2 converges to 0 as n goes to ∞.

Let α ∈]0,1[ and split the sum E[∑j

√
N̂j ] into two parts:

E

[∑
j

√
N̂j

]
= E

[ ∑
j,N̂j<nα

√
N̂j + ∑

j,N̂j≥nα

√
N̂j

]
.

Obviously, we have

1

n3/2 E

[ ∑
j,N̂j<nα

√
N̂j

]
≤ 1

n3/2 E

[ ∑
j,N̂j<nα

√
nα

]

≤ nα/2−1/2 → 0



2212 M. G. B. BLUM, O. FRANÇOIS AND S. JANSON

when n goes to ∞. For the second term, we have

1

n3/2 E

[ ∑
j,N̂j≥nα

√
N̂j

]
≤ 1

n
E

[ ∑
j,N̂j≥nα

1

]
.

The right-hand side of the inequality is equal to P(K̂n ≥ nα). Applying Lemma 4,
we find that

1

n3/2 E

[ ∑
j,N̂j≥nα

1

]
∼ κn−α/2,

for some constant κ . This expression converges to 0 when n goes to ∞. This
completes the proof of Theorem 3.

REMARK 10. Fill and Kapur [12] established more precise results concerning

E[∑j

√
N̂j ]. They proved that

E

[∑
j

√
N̂j

]
∼ 1√

π
n logn.(18)

Their results rely on Hadamard products. In a recent preprint, Ford [14] gave an
alternate proof that (Ĉn − Ŝn)/n3/2 converges in probability to 0. Note that our
proof uses elementary arguments and is instructive in its own right as regards the
shapes of Catalan trees. Besides, equation (18) follows easily from Lemma 4, by
direct estimation of the sum by an integral.

PROOF OF THEOREM 4. In the following, we prove the convergence of the
mixed moments of Ŝn and Ĉn. For k, l ≥ 0, we have

E[Ŝk
nĈ�

n] ∼ n3(k+�)/2
E[Ak+�].(19)

The argument is similar to the argument given by Janson (Remark 3.5, [18]) to es-
tablish the convergence of the mixed moments of the internal path length and the
Wiener index. Since the convergence in distribution has been established in Theo-
rem 3, the above equation is equivalent to uniform integrability of n−3(k+�)/2Ŝk

nĈ�
n

for n ≥ 1 and any fixed k, �. Since Ĉn ≤ Ŝn, the result follows from the fact that
n−3k/2(Ŝn)

k is uniformly integrable for every fixed k. This is true because Takacs
[37] proved the convergence of the moments of Ŝn. �
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