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SEPARATION CUT-OFFS FOR BIRTH
AND DEATH CHAINS

BY PERSI DIACONIS1 AND LAURENT SALOFF-COSTE2

Stanford University and Cornell University

This paper gives a necessary and sufficient condition for a sequence of
birth and death chains to converge abruptly to stationarity, that is, to present
a cut-off. The condition involves the notions of spectral gap and mixing time.
Y. Peres has observed that for many families of Markov chains, there is a cut-
off if and only if the product of spectral gap and mixing time tends to infinity.
We establish this for arbitrary birth and death chains in continuous time when
the convergence is measured in separation and the chains all start at 0.

1. Introduction. Some ergodic Markov chains show a sharp transition in con-
vergence to stationarity. This was first observed for random transpositions on the
symmetric group in [22]. The phenomenon was clearly identified in [2] where the
term “cut-off phenomenon” was introduced (see [2], Figure 2). Recently, Yuval
Peres observed that for many examples, a cut-off occurs if and only if the prod-
uct λτ tends to infinity where λ is the spectral gap (i.e., 1 minus the second largest
eigenvalue) and τ is the mixing time (i.e., the first time the distance to stationarity
is less than 1/4).

Our main theorem proves a precise version of this statement for all finite
continuous-time birth and death chains started at 0 when convergence is measured
in separation distance. Namely, for each n, let γ t

n denote the distribution at time
t > 0 of a given ergodic birth and death chain on �n = {0,1, . . . , n}, started at 0.
Let νn be the corresponding stationary measure. The separation between γ t

n and its
target νn is

sep(γ t
n, νn) = sup

x∈�n

{1 − γ t
n(x)/νn(x)}.

Let λn,i ∈ [0,2], i = 0, . . . , n, be the eigenvalues, in nondecreasing order, of minus
the associated Q-matrix Qn (i.e., the matrix representing the infinitesimal genera-
tor of the associated Markov process). We always have λn,0 = 0, and λn = λn,1 is
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called the spectral gap. Set

tn =
n∑
1

λ−1
n,i .

THEOREM 1.1. Referring to the setting and notation introduced above, we
have:

1. If λntn tends to infinity with n, then, for any c ∈ (0,1),

lim
n→∞ sep

(
γ (1+c)tn
n , νn

) = 0, lim
n→∞ sep

(
γ (1−c)tn
n , νn

) = 1.

2. If λntn does not tend to infinity with n, then, for any c ∈ (0,1),

lim sup
n→∞

sep
(
γ (1+c)tn
n , νn

)
> 0, lim inf

n→∞ sep
(
γ (1−c)tn
n , νn

)
< 1.

See Theorem 5.1 below. A detailed analysis of the cut-off window is also ob-
tained. The proof uses the duality theory of [16] to convert convergence rates into
first hitting time estimates and Keilson’s representation of first hitting times as
sums of independent exponentials with parameters related to the spectrum of the
chain.

The paper is organized as follows. Section 2 discusses various distances and
carefully defines the cut-off phenomenon. Section 3 gathers elementary remarks
concerning the cut-off phenomenon in separation and total variation distance. Birth
and death chains are introduced in Section 4 which reviews duality and Keilson’s
spectral representation of hitting times. The main results—Theorems 5.1 and 5.2—
are stated and proved in Section 5. They provide a characterization of the cut-off
phenomenon for continuous-time birth and death chains started at 0 (in discrete
time, the result is restricted to chains satisfying a certain monotonicity condition).
Section 6 gives, when it exists, a precise description of the shape of the separation
cut-off. This shape may or may not be Gaussian. It is Gaussian if and only if the
size of the window is of an order of magnitude strictly larger than the relaxation
time 1/λ (i.e., the inverse of the spectral gap). Section 7 gives detailed exam-
ples comparing cut-offs in separation, total variation and L2-distance. These ex-
amples includes simple random walks, Metropolis chains, the Bernoulli–Laplace
and Erhrenfest chains and simple random walk on distance-transitive graphs.

2. Distances and cut-offs. Assume that to any finite set � and any pair of
probability measures µ,ν on � is associated a real number D(µ,ν) such that
D(µ,ν) ∈ [0,1],

sup
�

sup
µ,ν

D(µ, ν) = 1

and D(µ,ν) = 0 if and only if µ = ν (in some cases, the supremum in � in the
equation displayed above might be necessary to attain the supremum of the possi-
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ble values taken by D). Examples of interest are the total variation distance

D(µ,ν) = ‖µ − ν‖TV = sup
A⊂�

µ(A) − ν(A)

and separation

D(µ,ν) = sep(µ, ν) = max
ω∈�

{
1 − µ(ω)

ν(ω)

}
.

Note that separation is not symmetric and is not a distance between probability
measures. Separation was introduced in [2, 3] in the context of the study of con-
vergence of ergodic finite Markov chains.

Consider a sequence of (finite) probability spaces (�n, νn), n = 1,2, . . . , each
equipped with a sequence of probability measures µk

n, k = 0,1,2, . . . , such that

lim
k→∞D(µk

n, νn) = 0.

DEFINITION 2.1. A family (�n, νn, (µ
k
n)k=0,1,...)n=1,2,... presents a cut-off

(more precisely, a D-cut-off ) if there exists a sequence (tn) of positive reals such
that for any ε ∈ (0,1),

(a) limn→∞ D(µ
kn
n , νn) = 0 if kn > (1 + ε)tn for all sufficiently large n,

(b) limn→∞ D(µ
kn
n , νn) = 1 if kn < (1 − ε)tn for all sufficiently large n.

The next definition introduces the notion of window size for the cut-off phe-
nomenon:

DEFINITION 2.2. Given sequences (tn) and (bn) of positive reals, we say that
the family (

�n, νn, (µ
k
n)k=0,1,...

)
n=1,2,...

presents a (tn, bn)-cut-off [more precisely, a (tn, bn)-D-cut-off] if bn/tn tends to
zero and

(a) f+(c) = lim supn→∞ D(µ
�tn+cbn�
n , νn) satisfies limc→∞ f+(c) = 0,

(b) f−(c) = lim infc→∞ D(µ
�tn−cbn	
n , νn) satisfies limc→∞ f−(c) = 1.

Both definitions can be interpreted in an obvious way when the discrete family
of measure µk

n, k = 0,1, . . . , is replaced by a continuous family µt
n, t ≥ 0 (in this

case, f+ and f− are defined using tn +cbn without rounding to the next or previous
integer). Versions of these definitions were introduced in [3, 15] in the case where
the measures µk

n, k = 0,1, . . . , are the marginals of a Markov chain on �n with
stationary probability νn. See also [4] and [34], Section 2.4.

REMARKS. 1. For simplicity, we have restricted attention to the case where
the maximum of the “distance” D is 1. However, Definitions 2.1 and 2.2 can easily
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be extended to the case where D is unbounded, for example, the L2 distance

D(µ,ν) =
( ∑

ω∈�

∣∣∣∣µ(ω)

ν(ω)
− 1

∣∣∣∣
2

ν(ω)

)1/2

.(2.1)

In this case, in part (b) of each of the two definitions above, simply replace the
limit value 1 by ∞ (see, e.g., [34], Section 2.4).

2. Note that the definitions above do not require that the sequence tn tends to ∞
(this condition is required in [15, 34], but probably for no good reason. Thanks to
Jim Fill for pointing this out to us). For instance, let �n = {1, . . . , n}, Kn(x, y) =
1/(n − 1) for all y �= x ∈ �n and νn ≡ 1/n. This family presents a (1, εn) total
variation cut-off for any sequence εn tending to 0. Indeed, ‖K2

n − νn‖TV = 1/(n −
1), whereas ‖K0

n − νn‖TV = (n − 1)/n.
3. If a family (µt

n) with continuous parameter t has both a (tn)-cut-off and an
(sn)-cut-off, then sn ∼ tn (i.e., limn→∞ sn/tn = 1). This is also true for a discrete-
time family if one of tn or sn tends to infinity. However, for a discrete-time family
having both a (tn) and an (sn)-cut-off, the best that can be said in general is that
the limit points of the sequence |tn − sn| all belong to the interval [0,1]. Because
of this, cut-off sequences that do not tend to infinity have to be treated with some
special care in discrete time.

Examples of finite Markov chain cut-offs are discussed in [15] which poses the
following questions. How widespread is the cut-off phenomenon for families of
finite ergodic Markov chains and how can one recognize it?

It has been suggested by Yuval Peres that in some generality, these questions
could be answered simply in terms of two parameters, namely, the D-mixing time

τD
n = τD

n (ε) = inf{k :D(µk
n, νn) ≤ ε}(2.2)

and an appropriately defined notion of spectral gap. Here ε is a small fixed parame-
ter (e.g., one often picks ε = 1/4). In the special case when the chain is reversible
(hence diagonalizable with real eigenvalues in [−1,1]), set λn = 1 −βn, where βn

is the second largest eigenvalue. Peres’ suggestion is that a D-cut-off occurs (say,
in continuous time) if and only if the quantity λnτ

D
n tends to ∞.

It turns out that the condition λnτ
D
n tends to ∞ is indeed a necessary and suf-

ficient condition for a cut-off to occur when D is the L2 distance defined in (2.1)
(and also when L2 is replaced by Lp with 1 < p ≤ ∞). This is proved in [10, 11].
Earlier results in this direction are described in [34]. This means that when work-
ing with the L2 distance (2.1), one can often assert that a cut-off exists without
necessarily having to or being able to give a precise asymptotic of the cut-off time.

Examples due to David Aldous show that if D is total variation, the condition
λnτ

D
n → ∞ does not necessarily imply a cut-off (see, e.g., [10] where a version of

Aldous’ example is presented). Still, it is natural to conjecture that the condition
that λnτ

D
n tends to infinity is sufficient under additional assumptions, for example,

for random walks on finite groups based on small generating sets or for birth and
death chains.
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In this paper, we consider the case of continuous-time birth and death chains
on {0,1, . . . ,mn} started at 0. When D is separation, we show that there is a cut-
off if and only if λnτ

D
n tends to infinity. This will follow from previous work of

Diaconis and Fill [16], who produced optimal strong stationary times through the
construction of strong stationary duals, and works of Keilson [29] and Brown and
Shao [8] linking spectral data to first passage times.

3. Remarks on total variation and separation cut-offs. For n = 1,2, . . . ,
let �n be a finite set equipped with a Markov kernel Kn(x, y) with stationary
probability νn. Fix a starting point xn ∈ �n and consider the sequence of prob-
ability measures µk

n, k = 0,1, . . . , where µk
n is the distribution of the associated

Markov chain started at xn after k steps.
Let D stand for either the total variation distance or separation. One thing these

two notions have in common is that given the data above, there exists a sequence
of real nonnegative random variables T D

n having a useful interpretation and such
that

D(µk
n, νn) = P(T D

n > k).

When D is total variation, the T D
n ’s are “optimal coupling times,” whereas when D

is separation the T D
n ’s are “optimal strong stationary times” (see [3, 30] and the

references therein). Let tn and σ 2
n be, respectively, the mean and variance of the

random variable T D
n . By a well-known form of Chebyshev’s inequality (e.g., [24],

(7.5), page 152), for all a > 0, we have

P(T D
n > tn + aσn) ≤ 1

1 + a2 , P (T D
n < tn − aσn) ≤ 1

1 + a2 .(3.1)

From these facts we can draw the following conclusions:

(a) For any ε ∈ (0,1), the mixing time τD
n (ε) defined in (2.2) satisfies

tn − (ε−1 − 1)−1/2σn ≤ τD
n (ε) ≤ tn + (ε−1 − 1)1/2σn.

(b) If there is a constant c > 0 such that ctn ≥ σn and there is cut-off at time sn
with limn→∞ sn = ∞, then sn ∼ tn. When working in continuous time, the con-
clusion sn ∼ tn holds true without having to assume that sn tends to infinity.

(c) If σ−1
n tn → ∞, then there is a (tn, σn)-D-cut-off.

The upper bound in part (a) follows from the first inequality in (3.1) by solving
(1 + a2)−1 = ε. The lower bound follows from the second inequality in (3.1) by
solving (1 + a2)−1 = 1 − ε.

Part (b) requires a little work and we treat only the continuous-time case. As-
sume there is a cut-off at time sn and fix η, ε ∈ (0,1). Then, for n sufficiently large,
we must have

(1 − η)sn ≤ τD
n (ε) ≤ (1 + η)sn.

Setting ε = (1 + η2)−1 and using the first bound in (a), we obtain

(1 − η)sn ≤ tn + ησn ≤ (1 + cη)tn.
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Using ε = (1 + η−2)−1 and the second bound in (a) gives

(1 − cη)tn ≤ tn − ησn ≤ (1 + η)sn.

This shows that sn ∼ tn, as desired.
In general, little is known about the times T D

n , so these remarks have only the-
oretical value. In particular, we know of no nontrivial cases where an optimal
coupling time has been constructed in a useful way. In contrast, there are several
known examples of optimal strong stationary times to which the remarks above ap-
ply (e.g., the top to random and riffle shuffles discussed in [14] and the geometric
walks in [31]).

In this context, the challenge posed by Peres’ question is to relate the condition
σ−1

n tn → ∞ to spectral information. When that can be done, the remarks above
may yield useful results. This will be illustrated below.

4. Separation for birth and death chains. Let � = {0, . . . ,m}. A birth and
death chain is a Markov chain K on � such that K(x,y) = 0 unless |x − y| ≤ 1.
Write

qx = K(x, x − 1), x = 1, . . . ,m,

rx = K(x,x), x = 0, . . . ,m,

px = K(x, x + 1), x = 0, . . . ,m − 1

and, by convention, q0 = pm = 0. We will assume throughout that the chain is
irreducible, that is, that qx > 0 for 0 < x ≤ m and px > 0 for 0 ≤ x < m. Such
chains have stationary probability

ν(x) = c

x∏
y=1

py−1

qy

,

where c = ν(0) is a normalizing constant. Birth and death chains are in fact re-
versible, that is, they satisfy

ν(x)K(x, y) = ν(y)K(y, x).

It follows that the operator K :L2(�, ν) → L2(�, ν) defined by f �→ Kf =∑
y K(·, y)f (y) is self-adjoint and thus diagonalizable with real eigenvalues in

[−1,1]. Let λi , i = 0, . . . ,m, be the eigenvalues of I − K in nondecreasing order
(I denotes the identity operator). Thus, λ0 = 0 < λ1 ≤ λ2 ≤ · · · ≤ λm ≤ 2. The
irreducibility of the chain is reflected in the fact that λ1 > 0. It is also well known
that λm = 2 if and only if the chain is periodic (of period 2) which is the case if and
only if rx = 0 for all x. In fact, because we are dealing here with irreducible birth
and death chains, it is known that the λi’s are all distinct (e.g., [8, 29]). Karlin and
McGregor [27, 28] observed that the spectral analysis of any given birth and death
chain can be treated as an orthogonal polynomial problem. This sometimes leads
to the exact computation of the spectrum (see, e.g., [26–28, 36] and also [32] for a
somewhat different approach based on continued fractions).
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Given a birth and death chain as above, let µk be its distribution after k steps
starting at 0. Let γ t be the distribution at time t ≥ 0 of the associated continuous-
time process started at 0, that is,

γ t = e−t
∞∑
0

tk

k!µ
k.

In [16], Diaconis and Fill construct what they call a strong stationary dual for
any discrete-time birth and death chain satisfying the condition px + qx+1 ≤ 1,
0 ≤ x < m, (such chains are called monotone chains). The dual chain is a birth and
death chain with the same eigenvalues as the original chain. The first passage time
at the extremity m for that dual chain is a strong stationary time for the original
chain. The first passage time distribution is explicitly computed by Keilson and by
Brown and Shao [29, 8] in terms of the spectral data. Fill [25] treats continuous-
time chains (the condition px + qx+1 ≤ 1, 0 ≤ x < m, is not needed in that case).
These works give the following result:

THEOREM 4.1 ([16, 25]). Let K be an irreducible birth and death chain as
above.

(a) For the associated continuous-time process started at 0, we have

sep(γ t , ν) = max
0≤x≤m

{
1 − γ t (x)

ν(x)

}
=

m∑
i=1

∏
j �=i

λj

λi − λj

e−tλi .

(b) For the discrete-time chain, assuming that px + qx+1 ≤ 1, 0 ≤ x < m, we
have

sep(µk, ν) = max
0≤x≤m

{
1 − µk(x)

ν(x)

}
=

m∑
i=1

∏
j �=i

λj

λi − λj

(1 − λi)
k.

Although these are beautiful formulas, it is not so obvious how to use them to
derive explicit bounds. However, (a) has a very clear interpretation: it says that sep-
aration at time t is the tail of a sum of m independent exponential random variables
with respective parameters λi , 1 ≤ i ≤ m. Similarly, when all λi are in [0,1], (b)
says that separation at time k is the tail of a sum of independent geometric ran-
dom variables with respective parameters λi , 1 ≤ i ≤ m. In particular, we have the
following obvious corollary:

COROLLARY 4.2. Let K be an irreducible birth and death chain as above.

(a) For the associated continuous-time process started at 0, we have

sep(γ t , ν) = max
0≤x≤m

{
1 − γ t (x)

ν(x)

}
= P(T > t)
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where T = ∑m
1 Si , each Si being an exponential random variable with parame-

ter λi and the Si ’s being independent. In particular,

E(T ) =
m∑
1

λ−1
i , Var(T ) =

m∑
1

λ−2
i .

(b) For the discrete-time chain, assuming that px + qx+1 ≤ 1, 0 ≤ x < m, we
have

sep(µk, ν) = max
0≤x≤m

{
1 − µk(x)

ν(x)

}
= P(T > k),

where T is a random variable with

E(T ) =
m∑
1

λ−1
i , Var(T ) =

m∑
1

(1 − λi)λ
−2
i .

The random variable T can be written as a sum T = ∑m
1 Si where the random

variables Si , 1 ≤ i ≤ m, are independent and Si is geometric with probability of
success λi if λi ∈ (0,1], whereas Si is a Bernoulli variable with parameter λ−1

i if
λi > 1.

REMARKS. 1. The times Si have no known interpretations in terms of the
underlying birth and death chain.

2. Of course, the same results apply if the birth and death chain starts at the other
extremity m. As the spectral data does not change, it follows that sep(γ t (0, ·), ν),
that is, the separation starting from 0, and sep(γ t (m, ·), ν), that is, the separation
starting from m, are equal at all times! This is in sharp contrast with what happens
in total variation distance, for which starting at one or the other extremity can lead
to very different behaviors.

3. In view of the above results, and from the viewpoint developed in the next
few sections, it is interesting to note that for any set of m distinct positive numbers
0 < λ1 < · · · < λm ≤ 1, there is a birth and death chain as above with eigenvalues
(0, λ1, . . . , λm); see [33] and the references therein.

4. Recall that, given an arbitrary positive distribution ν on {0,1, . . . ,m}, the
Metropolis algorithm based on symmetric random walk on the path {0, . . . ,m}
produces an irreducible birth and death chain having ν as its stationary distribu-
tion. Thus, any positive distribution can occur as the stationary distribution of an
irreducible birth and death chain.

5. Continuous-time Markov chains offer the freedom to choose a time scale.
Starting with a Markov kernel K(x,y) on a countable space, we can consider the
continuous-time Markov chain generated by the K − I , where I denotes the iden-
tity matrix. Starting at x, this continuous-time chain has probability distribution at
time t given by

γ t (x, ·) = e−t
∑ tn

n!K
n(x, ·).
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However, the most general and natural definition of a countable continuous-time
Markov chain involves a matrix Q(x,y) (representing the generator) satisfy-
ing

∑
y Q(x, y) = 0 and Q(x,y) ≥ 0 if x �= y. In that generality, the quantity∑

y �=x Q(x, y) does not have to be uniformly bounded (and explosion in finite time
is possible). On a finite state space, we can always set q = maxx{−Q(x,x)} and
consider the (discrete-time) chain with kernel K(x, y) = I (x, y) + q−1Q(x,y)

where I is the identity matrix. Letting γ t
Q(x, ·) be the probability distribution of

the continuous-time Markov chain with generator Q started at x, we have

γ t
Q(x, ·) = γ qt (x, ·).

Let us now consider a family of continuous-time (finite state space) ergodic
Markov chains (�n, γ

t
Qn

(xn, ·), νn) and consider whether or not this family
presents a D-cut-off. The answer to this question is independent of the chosen
time scale. Indeed, using the notation introduced above,

γ t
Qn

(xn, ·) = γ qnt
n (xn, ·).

It follows that (�n, γ
t
n(xn, ·), νn) presents a D-cut-off at time tn [resp. a D-cut-

off of type (tn, bn)] if and only if (�n, γ
t
Qn

(xn, ·), νn) presents a D-cut-off at time
tn/qn [resp. a D-cut-off of type (tn/qn, bn/qn)]. This remark would not be valid if
we had required that (tn) must tend to infinity in the definition of a cut-off.

5. Separation cut-off for birth and death chains. We now describe what
the previous section entails concerning the cut-off phenomenon. For n = 1,2, . . . ,
let �n = {0,1, . . . ,mn} be equipped with an irreducible birth and death chain Kn

having stationary measure νn. Let qn,x, rn,x and pn,x be the corresponding transi-
tion probabilities.

Let µk
n be the distribution of the associated chain at time k started at 0. Let γ t

n

be the distribution of the continuous-time process at time t started at 0. Let λn,i ∈
[0,2], 0 ≤ i ≤ mn, be the corresponding eigenvalues. Set

λn = λn,1, tn =
mn∑
1

λ−1
n,i .

Finally, for any ε ∈ (0,1), consider the separation mixing time

τn(ε) = inf{t : sep(γ t
n, νn) ≤ ε}.

THEOREM 5.1. Referring to the setting and notation introduced above, the
family (

�n, νn, (γ
t
n)t>0

)
n=1,2,...

has a separation cut-off if and only if Nn = λntn tends to infinity. For any c > 0,
the separation bounds

sep
(
γ (1+c)tn
n , νn

) ≤ 1

1 + c2Nn

, sep
(
γ (1−c)tn
n , νn

) ≥ 1 − 1

1 + c2Nn

(5.1)
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always hold and for any fixed ε ∈ (0,1), the condition λntn → ∞ is equivalent to
λnτn(ε) → ∞.

PROOF. By Corollary 4.2, we have

sep(µt
n, νn) = P(Tn > t),

where Tn has mean tn and variance Var(Tn) = σ 2
n satisfying

σ 2
n =

mn∑
1

λ−2
n,i = λ−2

n

mn∑
1

(λn/λn,i)
2

≤ λ−2
n

(
mn∑
1

λn/λn,i

)
= λ−1

n tn.

Here we have simply used the fact that λn/λn,i ≤ 1 to obtain the middle inequality.
Hence, we have

σn ≤ tn and, better, σn ≤ N−1/2
n tn.(5.2)

The separation bounds (5.1) follow directly from (5.2) and the Chebyshev inequal-
ities (3.1).

Assume that Nn = λntn → ∞. By the second inequality in (5.2), it follows that
tn/σn → ∞. By (c) of Section 3, there is a separation cut-off at time tn and, even
better, a (tn, σn)-cut-off. Conversely, if there is a cut-off at time sn, then by (5.2)
and (b) of Section 3, we must have sn ∼ tn and there must be a cut-off at time tn.
By (5.1), this implies that Nn tends to infinity.

Now, fix ε ∈ (0,1). By the upper bound in (a) of Section 3 and the first inequality
in (5.2), we have

τn(ε) ≤ tn + (ε−1 − 1)1/2σn ≤ (
1 + (ε−1 − 1)1/2)

tn.(5.3)

Hence λnτn(ε) → ∞ implies λntn → ∞. Conversely, if tnλn → ∞, then there is
a cut-off at time tn and by (5.2) and (a) of Section 3, tn ∼ τn(ε). It follows that
λnτn(ε) → ∞. This ends the proof of Theorem 5.1. �

REMARKS. 1. Theorem 5.1 shows that for continuous-time birth and death
chains started at 0, a separation cut-off can occur only if mn tends to infinity.

2. For D and (�n, νn, (µ
k
n)k=0,1,...) as in Definition 2.1, we say that there is a

D-precut-off at time sn if there are constants 0 < c ≤ 1 ≤ C < ∞ such that

lim
n→∞D(µkn

n , νn) →
{

0, if kn ≥ Csn,
1, if kn ≤ csn.

Obvious modifications apply in continuous time. Theorem 5.1 shows that there
cannot be a separation precut-off if λntn is bounded. Hence, for continuous birth
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and death chains started at 0, the existence of a separation precut-off is equivalent
to the existence of a separation cut-off.

3. In (5.1), we can replace Nn = λntn by N ′
n = λnτn(ε) as follows. The bound

(5.3) and the first inequality in (5.2) give N ′
n ≤ (1 + (ε−1 − 1)1/2)Nn. Hence, for

c > 0 and ε ∈ (0,1), we have

sep
(
γ (1+c)tn, νn

) ≤ 1

1 + c2(1 + (ε−1 − 1)1/2)−1N ′
n

and

sep
(
γ (1−c)tn, νn

) ≥ 1 − 1

1 + c2(1 + (ε−1 − 1)1/2)−1N ′
n

.

The same remark applies to (6.3) below which improves upon (5.1).
The next result is the discrete-time version of Theorem 5.1. It requires the

“monotonicity” assumption px + qx+1 ≤ 1. The proof is similar to that of The-
orem 4.2(b) and is therefore omitted.

THEOREM 5.2. Referring to the setting and notation introduced above, as-
sume that for each n and each x ∈ {0, . . . ,mn − 1}, we have

pn,x + qn,x+1 ≤ 1.

Then the family (
�n, νn, (µ

k
n)k=0,1,...

)
n=1,2,...

has a separation cut-off if and only if Nn = λntn tends to infinity.

The so-called monotonicity condition pn,x + qn,x+1 < 1 easily implies that
rn,0 > 0, thus ensuring aperiodicity. It is, however, a little surprising that negative
eigenvalues of K (i.e., 1 − λi with λi > 1) play no role whatsoever in Theorem
5.2. As in the continuous case, for any fixed ε ∈ (0,1), the theorem above can be
stated using τn(ε) = inf{k : sep(µk

n, νn) ≤ ε} instead of tn.

6. The shape of the cut-off. When a cut-off is determined, say at time sn, the
next task is to look at the window size. If one is able to establish an (sn, bn)-cut-off
[possibly adjusting the sequence (sn)], then the question of the optimality of the
window size bn is posed. One way to answer this question is to obtain the shape
of the cut-off, that is, to determine the functions f± of Definition 2.2. If f+ and
1−f− are nonzero in a neighborhood of ∞, then the sequence (bn) is optimal and
the functions f± describe the shape of the cut-off. Only a small number of such
results have been established (see, e.g., [15]). In the cases of interest to us in this
paper, Corollary 4.2 easily allows us to obtain the shape of the cut-off.
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THEOREM 6.1. Referring to a family of birth and death chains as in Section 5
and using the notation introduced there, assume that Nn = λntn → ∞ and set

σ 2
n =

mn∑
1

λ−2
n,i .

(a) Assume that λnσn → ∞. Then for any real c,

lim
n→∞ sep(γ tn+cσn

n , νn) = 1 − �(c) where �(t) = 1√
2π

∫ t

−∞
e−x2/2 dx.

In particular, there is a (tn, σn)-cut-off, but no (tn, λ
−1
n )-cut-off.

(b) Assume that λnσn is bounded. Then there is a (tn, σn)-cut-off [equivalently
a (tn, λ

−1
n )-cut-off ] and for any real c > 0, we have

lim inf
n→∞ sep(γ tn+cσn

n , νn) > 0,

whereas for any real c < 0,

lim sup
n→∞

sep(γ tn+cσn
n , νn) < 1.

PROOF. We have sep(γ t
n, νn) = P(Tn > t). Consider the moment generating

function

Mn(t) = E
(
et

(
Tn−tn

)
/σn

)
.

As Tn is a sum of mn independent exponential random variables with respective
parameters λn,i , i = 1, . . . ,mn, we have

Mn(t) = e−t tn/σn

mn∏
i=1

λn,i

λn,i − t/σn

= eFn(t),

where

Fn(t) = −tnσ
−1
n t −

mn∑
i=1

log(1 − λ−1
n,iσ

−1
n t) =

∞∑
k=2

θk(n)

kθ2(n)k/2 tk

with

θk(n) =
mn∑
i=1

(λn,1/λn,i)
k.

As λn,1/λn,i ≤ 1, we have 1 ≤ θk(n) ≤ θ2(n), k ≥ 2. Hence, the series above con-
verges, at least for t ∈ (−1,1) and

0 ≤ Fn(t) − t2/2 ≤
∞∑

k=3

tk

kθ2(n)(k−2)/2 .(6.1)
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If λnσn = θ2(n)1/2 → ∞, then Mn(t) tends to et2/2 for any real t and it follows that
σ−1

n (Tn − tn) is asymptotically distributed as a standard normal random variable;
see [12]. This proves part (a) of Theorem 6.1.

Assume now that λnσn is bounded, say λnσn ≤ A. Hence,

λ−1
n ≤ σn ≤ Aλ−1

n

and, for any k = 2,3, . . . ,

1 ≤ θk(n) ≤ A.

Obviously (e.g., by Chebyshev’s inequality), the distributions of σ−1
n (Tn − tn), n =

1,2, . . . , form a tight family. Given any subsequence (nj ), we can extract from it a
subsequence (nj�

) such that along that subsequence, P(Tn > tn + cσn) converges
to P(T > c), c ∈ R, for some random variable T . Now, from the previous moment
generating function computation, it follows that along (nj�

), the limit

lim
�→∞ θk

(
nj�

) = θk ∈ [1,A]
exists for each k ≥ 2 and T has moment generating function

exp

(
t2

2
+ ∑

k≥3

θkt
k

kθ
k/2
2

)
(6.2)

for all t ∈ (−θ
1/2
2 , θ

1/2
2 ). As the variables σ−1

n (Tn − tn) are infinitely divisible,
T is also infinitely divisible (see, e.g., [35] for properties of infinitely divisible
distributions). By (6.2), the normal component of T is nontrivial and it follows that
T has a smooth positive density. Obviously, this implies part (b) of Theorem 6.1.
Note that no limit points of the sequence (Tn − tn)/σn can be normal. This ends
the proof of Theorem 6.1. �

Let us observe that the first part of Theorem 6.1(b), that is, the fact that for any
real c > 0,

lim inf
n→∞ sep(γ tn+cσn

n , νn) > 0,

can be proved by a very elementary argument. To bound P(Tn > tn + cσn) from
below, write

P(Tn > tn + cσn)

≥ P

(
Sn,1 > λ−1

n + (c + 1)σn;
mn∑
i=2

Sn,i >

mn∑
i=2

λ−1
n,i − σn

)

≥ P
(
Sn,1 > λ−1

n + (c + 1)σn

)
P

(
mn∑
i=2

Sn,i >

mn∑
i=2

λ−1
n,i − σn

)
.
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By the second inequality in (3.1), and the fact that σ 2
n ≥ Var(

∑mn

i=2 Sn,i ), we have

P

(
mn∑
i=2

Sn,i >

mn∑
i=2

λ−1
n,i − σn

)
≥ 1

2 .

It follows that

P(Tn > tn + cσn) ≥ 1
2e−(λ−1

n +(c+1)σn)λn ≥ 1
2e−(1+(c+1)A).

In contrast, the inequality concerning the lower tail seems harder to prove without
the sophisticated tools of infinitely divisible distributions.

REMARKS. 1. In part (b) of Theorem 6.1, assume further that for each k,

θk = lim
n→∞

(
λn

λn,i

)k

< ∞

exists. Then for any c ∈ R, we have

lim
n→∞ sep(γ tn+cσn

n , νn) = 1 − F(c),

where F(t) is the distribution function of an infinitely divisible law whose moment
generating function is given in (−θ

−1/2
2 , θ

−1/2
2 ) by (6.2). In particular, 0 < F(c) <

1 for all c ∈ R. For instance, the Bernoulli–Laplace example in Section 7 has a
nonnormal cut-off shape in separation.

2. It follows from (6.1) that E(e±(Tn−tn)/(2σn)) ≤ e1/4. Hence, for all c > 0,

P(Tn > tn + cσn) ≤ e−(c−1/2)/2, P (Tn > tn − cσn) ≥ 1 − e−(c−1/2)/2

and thus

sep
(
γ (1+c)tn, νn

) ≤ e−(cNn−1/2)/2,
(6.3)

sep
(
γ (1−c)tn, νn

) ≥ 1 − e−(cNn−1/2)/2,

where Nn = λntn tends to infinity with n.

7. Examples. This section illustrates our results by looking at various explicit
(and not so explicit) families of birth and death chains.

Simple random walk. Consider the simple random walk on {0, . . . , n} with
r0 = rn = p0 = pj = qj = qn = 1/2, j ∈ {1, . . . , n − 1}. We refer the reader to
[24], XVI.3, for the spectral information used below. We have

λn,j = 1 − cos
πj

n + 1
, j = 0, . . . , n.
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As λn,j ≥ (j/(n + 1))2 (and this is optimal, up to a multiplicative constant), we
see that λ−1

n = λ−1
n,1, tn = ∑

λ−1
n,j and σn = (

∑
λ−2

n,j )
1/2 are all of order n2. By The-

orems 5.1 and 5.2, there is no separation cut-off (either in continuous or discrete
time). Of course, this is well known!

Suppose, instead, that rn = pj = p, 0 ≤ j ≤ n − 1 and qj = r0 = q , 1 ≤ j ≤ n,
p + q = 1, 0 ≤ q ≤ p ≤ 1. Then the eigenvalues are

λn,j = 1 − 2
√

pq cos
πj

n + 1
, j = 0, . . . , n.

Hence, if p and q are fixed with 0 < q < p < 1, we have λn = 1−2
√

pq , whereas
tn = ∑n

1 λ−1
n,j is greater than n/2 and σn is greater than

√
n/2. Theorems 5.1, 5.2

and 6.1 prove the existence of a (tn, σn) separation cut-off with a normal shape.
Observe that

tn = an + O(1), a =
∫ 1

0

(
1 − 2

√
pq cos(πx)

)−1
dx = 1√

1 − 4pq

and

σ 2
n = bn + O(1), b =

∫ 1

0

(
1 − 2

√
pq cos(πx)

)−2
dx.

Note that the window of the separation cut-off is not given by λ−1
n � 1 in this case.

Using diagonalization, one finds that (starting at 0) this chain has a (2cn,1)-L∞
cut-off and a (cn,1)-L2 cut-off with

c = log(p/q)

2(1 − 2
√

pq )
.

It is a calculus exercise to check that c > a, that is,

log(p/q) ≥ 2(1 − 2
√

pq )√
1 − 4pq

.

Indeed, writing p = (1 + u)/2, q = (1 − u)/2, u ∈ (0,1), we get 1 − 4pq = u2

and the above inequality boils down to

log(1 + u) − log(1 − u)

2u
≥ 1 − √

1 − u2

u2 ,

which holds true for u ∈ (0,1) because the left-hand side is at least 1, whereas the
right-hand side is at most 1. Thus, the L2-cut-off occurs later than the separation
cut-off (this is not always true—there are many examples where the separation
cut-off is twice the L2-cut-off ).

Diaconis and Fill [16], Example 4.46, and Belsley [6], Chapter V, study various
versions of this chain in detail (in discrete time) and show that there is a cut-off in
total variation at time an with an optimal window of size

√
n. The fact that the total

variation cut-off is the same as the separation cut-off can be explained as follows.
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If the chain starts from the top point n, it is not hard to use the available spectral
information to show that it converges in a constant number of steps (most of the
mass is around n). To understand total variation starting from the bottom point 0, it
will thus be enough to analyze the first time one hits n. By [8, 29], this first hitting
time is equal in law to the optimal strong stationary time of Corollary 4.2(a).

Note the very different window sizes, namely, of order 1 for the L2 and L∞
cut-offs and of order

√
n for the separation and total variation cut-off.

Metropolis chains. Now consider an arbitrary probability distribution ν on
{0, . . . , n} with ν(j) > 0, j ∈ {0, . . . , n}. Use the Metropolis algorithm with base
chain the simple symmetric random walk above to obtain a birth and death chain
with stationary measure ν (see, e.g., [20]). By construction, this chain satisfies the
monotonicity condition px + qx+1 ≤ 1 and Theorems 5.1, 5.2 and 6.1 apply.

For instance, if ν(j) = a(1 + j)d , then the results in [20] show that there is
no cut-off (in total variation or separation) and that λn is of order n−2. Hence,
it follows from Theorem 5.1 that tn = ∑n

1 λ−1
n,i must be of order n2, that is, the

eigenvalues λi must grow rapidly enough from their minimum of order n−2. We
do not know if this can be easily checked by bounding higher eigenvalues. For
instance, it does not follow from the (rather sophisticated) eigenvalue bound λn,i ≥
ci2/dn−2 given by [34], Theorem 3.4.4, and [20].

As a second example, take ν(j) = 2−n
(n
j

)
. It is proved in [21] that, for this

example, λn is of order 1/n and it follows from the proof that in fact λn,i is of
order i/n. Hence, tn is of order n logn, λntn → ∞ and λnσn is bounded. By The-
orems 5.1 and 5.2, there is a (tn, λ

−1
n ) cut-off in separation (starting from 0). The

exact asymptotic behavior of the cut-off time tn is not known.

Bernoulli–Laplace models. Consider two urns, the left containing r red balls
and the right containing (n − r) black balls, with 0 < 2r ≤ n. At each step, a ball
is picked uniformly at random in each urn and the two balls are switched. The
process is completely determined by the number of red balls in the right urn and
this is a birth and death chain on {0, . . . , r}. The stationary distribution is

νn,r (j) =
(r
j

)(n−r
r−j

)
(n
r

)
and for x ∈ {0, . . . , r}, the rates are given by

px = (r − x)(n − r − x)

r(n − r)
, qx = x2

r(n − r)
, rx = 1 − px − qx.

The eigenvalues of this chain are well known (this goes back at least to [27]; see,
e.g., [23]) and given by (with an obvious change in notation)

λn,r,i = i(n − i + 1)

r(n − r)
.
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Hence, the smallest nonzero eigenvalue is

λn,r = n

r(n − r)

and we have

tn,r = r(n − r)

r∑
1

1

i(n − i + 1)

= r(n − r)

n

r∑
1

(
1

i
+ 1 − 1/i

n(1 − (i − 1)/n)

)

= r(n − r)

n

(
log r + O(1)

)
and

θ2(n, r) = λ−2
n,rσ

2
n,r =

r∑
1

(
n

i(n − i + 1)

)2

= O(1).

In both cases, the O(1) is uniform for all r ≤ n/2 as r tends to infinity. Given
this data, Theorem 5.1 shows that for any sequence (r�, n�) with r� → ∞ and
r� < n�/2, the associated continuous-time chain has a (s�, ξ�)-separation cut-off
with

s� = (1 − r�/n�)r� log r�, ξ� = (1 − r�/n�)r�.

If r�/n� tends to zero, then

tn�,r� = r�
(
log r� + γ + o(1)

)
and θ2(n�, r�) = π2

6
+ o(1),

where γ denotes the well-known γ constant. In this case, a slight variation on
Theorem 6.1 shows that the limit shape for the (s�, ξ�)-separation cut-off is given
by the Gumbel distribution [density exp(−(x + e−x)) on R].

The results above should be compared with those of [23], Theorem 2, where an
L2-cut-off of type (ζ�, ξ�) is proved with ξ� as above and

ζ� = 1

2
(1 − r�/n�)r� logn� =

(
logn�

2 log r�

)
s�.

We now describe what happens in total variation for this family. This is briefly
discussed in [7], Section 1.5. Recall that the total variation distance is easily
bounded by both separation and L2 (see, e.g., [3, 4]). Hence, if there is a total
variation cut-off, it is bounded above by

ρ� = min{s�, ζ�} =
{

s�, if n� ≥ r2
� ,

ζ�, if n� ≤ r2
� ≤ n2

�/4,
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that is, the minimum of the separation cut-off time s� and the L2 cut-off time ζ�. It
turns out that this upper bound is sharp and that there is, in fact, a (ρ�, ξ�)-cut-off
in total variation. We find this phenomenon quite interesting and surprising. For
this natural family of chains, separation and L2 cut-off times cross each other [as
functions of the parameters (n, r)] and the total variation cut-off time is given by
the minimum.

To prove this, we only need a lower bound on total variation matching the upper
bound provided by the separation and L2 results. This lower bound can be obtained
by the method introduced in [23] and used there in the case r = n/2. Namely, to
lower bound total variation between γ t

n,r and its stationary measure νn,r , use a
set of the form A = {φ1 ≤ α}, where φ1 is an eigenfunction associated with the
lowest nonzero eigenvalue λn,r = λn,r,1. A complete set of eigenfunctions {φi : i =
0, . . . , r} (φi = φn,r,i associated with λn,r,i ) is described in [23]. In particular, we
can take

φ0(x) = 1, φ1(x) = 1 − xn

n(n − r)

and

φ2(x) = 1 − 2x(n − 1)

n(n − r)
+ (n − 1)(n − 2)x(x − 1)

r(n − r)(n − r − 1)(r − 1)
,

where x ∈ {0, . . . , r}. Given this data, one checks that

φ2
1 = 1

n − 1
φ0 + n2 − 4r(n − r)

r(n − r)(n − 2)
φ1 + n2(n − r − 1)(r − 1)

r(n − r)(n − 1)(n − 2)
φ2.

This formula allows us to compute the variance of φ1 under γ t
n,r [the variance of φ1

under the stationary measure νn,r is (n − 1)−1]. Namely,

Varγ t
n,r

(φ1) = 1

n − 1
+ n2 − 4r(n − r)

r(n − r)(n − 2)
e−tλn,r,1

+ n2(n − r − 1)(r − 1)

r(n − r)(n − 1)(n − 2)
e−tλn,r,2 − e−2tλn,r,1

= 1

n − 1
+ n2 − 4r(n − r)

r(n − r)(n − 2)
e−tλn,r,1

+
(

n2(n − r − 1)(r − 1)

r(n − r)(n − 1)(n − 2)
− 1

)
e−tλn,r,2

+ (
1 − e−t (2λn,r,1−λn,r,2)

)
e−tλn,r,2

= 1

n − 1
+ n2 − 4r(n − r)

r(n − r)(n − 2)
e−tλn,r,1

+ r(n − r)(2 − 3n) + n2(n − 1)

r(n − r)(n − 1)(n − 2)
e−tλn,r,2
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+ (
1 − e−t (2λn,r,1−λn,r,2)

)
e−tλn,r,2

≤ C

(
1

n − 1
+ 1

r
e−tλn,r,1 + t

r(n − r)
e−tλn,r,2

)
.

For the last term, we have used 1 − e−u ≤ u, u ≥ 0, and

2λn,r,1 − λn,r,2 = 1

r(n − r)
.

That the difference between 2λn,r,1 and λn,r,2 is small is what makes this proof
work.

Now we consider the two cases r2 ≤ n and n ≤ r2 ≤ n2/4. In the first case
(r2 ≤ n), set

t = 1

λn,r,1
(log r − c), 0 < c < log r,

and consider A = {φ1 ≤ α} with 2α = e−tλn,r,1 . Chebyshev’s inequality gives

νn,r (A) − γ t
n,r (A) ≥ 1 − r2e−2c

n − 1
− C′

(
1

n − 1
+ 1

r2 ec + log r

r2n
e2c

)
r2e−2c

≥ 1 − C′′
(
e−c + logn

n

)
.

This, together with the earlier separation result, proves the existence of a (s�, ξ�)

total variation cut-off when r2
� ≤ n2

� and r� tends to infinity.
In the second case (n ≤ r2 ≤ n2/4), set

t = 1

2λn,r,1
(logn − c), 0 < c < logn,

and consider A = {φ1 ≤ α} with, again, 2α = e−tλn,r,1 . Now, Chebyshev’s inequal-
ity gives

νn,r (A) − γ t
n,r (A) ≥ 1 − ne−2c

n − 1
− C′

(
1

n − 1
+ 1

r
√

n
ec + logn

n2 e2c

)
ne−2c

≥ 1 − C′′
(
e−c + logn

n

)
.

This, together with the L2 result, proves the existence of a (ζ�, ξ�) total variation
cut-off when n� ≤ r2

� ≤ n2
�/4 and r� tends to infinity.

The hypercube and Hamming chains. Consider the set {0, . . . , n − 1}r and
the Markov chain that picks one of the r coordinates uniformly at random and
changes this coordinate to one of n − 1 other possible values picked uniformly at
random (the chosen coordinate cannot stay the same). Starting from the 0 vector,
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the number of nonzero coordinates evolves as a birth and death chain on {0, . . . , r},
with

px = (r − x)

r
, qx = x

r(n − 1)
, rx = x(n − 2)

r(n − 1)
.

The stationary distribution is

νn,r (x) =
(

r

x

)
(n − 1)xn−r .

This chain has eigenvalues (see, e.g., [19], Section 5, for an elementary argument)

λn,r,i = in

r(n − 1)
.

Hence,

λn,r = n

r(n − 1)
,

tn,r = r(n − 1)

n

r∑
1

1

i
,

θ2(n, r) = λ−2
n,rσ

2
n,r =

r∑
1

1

i2 .

Fix a sequence (n�, r�) with r� → ∞. Then by Theorem 5.1, the associated
continuous-time chain has a (s�, ξ�)-separation cut-off with

s� = (1 − 1/n�)r� log r�, ξ� = (1 − 1/n�)r�.

The shape is given by the Gumbel distribution.
As a variation, consider the birth and death chain on {0, . . . , r} with

px = r − x

r
, qx = x

r
θ, rx = x

r
(1 − θ), θ ∈ (0,1).(7.1)

This has stationary distribution

νθ,r (x) =
(

r

x

)
θr−x(1 + θ)−r .

This is the projection (under the natural action of the symmetric group Sr ) of the
probability measure

νθ,r (x) = θ |x|

(1 + θ)r

on the hypercube {0,1}r with x = (xi)
r
1, xi ∈ {0,1} and |x| = ∑

xi . The birth and
death chain on {0, . . . , r} with rates (7.1) is the projection of a chain K on the
hypercube with K(x, x) = |x|(1 − θ)/r ,

K(x, y) =
{

1/r, if |x| = |y| + 1,
θ/r, if |x| = |y| − 1
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and K(x, y) = 0 otherwise (see, e.g., [17], Section 3). The eigenvalues are

λθ,r,i = i

r
(1 + θ).

Hence,

λθ,r = 1 + θ

r
, tθ,r = r

1 + θ

r∑
1

1

i
, θ2(n, r) = λ−2

θ,rσ
2
θ,r =

r∑
1

1

i2 .

Consider a sequence (θ�, r�) with r� tending to infinity. By Theorem 5.1, the
associated continuous-time chain has a separation cut-off of type(

(1 + θ�)
−1r� log r�, r�

)
[Theorem 5.1 gives a window of size (1+θ�)

−1r�, but this is essentially equivalent
since θ� ∈ (0,1)]. This chain is studied in [17] and [18], Section 5 (as a certain
Metropolis chain on the hypercube, in discrete time). There it is proved that the
chain has an L2 cut-off of type(

(1 + θ�)
−1r� log

√
r�/θ� , r�

)
.

The reference [13] also proves that for a fixed θ , there is a(
(1 + θ)−1r log

√
r/θ, r

)
total variation cut-off as r tends to infinity. Note, however, that this last result
cannot hold true if θ is allowed to vary and tend to 0. In general, for a sequence
(θ�, r�) with r� tending to infinity, there is a total variation cut-off of type (ρ�, r�)

with

ρ� = (1 + θ�)
−1r� min

{
log r�, log

√
r�/θ�

}
.

As for the Bernoulli–Laplace models, we only need to prove a total variation lower
bound matching the upper bound given by the separation and L2 results. Such a
total variation lower bound is easily derived using the data and method of [13],
page 179.

Distance regular graphs. A finite graph is distance-transitive if the automor-
phism group of that graph acts transitively on the set of vertex pairs (x, y) with
d(x, y) = k, for any k. Distance-regular graphs generalize this notion without re-
quiring a group action (see, e.g., [5, 7, 9]). Let (V ,E) be a connected graph with
vertex set V and symmetric edge set E ⊂ V × V . Let ρ be the graph distance
and m be the diameter of (V ,E). A graph is regular if the number of vertices at
distance 1 from x is independent of x ∈ V . A graph is distance-regular if for any
i, j ∈ {0, . . . ,m}, the number of vertices at distance i from x and j from y depends
only on the distance ρ(x, y) between x and y, x, y ∈ V .

One well-known basic result is that simple random walk on a distance-regular
graph can be studied by collapsing to a birth and death chain on {0, . . . ,m} started
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at 0; see [7], Section 3, where more general walks on distance-regular graphs
that can be treated in a similar fashion are discussed. In this collapse, the set of
all eigenvalues (without multiplicities) is conserved and separation, total variation
or Lp distance to the stationary measure for any fixed p are conserved. Thus The-
orem 5.1 yields the following result:

THEOREM 7.1. Let Gn be a family of distance-regular graphs with diame-
ter mn tending to infinity as n tends to infinity. On the vertex set Vn of Gn, consider
the continuous-time simple random walk and let γ t

n,xn
be the law of that process

started at a fixed arbitrary point xn ∈ Vn. Let νn be the uniform probability mea-
sure on (Vn). Let λn be the associated spectral gap and for any fixed ε ∈ (0,1),
set

τn = inf
{
t > 0 : sep

(
γ t
n,xn

, νn

) ≤ ε
}
.

Then the family (Vn, γ
t
n,xn

, νn) has a separation cut-off if and only if λnτn → ∞.

REMARKS. 1. The separation sep(γ t
n,xn

, νn) does not depend on the starting
point xn, so this result can be read as a max-separation result.

2. Note that the family Gn does not need to be “natural” in any way. It can mix
elements from the various natural families described below.

Theorem 5.1 leads to the computation of the cut-off time, when it exists, in terms
of the spectrum. It is conjectured by experts that distance-regular graphs have been
classified. They include the following examples:

(i) The finite circle Z/nZ with an edge from x to y if and only if |x − y| = 1.
This family has no cut-off.

(ii) Hamming distance graphs such as the hypercube. These have been dis-
cussed above.

(iii) The natural graph on r-sets of an n-set with an edge from x to y if #(x ∩
y) = k − 1. This is equivalent to the Bernoulli–Laplace models discussed above.

(iv) q-Families: These are described in some detail in [7] with data that is useful
for our purpose. These families are all related to certain types of vector-subspaces
of a finite-dimensional vector space over a finite field Fq (q a prime power), hence
the name. The simplest example is the set of all m-dimensional vector subspaces
of an n-dimensional vector space discussed below.

Regarding the known distance-regular graphs from the q-Families (q-DRG for
short) listed in [7], we can state the following theorem:

THEOREM 7.2. Referring to the setting of Theorem 7.1, assume that the fam-
ily Gn is made of some of the known q-DRGs listed in [7]. Then there is a separa-
tion cut-off if and only if the diameter mn of Gn tends to infinity. Moreover, if mn

tends to infinity, then there is a (mn,
√

mn ) separation cut-off with a nondegener-
ate normal shape.
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This immediately follows from the data reviewed in [7] and from Theorem 5.1.
Instead of going into the details, we will illustrate the result with the simplest case
of a natural q-DRG family.

Fixed-dimension subspaces of a q vector space. Let q be a prime power
and Fq be a finite field of order q . Let En be an n-dimensional vector space
over Fq . For m ≤ n/2, let Vq,n,m be the set of all m-dimensional vector subspaces
of En. The finite set Vq,n,m is equipped with the distance

d(x, y) = m − dim(x ∩ y)

and the graph structure according to which (x, y) is an edge if and only if
d(x, y) = 1. The induced graph distance is the distance d and this graph has di-
ameter m ≤ n/2. The action of GLn(Fq) on vector subspaces shows that this is a
distance-transitive graph, hence a distance-regular graph. We consider the simple
random walk on this graph (started at an arbitrary subspace) in continuous time.
Let γ t

q,n,m be its law at time t and νq,n.m its (uniform) stationary measure. Details
(dealing with the discrete-time version) can be found in [7, 13]. As explained in [7,
13] and briefly above, this process can be studied through a birth and death chain
on {0, . . . ,m} which is simply the associated “distance process.” Known compu-
tations involving relevant families of orthogonal polynomials give the eigenvalues
λq,n,m,i of this chain as

λq,n,m,i = (1 − q−i)(1 − qi−n−1)

(1 − qm−n)(1 − q−m)
, 0 ≤ i ≤ m.

Hence the smallest nonzero eigenvalue is

(1 − q−1)(1 − q−n)

(1 − qm−n)(1 − q−m)

and when m (hence also n) tends to infinity, we have
m∑

i=1

λ−1
q,n,m,i = m + O(1),

m∑
i=1

λ−2
q,n,m,i = m + O(1).

If we now choose an arbitrary sequence (q�, n�,m�) and consider the family
(��, γ

t
� , ν�) where

�� = Vq�,n�,m�
, γ t

� = γ t
q�,n�,m�

, ν� = νq�,n�,m�
,

then Theorem 5.1 shows that this family has a separation cut-off if and only if m�

tends to infinity. Assuming that m� tends to infinity, Theorem 6.1 shows that there
is an (m�,

√
m� )-separation cut-off and that the window size

√
m� is optimal.

The references [7, 13], when translated into continuous time (in the present case,
there are significant differences between discrete and continuous time), give a total
variation cut-off of type (m�,

√
m� ) and an L2 cut-off of type (s�,1) with

s� = 1
2m�(n� − m�) logq�.
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