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RANDOM REWARDS, FRACTIONAL BROWNIAN LOCAL TIMES
AND STABLE SELF-SIMILAR PROCESSES

BY SERGE COHEN AND GENNADY SAMORODNITSKY1

Université Paul Sabatier and Cornell University

We describe a new class of self-similar symmetric α-stable processes
with stationary increments arising as a large time scale limit in a situation
where many users are earning random rewards or incurring random costs.
The resulting models are different from the ones studied earlier both in their
memory properties and smoothness of the sample paths.

1. Introduction. With the dramatic increase of importance of communication
networks came the need to better understand their behavior at different scales. This
requires a construction of stochastic models that can plausibly arise as the result of
activities associated with such networks. Limiting stochastic processes often scale,
and one hopes that such models can provide insight into the scaling of properties
of the networks.

Perhaps the best known result of this type is the paper [21], where the limit-
ing model turned out to be (depending on the relationship between the number of
users and the time scale) either fractional Brownian motion or a Lévy α-stable
motion (this paper followed up and was an improvement of the earlier papers
[38] and [36]). The fact that either a light-tailed but long-range dependent model or
a heavy-tailed but short-range dependent model could appear has become an article
of faith; see, for example, [7] for an application in a network context. Other heavy-
tailed limiting models have appeared (see, e.g., [25]), but the limiting processes
are not long-range dependent (more about this will appear in the sequel).

In this paper we exhibit a natural situation where the limiting model belongs
to a new class of α-stable models. It is a self-similar process with stationary in-
crements, and we will argue that the increments are long-range dependent. Let
(Wk, k ∈ Z) be a sequence of i.i.d. random symmetric variables satisfying

FW(x) := P(W0 > x) ∼ σα
Wx−α(1.1)

as x → ∞, where 0 < α < 2 and σW > 0. Further, let (V1,V2, . . .) be a sequence of
i.i.d. mean zero and unit variance integer-valued random variables, independent of
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(Wk, k ∈ Z), defining a random walk Sn = V1 +· · ·+Vn for n ≥ 1. If one views Sn

as describing the “position” of the “state” of a user at time n, and Wk the “reward”
earned by, “cost” incurred by or “amount of work” produced by the user in state k,
then the total reward earned by time n is

R(n) =
n∑

j=1

WSj
.(1.2)

Assuming that there are many such users earning independent rewards or generat-
ing independent work, it turns out that a properly normalized sequence of rewards
converges weakly to a limit, which we will call an FBM-1/2-local time fractional
symmetric α-stable motion. This is a particular case of a larger class of models,
FBM-H -local time fractional symmetric α-stable motion, where 0 < H < 1 (these
are self-similar with exponent of self-similarity H ′ = 1 − H + H/α). We will
represent this process as a stochastic integral with respect to an α-stable random
measure, with the integrand being the local time process of a fractional Brownian
motion with exponent H (hence the name of the model). The increments of this
process are generated by a conservative null flow (see below for the details) and,
hence, this process turns out to be different from all other classes of α-stable self-
similar processes with stationary increments that have been considered so far in
the extensive literature on the subject.

Two remarks have to be made at this point. First of all, the only reason for as-
suming symmetry of (Wk, k ∈ Z) is that dealing with symmetric α-stable (SαS)
models leads to simpler expressions and unified exposition for all 0 < α < 2.
Classes of nonsymmetric stable models parallel to those we are working with in
this paper can be defined without difficulty, the case α = 1 being the exception.
Under suitable tail conditions, the random reward scheme with appropriate trans-
lation and scaling will converge to these stable processes. Second, our processes
are related to a family of limiting models obtained in similar circumstances (but
with a single user) in [15]. In their case, the limiting process is self-similar with
stationary increments, but not stable.

This paper is organized as follows. In the next section we will summarize the re-
quired information on α-stable processes and random measures, on self-similarity
and on local times of fractional Brownian motions. Our process is formally in-
troduced in Section 3. The properties of the increment process are discussed in
Section 4. In Section 5 we study the smoothness of the sample paths of local
time fractional stable motions through their Hölder continuity properties. It turns
out that local time fractional stable motions can be naturally written as sums of
absolutely continuous self-similar stable processes, and the decomposition goes
through the chaos expansion of the local times of fractional Brownian motions.
This is done in Section 6. In Section 7 we prove the aforementioned convergence
of the random reward scheme to the FBM-1/2-local time fractional stable mo-
tion. We conclude with some comments and a discussion of possible extensions in
Section 8.
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2. Preliminaries. Throughout this paper, we will deal with SαS processes
given in the form

X(t) =
∫
E

f (t, x)M(dx), t ∈ T ,(2.1)

where T is a parameter space, M is a symmetric α-stable random measure on
a measurable space (E,E) with a σ -finite control measure m, and f (t, ·) ∈
Lα(m,E) for all t ∈ T . See Chapter 3 of [34] for information on α-stable random
measures and integrals with respect to these measures.

If the parameter space is countable (e.g., if T = Z), and the process is stationary
(under the usual left shift operator), then it has an integral representation as above,
but the kernels fn = f (n, ·), n ∈ Z, are of a special form. Specifically, one can
choose

fn(x) = an(x)

(
dm ◦ φn

dm
(x)

)1/α

f ◦ φn(x), x ∈ E,(2.2)

for n = 0,1,2, . . . , where φ :E → E is a measurable nonsingular map (i.e., a one-
to-one map with both φ and φ−1 measurable, mapping the control measure m into
an equivalent measure), where

an(x) =
n−1∏
j=0

u ◦ φj (x), x ∈ E,

for n = 0,1,2, . . . , with u :E → {−1,1} a measurable function and f ∈ Lα(m,E);
see [29]. Many properties of the resulting stable process are closely connected with
the ergodic-theoretic properties of the flow (the group of maps) (φn, n ∈ Z), an
important classification of which is into dissipative, conservative null and positive
flows; see [29, 32] and [33]. In particular, a key idea in the latter two papers is that it
is possible to view stationary stable processes corresponding to dissipative flows as
short memory processes, those corresponding to positive flows as infinite memory
processes and those corresponding to conservative null flows as processes with a
finite but long memory. Good general references on ergodic theory are [1] and [17]
.

A stochastic process (Y (t), t ≥ 0) is called self-similar with exponent of self-
similarity H if, for all c > 0, the processes (Y (ct), t ≥ 0) and (cHY (t), t ≥ 0)

have the same finite-dimensional distributions. Most commonly studied are self-
similar processes with stationary increments [(Y (t +a)−Y (a), t ≥ 0) has the same
finite-dimensional distributions for all a ≥ 0]. The common abbreviation for such
a process is SSSI (self-similar stationary increments), or H -SSSI, if the exponent
of self-similarity H is to be emphasized.

For SSSI processes with a finite mean, the exponent of self-similarity is re-
stricted to the range 0 < H < 1 (apart from degenerate cases) and, in that range,



FRACTIONAL BROWNIAN LOCAL TIMES AND STABLE PROCESSES 1435

there is a unique H -SSSI Gaussian process. It has zero mean and covariance func-
tion

Cov
(
Y (s), Y (t)

) = EY 2(1)

2
[t2H + s2H − (t − s)2H ],

0 ≤ s ≤ t . This process is called the fractional Brownian motion (FBM).
In the α-stable case, 0 < α < 2, the family of SSSI processes is much larger.

The feasible range of pairs (α,H) is{
0 < H ≤ 1/α, if 0 < α ≤ 1,

0 < H < 1, if 1 < α < 2,
(2.3)

and, apart from the case 0 < α < 1 and H = 1/α, a feasible pair (α,H) does not
determine the law of an SαS H -SSSI process.

REMARK 2.1. The class of SαS SSSI processes constructed in this paper has
exponent of self-similarity in the range


1 < H < 1/α, if 0 < α < 1,
H = 1, if α = 1,
1/α < H < 1, if 1 < α < 2.

(2.4)

It has been a long-standing challenge to describe classes of symmetric 1-stable
SSSI processes with H = 1 other than linear combinations of independent sym-
metric 1-stable Lévy motion and the straight line process Y(t) = tY (1), t ≥ 0. The
model developed in this paper provides, in the particular case α = 1, an entire
family of such processes.

Two of the most well-known families of SαS H -SSSI processes (with 0 <

H < 1) are obtained by taking two of the many possible integral representations of
the fractional Brownian motion and modifying them appropriately (in particular,
replacing the Brownian motion as an integrator by an SαS Lévy motion). These are
the linear fractional stable motion and the real harmonizable fractional stable mo-
tion. The linear fractional stable motion belongs to the class of self-similar stable
mixed moving averages described by [26, 27]. Its increment process is generated
by a dissipative flow. On the other hand, the increment process of the real harmo-
nizable fractional stable motion is generated by a positive flow. We refer the reader
to Chapter 7 of [34] and to [10] for more information on self-similar processes.

A fractional Brownian motion with any exponent of self-similarity 0 < H < 1
has a local time process (l(x, t), x ∈ R, t ≥ 0) that is jointly continuous in
x and t [3]. The self-similarity property of the fractional Brownian motion im-
mediately implies the scaling property of the local time process: for any c > 0,

(
l(cH x, ct), x ∈ R, t ≥ 0

) d= (
c1−H l(x, t), x ∈ R, t ≥ 0

)
,(2.5)
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a somewhat more convenient form of which is(
1

c
l(x, ct), x ∈ R, t ≥ 0

)
d=

(
1

cH
l

(
x

cH
, t

)
, x ∈ R, t ≥ 0

)
.(2.6)

It is a simple consequence of (2.5) and of Theorem 6, page 275 of [14] that, on a
set of probability 1,

lim
t→∞ l(x, t) = ∞ for all x ∈ R.(2.7)

Similarly, the stationarity of increments property of the fractional Brownian mo-
tion implies a type of stationarity of the increments of the local time, which can be
formulated as follows. Let (�,F ,P) be the probability space on which the frac-
tional Brownian motion and its local time process live. Then, abusing somewhat
the term “law” by applying it to an infinite induced measure,

the law of
(
l(x, t + h)(ω) − l(x, h)(ω), t ≥ 0

)
(2.8)

under P × Leb does not depend on h ≥ 0.

A modification of the proof of Theorem 1.2 that leads to Corollary 1.1 in [39] gives
us that

K := sup
x∈R

0≤s<t≤1/2

l(x, t) − l(x, s)

(t − s)1−H(log 1/(t − s))H
< ∞ a.s.(2.9)

and has finite moments of all orders. (Note that using instead the estimates in [6]
gives a slightly worse power of the logarithm: H + 1 instead of H .) In particular,
l(x, t) has moments of all orders finite and uniformly bounded in all real x and
all t in a compact set.

3. FBM-H -local time fractional stable motions. We now introduce our
class of models. Let (�′,F ′,P′) be a probability space supporting a fractional
Brownian motion (BH (t), t ≥ 0) with exponent of self-similarity H , and let
l = l(x, t) = l(x, t)(ω′) be its jointly continuous local time process. Let M be an
SαS random measure on the space �′ × R with control measure P′ × Leb, where
Leb is the Lebesgue measure on R. The random measure itself lives on some other
probability space (�,F ,P). We define

Y(t) =
∫
�′

∫
R

l(x, t)(ω′)M(dω′, dx), t ≥ 0.(3.1)

Our first result below shows that (Y (t), t ≥ 0) is a well-defined SαS process which
is self-similar and has stationary increments. We call this process FBM-H -local
time fractional symmetric α-stable motion.
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THEOREM 3.1. The process (Y (t), t ≥ 0) in (3.1) is a well-defined SαS
process. It has stationary increments and is self-similar, with exponent

H ′ = 1 − H + H/α = 1 + H

(
1

α
− 1

)
.(3.2)

PROOF. To show that Y is properly defined we need to check that∫
�′

∫
R

lα(x, t)(ω′)P′(dω′) dx = E′
∫

R

lα(x, t) dx < ∞.

We have

E′
∫

R

lα(x, t) dx =
∫

R

E′
[
lα(x, t)1

(
sup

0≤s≤t

|BH(s)| ≥ |x|
)]

dx

(3.3)

≤
∫

R

(
E′l2(x, t)

)α/2
(

P′
(

sup
0≤s≤t

|BH(s)| ≥ |x|
))1/q

dx

with q = 1 −α/2. Since the moments of the local time are uniformly bounded and∫
R

(
P′

(
sup

0≤s≤t

|BH(s)| ≥ |x|
))1/q

dx < ∞(3.4)

as the supremum of a bounded Gaussian process has Gaussian-like tails, we con-
clude that the left-hand side of (3.3) is finite and, hence, (Y (t), t ≥ 0) in (3.1) is a
well-defined SαS process.

Notice that for any c > 0, k ≥ 1, θ1, . . . , θk ∈ R and t1, . . . , tk ≥ 0 we have, us-
ing (2.6),

E exp

(
i

k∑
j=1

θjY (ctj )

)
= exp

(
−

∫
R

E′
∣∣∣∣∣

k∑
j=1

θj l(x, ctj )

∣∣∣∣∣
α

dx

)

= exp

(
−

∫
R

E′
∣∣∣∣∣

k∑
j=1

θj c
1−H l

(
x

cH
, tj

)∣∣∣∣∣
α

dx

)

= exp

(
−cα(1−H)E′

∫
R

∣∣∣∣∣
k∑

j=1

θj l

(
x

cH
, tj

)∣∣∣∣∣
α

dx

)

= exp

(
−cα(1−H)+H E′

∫
R

∣∣∣∣∣
k∑

j=1

θj l(y, tj )

∣∣∣∣∣
α

dy

)

= E exp

(
i

k∑
j=1

θj c
1−H+H/αY (tj )

)
.

Therefore, (Y (t), t ≥ 0) is H ′-self-similar, with H ′ given by (3.2).
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Furthermore, for any h ≥ 0, k ≥ 1, θ1, . . . , θk ∈ R and t1, . . . , tk ≥ 0 we have,
by (2.8)

E exp

(
i

k∑
j=1

θj

(
Y(tj + h) − Y (h)

))

= exp

(
−

∫
R

E′
∣∣∣∣∣

k∑
j=1

θj

(
l(x, tj + h) − l(x, h)

)∣∣∣∣∣
α

dx

)

(3.5)

= exp

(
−

∫
R

E′
∣∣∣∣∣

k∑
j=1

θj l(x, tj )

∣∣∣∣∣
α

dx

)

= E exp

(
i

k∑
j=1

θjY (tj )

)
.

Therefore, (Y (t), t ≥ 0) has stationary increments. �

REMARK 3.2. Observe that:

1. For 0 < α < 1 we obtain a family of H ′-SSSI SαS processes with H ′ ∈
(1,1/α).

2. For 1 < α < 2 we obtain a family of H ′-SSSI SαS processes with H ′ ∈
(1/α,1).

3. For α = 1 we obtain a family of 1-SSSI SαS processes.

Notice that, for α 	= 1, different choices of the fractional Brownian motion expo-
nent of self-similarity H lead to a different exponent of self-similarity H ′ of the
SαS process (Y (t), t ≥ 0) and, hence, to a different process. On the other hand,
for α = 1 the exponent of self-similarity H ′ is independent of H . Nonetheless, the
processes (Y (t), t ≥ 0) corresponding to different H are different in this case as
well, as will be seen in the sequel.

4. The increment process. An object of interest for an SSSI process is its
increment process. It is a stationary process, and its memory properties are often
of interest. For example, the increment process of a fractional Brownian motion,
the so-called fractional Gaussian noise, is a standard long memory (if H > 1/2)
model that was used by Mandelbrot (see, e.g., [19, 20]) to explain the famous Hurst
phenomenon. Similarly, the increments of the linear fractional stable motion are
called linear fractional stable noise, and those of the real harmonizable fractional
stable motion are called (real) harmonizable fractional stable noise. It is often be-
lieved that the properties of the fractional noises are largely determined by the
exponent of self-similarity of the original process. One of the goals of this section
(which studies the increment process of the FBM-H -local time fractional α-stable
motion) is to shed some light on this question.
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Let, therefore, (Y (t), t ≥ 0) be an FBM-H -local time fractional SαS motion
and consider its increment process

Zn = Y(n + 1) − Y(n), n = 0,1, . . . ,(4.1)

which will be called FBM-H -local time fractional SαS noise.
A very important property of the FBM-H -local time fractional SαS noise is

given in the following result:

THEOREM 4.1. The FBM-H -local time fractional SαS noise is generated by
a conservative null flow.

PROOF. Note that the FBM-H -local time fractional SαS noise has an integral
representation

Zn =
∫
�′

∫
R

(
l(x, n + 1)(ω′) − l(x, n)(ω′)

)
M(dω′, dx), n ≥ 0.(4.2)

Let C be the space of continuous functions from R to R and P′
1 a probability

measure on C, under which the coordinate map is the fractional Brownian motion
with exponent of self-similarity H . Let m be a σ -finite measure on C defined by
m = (P′

1 × Leb) ◦ T −1, where T :C × R → C is given by T (ω′, x) = ω′ − x, ω′ ∈
C,x ∈ R. Let L :C → R be a measurable function that associates to a function
ω′ ∈ C its local time at 0 in the interval (0,1] if ω′ has continuous local time. An
alternative representation of the process in (4.2) is then

Zn =
∫
C

L ◦ φn(ω′)M1(dω′), n ≥ 0,(4.3)

where M1 is an SαS random measure on C with control measure m, and
φ : C → C is given by φ(ω′) = ω′(· + 1). The stationarity of the increments of
the fractional Brownian motion implies that the map φ preserves the measure m.
Note that (4.3) is a representation of type (2.2) (with both an ≡ 1 and the Radon–
Nikodym derivative equal to 1). A conclusion is that the flow (φn) and the under-
lying measure space on which (φn) acts are the same, independently of the value
of α. Therefore, it is sufficient to prove the theorem in the case α = 1, which we
will assume until the end of the proof.

We continue working with the representation (4.2). Note that, by (2.7),
m∑

n=0

[l(x, n + 1)(ω′) − l(x, n)(ω′)]
(4.4)

= l(x,m + 1)(ω′) → ∞ as m → ∞
outside a subset of �′ ×R of measure 0. By Corollary 4.2 of [29], this implies that
the FBM-H -local time fractional SαS noise is generated by a conservative flow. It
also, evidently, shows that the kernel in the representation (4.2) has a full support.
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In order to prove that the FBM-H -local time fractional SαS noise is generated
by a null flow, we will apply Corollary 2.2 of [33] to the obvious two-sided exten-
sion of the process to (Zn,n ∈ Z). For reasons of symmetry, it is enough to exhibit
a nonincreasing nonnegative sequence wn such that

∞∑
n=0

wn = ∞(4.5)

and
∞∑

n=0

wn[l(x, n + 1)(ω′) − l(x, n)(ω′)] < ∞(4.6)

for P′ × Leb-almost every (ω′, x).

Let wn = (1 + n)−θ with some 1 − H < θ ≤ 1. Since θ ≤ 1, the condition (4.5)
is satisfied. To check (4.6), it is clearly enough to find a strictly positive measurable
function g such that

E′
∫

R

g(x)

∞∑
n=0

wn[l(x, n + 1)(ω′) − l(x, n)(ω′)]dx < ∞.(4.7)

Note that

E′
∫

R

g(x)

∞∑
n=0

wn[l(x, n+1)(ω′)− l(x, n)(ω′)]dx =
∞∑

n=0

wn

∫ n+1

n
E′g(BH (t)) dt.

Choose g(x) = exp(−x2/2) so that for all t ≥ 0

E′g(BH (t)) = 1

(1 + t2Hσ 2)1/2 ,

where σ 2 = VarBH(1). The left-hand side of (4.7) is then
∞∑

n=0

wn

∫ n+1

n

dt

(1 + t2Hσ 2)1/2 ≤
∞∑

n=0

wn

1

(1 + n2Hσ 2)1/2 < ∞(4.8)

by the choice of θ . Hence, (4.6) follows. �

REMARK 4.2. It follows from Theorem 4.1 that (for 1 < α < 2) the FBM-H -
local time fractional SαS motion is different from the linear fractional SαS motion
(or, more generally, from the self-similar mixed average processes of [26]) since
the increments of the latter are generated by dissipative flows, and it is also dif-
ferent from the real harmonizable fractional SαS motion whose increments are
generated by positive flows.

In particular, the FBM-H -local time fractional SαS noise can be viewed as a
long memory process; its memory is longer than that of the linear fractional SαS
noise, but shorter than that of the harmonizable fractional SαS noise. Implications
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of this will be seen, in particular, when we discuss smoothness of the sample paths
in the next section. This is a reminder that very little is determined merely by the
exponent of self-similarity for α-stable SSSI processes.

REMARK 4.3. It follows immediately from Theorem 4.1 and Theorem 3.1 in
[33] that the FBM-H -local time fractional SαS noise is (unlike the harmonizable
fractional SαS noise) ergodic. It is easy to show that it is also a mixing process.
Indeed, it suffices to show that, for any 0 < a < b and ε > 0,

lim
n→∞(P′ × Leb){(ω′, x) :a ≤ l(x,1)(ω′) ≤ b,

(4.9)
l(x, n + 1)(ω′) − l(x, n)(ω′) > ε} = 0;

see, for example, [11] or [30]. Since the left-hand side of (3.3) is finite, we see that

(P′ × Leb){(ω′, x) :a ≤ l(x,1)(ω′) ≤ b} < ∞,

and so, given δ > 0, for K large enough,

(P′ × Leb)

{
(ω′, x) :a ≤ l(x,1)(ω′) ≤ b, sup

0≤t≤1
|BH(t)| > K

}
≤ δ.

For such K ,

(P′ × Leb){(ω′, x) :a ≤ l(x,1)(ω′) ≤ b, l(x, n + 1)(ω′) − l(x, n)(ω′) > ε}
≤ δ + (P′ × Leb){(ω′, x) : |x| ≤ K, l(x, n + 1)(ω′) − l(x, n)(ω′) > ε}
≤ δ + 2KP′(BH(t) ∈ [−K,K] for some n < t ≤ n + 1

)
.

Since the last probability clearly goes to zero as n → ∞, we conclude that

lim sup
n→∞

P′ × Leb{(ω′, x) :a ≤ l(x,1)(ω′) ≤ b,

l(x, n + 1)(ω′) − l(x, n)(ω′) > ε} ≤ δ,

which proves (4.9), since δ > 0 is arbitrary.

We close this section by addressing the point mentioned in Remark 3.2. Since, in
the case α = 1, the exponent of self-similarity of an FBM-H -local time fractional
motion does not depend on H , one may suspect that H does not change the law of
the process itself (up to, perhaps, a multiplicative constant). The following result
shows that this is not the case, and so the parameter H parameterizes an entire
family of different 1-stable SSSI processes that does not have either a Lévy 1-stable
motion or a straight line process as a component (indeed, the former would have
introduced a dissipative component to the flow generating the increment process,
while the latter would have introduced a positive component to that flow):
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PROPOSITION 4.4. Let α = 1 and 0 < H1,H2 < 1 with H1 	= H2. Then, there
is no constant C such that(

YH1(t), t ≥ 0
) d= (

CYH2(t), t ≥ 0
)
,

where (YHi
(t), t ≥ 0) is an FBM-Hi-local time fractional motion with α = 1, i =

1,2.

PROOF. Assume that H1 < H2. If some C with the above property existed,
then we could use the fact that the kernel in the representation (4.2) has full support
and Theorem 1.1 of [29] to connect the kernels with different H . Specifically, there
would exist measurable maps

A :�′ × R �→ R \ {0},
	1 :�′ × R �→ R,

	2 : �′ × R �→ �′,

such that

lH1(x, n + 1)(ω′) − lH1(x, n)(ω′)
= A(ω′, x)

(
lH2

(
	1(ω

′, x), n + 1
)(

	2(ω
′, x)

)
(4.10)

− lH2

(
	1(ω

′, x), n
)(

	2(ω
′, x)

))
, n ∈ N,

for P′
1 × Leb-almost every ω′ ∈ �′, x ∈ R, where we have added subscripts to the

local times with the obvious meaning, and P′
i is the probability measure on �′

corresponding to the fractional Brownian motion with exponent Hi . Adding up,
we obtain

lH1(x, n)(ω′) = A(ω′, x)lH2

(
	1(ω

′, x), n
)(

	2(ω
′, x)

)
, n ∈ N,(4.11)

for P′
1 × Leb-almost every ω′ ∈ �′, x ∈ R.

By (2.6), Markov inequality and boundedness of the moments of the local time,
there is a finite K such that, for every x ∈ R, t > 0 and ε, δ > 0,

P′
2
(
lH2(x, t) > εt1−H2+δ) ≤ Kε−2t−2δ,(4.12)

and so by Borel–Cantelli lemma

P′
2
(
lH2(x,2m) > ε2m(1−H2+δ) infinitely often in m

) = 0(4.13)

for every x ∈ R. By Fubini’s theorem,

(P′
2 × Leb)(Gc) = 0,(4.14)

where

G =
{
(ω′, x), lim

m→∞
lH2(x,2m)(ω′)

2m(1−H2+δ)
= 0

}
.(4.15)
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Therefore, in the definition (3.1) of the process (Y (t), t ≥ 0) for H = H2, we can
restrict the integral from �′ × R to G only and then, in (4.10) and (4.11), we will
have (

	1(ω
′, x),	2(ω

′, x)
) ∈ G(4.16)

for all ω ∈ �′, x ∈ R. This means that for P′
1 × Leb-almost every ω ∈ �′, x ∈ R,

we have

lim
m→∞

lH1(x,2m)(ω)

2m(1−H2+δ)
= 0.(4.17)

Therefore, there is x ∈ R, such that (4.17) holds P′
1-a.s.

However, by (2.6),

P′
1
(
lH1(x,2m) > 2m(1−H2+δ)) = P′

1

(
lH1

(
x

2mH1
,1

)
> 2m(H1−H2+δ)

)
.

If δ < H2 − H1 this then gives us

lim inf
m→∞ P′

1
(
lH1(x,2m) > 2m(1−H2+δ)) ≥ P′

1
(
lH1(0,1) > 0

) = 1 > 0,

contradicting (4.17). Therefore (4.10) is impossible and the proposition is proved.
�

5. Hölder continuity. The fact that the local times of the fractional Brownian
motion are continuous and monotone in the time variable already implies that a
FBM-H -local time fractional symmetric α-stable motion with 0 < α < 1 is sample
continuous (see, e.g., Theorem 10.4.2 of [34]) and the same is true for 1 < α < 2 by
the mere fact that H ′ > 1/α (see Theorem 12.4.1 of [34]). Our goal in this section
is to prove Hölder continuity of an FBM-H -local time fractional SαS motion for
all 0 < α < 2.

THEOREM 5.1. Let (Y (t), t ≥ 0) be an FBM-H -local time fractional SαS
motion, 0 < α < 2. Then, it has a version with continuous sample paths satisfying

sup
0≤s<t≤1/2

|Y(t) − Y(s)|
(t − s)1−H(log 1/(t − s))H+1/2 < ∞ a.s.(5.1)

REMARK 5.2. It is instructive to express the Hölder continuity statement
in (5.1) in terms of the exponent of self-similarity H ′ of the FBM-H -local time
fractional SαS motion and α, which can be done for α 	= 1. For such α, (5.1) means
that an FBM-H -local time fractional SαS motion is d-Hölder continuous with any

d <
H ′ − 1/α

1 − 1/α
.(5.2)

Let, for example, 1 < α < 2. Recall that a linear fractional SαS motion with ex-
ponent of self-similarity H ′ > 1/α is d-Hölder continuous with any d < H ′ −
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1/α [35], while a harmonizable fractional SαS motion is d-Hölder continuous
with any d < H ′ [16]. In particular, an FBM-H -local time fractional SαS motion
has smoother sample paths than a linear fractional SαS motion with the same ex-
ponent of self-similarity, and less smooth sample paths than a harmonizable frac-
tional SαS motion with the same exponent of self-similarity. This is not surprising
if one recalls that the increments of an FBM-H -local time fractional SαS motion
have “stronger dependence” than those of a linear fractional SαS motion, but not
as strong as those of a harmonizable fractional SαS motion.

Of course, since Theorem 5.1 only provides a lower bound on how smooth
the sample functions are, the above discussion should be taken with “a grain of
salt.” We conjecture, however, that the upper bound on the Hölder exponent of
the FBM-H -local time fractional SαS motion cannot be improved. In the case
H = 1/2, this is shown in Remark 5.3 below.

PROOF OF THEOREM 5.1. We will use a series representation of the stochas-
tic integral (3.1) defining the FBM-H -local time fractional SαS motion. In distri-
bution,

Y(t) = Cα

∞∑
j=1

Gj�
−1/α
j e

X2
j /2α

lj (Xj , t), t ≥ 0,(5.3)

where Cα is a finite positive constant that depends only on α, where (Gj ), (�j ),
(Xj ) and (lj ) are four independent sequences such that (Gj ) and (Xj ) are i.i.d.
standard normal random variables, (�j ) are the arrival times of a unit rate Poisson
process on (0,∞) and (lj ) are i.i.d. copies of the local time process of a fractional
Brownian motion; see Section 3.10 in [34].

Assume that the sequence (Gj ) is defined on some probability space (�1,F1,

P1), while the rest of the random variables on the right-hand side of (5.3) are
defined on some other probability space (�2,F2,P2), so that the FBM-H -local
time fractional SαS motion in the left-hand side of (5.3) is defined on the product
of these two spaces. Let

Kj = sup
x∈R

0≤s<t≤1/2

lj (x, t) − lj (x, s)

(t − s)1−H(log 1/(t − s))H
, j = 1,2, . . . ,

and notice that, for a fixed ω2 ∈ �2, the process in (5.3) is centered Gaussian with
the incremental variance

E1
(
Y(t) − Y(s)

)2 = C2
α

∞∑
j=1

�
−2/α
j e

X2
j /α(

lj (Xj , t) − lj (Xj , s)
)2

≤
(
C2

α

∞∑
j=1

�
−2/α
j e

X2
j /α

K2
j

)
(t − s)2(1−H)

(
log

1

t − s

)2H

(5.4)

:= M(ω2)(t − s)2(1−H)

(
log

1

t − s

)2H
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for all 0 ≤ s < t ≤ 1/2, where M is a P2-a.s. finite random variable on (�2,F2,P2)

(the latter statement follows from the fact that E2K
α
j < ∞).

Applying now classical results on moduli of continuity of Gaussian processes
(see, e.g., Theorem 2.1 of [8]) we obtain that, for P2-almost every ω2 ∈ �2,

sup
0≤s<t≤1/2
s,t rational

|Y(t) − Y(s)|
(t − s)1−H(log 1/(t − s))H+1/2 < ∞, P1-a.s.

By Fubini’s theorem,

sup
0≤s<t≤1/2
s,t rational

|Y(t) − Y(s)|
(t − s)1−H(log 1/(t − s))H+1/2 < ∞, P1 × P2-a.s.,

which is equivalent to the statement of the theorem. �

REMARK 5.3. It is easy to show that, at least for H = 1/2, the result of
Theorem 5.1 is “almost” sharp in the sense that there does not exist a function
g : (0,1/2) → (0,∞) with

lim
t→0

g(t)

t1/2(log 1/t)1/2 = 0

and, with positive probability,

sup
0≤s<t≤1/2

|Y(t) − Y(s)|
g(t − s)

< ∞.(5.5)

Indeed, assume that such a function, in fact, exists. By the zero–one law for stable
processes; see Section 9.5 in [34]. (5.5) would then hold with probability 1. It
follows (e.g., by [28]), that we must have

sup
0≤s<t≤1/2

|l(x, t) − l(x, s)|
g(t − s)

< ∞ a.s.(5.6)

for almost every x ∈ R. Choose x for which (5.6) holds and note that by the strong
Markov property and [12],

P′
(

sup
0≤s<t≤1/2

|l(x, t) − l(x, s)|
g(t − s)

= ∞
)

≥ P′
(

inf{u ≥ 0 :B1/2(u) = x} ≤ 1

4

)
P′

(
sup

0≤s<t≤1/4

|l(0, t) − l(0, s)|
g(t − s)

= ∞
)

= P′
(

inf{u ≥ 0 :B1/2(u) = x} ≤ 1

4

)
> 0,

contradicting the necessity of (5.5) to hold with probability 1.
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6. Expansion into absolutely continuous terms. The sample paths of (mea-
surable) H -SSSI processes are almost never absolutely continuous with respect to
the Lebesgue measure, the only exception being the case H = 1 with the process
being the straight line process Y(t) = tY (1) a.s. for all t (see Theorem 3.3 of [37]).
Nonetheless, there is a school of thought viewing nature as “producing smooth
objects,” with the others being more of a mathematical abstraction. In particular,
smooth modifications of various mathematical models are of interest; see, for ex-
ample, the “physical fractional Brownian motion” of [13]. In this section we use
the chaos expansion of the local times of fractional Brownian motions due to [9]
to construct an expansion of the FBM-H -local time fractional SαS motion into a
series of absolutely continuous SαS self-similar processes, all with the same ex-
ponent of self-similarity as the original process. We first introduce the required
notation.

For σ > 0, let pσ 2 denote the density of a zero mean normal random variable
with variance σ 2. Hn is the nth Hermite polynomial

Hn(x) = (−1)n

n! exp
(

x2

2

)
dn

dxn

(
exp

(
−x2

2

))
, x ∈ R,

with H0(x) ≡ 1. Let (�′,F ′,P′) be a probability space supporting a Brownian
motion (W(s), s ∈ R), and let In be the nth Wiener–Itô integral with respect to
this Brownian motion. We refer the reader to [23] for information on these notions.
Finally, let KH be the kernel defined by

KH(t, s) = (t − s)H−1/2 − (H − 1/2)

∫ t

s
(r − s)H−3/2

(
1 −

(
s

r

)−(H−1/2))
dr

for 0 < s < t and equal to zero for other values of s, t . Note that, in distribution,

BH(t) =
(

VarBH(1)

CH

)1/2 ∫ t

0
KH(t, s)W(ds), t ≥ 0,(6.1)

where CH is a finite positive constant depending only on H (see, e.g., [2]).

THEOREM 6.1. Let (Y (t), t ≥ 0) be an FBM-H -local time fractional SαS
motion. In distribution,

Y(t) =
∞∑

n=0

Wn(t) :=
∞∑

n=0

∫
�′

∫
R

hn(x, t)(ω′)M(dω′, dx), t ≥ 0,(6.2)

where, for n = 0,1, . . . ,

hn(x, t) = hn(x, t)(ω′)
(6.3)

= C
−n/2
H

σ

∫ t

0

ps2H (x/σ)

snH
Hn

(
x/σ

sH

)
In

(
KH(s, ·)⊗n)

ds,
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with σ 2 = VarBH(1), and M an SαS random measure on the space �′ × R

with control measure P′ × Leb. Each process (Wn(t), t ≥ 0) is a self-similar SαS
process with exponent of self-similarity H ′ = 1−H +H/α and has a modification
with absolutely continuous sample paths. Moreover, the series in (6.2) converges
in probability.

PROOF. We first check that each (Wn(t), t ≥ 0) is a well-defined SαS process.
Note that

(σC
n/2
H )α

∫
�′

∫
R

hα
n(x, t)(ω′)P′(dω′) dx

= (σC
n/2
H )αE′

∫
R

hα
n(x, t) dx

≤
∫

R

[
E′

(∫ t

0

ps2H (x/σ)

snH
Hn

(
x/σ

sH

)
In

(
KH(s, ·)⊗n)

ds

)2]α/2

dx

≤
∫

R

{∫ t

0

ps2H (x/σ)

snH

∣∣∣∣Hn

(
x/σ

sH

)∣∣∣∣[E′(In

(
KH(s, ·)⊗n))2]1/2

ds

}α

dx.

By (6.1)

E′(In

(
KH(s, ·)⊗n))2 = n!‖KH(s, ·)⊗n‖2

2 = n!‖KH(s, ·)‖2n
2 = n!Cn

H (s2H )n.

Therefore,

σα

(n!)α/2 E′
∫

R

hα
n(x, t) dx ≤

∫
R

(∫ t

0
ps2H (x/σ)

∣∣∣∣Hn

(
x/σ

sH

)∣∣∣∣ds

)α

dx

=
∫

R

(∫ t

0
p1

(
x

σsH

)∣∣∣∣Hn

(
x/σ

sH

)∣∣∣∣ ds

sH

)α

dx.

Observe that the function ϕ(x) = p1(x)1/2|Hn(x)| is continuous and bounded on
the entire real line. Therefore,∫ t

0
p1

(
x

σsH

)∣∣∣∣Hn

(
x/σ

sH

)∣∣∣∣ ds

sH
≤ c

(
p1

(
x

σ tH

))1/2 ∫ t

0

ds

sH

for some finite positive c independent of x. Therefore,

E′
∫

R

hα
n(x, t) dx < ∞,(6.4)

and so each (Wn(t), t ≥ 0) is a well-defined SαS process.
The next step is to check that each process (Wn(t), t ≥ 0) is self-similar, with

the exponent of self-similarity given by (3.2). We will use two simple scaling facts.
The first is simply

KH(au,w) = aH−1/2KH(u,w/a)(6.5)
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for all a > 0 and all u,w, and the second is a consequence of the self-similarity
of a Brownian motion: for any n ≥ 1,m ≥ 1, any square-integrable symmetric
functions f1, . . . , fm and a > 0,(

In(fi(·a)), i = 1, . . . ,m
) d= (

a−n/2In(fi), i = 1, . . . ,m
)
.(6.6)

We assume, for simplicity, that σ = 1.
Now let m ≥ 1, 0 < t1 < · · · < tm, θ1, . . . , θm ∈ R and a > 0. We have

− log E exp

{
iC

n/2
H

m∑
j=1

θjWn(atj )

}

=
∫

R

(
E′

∣∣∣∣∣
m∑

j=1

θj

∫ atj

0

ps2H (x)

snH
Hn

(
x

sH

)
In

(
KH(s, ·)⊗n)

ds

∣∣∣∣∣
α)

dx

= aα−αnH
∫

R

(
E′

∣∣∣∣∣
m∑

j=1

θj

∫ tj

0

pa2H u2H (x)

unH
Hn

(
x

aHuH

)

× In

(
KH(au, ·)⊗n)

du

∣∣∣∣∣
α)

dx

= aα−αnH
∫

R

(
E′

∣∣∣∣∣
m∑

j=1

θj

∫ tj

0

pu2H (x/aH )

aHunH
Hn

(
x

aHuH

)

× In

(
KH(au, ·)⊗n)

du

∣∣∣∣∣
α)

dx

= aα−αnH+H−αH
∫

R

(
E′

∣∣∣∣∣
m∑

j=1

θj

∫ tj

0

pu2H (y)

unH
Hn

(
y

uH

)

× In

(
KH(au, ·)⊗n)

du

∣∣∣∣∣
α)

dy

= aα−αn/2+H−αH
∫

R

(
E′

∣∣∣∣∣
m∑

j=1

θj

∫ tj

0

pu2H (y)

unH
Hn

(
y

uH

)

× In

(
KH

(
u,

·
a

)⊗n)
du

∣∣∣∣∣
α)

dy

= aα+H−αH
∫

R

(
E′

∣∣∣∣∣
m∑

j=1

θj

∫ tj

0

pu2H (y)

unH
Hn

(
y

uH

)
In

(
KH(u, ·)⊗n)

du

∣∣∣∣∣
α)

dy

= − log E exp

{
iC

n/2
H

m∑
j=1

θja
H ′

Wn(atj )

}
,
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where the fifth equality follows from (6.5) and the sixth equality follows
from (6.6). This proves the claimed self-similarity.

Because of self-similarity, it is enough to prove absolute continuity on the inter-
val [0,1]. The proof will be done in three different cases; each consists of checking
the conditions of Theorem 11.7.4 in [34].

If 0 < α < 1, we need to check that∫
R

E′
(∫ 1

0

∣∣∣∣∂hn

∂t
(x, t)

∣∣∣∣dt

)α

dx < ∞.

This is, however, an immediate consequence of the computation leading to (6.4).
If 1 < α < 2, we need to check∫ 1

0

(∫
R

E′
∣∣∣∣∂hn

∂t
(x, t)

∣∣∣∣
α

dx

)1/α

dt < ∞.(6.7)

We have, for t > 0∫
R

E′
∣∣∣∣∂hn

∂t
(x, t)

∣∣∣∣
α

dx =
∫

R

E′
∣∣∣∣pt2H (x)

tnH
Hn

(
x

tH

)
In

(
KH(t, ·)⊗n)∣∣∣∣

α

dx

≤ t−αnH (
E′In

(
KH(t, ·)⊗n)2)α/2

×
∫

R

(p1(x/tH )|Hn(x/tH )|)α
tαH

dx

= bnt
−(α−1)H ,

for some 0 < bn < ∞. Since ∫ 1

0
t−(α−1)H/α dt < ∞,

(6.7) follows.
Finally, in the case α = 1, the necessary and sufficient conditions for absolute

continuity are less convenient to check. However, a stronger statement, that the
process is absolutely continuous with a derivative in Lp[0,1] for some 1 < p ≤ 2,
requires checking that

∫
R

E′
(∫ 1

0

∣∣∣∣∂hn

∂t
(x, t)

∣∣∣∣
p

dt

)1/p

dx < ∞,

which follows in the same way as (6.4). We omit the repetitive details.
It remains to prove that the sequence (6.2) converges in probability. By Propo-

sition 4 of [9], for every x and t

l(x, t) =
∞∑

n=0

hn(x, t), P′-a.s.
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By definition (3.1) of the process (Y (t), t ≥ 0), it is enough to prove that∫
R

E′
∣∣∣∣∣l(x, t) −

m∑
n=0

hn(x, t)

∣∣∣∣∣
α

dx → 0 as m → ∞.(6.8)

We will estimate the expectation in (6.8) in two different ways. First note that, for
every m,

E′
∣∣∣∣∣l(x, t) −

m∑
n=0

hn(x, t)

∣∣∣∣∣
α

≤ Cα

[
E′l(x, t)α +

(
E′

(
m∑

n=0

hn(x, t)

)2)α/2]

≤ Cα

[
E′l(x, t)α + (

E′l(x, t)2)α/2]
≤ Cα

(
E′l(x, t)2)α/2

,

where Cα is a finite positive constant depending only on α and allowed to change
from place to place. The argument used in (3.3) shows that∫

R

(
E′l(x, t)2)α/2

dx < ∞.

Therefore, given ε > 0, one can choose M ∈ (0,∞) such that for all m ≥ 1,∫
R

E′
∣∣∣∣∣l(x, t)−

m∑
n=0

hn(x, t)

∣∣∣∣∣
α

dx ≤ ε+
∫ M

−M
E′

∣∣∣∣∣l(x, t)−
m∑

n=0

hn(x, t)

∣∣∣∣∣
α

dx.(6.9)

Next, we estimate the expectation in (6.8) in a different way. Note that by the
orthogonality of (hn)’s with different n,

E′
∣∣∣∣∣l(x, t) −

m∑
n=0

hn(x, t)

∣∣∣∣∣
α

≤
(
E′

(
l(x, t) −

m∑
n=0

hn(x, t)

)2)α/2

=
(
E′

( ∞∑
n=m+1

hn(x, t)

)2)α/2

=
( ∞∑

n=m+1

E′(hn(x, t)
)2

)α/2

and, as in the proof of Proposition 4 in [9], we conclude that there exist some
δm,t → 0 as m → ∞ such that, for all x ∈ R,

E′
∣∣∣∣∣l(x, t) −

m∑
n=0

hn(x, t)

∣∣∣∣∣
α

≤ δm,t .

Substituting this bound into (6.9), we conclude that∫
R

E′
∣∣∣∣∣l(x, t) −

m∑
n=0

hn(x, t)

∣∣∣∣∣
α

dx ≤ ε + 2Mδm,t .
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Letting first m → ∞ and then ε → 0 proves (6.8), and so the proof of the theorem
is now complete. �

REMARK 6.2. It is clear from the proof of the theorem that the derivative of
each process (Wn(t), t ≥ 0) is in Lp[0,1] for a range of p > 1 in all cases, and not
only for α = 1. We will not pursue this point here, however.

7. Convergence of the random reward scheme. In this section we establish
the limit theorem in the random reward scheme discussed in the Introduction. We
start by setting up the notation. Let (W

(i)
k , k ∈ Z, i ≥ 1) be an array of i.i.d. sym-

metric random variables whose distribution satisfies (1.1). Let (V
(i)
k , k ≥ 1, i ≥ 1)

be an array of i.i.d. mean zero and unit variance integer-valued random variables,
independent of (W

(i)
k , k ∈ Z, i ≥ 1). Let S

(i)
n = V

(i)
1 + · · · + V

(i)
n , n ≥ 0, be the ith

random walk, i = 1,2, . . . , and define for j ∈ Z and n ≥ 1

ϕ(j,n; i) =
n∑

k=1

1
(
S

(i)
k = j

)
(7.1)

to be the number of times the ith random walk visits the state j by time n, i =
1,2, . . . . Define ϕ(j, t; i) for noninteger values of t ≥ 0 by interpolating linearly
between ϕ(j,n; i) and ϕ(j,n + 1; i) if n ≤ t < n + 1 [we use ϕ(j,0; i) = 0].
Notice that the total reward earned by the ith user by time t can be written as

R(i)(t) =
∞∑

k=−∞
W

(i)
k ϕ(k, t; i)

(of course, this is really a linear interpolation for noninteger t). The limit theo-
rem below shows that, if both the number of users and the time scale grow at an
arbitrary rate, then the properly normalized total reward converges weakly to the
FBM-1/2-local time fractional symmetric α-stable motion. This is related to the
convergence result in [15] (which allows more general random walks) where only
one user is present.

THEOREM 7.1. For every sequence (bn) of positive integers with bn → ∞ we
have, as n → ∞,(

1

(nb
(α+1)/2
n )

1/α

n∑
i=1

R(i)(bnt), t ≥ 0

)
�⇒ (

(2/Cα)1/ασWY (t), t ≥ 0
)

(7.2)

weakly in C([0,∞)), where (Y (t), t ≥ 0) is the FBM-1/2-local time fractional
symmetric α-stable motion defined in (3.1) (with the local time being that of a
standard Brownian motion). Here, σW is the tail weight in (1.1) and Cα is the
stable tail constant given by

Cα =
(∫ ∞

0
x−α sinx dx

)−1
.(7.3)
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PROOF. By extending the probability space on which random objects are de-
fined, if necessary, we can construct a sequence of i.i.d. standard Brownian mo-
tions (B(i)(t), t ≥ 0), i = 1,2, . . . , with jointly continuous local time processes
(l(i)(x, t), t ≥ 0, t ∈ R), i = 1,2, . . . , such that, for every T > 0,

sup
x∈R,0≤t≤nT

∣∣∣∣ϕ([x], t; i) − n1/2l(i)
(

x√
n
,

t

n

)∣∣∣∣ → 0(7.4)

in probability as n → ∞, i = 1,2, . . .; see Theorem 1 of [5]. Define, for n ≥ 1,

Xn(t) = 1

(nb
1/2
n )

1/α

n∑
i=1

∞∑
k=−∞

W
(i)
k l(i)

(
k√
bn

, t

)
, t ≥ 0.(7.5)

Notice that, for t ≥ 0,

En(t) := 1

(nb
(α+1)/2
n )

1/α

n∑
i=1

R(i)(bnt) − Xn(t)

= 1

(nb
(α+1)/2
n )

1/α
(7.6)

×
n∑

i=1

∞∑
k=−∞

W
(i)
k

(
ϕ(k, bnt; i) − b1/2

n l(i)
(

k√
bn

, t

))
.

We first prove that, for every t > 0,

En(t) → 0 in probability.(7.7)

For notational simplicity, we prove (7.7) for t = 1.
First, it follows from the tail behavior (1.1) that there is a constant b > 0 such

that ∣∣W(i)
k

∣∣ st≤b
(
1 + ∣∣R(i)

k

∣∣)(7.8)

(in the sense of stochastic comparison), where (R
(i)
k , k ∈ Z, i ≥ 1) is an array of

i.i.d. standard SαS random variables. Therefore, by the contraction inequality (see
Section 1.2 of [18]) we conclude that

P
(|En(1)| > ε

)
≤ 2P

(
1

(nb
(α+1)/2
n )

1/α

×
n∑

i=1

∞∑
k=−∞

ε
(i)
k

(
1 + ∣∣R(i)

k

∣∣)

×
(
ϕ(k, bn; i) − b1/2

n l(i)
(

k√
bn

,1
))

> ε/b

)
(7.9)
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≤ 2P

(
1

(nb
(α+1)/2
n )

1/α

×
n∑

i=1

∞∑
k=−∞

ε
(i)
k

(
ϕ(k, bn; i) − b1/2

n l(i)
(

k√
bn

,1
))

> ε/(2b)

)

+ 2P

(
1

(nb
(α+1)/2
n )

1/α

×
n∑

i=1

∞∑
k=−∞

R
(i)
k

(
ϕ(k, bn; i) − b1/2

n l(i)
(

k√
bn

,1
))

> ε/(2b)

)

:= p1(n) + p2(n),

where (ε
(i)
k , k ∈ Z, i ≥ 1) is an array of i.i.d standard symmetric Rademacher ran-

dom variables. We need to show that

pj (n) → 0 as n → ∞ for j = 1,2.(7.10)

We estimate p2(n). Note that

p2(n)/2

= P

((
1

nb
(α+1)/2
n

×
n∑

i=1

∞∑
k=−∞

∣∣∣∣ϕ(k, bn; i) − b1/2
n l(i)

(
k√
bn

,1
)∣∣∣∣

α
)1/α

R
(1)
1 > ε/(2b)

)
,

and so the statement (7.10) with j = 2 will follow once we show that

1

nb
(α+1)/2
n

n∑
i=1

∞∑
k=−∞

∣∣∣∣ϕ(k, bn; i) − b1/2
n l(i)

(
k√
bn

,1
)∣∣∣∣

α

→ 0(7.11)

in probability as n → ∞. The expectation of the expression in the left-hand side
of (7.11) is

1

b
(α+1)/2
n

E

∞∑
k=−∞

∣∣∣∣ϕ(k, bn;1) − b1/2
n l(1)

(
k√
bn

,1
)∣∣∣∣

α

≤ 1

b
(α+1)/2
n

E

∞∑
k=−∞

∣∣∣∣ϕ(k, bn;1) − b1/2
n l(1)

(
k√
bn

,1
)∣∣∣∣

α

× 1
(∣∣∣∣ϕ(k, bn;1) − b1/2

n l(1)

(
k√
bn

,1
)∣∣∣∣ ≤ 1

)
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+ 1

b
(α+1)/2
n

× E

[( ∞∑
k=−∞

∣∣∣∣ϕ(k, bn;1) − b1/2
n l(1)

(
k√
bn

,1
)∣∣∣∣

2
)α/2

×
( ∞∑

k=−∞
1
(∣∣∣∣ϕ(k, bn;1) − b1/2

n l(1)

(
k√
bn

,1
)∣∣∣∣ > 1

))1−α/2]

≤ 1

b
(α+1)/2
n

E

∞∑
k=−∞

∣∣∣∣ϕ(k, bn;1) − b1/2
n l(1)

(
k√
bn

,1
)∣∣∣∣

α

× 1
(∣∣∣∣ϕ(k, bn;1) − b1/2

n l(1)

(
k√
bn

,1
)∣∣∣∣ ≤ 1

)

+ 1

b
(α+1)/2
n

E

[( ∞∑
k=−∞

∣∣∣∣ϕ(k, bn;1) − b1/2
n l(1)

(
k√
bn

,1
)∣∣∣∣

2
)α/2

× (
2M(1)(bn) + 1

)1−α/2

× 1
(

sup
k∈Z

∣∣∣∣ϕ(k, bn;1) − b1/2
n l(1)

(
k√
bn

,1
)∣∣∣∣ > 1

)]

:= p21(n) + p22(n),

where

M(i)(m) = max
(

sup
0≤k≤m

∣∣S(i)
k

∣∣,√m sup
0≤t≤1

∣∣B(i)(t)
∣∣).

For the second inequality above, we have bounded a sum from above by the num-
ber of nonvanishing terms times the largest nonvanishing term. A similar argument
will be used in the sequel without further comment. We have

p21(n) ≤ 1

b
(α+1)/2
n

E
(
2M(1)(bn) + 1

)

≤ c
1

b
(α+1)/2
n

b1/2
n = cb−α/2

n → 0 as n → ∞.

Furthermore,

p22(n) ≤ 1

b
(α+1)/2
n

(
E

∞∑
k=−∞

∣∣∣∣ϕ(k, bn;1) − b1/2
n l(1)

(
k√
bn

,1
)∣∣∣∣

2
)α/2

× (
E

(
2M(1)(bn) + 1

)
1
(
�1(bn) > 1

))1−α/2
,
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where

�i(n) = sup
k∈Z

∣∣∣∣ϕ(k, bn; i) − b1/2
n l(i)

(
k√
bn

,1
)∣∣∣∣.

Using Lemma 1 of [15] and the fact that the largest value of a Brownian local
time at time 1 has all moments finite, the first expectation in the right-hand side is
bounded above by cb

3/2
n . Therefore,

p22(n) ≤ c
1

b
(α+1)/2
n

b3α/4
n

(
EM(1)(bn)

3/2)(2−α)/3(
P

(
�1(bn) > 1

))(1−α/2)/3

≤ c
1

b
(α+1)/2
n

b3α/4
n (b3/4

n )(2−α)/3(
P

(
�1(bn) > 1

))(1−α/2)/3

≤ c
(
P

(
�1(bn) > 1

))(1−α/2)/3 → 0 as n → ∞,

by (7.4) (as always, c is a finite positive constant that may change from instance
to instance). Therefore, (7.11) holds, and so we have established (7.10) for j = 2.
The proof for j = 1 is similar. Thus, we have obtained (7.7).

The next step is to show that the finite-dimensional distributions of the process
(Xn(t), t ≥ 0) in (7.5) converge to those of (Y (t), t ≥ 0). For this, it is enough to
show that, for every k ≥ 1, 0 < t1 < · · · < tk and θ1, . . . , θk ∈ R,

k∑
j=1

θjXn(tj ) �⇒
k∑

j=1

θjY (tj ) as n → ∞.

We will see that this is true for k = 1 and t1 = 1; the general case is only notation-
ally different. That is, we will show that

1

(nb
1/2
n )

1/α

n∑
i=1

∞∑
k=−∞

W
(i)
k l(i)

(
k√
bn

,1
)

�⇒ Y(1) as n → ∞.(7.12)

By Theorem 8 in Chapter 6 of [24] it is enough to prove that, for every λ > 0,

lim
n→∞nP

( ∞∑
k=−∞

W
(1)
k l(1)

(
k√
bn

,1
)

> λ(nb1/2
n )1/α

)

(7.13)
→ σα

WE

∫
R

l(x, t)α dx λ−α

and

lim
ε→0

lim sup
n→∞

n

(nb
1/2
n )

2/α

× E

[( ∞∑
k=−∞

W
(1)
k l(1)

(
k√
bn

,1
))2

(7.14)
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× 1

(∣∣∣∣∣
∞∑

k=−∞
W

(1)
k l(1)

(
k√
bn

,1
)∣∣∣∣∣ ≤ ε(nb1/2

n )1/α

)]
= 0

(we have used the symmetry of W ’s to simplify the conditions).
We start by checking (7.13). The first step is to prove that, for every λ > 0,

lim
K→∞ lim sup

n→∞
nP

( ∑
|k|>K

√
bn

W
(1)
k l(1)

(
k√
bn

,1
)

> λ(nb1/2
n )1/α

)
= 0.(7.15)

By using the contraction inequality, the stochastic comparison (7.8) and the nota-
tion following it, it is enough to prove that, for every λ > 0, (7.15) holds with each
W

(1)
k being replaced by R

(1)
k , and with each W

(1)
k being replaced by ε

(1)
k . The two

statements are similar; we only present the argument in the case of stable weights.
In that case, the expression corresponding to that in the left-hand side of (7.15) is
equal to

nP

(( ∑
|k|>K

√
bn

l(1)

(
k√
bn

,1
)α

)1/α

R
(1)
1 > λ(nb1/2

n )1/α

)

and, for some positive constant c, this bounded from above by

n

(
cλ−α(nb1/2

n )−1E

[ ∑
|k|>K

√
bn

l(1)

(
k√
bn

,1
)α

])

= cλ−αb−1/2
n E

[ ∑
|k|>K

√
bn

l(1)

(
k√
bn

,1
)α

]

≤ cλ−αE

(
sup
x∈IR

l(1)(x,1)

)α ∑
|k|>K

√
bn

P

(
sup

0≤s≤1

∣∣B(1)(s)
∣∣ ≥ k√

bn

)

→ 2cλ−α
∫ ∞
K

P

(
sup

0≤s≤1

∣∣B(1)(s)
∣∣ > x

)
dx.

Since the final expression converges to 0 as K → ∞, we have (7.15).
Now fix K and λ > 0. The usual “largest jump” large deviations approach (see,

e.g., [22]) and the continuity of the local time give us that, as n → ∞,

nP

( ∑
|k|≤K

√
bn

W
(1)
k l(1)

(
k√
bn

,1
)

> λ(nb1/2
n )1/α

)

∼ nP

(
max

|k|≤K
√

bn

W
(1)
k l(1)

(
k√
bn

,1
)

> λ(nb1/2
n )1/α

)

∼ n
∑

|k|≤K
√

bn

P

(
W

(1)
k l(1)

(
k√
bn

,1
)

> λ(nb1/2
n )1/α

)
(7.16)
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∼ n

∫ K
√

bn

−K
√

bn

P

(
W

(1)
k l(1)

(
x√
bn

,1
)

> λ(nb1/2
n )1/α

)
dx

=
∫ K

−K
(nb1/2

n )P
(
W

(1)
k l(1)(y,1) > λ(nb1/2

n )1/α)
dy

→
∫ K

−K
σα

Wλ−αE
(
l(1)(y,1)

)α
dy

(see, e.g., (2.7) in [31]).
(7.13) now follows from (7.15) and (7.16).
To show (7.14), note that

n

(nb
1/2
n )

2/α
E

[( ∞∑
k=−∞

W
(1)
k l(1)

(
k√
bn

,1
))2

× 1

(∣∣∣∣∣
∞∑

k=−∞
W

(1)
k l(1)

(
k√
bn

,1
)∣∣∣∣∣ ≤ ε(nb1/2

n )1/α

)]

≤ n

∫ ε2

0
P

[∣∣∣∣∣
∞∑

k=−∞
W

(1)
k l(1)

(
k√
bn

,1
)∣∣∣∣∣ > x1/2b1/2α

n n1/α

]
dx.

Using stochastic domination and contraction principle as above allows us to re-
place the random variables W

(i)
k in the above expression by SαS random variables

and by Rademacher random variables and, as before, we only consider the former
(because they have heavier tails). In that case, we have

n

∫ ε2

0
P

[∣∣∣∣∣
∞∑

k=−∞
R

(1)
k l(1)

(
k√
bn

,1
)∣∣∣∣∣ > x1/2b1/2α

n n1/α

]
dx

= n

∫ ε2

0
P

[∣∣R(1)
1

∣∣( ∞∑
k=−∞

(
l(1)

(
k√
bn

,1
))α

)1/α

> x1/2b1/2α
n n1/α

]
dx

≤ cb−1/2
n E

∞∑
k=−∞

(
l(1)

(
k√
bn

,1
))α ∫ ε2

0
x−α/2 dx,

from which (7.14) would follow once we check uniform boundedness of the n-de-
pendent coefficient above. However, this follows from

b−1/2
n E

∞∑
k=−∞

(
l(1)

(
k√
bn

,1
))α

≤ E

[
sup
x∈R

(
l(x,1)

)α(
2 sup

0≤t≤1

∣∣B(1)(t)
∣∣ + 1

)]
< ∞.

Therefore, we have (7.14) and, thus, convergence of the finite-dimensional distri-
butions in (7.2).
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It remains to prove tightness. Write, for M > 0,

1

(nb
(α+1)/2
n )

1/α

n∑
i=1

R(i)(bnt)

= 1

(nb
(α+1)/2
n )

1/α

n∑
i=1

∞∑
k=−∞

W
(i)
k 1

(∣∣W(i)
k

∣∣ > Mn1/αb1/2α
n

)
ϕ(k, bnt; i)

(7.17)

+ 1

(nb
(α+1)/2
n )

1/α

n∑
i=1

∞∑
k=−∞

W
(i)
k 1

(∣∣W(i)
k

∣∣ ≤ Mn1/αb1/2α
n

)
ϕ(k, bnt; i)

:= Yn(t) + Zn(t), t ≥ 0.

Notice that

P

(
sup

0≤t≤1
|Yn(t)| > 0

)
≤ 1 − [

P
(
for all |k| ≤ M(1)(bn),

∣∣W(1)
k

∣∣ ≤ Mn1/αb1/2α
n

)]n
.

Since for large n, with a changing constant c,

P
(
for all |k| ≤ M(1)(bn),

∣∣W(1)
k

∣∣ ≤ Mn1/αb1/2α
n

)
= E

[
P

(∣∣W(1)
1

∣∣ ≤ Mn1/αb1/2α
n

)]2M(1)(bn)+1

≥ E[1 − cM−αn−1b−1/2
n ]2M(1)(bn)+1

≥ E exp
{−cM−αn−1b−1/2

n

(
2M(1)(bn) + 1

)}
,

we obtain, using the inequality e−x ≥ 1 − x for x ≥ 0 and maximal inequality for
martingales,

P

(
sup

0≤t≤1
|Yn(t)| > 0

)
≤ 1 − [

1 − cM−αn−1b−1/2
n E

(
2M(1)(bn) + 1

)]n
≤ 1 − [1 − cM−αn−1]n → 1 − exp{−cM−α},

as n → ∞.
Since the last expression converges to zero as M → ∞, it follows from (7.17)

that it is enough to prove that, for each fixed M , the process (Zn(t),0 ≤ t ≤ 1) is
tight.

However, for all 0 ≤ s < t ≤ 1, we have

E
(
Zn(t) − Zn(s)

)2 = 1

n2/α−1b
(α+1)/α
n

E
[(

W
(1)
1

)21
(∣∣W(1)

1

∣∣ ≤ Mn1/αb1/2α
n

)]

× E

∞∑
k=−∞

(
ϕ(k, bnt;1) − ϕ(k, bns;1)

)2
.
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Since, for large x,

E
[(

W
(1)
1

)21
(∣∣W(1)

1

∣∣ ≤ x
)] ≤ 4

∫ x2

0
yP

(
W

(1)
1 > y

)
dy ≤ cx2−α,

we see that, for large n,

E
(
Zn(t) − Zn(s)

)2 ≤ cb−3/2
n E

∞∑
k=−∞

(
ϕ(k, bnt;1) − ϕ(k, bns;1)

)2

≤ c(t − s)3/2

as in the proof of Lemma 7 in [15]. We can now appeal to Theorem 12.3 in [4]
to prove tightness of the family of the processes (Zn(t),0 ≤ t ≤ 1) and, hence,
complete the proof. �

8. Discussion and possible extensions. We briefly mention several issues re-
lated to the model constructed in this paper.

It is clear that self-similar SαS processes with stationary increments could be
constructed using local times of self-similar processes with stationary increments
other than fractional Brownian motions. Symmetric stable Lévy motions with in-
dex of stability between 1 and 2 are obvious examples. One could also consider
additive functionals other than local times.

For the random reward scheme considered in Section 7, it is clear that, in or-
der to obtain in limit FBM-H -local time fractional symmetric α-stable motion
with H 	= 1/2, one has to introduce sufficiently long memory in the sequence of
steps of each random walk (V

(i)
k , k ≥ 1). One way to do it is to take a stationary

integer-valued sequence with slowly decaying correlations; alternatively, a certain
reinforcement mechanism could be used. This is left for a future work.

It is also instructive to note that, in Section 7, one obtains the same limit regard-
less of how fast the number of users grows. However, if one considers instead (as
is common in the literature) a fluid input system, where the random reward is not
gained instantaneously, but, instead, obtained over a stretch of time, it is likely that
different limits would be obtained, depending on the number of users. Possible lim-
its there would, probably, include fractional Brownian motions, FBM-H -local time
fractional symmetric α-stable motions and, perhaps, additional limit processes.
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