
The Annals of Applied Probability
2006, Vol. 16, No. 2, 475–515
DOI: 10.1214/105051605000000791
© Institute of Mathematical Statistics, 2006

OPTIMAL SCALING FOR PARTIALLY UPDATING
MCMC ALGORITHMS

BY PETER NEAL AND GARETH ROBERTS

University of Manchester and Lancaster University

In this paper we shall consider optimal scaling problems for high-
dimensional Metropolis–Hastings algorithms where updates can be chosen to
be lower dimensional than the target density itself. We find that the optimal
scaling rule for the Metropolis algorithm, which tunes the overall algorithm
acceptance rate to be 0.234, holds for the so-called Metropolis-within-Gibbs
algorithm as well. Furthermore, the optimal efficiency obtainable is indepen-
dent of the dimensionality of the update rule. This has important implica-
tions for the MCMC practitioner since high-dimensional updates are gen-
erally computationally more demanding, so that lower-dimensional updates
are therefore to be preferred. Similar results with rather different conclusions
are given for so-called Langevin updates. In this case, it is found that high-
dimensional updates are frequently most efficient, even taking into account
computing costs.

1. Introduction. There exist large classes of Markov chain Monte Carlo
(MCMC) algorithms for exploring high-dimensional (target) distributions. All
methods construct Markov chains with invariant distribution given by the target
distribution of interest. However, for the purposes of maximizing the efficiency
of the algorithm for Monte Carlo use, it is imperative to design algorithms which
give rise to Markov chains which mix sufficiently rapidly. Since all Metropolis–
Hastings algorithms require the specification of a proposal distribution, these im-
plementational questions can all be phrased in terms of proposal choice. This paper
is about two of these choices: the scaling and dimensionality of the proposal. We
shall work throughout with continuous distributions, although it is envisaged that
more general distributions might be amenable to similar study.

One important decision the MCMC user has to make in a d-dimensional prob-
lem concerns the dimensionality of the proposed jump. For instance, two extreme
types of algorithm are the following: propose a fully d-dimensional update of the
current state (according to a density with a density with respect to d-dimensional
Lebesgue measure) and accept or reject according to the Metropolis–Hastings ac-
ceptance probabilities; or, for each of the d components in turn, update that com-
ponent conditional on all the others according to some Markov chain which pre-
serves the appropriate conditional distribution. The most widely used example is
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the d-dimensional Metropolis algorithm, in one extreme, and the Gibbs sampler or
some kind of “Metropolis-within-Gibbs” scheme in the other. In between these two
options, there lie many intermediate strategies. An important question is whether
any general statements can be made about algorithm choice in this context, leading
to practical advice for MCMC practitioners.

In this paper we concentrate on two types of algorithm: Metropolis and
Metropolis adjusted Langevin algorithms (MALA). We consider strategies which
update a fixed proportion, c, of components at each iteration, and consider the effi-
ciency of the algorithms constructed asymptotically as d → ∞. In order to do this,
we shall extend the methodology developed in [6, 7] to our context. The analy-
sis produces clear cut results which suggest that, while full-dimensional Langevin
updates are worthwhile, full-dimensional Metropolis ones are asymptotically no
better than smaller dimensional updating schemes, so that the possible extra com-
putational overhead associated with their implementation always leads to their be-
ing suboptimal in practice. All this is initially done in the context of target densities
consisting of independent components, and this leads naturally to the question of
whether this simple picture is altered in any way in the presence of dependence.
Although this is difficult to explore in full generality, we do later consider this
problem in the context of a class of Gaussian dependent target distributions where
explicit results can be shown, and where the conclusions from the independent
component case remain valid.

It is now well recognized that highly correlated target distributions lead to
slow mixing for updating schemes where c < 1 (see, e.g., [5, 9]). However, it
is also known that spherically symmetric proposal distributions in d-dimensions
on highly correlated target densities can lead to slow mixing since the proposal
distribution is inappropriately shaped to explore the target (see [8]). So for highly
correlated target distributions, both high and small dimensional updating strategies
perform poorly. We shall explore these two competing algorithms in a Gaussian
context where explicit calculations are possible. Our work shows that, for c > 0,
for the Metropolis algorithm, these two slowing down effects are the same. In par-
ticular, this implies that the commonly used strategy of getting round high correla-
tion problems by block updating using Metropolis has no justification. In contrast,
for MALA full dimensional updating, c = 1, is shown to be optimal.

The paper is structured as follows. In Section 2 we outline the MCMC setup.
In Sections 3 and 4 we tackle the problem of scaling the variance of the proposal
distribution for RWM-within-Gibbs (Random walk Metropolis-within-Gibbs) and
MALA-within-Gibbs (Metropolis adjusted Langevin-within-Gibbs), respectively.
The approach taken is similar to that used for the full RWM/MALA algorithms, by
obtaining weak convergence to an appropriate Langevin diffusion as the dimension
of the state space, d converges to infinity. The results of Sections 3 and 4 are proved
for a sequence of d-dimensional product densities of the form

πd(xd) =
d∏

i=1

f (xd
i )(1.1)
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for some suitably smooth probability density f (·). In both Sections 3 and 4,
for each fixed, one-dimensional component of {Xd;d ≥ 1}, the one-dimensional
process converges weakly to an appropriate Langevin diffusion. The aim there-
fore is to scale the proposal variances so as to maximize the speed of the limiting
Langevin diffusion. Since each of the components of {Xd;d ≥ 1} are independent
and identically distributed, we shall prove the results for {Xd

1 ;d ≥ 1}.
However, it is at least plausible that the picture will be very different when

considering dependent densities. However, theoretical analysis in the limiting case
where results can be obtained and in simulations for more general cases, we find
that the general conclusions which can be derived for densities of the form (1.1)
extend some way toward dependent densities. To this end, in Section 5, we con-
sider RWM/MALA-within-Gibbs for the exchangeable normal Xd ∼ N(0,�d

ρ),
where σd

ii = 1, 1 ≤ i ≤ d , and σd
ij = σd

ji = ρ, 1 ≤ i < j ≤ d . (Throughout the
paper, we adopt the notation that � will be used for variance matrices, while ele-
ments of matrices will be denoted by σ , both conventions using appropriate sub-
and super-scripts.)

All the proofs of the theorems in Sections 3–5 are given in the Appendix. Then
in Section 6 with the aid of a simulation study we demonstrate that the asymptotic
results are practically useful for finite d , namely, d ≥ 10.

2. Algorithms and preliminaries. For RWM/MALA, we are interested in
(d, σ 2

d ), the dimension of the state space, d , and the proposal variance σ 2
d , where

the proposal for the ith component is given by

Yd
i = xd

i + σdZi, 1 ≤ i ≤ d, RWM,

Y d
i = xd

i + σdZi + σ 2
d

2

∂

∂xi

logπd(xd), 1 ≤ i ≤ d, MALA

and the {Zi}’s are independent and identically distributed according to
Z ∼ N(0,1). For both RWM and MALA, the maximum speed of the diffusion
can be obtained by taking the proposal variance to be of the form σ 2

d = l2d−s for
some l > 0 and s > 0. (For RWM, s = 1 and for MALA, s = 1

3 .)
Now for RWM/MALA-within-Gibbs, the basic idea is to choose dcd compo-

nents at random at each iteration, attempting to update them jointly according
to the RWM/MALA mechanism, respectively. We sometimes write σ 2

d = σ 2
d,cd

,
where cd represents the proportion of components updated at each iteration. Thus,
the two algorithms propose new values as follows:

Yd
i = xd

i + χd
i σd,cd

Zi, 1 ≤ i ≤ d, RWM-within-Gibbs,
(2.1)

Yd
i = xd

i + χd
i

{
σd,cd

Zi + σ 2
d,cd

2

∂

∂xi

logπd(xd)

}
,

1 ≤ i ≤ d, MALA-within-Gibbs,
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where the {Zi}’s are independent and identically distributed according to
Z ∼ N(0,1) and the {χd

i } are chosen as follows. Independently of the Zi’s, we
select at random a subset A, say, of size dcd from {1,2, . . . , d}, setting χd

i = 1 if
i ∈ A, and χd

i = 0 otherwise. The proposal Yd is then accepted according to the
usual Metropolis–Hastings acceptance probability:

α
cd

d (xd,Yd) = 1 ∧ πd(Yd)q(Yd,xd)

πd(xd)q(xd,Yd)
,(2.2)

where q(·, ·) is the proposal density. Otherwise, we set Xd
m = Xd

m−1.
In both cases, the algorithms simulate Markov chains which are reversible with

respect to πd , and can be easily shown to be πd -irreducible and aperiodic. There-
fore, both algorithms will converge in total variation distance to πd . However, here
we shall investigate optimization of the algorithms for rapid convergence. To find
a manageable framework for assessing optimality, Roberts, Gelman and Gilks [6]
introduce the notion of the average acceptance rate which measures the steady
state proportion of accepted proposals for the algorithm, and which can be shown
to be closely connected with the notion of algorithm efficiency and optimality.
Specifically, we define

a
cd

d (l) = Eπd
[αcd

d (Xd,Yd)] = Eπd

[
1 ∧ πd(Yd)q(Yd,Xd)

πd(Xd)q(Xd,Yd)

]
,(2.3)

where σ 2
d,cd

= l2d−s , Xd ∼ πd and Yd represents the subsequent proposal ran-
dom variable. Thus, a

cd

d (l) is the πd -average acceptance rate of the above algo-
rithms where we update a proportion cd of the d components in each iteration.
We adopt the general notational convention that, for any d-dimensional stochastic
process Wd

.,., we shall write Wd
t,i for the value of its ith component at time t .

Our aim in this paper is to consider the optimization [in (cd, σ 2
d,cd

)] of the al-
gorithms speed of convergence. For convenience (although to some extent this
assumption can be relaxed), we shall assume that cd → c as d → ∞ for some
0 < c ≤ 1. It turns out to be both convenient and practical to express many of the
optimality solutions in terms of acceptance rate criteria.

3. RWM-within-Gibbs for IID product densities. We shall first consider
the RWM algorithm applied initially to a simple IID form target density. This
allows us to obtain explicit asymptotic results for optimal high-dimensional algo-
rithms. The results of this section can be seen as an extension of the results of
Theorems 1.1 and 1.2 of [6] which considers the full-dimensional update case.

Let

πd(xd) =
d∏

i=1

f (xd
i ) =

d∏
i=1

exp{g(xd
i )}(3.1)

be a d-dimensional product density with respect to Lebesgue measure. Let the
proposal standard deviation σd = l√

d−1
for some l > 0.
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For d ≥ 1, let Ud
t = (Xd[dt],1,Xd[dt],2, . . . ,Xd[dt],d), and so, Ud

t,i = Xd[dt],i ,
1 ≤ i ≤ d . Let Ud

t = Ud
t,1.

THEOREM 3.1. Suppose that f is positive, C3 (a three-times differentiable
function with continuous third derivative) and that (logf )′ = g′ is Lipschitz. Sup-
pose also that, cd → c, as d → ∞, for some 0 < c ≤ 1,

Ef

[(
f ′(X)

f (X)

)8]
< ∞(3.2)

and

Ef

[(
f ′′(X)

f (X)

)4]
< ∞.(3.3)

Let X∞
0 = (X1

0,1,X
2
0,2, . . .) be such that all of its components are distributed ac-

cording to f and assume that X
j
0,i = Xi

0,i for all i ≤ j . Then, as d → ∞,

Ud ⇒ U,(3.4)

where U0 is distributed according to f and U satisfies the Langevin SDE

dUt = (hc(l))
1/2 dBt + 1

2hc(l)g
′(Ut ) dt(3.5)

and

hc(l) = 2cl2�

(
− l

√
cI

2

)
,

with � being the standard normal cumulative c.d.f and

I ≡ Ef

[(
f ′(X)

f (X)

)2]
≡ Eg[g′(X)2].

The following corollary holds.

COROLLARY 3.2. Let cd → c, as d → ∞, for some 0 < c ≤ 1. Then:

(i) limd→∞ a
cd

d (l) = ac(l)
def= 2�(− l

√
cI

2 ).

(ii) Let l̂ be the unique value of l which maximizes h1(l) = 2l2�(− l
√

I
2 ) on

[0,∞), and let l̂c be the unique value of l which maximizes hc(l) on [0,∞). Then

l̂c = c−1/2 l̂ and hc(l̂c) = h1(l̂).
(iii) For all 0 < c ≤ 1, the optimal acceptance rate ac(l̂c) = 0.234 (to three

decimal places).
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Though these results involve fairly technical mathematical statements, they
yield a very simple practical conclusion. Optimal efficiency obtainable for a
given c does not depend on c at all. Now, in practice, computational overheads
associated with one iteration of the algorithm are nondecreasing as a function of c,
so that, in practice, smaller values of c should be preferred. Therefore, for RWM,
using high-dimensional update steps does not make any sense.

It is, of course, important to see how these conclusions extend to more general
target densities and, in particular, ones which exhibit dependence structure. Some
theory and related simulation studies in Sections 5 and 6, respectively, will demon-
strate that these findings extend considerably beyond the rigorous but restrictive set
up of Theorem 3.1.

4. MALA-within-Gibbs for IID product densities. We now turn our at-
tentions to MALA-within-Gibbs. We again consider a sequence of probability
densities πd of the form given in (3.1). We follow [7] in making the follow-
ing assumptions. We assume that Xd

0 is distributed according to the stationary
measure πd , g is an eight times continuously differentiable function with deriv-
atives g(i) satisfying

|g(x)|, ∣∣g(i)(x)
∣∣≤ C(1 + |x|K),(4.1)

1 ≤ i ≤ 8, for some C,K > 0, and that∫
R

xkf (x) dx < ∞, k = 1,2, . . . .(4.2)

Finally, we assume that g′ is Lipschitz. This ensures that {Xt } is nonexplosive (see,
e.g., [12], Chapter V, Theorem 52.1).

Let {Jt } be a Poisson process with rate d1/3 and let 	d = {	d
t }t≥0 be the

d-dimensional jump process defined by 	d
t = Xd

Jt
, where we take σ 2

d = l2d−1/3

with l an arbitrary constant.
We then have the following two theorems which are extensions of [7], Theorems

1 and 2.

THEOREM 4.1. Suppose that cd → c, as d → ∞, for some 0 < c ≤ 1. We
have that

lim
d→∞{acd

d (l)} = ac(l) = 2�

(
−

√
cKl3

2

)
,

with K2 = E[5g′′′(X)2−3g′′(X)3

48 ] > 0.

THEOREM 4.2. Suppose that cd → c as d → ∞ for some 0 < c ≤ 1. Let
{Ud}t≥0 be the process corresponding to the first component of 	d . Then, as
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d → ∞, the process Ud converges weakly (in the Skorokhod topology) to the
Langevin diffusion U defined by

dUt = hc(l)
1/2dBt + 1

2hc(l)g
′(Ut ) dt,

where hc(l) = 2cl2�(−
√

cl3K
2 ) is the speed of the limiting diffusion.

The most important consequence of Theorems 4.1 and 4.2 is the following
corollary.

COROLLARY 4.3. Let cd → c, as d → ∞, for some 0 < c ≤ 1. Then:

(i) Let l̂ be the unique value of l which maximizes h1(l) = 2l2�(− l3K
2 ) on

[0,∞), and let l̂c be the unique value of l which maximizes hc(l) on [0,∞). Then
l̂c = c−1/6 l̂ and hc(l̂c) = c2/3h1(l̂).

(ii) For all 0 < c ≤ 1, the optimal acceptance rate ac(l̂c) = 0.574 (to three
decimal places).

Thus, in stark contrast to the RWM case, it is optimal to update all components
at once for MALA. The story is somewhat more complicated in the case where
computational overheads are taken into account. For instance, it is common for the
computational costs of implementing MALA-within-Gibbs to be approximately
d(a+bc) for constants a and b. To see this, note that the algorithm’s computational
cost is often dominated by two operations: the calculation of the various derivatives
needed to propose a new value, and the evaluation of π at the proposed new value.
The first of these operations involves a cd-dimensional update and typically takes
a time which is order cd , while the second involves evaluating a d-dimensional
function which we would expect to be at least of order d . (Although, in some
important special cases, target density ratios might be computed more efficiently
than this.) In this case the overall efficiency is obtained by maximizing

c2/3

a + bc
.

This expression is maximized at 1 ∧ 2a/b. Therefore, it is conceivable for full
dimensional updates to be optimal even when computational costs are taken into
account. In any case, the optimal proportion will be some value x∗ ∈ (0,1].

5. RWM/MALA-within-Gibbs on dependent target distributions. We are
now interested in the extent to which the results of the last two sections can be ex-
tended to the case where the d components are dependent. It is difficult to get gen-
eral results, but certain important special cases can be examined explicitly, yielding
interesting results which imply (essentially) that the extent by which the depen-
dence structure affects the mixing properties of the chain (RWM-within-Gibbs or
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MALA-within-Gibbs) is independent of c. The most tractable special case is the
Gaussian target distribution. However, in Section 6, we shall also include some
simulations in other cases to show that the above statement holds well beyond
the cases for which rigorous mathematical results can be proved.

We begin with RWM-within-Gibbs and consider the optimal scaling problem
of the variance of the proposal distribution for a target distribution consisting of
exchangeable normal components. Specifically, Xd ∼ Nd(0,�d

ρ), where σd
ii = 1,

1 ≤ i ≤ d , and σd
ij = ρ, i = j , for some 0 < ρ < 1. Therefore, we have that

πd(xd) = (2π)d det |�d
ρ |−1/2

× exp

(
−1

2

(
1

1 − ρ

d∑
i=1

(xd
i )2 + θd

d∑
i=1

d∑
j=1

xd
i xd

j

))
(5.1)

= (2π)d det |�d
ρ |−1/2 exp

(
−1

2
jd(xd)

)
, say,

where

θd = −ρ

1 + (d − 2)ρ − (d − 1)ρ2

and

jd(xd) = 1

1 − ρ

d∑
i=1

(xd
i )2 + θd

d∑
i=1

d∑
j=1

xd
i xd

j .

For d ≥ 1, Ûd
t = (Xd[dt],1,Xd[dt],2, . . . ,Xd[dt],d). Let Ud

t = (Ud
t,1,U

d
t,2,U

d
t,3) be such

that Ud
t,1 = Ûd

t,1, Ud
t,2 = Ûd

t,2 and Ud
t,3 = 1

d−2
∑d

i=3 Ût,i .
Now the proposal Yd is given by

Yd
i = xd

i + σdχd
i Zi, 1 ≤ i ≤ d,

where the Zi and χd
i (1 ≤ i ≤ d) are defined as before and σd = l√

d−2
for some

constant l. [We use (d − 2) rather than d or (d − 1) for simplicity in presentation
of the results.]

In the dependent case, more care needs to be taken in constructing the sequence
{Xd

0;d ≥ 1}. Let X1
0 ∼ N(0,1) [i.e., X1

0 is distributed according to π1(·)]. For d ≥ 2
and 1 ≤ i ≤ d − 1, set Xd

0,i = Xi
0,i . Then iteratively define

Xd
0,d ∼ N

(
ρ

1

d − 1

d−1∑
i=1

Xd
0,i ,

1

d − 1

(
1 + (d − 2)ρ − (d − 1)ρ2)).

Therefore, Xd
0 is distributed according to πd(·) and we can continue this process

indefinitely to obtain X∞
0 = (X1

0,1,X
2
0,2, . . .).
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THEOREM 5.1. Suppose that 0 < ρ < 1 and that cd → c, as d → ∞, for some
0 < c ≤ 1. Let X∞

0 = (X1
0,1,X

2
0,2, . . .) be constructed as above. Let

D1 =

 1 ρ ρ

ρ 1 ρ

ρ ρ ρ


 ,

D2 =




1

1 − ρ
0 − 1

1 − ρ

0
1

1 − ρ
− 1

1 − ρ

− 1

1 − ρ
− 1

1 − ρ

1 + ρ

ρ(1 − ρ)




,

D3 =

1 0 0

0 1 0
0 0 0


 .

Let f̃ (u) denote the probability density function of N(0,D1). Then, as d → ∞,

Ud ⇒ U,

where U0 is distributed according to f̃ and U satisfies the Langevin SDE

dUt = (hc,ρ(l))1/2D3 dBt + hc,ρ(l)D3
{1

2∇(−1
2UT

t D2Ut

)}
dt,

where

hc,ρ(l) = 2cl2�

(
− l

2

√
c

1 − ρ

)
.

Note that if we define Ĩd = E[( ∂
∂x1

jd(Xd))2] and Ĩ = 1
1−ρ

. Then Ĩd → Ĩ as

d → ∞ and hc,ρ(l) = 2cl2�(− l
2

√
cĨ ). Therefore, the speed of the limiting dif-

fusion for exchangeable normal has the same form as that obtained for the IID
product densities considered in Section 3.

As in (2.3), let a
cd ,ρ
d (l) be the πd -average acceptance rate of the above algo-

rithm where Xd ∼ N(0,�d
ρ), σd = l√

d−2
and we update a proportion cd of the d

components in each iteration. Then we have the following corollary.

COROLLARY 5.2. Let cd → c, as d → ∞, for some 0 < c ≤ 1. Then, for
0 < ρ < 1:

(i) limd→∞ a
cd ,ρ
d (l) = ac,ρ(l)

def= 2�(− l
2

√
c

1−ρ
).

(ii) Let l̂ be the unique value of l which maximizes h1,0(l) = 2l2�(− l
2) on

[0,∞), and let l̂c,ρ be the unique value of l which maximizes hc,ρ(l) on [0,∞).

Then l̂c,ρ =
√

1−ρ
c

l and hc,ρ(l̂c,ρ) = (1 − ρ)h1,0(l̂).
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(iii) For all 0 < c ≤ 1 and 0 < ρ < 1, the optimal acceptance rate ac,ρ(l̂c,ρ) =
0.234 (to three decimal places).

Note that Corollary 5.2(ii) states that the cost incurred by having σd
ij = ρ, i = j ,

rather than σd
ij = 0, i = j , is to slow down the speed of the limiting diffusion

by a factor of 1 − ρ, for all 0 < c ≤ 1. In other words, the cost incurred by the
dependence between the components of Xd is independent of c. Furthermore, the

optimal acceptance rate ac,ρ(l̂c,ρ) is unaffected by the introduction of dependence.
We shall study this further in the simulation study conducted in Section 6.

Note that in Theorem 5.1 the last row of the matrix D3 is a row of zeros. This
implies that the mixing time of 1T Xd grows more rapidly than O(d) as d → ∞.
In [8], heuristic arguments and extensive simulations show that the mixing time of
1T Xd is in fact O(d2). Theorem 5.3 below gives a formal statement of this result.
(The proof of Theorem 5.3 is similar to the proof of Theorem 5.1 and is, hence,
omitted.)

For d ≥ 1, let Ũd
t = 1

d−2
∑d

i=3 Xd
[d2t],i .

THEOREM 5.3. Suppose that 0 < ρ < 1 and that cd → c, as d → ∞, for
some 0 < c ≤ 1. Let X∞

0 = (X1
0,1,X

2
0,2, . . .) be constructed as in the prelude to

Theorem 5.1. Then, as d → ∞,

Ũd ⇒ Ũ ,

where Ũ0 ∼ N(0, ρ) and Ũ satisfies the Langevin SDE

dŨt = (hc,ρ(l))1/2dBt + hc,ρ(l)

{
− 1

2ρ
Ũt

}
dt,

where hc,ρ(l) = 2cl2�(− l
2

√
c

1−ρ
), as before.

We now turn our attention to MALA-within-Gibbs for the exchangeable normal.
So that now the proposal Yd is given by

Yd
i = xd

i + χd
i

{
σdZi + σ 2

d

2

(
− 1

1 − ρ
xd
i − θd

d∑
j=1

xd
j

)}
,

where we take σ 2
d = l2d−1/3 with l an arbitrary constant. Let X∞

0 be constructed
as outlined above for the RWM-within-Gibbs. Let {Jt } be a Poisson process with
rate d1/3 and let 	d = {	d

t }t≥0 be the d-dimensional jump process defined by

	d
t = Xd

Jt
. Let Ud

t = (Ud
t,1,U

d
t,2,U

d
t,3) be such that Ud

t,1 = 	d
t,1, Ud

t,2 = 	d
t,2 and

Ud
t,3 = 1

d−2
∑d

i=3 	t,i .
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THEOREM 5.4. Suppose that 0 < ρ < 1 and that cd → c, as d → ∞, for some
0 < c ≤ 1. Let X∞

0 = (X1
0,1,X

2
0,2, . . .) be constructed as in the prelude to Theo-

rem 5.1. Let D1, D2, D3 and f̃ be as defined in Theorem 5.1. Then, as d → ∞,

Ud ⇒ U,

where U0 is distributed according to f̃ and U satisfies the Langevin SDE

dUt = (hc,ρ(l))1/2D3 dBt + hc,ρ(l)D3
{1

2∇(−1
2UT

t D2Ut

)}
dt,

where

hc,ρ(l) = 2cl2�

(
− l3

8

√
c

(1 − ρ)3

)

is the speed of the limiting diffusion.

Note that if we define

K̃2
d = E

[
1

48

{
5
(

∂3

∂x3
1

j (Xd)

)2

− 3
(

∂3

∂x2
1

j (Xd)

)3}]

and K̃2 = 1
16( 1

1−ρ
)3, then K̃2

d → K̃2 as d → ∞ and hc,ρ(l) = 2cl2�(− l3

2

√
cK̃).

Therefore, the speed of the limiting diffusion for exchangeable normal has the
same form as that obtained for the IID product densities considered in Section 4.

As in (2.3), let a
cd ,ρ
d (l) be the πd -average acceptance rate of the above algo-

rithm where Xd ∼ N(0,�d
ρ), σd = ld−1/6 and we update a proportion cd of the d

components in each iteration. Then we have the following corollary.

COROLLARY 5.5. Let cd → c, as d → ∞, for some 0 < c ≤ 1. Then, for
0 < ρ < 1:

(i) limd→∞ a
cd ,ρ
d (l) = ac,ρ(l)

def= 2�(− l3

8

√
c

(1−ρ)3 ).

(ii) Let l̂ be the unique value of l which maximizes h1,0(l) = 2l2�(− l3

8 ) on

[0,∞), and let l̂c,ρ be the unique value of l which maximizes hc,ρ(l̂) on [0,∞).
Then l̂c,ρ = √

1 − ρc−1/6l and hc,ρ(l̂c,ρ) = c2/3(1 − ρ)h1,0(l̂).
(iii) For all 0 < c ≤ 1 and 0 < ρ < 1, the optimal acceptance rate ac,ρ(l̂c,ρ) =

0.574 (to three decimal places).

Note that Corollary 5.5(ii) states that the cost incurred by having σd
ij = ρ, i = j ,

rather than σd
ij = 0, i = j , is to slow down the speed of the limiting diffusion

by a factor of 1 − ρ, for all 0 < c ≤ 1. Therefore, the dependence in the target
distribution πd(·) affects convergence of the MALA-within-Gibbs in the same way
that it affects the RWM-within-Gibbs. The cost associated with updating only a
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proportion c rather than all of the components is the same as that observed in
Section 4. Furthermore, the optimal acceptance rate ac,ρ(l̂c,ρ) is unaffected by the
introduction of dependence.

From Theorem 5.4, we see that the mixing time of 1T Xd is greater than O(d1/3)

as d → ∞. In fact, the mixing time of 1T Xd is in fact O(d4/3). Let {Jt } be a
Poisson process with rate d4/3 and for d ≥ 1, let Ũd

t = 1
d−2

∑d
i=3 Xd

Jt ,i
.

THEOREM 5.6. Suppose that 0 < ρ < 1 and that cd → c, as d → ∞, for
some 0 < c ≤ 1. Let X∞

0 = (X1
0,1,X

2
0,2, . . .) be constructed as in the prelude to

Theorem 5.1. Then, as d → ∞,

Ũd ⇒ Ũ ,

where Ũ0 ∼ N(0, ρ) and Ũ satisfies the Langevin SDE

dŨt = (hc,ρ(l))1/2 dBt + hc,ρ(l)

{
− 1

2ρ
Ũt

}
dt,

where hc,ρ(l) = 2cl2�(− l3

8

√
c

(1−ρ)3 ), as before.

The proofs of Theorems 5.4 and 5.6 are hybrids of those for the results of Sec-
tion 4, and for Theorems 5.1 and 5.3 above, and are, hence, omitted.

6. A simulation study. The rotational symmetry of the Gaussian distribution
effectively allows the dependence problem to be formulated as one of hetero-
geneity of scale. Other distributional forms exist for which this may be possible
(e.g., the multivariate t-distribution), but it seems difficult to derive results for very
general distributional families of target distribution without resorting to ideas such
as this. Therefore, to support the conjecture that the conclusions of Sections 3–5
hold beyond the rigorous, theoretical results, we present the following simulation
study. Furthermore, we demonstrate that the asymptotic results are achieved in
relatively low dimensional (d ≥ 10) situations.

Throughout the simulation study we measure speed/efficiency of the algo-
rithm by considering first-order efficiency. That is, for a multidimensional Markov
chain X with first component X1, say, the first-order efficiency is defined to
be dE[(X1

t+1 − X1
t )

2] for RWM and d1/3
E[(X1

t+1 − X1
t )

2] for MALA, where
Xt is assumed to be stationary. For each of the target distributions and dif-
ferent choices of c and d , we consider 50 different proposal variances, σ 2

d,c.
For each choice of proposal variance σ 2

d,c, we started with X0 drawn from the
target distribution. We then ran the algorithm for 100000 iterations. We esti-
mate E[(X1

t+1 − X1
t )

2] by 1
100000

∑100000
i=1 (X1

i − X1
i−1)

2 and the acceptance rate
is estimated by 1

100000
∑100000

i=1 1{Xi =Xi−1}. We then plot acceptance rate against
dE[(X1

t+1 − X1
t )

2] (first-order efficiency).
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We begin by considering RWM-within-Gibbs. We shall consider three differ-
ent target distributions πd ∼ N(0,�d

ρ), πd ∼ t50(0,�d
ρ) and πd(xd) = ∏d

i=1
1
2 ×

exp(−|xd
i |) (double-sided exponential). Note that the distributions t50(0,�d

ρ)

(ρ > 0) and the double-sided exponential are not covered by the asymptotic re-
sults of Sections 3 and 5. For the N(0,�d

ρ) and t50(0,�d
ρ), we plot acceptance rate

against the normalized first-order efficiency, d
1−ρ

E[(X1
t+1 − X1

t )
2]. The normal-

ization is introduced to take account of dependence (see Corollary 5.2).
Figures 1 and 2 give a representative sample of the simulation study we con-

ducted for a whole range of different values of c, d and ρ. The results are as one
would expect. In all cases the estimated optimal acceptance rate is approximately
0.234. As can be seen from Figures 1 and 2, the normalized first-order efficiency

FIG. 1. Normalized first-order efficiency of RWM-within-Gibbs, d
1−ρ

E[(X1
t+1 − X1

t )2], as a func-
tion of overall acceptance rates for each combination of (d = 20; c = 0.25,0.5,0.75,1;ρ = 0,0.5),
with πd ∼ N(0,�d

ρ ).
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FIG. 2. Normalized first-order efficiency of RWM-within-Gibbs, d
1−ρ

E[(X1
t+1 − X1

t )2], as a func-
tion of overall acceptance rates for each combination (c = 0.5;d = 10,20,50;ρ = 0,0.5), with
πd ∼ N(0, σ d

ρ ).

curves are virtually indistinguishable from one another for each choice of c, d

and ρ. Therefore, we have made no attempt to differentiate between the different
efficiency curves.

(Note that the results in Figure 3 are a representative sample from a much larger
simulation study.)

Figures 3 and 4 produce results in line with those expected from Sections
3 and 5. This demonstrates that the conclusions of Sections 3 and 5 do extend
beyond those target distributions for which rigorous statements have been made.

We now turn our attention to MALA-within-Gibbs. We shall consider in our
simulation study only target densities of the form πd ∼ N(0,�d

ρ).
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FIG. 3. Normalized first-order efficiency of RWM-within-Gibbs, d
1−ρ

E[(X1
t+1 − X1

t )2], as a func-
tion of overall acceptance rates for each combination: (i) (d = 20; c = 0.25,0.5,0.75,1;ρ = 0,0.5)

and (ii) (c = 0.5;d = 10,20,50;ρ = 0,0.5), with πd ∼ t50(0,�d
ρ ).

Simulations in Figures 5 and 6 show excellent agreement with Corollaries 4.3
and 5.5. Again, the results demonstrate the usefulness/relevance of the asymptotic
results for even fairly small d .

7. Discussion. A rather surprising property of high-dimensional Metropolis
and Langevin algorithms is the robustness of relative efficiency as a function of
acceptance rate. In particular, the optimal acceptance rates 0.234 and 0.574 for
Metropolis and Langevin, respectively, appear to be robust to many kinds of pertur-
bation of the target density. A remarkable conclusion of this paper is this apparent
robustness of relative efficiency, as a function of acceptance rate, seems to extend
quite readily to updating schemes where only a fixed proportion of components
are updated at once.
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FIG. 4. Normalized first-order efficiency of RWM-within-Gibbs, d
1−ρ

E[(X1
t+1 − X1

t )2], as a
function of overall acceptance rates for each combination (d = 40; c = 0.25,0.5,0.75,1), with
πd(xd ) =∏d

i=1
1
2 exp(−|xd

i |).

A further unexpected conclusion concerns the issue of optimization in c. Here,
very clear cut statements appear to be available, with smaller-dimensional updates
seeming to be optimal for the Metropolis algorithm (as seen from Theorem 3.1 and
Corollary 3.2), whereas higher-dimensional updates are to be preferred (at least be-
fore computing time has been taken into consideration) for MALA schemes (see
Theorem 4.2 and Corollary 4.3). The robustness of these conclusions to depen-
dence in the target density is seen in the results of Section 5 and, supported by the
simulation study in Section 6, seems contrary to the general intuition that “block
updating” improves MCMC mixing (at least for the Metropolis results). However,
our results show that this intuition is only correct for schemes where the multi-
variate update step utilies the structure of the target density (as, e.g., in the Gibbs
sampler, or, to a lesser extent, MALA).
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FIG. 5. Normalized first-order efficiency of RWM-within-Gibbs, c−2/3 1
1−ρ

d1/3
E[(X1

t+1 − X1
t )2],

as a function of overall acceptance rates for each combination of (d = 20; c = 0.25,0.5,

0.75,1;ρ = 0,0.5), with πd ∼ N(0,�d
ρ ).

We believe that these results should have quite fundamental implications for
practical MCMC use, although, of course, they should be treated with care since
they are only asymptotic. Our results have been shown in the simulation study
to hold approximately in very low-dimensional problems—although the speed at
which the infinite-dimensional limit is reached does vary in a complicated way, in
particular, in c and measures of dependence in the target density (such as ρ in the
exchangeable normal examples).

The results for the exchangeable normal example show that certain functions
can converge at different rates to others (X̄ converging at rate d2, while Xi − X̄

converges at rate d), and this can cause serious practical problems for the MCMC
practitioner. In particular, any one co-ordinate Xi might converge rapidly, in a
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FIG. 6. Normalized first-order efficiency of MALA-within-Gibbs, c−2/3 1
1−ρ

d1/3
E[(X1

t+1 −X1
t )2],

as a function of overall acceptance rates for each combination (c = 0.5;d = 10,20,50;ρ = 0,0.5),
with πd ∼ N(0,�d

ρ ).

given time scale, to the wrong target density. Certainly, it would be extremely
difficult to detect such problems empirically.

The results in this paper are given for Metropolis and MALA algorithms. How-
ever, the use of these two methods is, in some sense, illustrative, and other al-
gorithms (such as, e.g., higher-order Langevin algorithms using, e.g., the Ozaki
discretization [10]) are expected to yield similar conclusions.

APPENDIX

A.1. Proofs of Section 3. Theorem 3.1 implies that the first component acts
independently of all others as d → ∞. Intuitively, this occurs because all other
(d − 1) terms contribute expressions to the accept/reject ratio which turn out to
obey SLLN and, thus, can be replaced by their deterministic limits. To make this
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idea rigorous, we need to define a set in R
d on which the first component is well

approximated by the appropriate LLN limit. Motivated by this idea, we construct
sets of tolerances around average values for quantities which will appear in the
accept/reject ratio. Thus, we define the sequence of sets {Fd ⊆ R

d, d > 1} by

Fd =
{

xd;
∣∣∣∣∣ 1

d − 1

d∑
i=2

g′(xd
i )2 − I

∣∣∣∣∣< d−1/8

}

∩
{

xd;
∣∣∣∣∣ 1

d − 1

d∑
i=2

g′′(xd
i ) + I

∣∣∣∣∣< d−1/8

}

∩
{

xd;
∣∣∣∣∣ 1

(d − 1)2

d∑
i=2

g′(xd
i )4

∣∣∣∣∣< d−1/8

}
,

= Fd,1 ∩ Fd,2 ∩ Fd,3, say,

where I is defined in Theorem 3.1. Let x∞ = (x1, x2, . . .) and for d ≥ 1, let xd =
(xd

1 , xd
2 , . . . , xd

d ), where, for 1 ≤ i ≤ d , xd
i = xi . Thus, we shall use xd

1 and x1
interchangeably, as appropriate.

LEMMA A.1. For k = 1,2,3 and t > 0,

P(Ud
s ∈ Fd,k,0 ≤ s ≤ t) → 1 as d → ∞(A.1)

and, hence,

P(Ud
s ∈ Fd,0 ≤ s ≤ t) → 1 as d → ∞.

PROOF. The cases k = 1 and k = 2 are proved in [6], Lemma 2.1. The case
k = 3 is proved similarly using Markov’s inequality and (3.2). The lemma then
follows. �

For any random variable X and for any subset A ⊆ R, let E
∗[X] = E[X|χd

1 = 1]
and P

∗(X ∈ A) = P(X ∈ A|χd
1 = 1).

Let Gd be the (discrete-time) generator of Xd , and let V ∈ C∞
c (the space of

infinitely differentiable functions on compact support) be an arbitrary test function
of the first component only. Thus,

GdV (xd) = dE

[(
V (Yd) − V (xd)

){
1 ∧ πd(Yd)

πd(xd)

}]
(A.2)

= dP(χd
1 = 1)E∗

[(
V (Yd) − V (xd)

){
1 ∧ πd(Yd)

πd(xd)

}]
,

since Yd
1 = xd

1 if χd
1 = 0.
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The generator G of the one-dimensional diffusion described in (3.4), for an
arbitrary test function V ∈ C∞

c , is given by

GV (x1) = 2cl2�

(
− l

√
cI

2

){
1

2
g′(x1)V

′(x1) + 1

2
V ′′(x1)

}
.(A.3)

(Note that, under the conditions imposed in Theorem 3.1, C∞
c forms a core for the

full generator.) By Lemma A.1, we can restrict attention to xd ∈ Fd . The aim will
therefore be to show that, for all xd ∈ Fd ,

GdV (xd) → GV (x1) as d → ∞.

The proof of Theorem 3.1 will then be fairly straightforward.
Thus, we begin by giving a Taylor series approximation for GdV (xd) in

Lemma A.3, for which we will require the following lemma.

LEMMA A.2. For any V ∈ C∞
c (the space of infinitely differentiable functions

on compact support),

sup
xd∈Fd

∣∣dE
∗[(V (Y d

1 ) − V (xd
1 )
)]− 1

2 l2V ′′(x1)
∣∣→ 0 as d → ∞(A.4)

and

sup
xd∈Fd

∣∣σd dE
∗[Z1

(
V (Y d

1 ) − V (xd
1 )
)]− l2V ′(x1)

∣∣→ 0 as d → ∞,(A.5)

with x1 = xd
1 .

PROOF. For χd
1 = 1,

Yd
1 − xd

1 = σdZ1 = l√
d − 1

Z1.

Thus, by Taylor’s theorem,

V (Y d
1 ) − V (xd

1 ) = V ′(xd
1 )(σdZ1)

(A.6)
+ 1

2V ′′(xd
1 )(σdZ1)

2 + 1
6V ′′′(W1)(σdZ1)

3

for some W1 lying between xd
1 and Yd

1 .
The lemma then follows by substituting (A.6) into the left-hand sides of

(A.4) and (A.5). �

LEMMA A.3. Let

G̃dV (xd) = 1
2cl2V ′′(x1)E

∗[1 ∧ eBd ] + cl2V ′(x1)g
′(x1)E

∗[eBd ;Bd < 0],
where Bd(= Bd(xd)) =∑d

i=2(g(Y d
i ) − g(xd

i )). Then, we have that

sup
xd∈Fd

|GdV (xd) − G̃dV (xd)| → 0 as d → ∞.(A.7)
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PROOF. Decomposing Yd into (Y1,Yd−) and using independence gives

GdV (xd) = dcdE
∗
Yd

1

[(
V (Y d

1 ) − V (xd
1 )
)
E

∗
Yd−

[
1 ∧

d∏
i=1

f (Y d
i )

f (xd
i )

]]
.

We shall begin by concentrating on the inner expectation, by recalling the fol-
lowing fact noted in [2]. Let h be a twice differentiable function on R, then the
function z �→ 1 ∧ eh(z) is also twice differentiable, except at a countable number
of points, with first derivative given Lebesgue almost everywhere by the function

d

dz
1 ∧ eh(z) =

{
h′(z)eh(z), if h(z) < 0,
0, if h(z) ≥ 0.

Now take hd(z)(= hd(z;xd)) = (g(xd
1 + σdz) − g(xd

1 )) + Bd and let

γd(z) = E
∗
Yd−

[
1 ∧

d∏
i=1

f (Y d
i )

f (xd
i )

∣∣∣∣Z1 = z

]
.

Thus, γd(z) = E
∗
Yd−[1 ∧ ehd(z)], and so, for almost every xd

1 ∈ R, there exists W

lying between 0 and z such that

γd(z) = E
∗
Yd−

[
1 ∧ ehd(0)]

+ zE∗
Yd−

[
σdg′(xd

1 )ehd(0);hd(0) < 0
]

(A.8)

+ z2

2
E

∗
Yd−

[
σ 2

d

(
g′′(xd

1 + σdW) + g′(xd
1 + σdW)2)ehd(W);hd(W) < 0

]
.

The key results to note are that hd(0) = Bd and that, conditional upon χd
1 = 1,

Yd
1 and Yd− are independent. Therefore,

GdV (xd)

= dcdE
∗
Yd

1

[(
V (Y d

1 ) − V (xd
1 )
)

×
{
E

∗
Yd−

[
1 ∧ ehd(0)]

+ Z1E
∗
Yd−

[
σdg′(xd

1 )ehd(0);hd(0) < 0
]

+ Z2
1

2
E

∗
Yd−

[
σ 2

d

(
g′′(xd

1 + σdW)

+ g′(xd
1 + σdW)2)ehd(W);hd(W) < 0

]}]

= dcdE
∗[(V (Y d

1 ) − V (x1)
)]

E
∗[1 ∧ eBd ]

+ g′(x1)dcdσdE
∗[(V (Y d

1 ) − V (xd
1 )
)
Z1

]
E

∗[eBd ;Bd < 0](A.9)
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+ dcdE
∗
Yd

1

[(
V (Y d

1 ) − V (xd
1 )
)Z2

1

2

× E
∗
Yd−

[
σ 2

d

(
g′′(xd

1 + σdW)

+ g′(xd
1 + σdW)2)ehd(W);hd(W) < 0

]]

= ĜdV (xd) + Dd(xd;Z1;W), say.

Since E
∗[1 ∧ eBd ],E

∗[eBd ;Bd < 0] ≤ 1 and x1 = xd
1 , it follows from Lemma A.2

that

sup
xd∈Fd

|ĜdV (xd) − G̃dV (xd)| → 0 as d → ∞.

Thus, to prove the lemma, it is sufficient to show that, for all xd ∈ Fd ,
Dd(xd;Z1;W) converges to 0, as d → ∞.

By Taylor’s theorem, we have that∣∣∣∣(V (Y d
1 ) − V (xd

1 )
)Z2

1

2

∣∣∣∣≤ sup
a1∈R

|V ′(a1)|σd

2
|Z3

1 |

and

|g′(xd
1 + σdW)| ≤ |g′(xd

1 )| + σd |W | sup
a2∈R

|g′′(a2)|

≤ |g′(xd
1 )| + σd |Z1| sup

a2∈R

|g′′(a2)|.

Since V ′ and g′′ are bounded functions, it follows that, for all xd ∈ Fd ,

Dd(xd;Z1;W) ≤ dcd

{3
2Kσ 3

d

(
K + |g′(xd

1 )| + σdK
)}→ 0 as d → ∞,

for some K > 0, and the lemma is proved. �

Lemma A.3 states that, for all xd ∈ Fd , the generator Gd can be approximated
by the generator G̃d which resembles the limiting generator G. Thus, we now
need to consider for all xd ∈ Fd , E

∗[1 ∧ eBd ] and E
∗[eBd ;Bd < 0]. The aim is to

approximate Bd by a more convenient quantity Ad (to be defined in Lemma A.6)
and, hence, show that

E
∗[1 ∧ eBd ] → 2�

(
− l

√
cI

2

)

and

E
∗[eBd ;Bd < 0] → �

(
− l

√
cI

2

)
as d → ∞.

This will be done in the following lemmas.
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LEMMA A.4. Let λd(= λd(xd)) = 1
d−1

∑d
i=2 χd

i g′(xd
i )2. For any ε > 0,

sup
xd∈Fd

P
∗(|λd − cI | > ε) → 0 as d → ∞.

PROOF. Let Rd(= Rd(xd)) = 1
d−1

∑d
i=2 g′(xd

i )2. Then, for xd ∈ Fd ,

|λd − cI | ≤ |λd − E
∗[λd ]| + |E∗[λd ] − cRd | + |cRd − cI |.

Note that E
∗[λd ] = cdd−1

d−1 Rd , and so, by Lemma A.1, we have that

|E∗[λd ] − cRd | + |cRd − cI | → 0 as d → ∞.

Therefore, to prove the lemma, it suffices to show that, for any ε > 0, P
∗(|λd −

E
∗[λd ]| > ε) → 0 as d → ∞. Note that

λ2
d = 1

(d − 1)2

d∑
i=2

d∑
j=2

χd
i χd

j g′(xd
i )2g′(xd

j )2,

and so,

E
∗[λ2

d ] = 1

(d − 1)2

{
cdd − 1

d − 1

d∑
i=2

g′(xd
i )4

+ (cdd − 1)

(d − 1)

(cdd − 2)

(d − 2)

d∑
i=2

∑
j =i

g′(xd
i )2g′(xd

j )2

}

= (cdd − 1)(cdd − 2)

(d − 1)(d − 2)
R2

d

+ (cdd − 1)(1 − cd)d

(d − 1)(d − 2)

{
1

(d − 1)2

d∑
i=2

g′(xd
i )4

}
.

Then since supxd∈Fd
| 1
(d−1)2

∑d
i=2 g′(xd

i )4| → 0 and cd → c as d → ∞, it follows

that, for all xd ∈ Fd , E
∗[(λd − E

∗[λd ])2] → 0 as d → ∞ and, hence, by Cheby-
shev’s inequality,

sup
xd∈Fd

P
∗(|λd − E

∗[λd ]| > ε) → 0 as d → ∞,

as required. �

LEMMA A.5. Let

Wd(= Wd(xd)) =
d∑

i=2

{
1

2
g′′(xd

i )(Y d
i − xd

i )2 + cl2

2(d − 1)
g′(xd

i )2
}
,
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and cd → c as d → ∞. Then, recalling that σd = l/
√

d ,

sup
xd∈Fd

E
∗[|Wd |] → 0 as d → ∞.

PROOF. First, note that E
∗[|Wd |]2 ≤ E

∗[W 2
d ].

Then, by direct calculations,

E
∗[W 2

d ] =
d∑

i=2

d∑
j=2

E
∗
[{

1

2
g′′(xd

i )(Y d
i − xd

i )2 + cl2

2(d − 1)
g′(xd

i )2
}

×
{

1

2
g′′(xd

j )(Y d
j − xd

j )2 + cl2

2(d − 1)
g′(xd

j )2
}]

=
(

d∑
i=2

1

4
g′′(xd

i )2
{

3
cdd − 1

d − 1
σ 4

d − (cdd − 1)(cdd − 2)

(d − 1)(d − 2)
σ 4

d

})

+
(

d∑
i=2

d∑
j=2

{
1

4
g′′(xd

i )g′′(xd
j )

(cdd − 1)(cdd − 2)

(d − 1)(d − 2)
σ 4

d

+ cl2

2(d − 1)
g′′(xd

i )g′(xd
j )2 cdd − 1

d − 1
σ 2

d

+ c2l4

4(d − 1)2 g′(xd
i )2g′(xd

j )2
})

= Wd,1 + Wd,2, say.

Let Wd,3(= Wd,3(xd)) = { cl2

2(d−1)

∑d
i=2(g

′′(xd
i ) + g′(xd

i )2)}2, and since cd → c as
d → ∞, we have that

sup
xd∈Fd

|Wd,2 − Wd,3| → 0 as d → ∞.

However, by definition, supxd∈Fd
|Wd,3| → 0 and since g′′ is bounded,

supxd∈Fd
|Wd,1| → 0 as d → ∞. The lemma follows immediately. �

LEMMA A.6. Let Ad(= Ad(xd)) =∑d
i=2{g′(xd

i )(Y d
i −xd

i )− cl2

2(d−1)
g′(xd

i )2}.
Then,

sup
xd∈Fd

|E∗[1 ∧ eAd ] − E
∗[1 ∧ eBd ]| → 0 as d → ∞(A.10)

and

sup
xd∈Fd

|E∗[eAd ;Ad < 0] − E
∗[eBd ;Bd < 0]| → 0 as d → ∞.(A.11)
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PROOF. Note that

Bd =
d∑

i=2

(
g(Y d

i ) − g(xd
i )
)

=
d∑

i=2

{
g′(xd

i )(Y d
i − xd

i ) + 1
2g′′(xd

i )(Y d
i − xd

i )2 + 1
6g′′′(αd

i )(Y d
i − xd

i )3},
for some αd

i lying between xd
i and Yd

i . Therefore, by [6], Proposition 2.2,

|E∗[1 ∧ eAd ] − E
∗[1 ∧ eBd ]|

≤ E
∗[|Wd |] + sup

a∈R

|g′′′(a)|d − 1

6
E

∗[|Yd
2 − xd

2 |3],(A.12)

= E
∗[|Wd |] + sup

a∈R

|g′′′(a)|d − 1

6

cdd − 1

d − 1
σ 3

d E[|Z1|3].

Now let ϕd = supxd∈Fd
{E∗[|Wd |] + supa∈R |g′′′(a)| cdd−1

6 σ 3
d E[|Z1|3]}, where Wd

is defined in Lemma A.5. Then, since g′′′ is a bounded function, it follows from
Lemma A.5 that ϕd → 0 as d → ∞ and so (A.10) is proved.

Let Jd(= Jd(xd)) = (eAd ;Ad < 0) − (eBd ;Bd < 0) and let δd = √
ϕd . Then we

proceed by showing that

sup
xd∈Fd

P
∗(|Jd | > δd) → 0 as d → ∞.

Note that, if Ad,Bd > 0, then

|Jd | = 0 ≤ |Ad − Bd |
and if Ad,Bd < 0, then

|Jd | = | exp(Ad) − exp(Bd)| ≤ |Ad − Bd |.
Therefore, it follows that

P
∗(|Jd | > δd) ≤ P

∗(−δd < Ad < δd) + P
∗(|Ad − Bd | ≥ δd).(A.13)

By Markov’s inequality,

P
∗(|Ad − Bd | ≥ δd)

≤ 1

δd

E
∗[|Ad − Bd |]

(A.14)

≤ 1

δd

{
E

∗[|Wd |] + sup
a∈R

|g′′′(a)|d − 1

6
E

∗[|Y2 − x2|3]
}

≤ √
ϕd,
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and so, P
∗(|Ad − Bd | > δd) → 0 as d → ∞, uniformly for xd ∈ Fd .

Fix xd ∈ Fd , then for any ε > 0, by Lemma A.4,

P
∗
(∣∣∣∣ 1

l
√

λd

(
±δd + cl2

2
Rd

)
− l

√
cI

2

∣∣∣∣> ε

)
→ 0 as d → ∞.(A.15)

Hence,

E
∗
[
�

(
1

l
√

λd

(
±δd + cl2

2
Rd

))]
→ �

(
l
√

cI

2

)
as d → ∞.

Thus,

sup
xd∈Fd

P
∗(−δd < Ad < δd) → 0 as d → ∞.(A.16)

Therefore, by (A.13)–(A.16), supxd∈Fd
P

∗(|Jd | > δd) → 0 as d → ∞. Then
since |Jd | ≤ 1, it follows that supxd∈Fd

E
∗[Jd ] → 0 as d → ∞ and so (A.11) is

proved. �

LEMMA A.7.

sup
xd∈Fd

∣∣∣∣E∗[1 ∧ eAd ] − 2�

(
− l

√
cI

2

)∣∣∣∣→ 0 as d → ∞(A.17)

and

sup
xd∈Fd

∣∣∣∣E∗[eAd ;Ad < 0] − �

(
− l

√
cI

2

)∣∣∣∣→ 0 as d → ∞.(A.18)

PROOF. Since Ad ∼ N(− cl2

2 Rd, l2λd), it follows by [6], Proposition 2.4, that

E
∗[1 ∧ eAd ] = E

∗
[
�

(
− clRd

2
√

λd

)
(A.19)

+ exp
(
− l2

2
(cRd − λd)

)
�

(
−l
√

λd + clRd

2
√

λd

)]
.

Since for any xd ∈ Fd and ε > 0, P
∗(|Rd −I | > ε) → 0 and P

∗(|λd −cI | > ε) → 0
as d → ∞, (A.17) follows from (A.19).

(A.18) is proved similarly. �

We are now in a position to show that, for all xd ∈ Fd , the generator Gd con-
verges to the generator G as d → ∞.

THEOREM A.8. For V ∈ C∞
c ,

sup
xd∈Fd

|GdV (xd) − GV (x1)| → 0 as d → ∞.
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PROOF. By Lemma A.3,

sup
xd∈Fd

|GdV (xd) − G̃V (xd)| → 0 as d → ∞,

and by Lemmas A.6 and A.7,

sup
xd∈Fd

|G̃dV (xd) − GV (x1)| → 0 as d → ∞.

Thus, the theorem is proved. �

PROOF OF THEOREM 3.1. The proof is similar to that of [6]. From Lem-
mas A.1, A.4 and Theorem A.8, we have uniform convergence of GdV to GV for
vectors contained in a set of π measure arbitrarily close to 1. Since C∞

c separates
points (see [4], page 113), the result will follow by [4], Chapter 4, Corollary 8.7 if
we can demonstrate the compact containment condition, which in our case follows
from the following statement. For all ε > 0, and all real valued Ud

0 = Xd
0,1, we can

find K > 0 sufficiently large with

P
(
Ud

t /∈ (−K,K), 0 ≤ t ≤ 1
)≤ ε,

for all d . We appeal directly to the explicit form of the Metropolis transitions and
assume that the Lipshitz constant for g is termed b. Thus, the following estimates
are easy to derive by just noting that squared jumping distances are bounded above
by that attained by ignoring rejections. Moreover, these estimates are uniform over
all Xd

n:

−bσ 2
d eb2σ 2

d /2 ≤ E[Xd
n+1,1 − Xd

n,1|Xd
n] ≤ bσ 2

d eb2σ 2
d /2

and

E[(Xd
n+1,1 − Xd

n,1)
2|Xd

n] ≤ E[(Y d
n+1,1 − Xd

n,1)
2|Xd

n] = σ 2
d .

Thus, setting Vn = Xd
n,1 + nbσ 2

d eb2σ 2
d /2, {Vn,0 ≤ n ≤ [d]} is submartingale with

E
[
V 2[d]

]≤ dσ 2
d + (dbσ 2

d eb2σ 2
d /2)2.(A.20)

Since σ 2
d = �2/d , the right-hand side of (A.20) is uniformly bounded in d so that

the upper bound result follows by Doob’s inequality. The lower bound follows
similarly by considering the supermartingale Xd

n,1 − nbσ 2
d eb2σ 2

d /2. �

A.2. Proofs of Section 4. The proofs of Theorems 4.1 and 4.2 are similar to
the proofs of Theorems 1 and 2 in [7], respectively. The only complication in the
proofs is that we are updating a random set of components at each iteration in the
MALA algorithm.

Let x∞ = (x1, x2, . . .) and for d ≥ 1, let xd = (xd
1 , xd

2 , . . . , xd
d ), where, for 1 ≤

i ≤ d , xd
i = xi . Thus, we shall again use xd

1 and x1 interchangeably as appropriate.
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Let Gd be the (discrete-time) generator of Xd and let V ∈ C∞
c be an arbitrary test

function of the first component only. Thus,

GdV (xd) = d1/3
E

[(
V (Yd) − V (xd)

){
1 ∧ πd(Yd)

πd(xd)

}]
(A.21)

= d1/3
P(χd

1 = 1)E∗
[(

V (Yd) − V (xd)
){

1 ∧ πd(Yd)

πd(xd)

}]
,

where E
∗ is defined after Lemma A.1 (cf. Section A.1 after Lemma A.1).

The generator G of the one-dimensional diffusion described in Theorem 4.2,
for an arbitrary test function, V , is given by

GV (x1) = 2cl2�

(
−

√
cl3K

2

){
1

2
g′(x1)V

′(x1) + 1

2
V ′′(x1)

}
(A.22)

= hc(l)

{
1

2
g′(x1)V

′(x1) + 1

2
V ′′(x1)

}
,

where K and hc(l) are defined in Section 5.
The aim thus, as in Section A.1, is to find a sequence of sets {Fd ⊆ R

d} such
that, for all t > 0,

P(	d
s ∈ Fd, for all 0 ≤ s ≤ t) → 1 as d → ∞,

and, for V ∈ C∞
c ,

sup
xd∈Fd

|GdV (xd) − GV (x1)| → 0 as d → ∞.

The proofs of Theorem 4.1 and 4.2 are then straightforward.
The first step is therefore to construct the sets {Fd ⊆ R

d}. However, this is much
more involved than for the RWM-within-Gibbs in Section A.1. Thus, it will be
more convenient to construct the sets Fd through the preliminary lemmas which
lead to the proof of Theorems 4.1 and 4.2. The next step will involve a Taylor series
expansion of GdV (xd) to show that, for large d , GV (x1) is a good approximation

for GdV (xd). Thus, we begin by studying log(πd(Yd )

πd(xd )
).

LEMMA A.9. There exists a sequence of sets Fd,1 ∈ R
d , with

limd→∞{d1/3πd(FC
d,1)} = 0, such that, for χd

i = 1,

log
{
f (Y d

i )q(Y d
i , xd

i )

f (xd
i )q(xd

i , Y d
i )

}

= C3(x
d
i ,Zi)d

−1/2 + C4(x
d
i ,Zi)d

−2/3 + C5(x
d
i ,Zi)d

−5/6

+ C6(x
d
i ,Zi)d

−1 + C7(x
d
i ,Zi, σd),
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where

C3(x
d
i ,Zi) = l3{−1

4Zig
′(xd

i )g′′(xd
i ) − 1

12Z3
i g

′′′(xd
i )
}
,

and where C4(x
d
i ,Zi), C5(x

d
i ,Zi) and C6(x

d
i ,Zi) are polynomials in Zi and the

derivatives of g. Furthermore, if EZ and EX denote expectation with Z ∼ N(0,1)

and X having density f (·), respectively, then

EXEZ[C3(X,Z)] = EXEZ[C4(X,Z)] = EXEZ[C5(X,Z)] = 0,(A.23)

whereas

EXEZ[C3(X,Z)2] = l6K2 = −2EXEZ[C6(X,Z)].(A.24)

In addition,

sup
xd∈Fd

E
∗
[∣∣∣∣∣

d∑
i=2

log
{
f (Y d

i )q(Y d
i , xd

i )

f (xd
i )q(xd

i , Y d
i )

}
(A.25)

−
{
d−1/2

d∑
i=2

χd
i C3(x

d
i ,Zi) − cl6K2

2

}∣∣∣∣∣
]

→ 0 as d → ∞.

PROOF. With the exception of (A.25) and the exact form of the sets Fd,1, the
lemma is proved in [7], Lemma 1.

For j = 4,5,6 and x ∈ R, set cj (x) = EZ[Cj(x,Z)] and vj (x) = varZ(Cj (x,

Z)). The set Fd,1,j =⋂3
k=1 Fd,1,j,k , where

Fd,1,j,1 =
{

xd;
∣∣∣∣∣

d∑
i=2

{Cj(x
d
i ) − EX[Cj(X)]}

∣∣∣∣∣< d5/8

}
,

Fd,1,j,2 =
{

xd;
∣∣∣∣∣

d∑
i=2

{Vj (x
d
i ) − EX[Vj (X)]}

∣∣∣∣∣< d6/5

}
,

Fd,1,j,3 =
{

xd;
∣∣∣∣∣

d∑
i=2

{Cj(x
d
i ) − EX[Cj(X)]}2

∣∣∣∣∣< d6/5

}
.

Then for j = 4,5,6 and k = 1,2,3, it is straightforward, using Markov’s inequal-
ity and conditions (4.1) and (4.2), to show that

d1/3πd(FC
d,1,j,k) → 0 as d → ∞.

(Cf. [7], Lemma 1, where only the cases k = 1,2 are required.)
Finally, let {Fd,1,7 ⊆ R

d} correspond to the sets {Fn,7} constructed in [7],
Lemma 1, and so, d1/3πd(FC

d,1) → 0 as d → ∞, where Fd,1 =⋂7
j=4 Fd,1,j .

The proof of (A.25) is then essentially the same as the proof of the final expres-
sion in [7], Lemma 1, and, hence, the details are omitted. �
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The next step is to find a convenient approximation for GdV (xd) which ef-
fectively allows us to consider separately the first component and the remaining
(d − 1) components.

LEMMA A.10. Let

G̃dV (xd) = cdd1/3
E

∗[V (Y1) − V (x1)]E∗[eBd ∧ 1],
where Bd(= Bd(xd)) = ∑d

i=2{(g(Y d
i ) − g(xd

i )) − 1
σ 2

d

{(xd
i − Yd

i − σ 2
d

2 g′(Y d
i ))2 −

(Y d
i −xd

i − σ 2
d

2 g′(xd
i ))2}. There exists sets Fd,2 ⊆ R

d with limd→∞ d1/3πd(FC
d,2) =

0 such that, for any V ∈ C∞
c ,

sup
xd∈Fd,2

|GdV (xd) − G̃dV (xd)| → 0 as d → ∞.

Moreover,

sup
xd∈Fd,2

E
∗
[∣∣∣∣
(

πd(Yd)q(Yd,xd)

πd(xd)q(xd,Yd)
∧ 1

)
− (eBd ∧ 1)

∣∣∣∣
]

→ 0(A.26)

as d → ∞.

PROOF. Since, conditional upon χd
1 , Y1 and Yd− are independent, it follows

that

G̃dV (xd) = cdd1/3
E

∗[(V (Y1) − V (xd
1 )
)
(eBd ∧ 1)

]
.

The lemma then follows by identical arguments to those used in [7], Theorem 3,
with the sets {Fd,2} chosen to correspond to the sets {Sn} in [7], Theorem 3. �

LEMMA A.11. Let Fd,3 = {xd;g′(xd
1 ) ≤ d1/12} then d1/3πd(FC

d,3) → 0 as
d → ∞ and for any V ∈ C∞

c ,

sup
xd∈Fd,3

∣∣∣∣d1/3cdE
∗[V (Y d

1 ) − V (xd
1 )] − c

l2

2
{g′(x1)V

′(x1) + V ′′(x1)}
∣∣∣∣→ 0

as d → ∞,

with x1 = xd
1 .

PROOF. The proof is identical to [7], Lemma 2 and is, hence, omitted. �

We now focus on the remaining (d − 1) components. First we introduce the
following notation. Let a(x) = −1

4g′(x)g′′(x) and b(x) = − 1
12g′′′(x). Therefore,

we have that

C3(x, z) = l3{a(x)z + b(x)z3}.



OPTIMAL SCALING FOR MCMC 505

Set

Q∗
d(xd, ·) = L

{
1√
d

d∑
i=2

χd
i C3(x

d
i ,Zi)

∣∣∣∣χd
1 = 1

}
.

Let φd(xd, t) = ∫
R

exp(itw)Q∗
d(dw) and let φ(t) = exp(− t2

2 cl6K2).

LEMMA A.12. There exists a sequence of sets Fd,4 ⊆ R
d such that:

(a) limd→∞{d1/3πd(FC
d,4)} = 0,

(b) for all t ∈ R,

sup
xd∈Fd,4

|φd(xd; t) − φ(t)| → 0 as d → ∞,

(c) for all bounded continuous functions r ,

sup
xd∈Fd,4

∣∣∣∣
∫

R

Q∗
d(xd, dy)r(y) − 1√

2πcl3K

∫
R

r(y) exp
(
− y2

cl6K2

)
dy

∣∣∣∣→ 0

as d → ∞,

(d)

sup
xd∈Fd,4

∣∣∣∣∣E∗
[

1 ∧ exp

{
d−1/2

d∑
i=2

χd
i C3(x

d
i ,Zi) − cl6K2

2

}]
− 2�

(
−

√
cl3K

2

)∣∣∣∣∣→ 0

as d → ∞.

PROOF. The sets Fd,4 are constructed as in the proof of [7], Lemma 3, and so,
statement (a) follows. Specifically, we let Fd,4 be the set of xd ∈ R

d such that∣∣∣∣∣1d
d∑

i=2

h(xd
i ) −

∫
h(x)f (x) dx

∣∣∣∣∣≤ d−1/4(A.27)

|h(xd
i )| ≤ d3/4, 1 ≤ i ≤ d,(A.28)

for each of the functionals h(x) = a(x)2, b(x)2, a(x)b(x), a(x)4, b(x)4,

a(x)3b(x), a(x)2b(x)2, a(x)b(x)3.
Since statements (c) and (d) follow from statement (b) as outlined in [7],

Lemma 3, all that is required is to prove (b).
Let Ld = {j ;χd

j = 1,2 ≤ j ≤ d} and let

θd
j (xd

j ; t) = E

[
exp

(
it√
d

C3(x
d
j ,Zj )

)]
.

Let

φ
�d

d (xd; t) = E
∗
[

exp

{
it√
d

∑
j∈�d

C3(x
d
j ,Zj )

}∣∣∣∣Ld = �d

]
.
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Then since {C3(x
d
j ,Zj )}dj=2 are independent random variables, it follows that

φ
�d

d (xd; t) = ∏
j∈�d

θd
j (xd

j ; t).

Therefore,

φd(xd; t) = E
∗
[

exp

{
it√
d

d∑
j=2

χd
j C3(x

d
j ,Zj )

}]
= E

∗
[ ∏

j∈Ld

θd
j (xd

j ; t)
]

and so,

sup
xd∈Fd,4

∣∣∣∣∣φd(xd; t) − E
∗
[ ∏

j∈Ld

{
1 − t2

2d
v(xd

j )

}]∣∣∣∣∣
(A.29)

≤ sup
xd∈Fd,4

E
∗
[∣∣∣∣∣

∏
j∈Ld

θd
j (xd

j ; t) − ∏
j∈Ld

{
1 − t2

2d
v(xd

j )

}∣∣∣∣∣
]
,

where v(xd
j ) = varZ(C3(x

d
j ,Z)) = l6{a(xd

j )2 + 6a(xd
j )b(xd

j ) + 15b(xd
j )2}.

The right-hand side of (A.29) converges to 0 as d → ∞ by arguments similar
to those used in [7], Lemma 3. Hence, the details are omitted.

Now by using a Taylor series expansion for exp(−∑d
j=2

t2

2d
χd

j v(xd
j )), it is triv-

ial to show that

sup
xd∈Fd,4

∣∣∣∣∣E∗
[ ∏

j∈Ld

{
1 − t2

2d
v(xd

j )

}]

(A.30)

− E
∗
[

exp

{
−

d∑
j=2

t2

2d
χd

j v(xd
j )

}]∣∣∣∣∣→ 0 as d → ∞,

since for all xd ∈ Fd,4, 1
d2

∑d
j=2 v(xd

j )2 → 0 as d → ∞ (cf. [7], Lemma 3).
The final step to complete the proof of statement (b) is to show that

sup
xd∈Fd,4

∣∣∣∣∣E∗
[

exp

(
−

d∑
j=2

χd
j

t2

2d
v(xd

j )

)]
− exp

(
− t2

2
cl6K2

)∣∣∣∣∣→ 0 as d → ∞.

This follows immediately, since using Chebyshev’s inequality, we can show that,
for all ε > 0,

sup
xd∈Fd,4

P
∗
(∣∣∣∣∣

d∑
j=2

χd
j

t2

2d
v(xd

j ) − t2

2
cl6K2

∣∣∣∣∣> ε

)
→ 0 as d → ∞.

Thus, statement (b) is proved and the lemma follows. �

We are now in position to prove Theorems 4.1 and 4.2.
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PROOF OF THEOREM 4.1. The theorem follows from (A.25), (A.26) and
part (d) of Lemma A.12. �

PROOF OF THEOREM 4.2. We take Fd = Fd,1 ∩ Fd,2 ∩ Fd,3 ∩ Fd,4. Then

d1/3πd(FC
d ) → 0 as d → ∞,

and so, for fixed T ,

P(	d
t ∈ Fd,0 ≤ t ≤ T ) → 1 as d → ∞.

Also, from Lemmas A.9–A.12, it follows that

sup
xd∈Fd

|GdV (xd) − GV (x1)| → 0 as d → ∞

for all V ∈ C∞
c , which depend only on the first coordinate. Therefore, the weak

convergence follows by [4], Chapter 4, Corollary 8.7, since C∞
c separates points

and an identical argument to that of Theorem 3.1 can be used to demonstrate com-
pact containment.

The maximizing of hc(l) is straightforward using the proof of [7], Theorem 2.
�

A.3. Proofs of Section 5. The proof of Theorem 5.1 is very similar to the
proof of Theorem 3.1 given in Section A.1.

First, for x∞ ∈ R
∞, let x∞ = (x∞

1 , x∞
2 , . . .), x̄d = 1

d−2
∑d

i=3 x∞
i and let x̄ =

limd→∞ x̄d , should the limit exist. For x∞ ∈ R
∞, let xd ∈ R

d be such that
xd = (x∞

1 , x∞
2 , . . . , x∞

d ) [= (xd
1 , xd

2 , . . . , xd
d ), say], that is, xd comprises the first

d components of x∞. Then let Gd be the (discrete-time) generator of Xd , and let
V ∈ C∞

c be an arbitrary test function of x1, x2 and x̄d only. Thus,

GdV (xd) = dE

[(
V (Yd) − V (xd)

){
1 ∧ πd(Yd)

πd(xd)

}]
.

The generator G of the three-dimensional diffusion described in Theorem 5.1, for
an arbitrary test function V of x1, x2 and x̄, is given by

GV (x∞) = cl2

2

(
2�

(
cl

2
√

1 − ρ

))

×
2∑

i=1

{
− 1

1 − ρ
(xi − x̄)

∂

∂xi

V (x∞) + ∂2

∂x2
i

V (x∞)

}
.

We shall define sets {Fd ⊆ R
∞;d ≥ 1} such that for dP(Xd ∈ FC

d ) → 0 as
d → ∞. This is done in Lemma A.13 and, thus, we can restrict attention to



508 P. NEAL AND G. ROBERTS

x∞ ∈ Fd . Furthermore, Lemma A.13 ensures that, for all x∞ ∈ Fd , limd→∞ x̄d

exists. Therefore, since we can restrict attention to x∞ ∈ Fd , we aim to show that

sup
x∞∈Fd

|GdV (xd) − GV (x∞)| → 0 as d → ∞,(A.31)

which is proved in Theorem A.17 and then Theorem 5.1 follows trivially.
Then define sets {Fd ⊆ R

∞;d ≥ 1} such that for dP(Xd ∈ FC
d ) → 0 as d → ∞.

This is done in Lemma A.13 and, thus, we can restrict attention to x∞ ∈ Fd .

LEMMA A.13. For 1 ≤ k ≤ 5, define the sequence of sets {Fd,k ⊆ R
∞;d ≥ 1}

by

Fd,1 = {x∞; |Rd(xd) − (1 − ρ)| < d−1/8},
Fd,2 = {x∞; |x̄d − x̄| < d−1/8},
Fd,3 =

{
x∞; max

1≤i≤d
|x∞

i | < d1/8
}
,

Fd,4 =
{

x∞;
∣∣∣∣∣1d

d∑
i=1

(x∞
i )2

∣∣∣∣∣< d1/8

}
,

Fd,5 =
{

x∞;
∣∣∣∣∣1d

d∑
i=1

(
1

1 − ρ
x∞
i + θd

d∑
j=1

x∞
j

)4∣∣∣∣∣< d1/8

}
,

where Rd(xd) = 1
d−1

∑d
i=1(x

∞
i − 1

d

∑d
j=1 x∞

j )2 and θd = − ρ

1+(d−2)ρ−(d−1)ρ2 . Let

Fd =⋂5
k=1 Fd,k , then

dP(Xd ∈ FC
d ) → 0 as d → ∞.(A.32)

PROOF. It is sufficient to show that, for 1 ≤ k ≤ 5,

dP(Xd ∈ FC
d,k) → 0 as d → ∞.

For the cases k = 1,3,4 and 5, it is straightforward but tedious using Markov’s
inequality to prove the result. Therefore, the details are omitted.

For the case k = 2, let X̄d = 1
d−2

∑d
i=3 X∞

i (d ≥ 3) and let X̄ = limd→∞ X̄d .
Therefore, by construction (see Section 5), for all d ≥ 3,(

X̄d

X̄

)
∼ N

((
0
0

)
,

( 1

d − 2

(
1 + (d − 3)ρ

)
ρ

ρ ρ

))
.

Thus,

{X̄d |X̄ = x̄} ∼ N

(
(d − 2)ρ

1 + (d − 3)ρ
x̄,

ρ(1 − ρ)

1 + (d − 3)ρ

)
.(A.33)
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Therefore, by Markov’s inequality,

P(Xd ∈ FC
d,2) = P(|X̄d − X̄| ≥ d−1/8) ≤ √

dE[|X̄d − X̄|4],(A.34)

and the result follows trivially from (A.33) and (A.34). �

The procedure now differs slightly from that given in Section A.1. We post-
pone the finding of a suitable Taylor series expansion for GdV (xd) and first give
Lemmas A.14, A.15 and A.16, which mirror Lemmas A.4, A.6 and A.7, respec-
tively. The proofs of the aforementioned lemmas are similar to the proofs of the
corresponding results in Section A.1 and, hence, the details are omitted.

LEMMA A.14. For 1 ≤ k ≤ d , let

λk
d(= λk

d(xd)) = 1

d − 1

∑
i =k

χd
i

(
1

1 − ρ
xd
i + θd

d∑
j=1

xd
j

)2

.

Then for any ε > 0,

sup
x∞∈Fd

P
∗
k

(∣∣∣∣λk
d − c

1 − ρ

∣∣∣∣> ε

)
→ 0 as d → ∞,

where, for any random variable X and any subset A ⊆ R, P
∗
k(X ∈ A) = P(X ∈

A|χd
k = 1) and E

∗
k[X] = E[X|χd

k = 1].

For z ∈ R, let

hk
d(z)

(= hk
d(z;xd)

)=
{

log
{
πd(Yd)

πd(xd)

}∣∣∣Zk = z

}
.

The role of hk
d(z) is similar to that played by hd(z) in Section A.1, with hk

d(0)

equivalent to Bd (cf. Lemma A.3).

LEMMA A.15. For d ≥ 1 and 1 ≤ k ≤ d , let Ak
d(= Ak

d(xd)) = − cl2

2(1−ρ)
−

σd

∑
i =k χd

i ( 1
1−ρ

xi + θd

∑d
j=1 xj )Zi . Then,

sup
xd∈Fd

∣∣E∗
k

[
1 ∧ eAk

d
]− E

∗
k

[
1 ∧ ehk

d(0)]∣∣→ 0 as d → ∞,(A.35)

and

sup
xd∈Fd

∣∣E∗
k

[
eAk

d ;Ak
d < 0

]− E
∗
k

[
ehk

d(0);hk
d(0) < 0

]∣∣→ 0 as d → ∞.
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LEMMA A.16. For k ≥ 1,

sup
xd∈Fd

∣∣∣∣E∗
k

[
1 ∧ eAk

d
]− 2�

(
− l

2

√
c

1 − ρ

)∣∣∣∣→ 0 as d → ∞(A.36)

and

sup
xd∈Fd

∣∣∣∣E∗
k

[
eAk

d ;Ak
d < 0

]− �

(
− l

2

√
c

1 − ρ

)∣∣∣∣→ 0 as d → ∞.(A.37)

We are now in position to prove (A.31).

THEOREM A.17.

sup
x∞∈Fd

|GdV (xd) − GV (x∞)| → 0 as d → ∞,

PROOF. Note that, for all d ≥ 3, we have the following Taylor series expan-
sion, for V :

V (Yd) − V (xd)

= σd

{
χd

1 Z1
∂

∂x1
V (xd) + χd

2 Z2
∂

∂x2
V (xd)

+
(

1

d − 2

d∑
i=3

χd
i Zi

)
∂

∂x̄d

V (xd)

}

+ 1

2
σ 2

d

{
χd

1 Z2
1

∂2

∂x2
1

V (xd) + χd
2 Z2

2
∂2

∂x2
2

V (xd) + χd
1 χd

2 Z1Z2
∂2

∂x1 x2
V (xd)

+ χd
1 Z1

(
1

d − 2

d∑
i=3

χd
i Zi

)
∂2

∂x1 ∂x̄d

V (xd)

+ χd
2 Z2

(
1

d − 2

d∑
i=3

χd
i Zi

)
∂2

∂x2 ∂x̄d

V (xd)

+
(

1

d − 2

d∑
i=3

χd
i Zi

)2
∂2

∂x̄2
d

V (xd)

}

+ 1

6
σ 3

d F (xd,χd,Z)

=
9∑

i=1

Di(xd,χd,Z) + 1

6
σ 3

d F (xd,χd,Z), say,
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where F(xd,χd,Z) is a function of χd = (χd
1 , χd

2 , . . . , χd
d ), Z and the third deriva-

tives of V (xd). Since V ∈ C∞
c , it follows that, for all xd ∈ R

d , E[|F(xd,χd,Z)|] <

∞, and so,

sup
xd∈Fd

|GdV (xd) − ĜdV (xd)| → 0 as d → ∞,

where

ĜdV (xd) =
9∑

i=1

E

[
Di(xd,χd,Z)

{
1 ∧ π(Yd)

π(xd)

}]

=
9∑

i=1

Ĝi
dV (xd), say.

Now for all xd ∈ Fd , we have that

Ĝ1
dV (xd) = dσdE

[
χd

1 Z1
∂

∂x1
V (xd){1 ∧ exp(h1

d(Z1))}
]

= dcdσdE
∗
1

[
Z1

∂

∂x1
V (xd)

{
{1 ∧ exp(h1

d(0))}

− σdZ1

(
1

1 − ρ
x1 + θd

d∑
j=1

xd
j

)

× {exp(h1
d(0));h1

d(0) < 0}
}]

+ O(dσ 3
d d1/4).

Therefore, since Z1 and h1
d(0) are independent, it follows that

sup
xd∈Fd

∣∣∣∣∣Ĝ1
dV (xd) − dcdσ 2

d

{
−
(

1

1 − ρ
x1 + θd

d∑
j=1

xd
j

)}

× ∂

∂x1
V (xd)E∗

1[exp(h1
d(0));h1

d(0) < 0]
∣∣∣∣∣→ 0(A.38)

as d → ∞.

Now for all xd ∈ Fd ,

θd

d∑
i=1

xi = θd(x1 + x2) − ρ(d − 2)

1 + (d − 2)ρ − (d − 1)ρ2

{
1

d − 2

d∑
i=3

xi

}

(A.39)

→ − 1

1 − ρ
x̄ as d → ∞.
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Therefore, it follows from (A.38), (A.39) and Lemma A.16 that

sup
xd∈Fd

∣∣∣∣Ĝ1
dV (xd) − cl2

2(1 − ρ)

{
2�

(
− l

2

√
c

1 − ρ

)}

×
{
−(x1 − x̄)

∂

∂x1
V (x∞)

}∣∣∣∣→ 0 as d → ∞.

Similarly,

sup
xd∈Fd

∣∣∣∣Ĝ2
dV (xd) − cl2

2(1 − ρ)

{
2�

(
− l

2

√
c

1 − ρ

)}

×
{
−(x2 − x̄)

∂

∂x2
V (x∞)

}∣∣∣∣→ 0 as d → ∞.

Next, for all xd ∈ Fd , we have that

Ĝ3
dV (xd) = dσdE

[
∂

∂x̄d

V (x)

(
1

d − 2

d∑
i=3

χd
i Zi

){
1 ∧ π(Yd)

π(xd)

}]

= dcdσd

∂

∂x̄d

V (xd)

×
{

1

d − 2

d∑
i=3

E
∗
i

[
Zi

{
{1 ∧ exp(hi

d(0))}

− σdZi

(
1

1 − ρ
xi + θd

d∑
j=1

xj

)

× {exp(hi
d(0));hi

d(0) < 0}
}]}

+ O(dσ 3
d d1/4).

Therefore, since Zi and hi
d(0) are independent, it follows that

sup
xd∈Fd

|Ĝ3
dV (xd) − Ǧ3

dV (xd)| → 0 as d → ∞,

where

Ǧ3
dV (xd) = dcdσ 2

d

∂

∂x̄d

V (xd)

{
− 1

d − 2

d∑
i=3

(
1

1 − ρ
xi + θd

d∑
j=1

xj

)

× E
∗
i [exp(hi

d(0));hi
d(0) < 0]

}
.
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Let

G̃3
dV (xd) = cl2

1 − ρ

∂

∂x̄d

V (xd)

{
− 1

d − 2

d∑
i=3

E
∗
i [exp(hi

d(0));hi
d(0) < 0](xi − x̄)

}
.

Then since, for all xd ∈ Fd , dθd → − 1
1−ρ

and 1
d

∑d
j=1 xd

j → x̄, as d → ∞, we
have that

sup
xd∈Fd

|Ǧ3
dV (xd) − G̃3

dV (xd)| → 0 as d → ∞.

By Lemma A.16, for all xd ∈ Fd and i ≥ 3,

E
∗
k[exp(hi

d(0));hi
d(0) < 0] → �

(
− l

2

√
c

1 − ρ

)
as d → ∞.

Therefore, since x̄d → x̄ as d → ∞, we have that

sup
xd∈Fd

|G̃3
dV (xd)| → 0 as d → ∞.

Hence,

sup
xd∈Fd

|Ĝ3
dV (xd)| → 0 as d → ∞.

Now for all xd ∈ Fd , we have, by independence, that

Ĝ4
dV (x) = 1

2
dσ 2

d cdE
∗
1

[
Z2

1
∂2

∂x2
1

V (xd){1 ∧ exp(h1
d(Z1))}

]

= 1

2
dσ 2

d cdE
∗
1

[
Z2

1
∂2

∂x2
1

V (xd){1 ∧ exp(h1
d(0))}

]
+ O(dσ 3

d d1/8)

= 1

2
dσ 2

d cd

∂2

∂x2
1

V (xd)E∗
1[1 ∧ exp(h1

d(0))] + O(dσ 3
d d1/8),

since, for all xd ∈ Fd , | 1
1−ρ

x1 + θd

∑d
i=1 xd

i | ≤ d1/8. Therefore, by Lemma A.16,
we have that

sup
xd∈Fd

∣∣∣∣Ĝ4
dV (xd) − cl

2

{
2�

(
l

2

√
c

1 − ρ

)}
∂2

∂x2
1

V (x∞)

∣∣∣∣→ 0 as d → ∞.

Similarly,

sup
xd∈Fd

∣∣∣∣Ĝ5
dV (xd) − cl

2

{
2�

(
l

2

√
c

1 − ρ

)}
∂2

∂x2
2

V (x∞)

∣∣∣∣→ 0 as d → ∞.
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There exists α1 lying between 0 and Z1, such that

|Ĝ6
dV (xd)|

=
∣∣∣∣12σ 2

d E

[
χd

1 χd
2 Z1Z2

∂2

∂x1 ∂x2
V (xd)

{
1 ∧ π(Yd)

π(xd)

}]∣∣∣∣
=
∣∣∣∣∣12dcdσ 2

d

× E
∗
1

[
χd

2 Z2Z1
∂2

∂x1 ∂x2
V (xd)

{
{1 ∧ exp(h1

d(0))}

− σdZ1

(
1

1 − ρ
x1 + θd

d∑
j=1

xd
j

)

× {exp(h1
d(α1));h1

d(α1) < 0}
}]∣∣∣∣∣.

Note that Z1 is independent of χd
2 , Z2 and h1

d(0). Therefore, since E
∗
1[Z1] = 0, we

have that

|Ĝ6
dV (xd)| ≤ 1

2
dσ 3

d cd

∂2

∂x1 ∂x2
V (xd)

∣∣∣∣∣ 1

1 − ρ
x1 + θd

d∑
j=1

xd
j

∣∣∣∣∣.(A.40)

Since ∂2

∂x1 ∂x2
V (xd) is bounded and for all xd ∈ Fd , | 1

1−ρ
x1 + θd

∑d
j=1 xj | < d1/8,

it follows that the right-hand side of (A.40) converges to 0 as d → ∞. Hence,
|Ĝ6

dV (xd)| → 0 as d → ∞.
Similarly, for i = 7,8,9, it can be shown that |Ĝi

dV (xd)| → 0 as d → ∞ and
the lemma follows. �

PROOF OF THEOREM 5.1. The proof is similar to that of Theorem 3.1. From
Lemma A.13 and Theorem A.17, we have that dP(Xd /∈ Fd) → 0 as d → ∞ and

sup
x∞∈Fd

|GdV (xd) − GV (x∞)| → 0 as d → ∞,

respectively. Therefore, the weak convergence follows by [4], Chapter 4, Corol-
lary 8.7, since C∞

c separates points and a similar argument to that of Theorem 3.1
can be used to demonstrate compact containment. �

The proof of Theorem 5.3 is similar to the proof of Theorem 5.1 and, hence,
the details are omitted. The key point is to show that Lemma A.13 still holds
with (A.32) replaced by

d2
P(Xd ∈ FC

d ) → 0 as d → ∞.

This is again straightforward, but tedious, using Markov’s inequality.
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