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ON A NONHIERARCHICAL VERSION OF THE GENERALIZED
RANDOM ENERGY MODEL1

BY ERWIN BOLTHAUSEN AND NICOLA KISTLER

Universität Zürich

We introduce a natural nonhierarchical version of Derrida’s generalized
random energy model. We prove that, in the thermodynamical limit, the free
energy is the same as that of a suitably constructed GREM.

1. Introduction and definition of the model. The generalized random en-
ergy model (GREM for short), introduced by Derrida [1], plays an important
role in spin glass theory. Originally invented as a simple model which exhibits
replica symmetry breaking at various levels, it has become clear that more inter-
esting models, like the celebrated one of Sherrington–Kirkpatrick, exhibit GREM-
like behavior in the large N limit. Despite the spectacular recent progress in un-
derstanding the SK-model (see [4, 5, 7]), many issues have not been clarified
at all, the most prominent one being the so-called ultrametricity. [A metric d

is called an ultrametric if the strengthened triangle condition holds: d(x, z) ≤
max(d(x, y), d(y, z)). Equivalently, two balls are either disjoint or one is con-
tained in the other.] The GREM is of limited use to investigate this because it is
hierarchically organized from the start. This favorable situation allows for a com-
plete solution, fully confirming the so-called Parisi theory (we refer the reader to
the detailed study [2] where it is also pointed out that, interestingly, the emerging
ultrametricity of the Gibbs measure does not necessarily coincide with the starting
hierarchical organization). Yet, from the considerations on the GREM, one gets
little clue on why many systems should be ultrametric in the limit. [In Talagrand’s
recent proof of the Parisi formula, ultrametricity plays no apparent rôle, and it
seems to be quite delicate to prove ultrametricity by Talagrand’s method. This is
quite curious as, on the other hand, ultrametricity plays a crucial rôle in the physi-
cists nonrigorous derivation of the free energy, be that using the replica trick or the
cavity method.]

We present here a simple and, as we think, natural generalization of the GREM
which has no built in ultrametric structure. We, however, show that, in the limit, the
model is ultrametrically organized. In this paper we address only the free energy.
The more delicate investigation of the ultrametricity of the Gibbs distribution will
be investigated in a forthcoming paper.
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Throughout this paper, we fix a number n ∈ N, and consider the set I =
{1, . . . , n}, as well as a collection of positive real numbers {aJ }J⊂I such that∑

J⊂I

aJ = 1.

For convenience, we put a∅

def= 0. The relevant subset of I will be only the ones
with positive a-value. For A ⊂ I , we set

PA
def= {J ⊂ A :aJ > 0}, P

def= PI .

For n ∈ N, we set �N
def= {1, . . . ,2N }. We also fix positive real numbers γi, i ∈ I,

satisfying
n∑

i=1

γi = 1,

and write �i
N

def= �γiN where, for notational convenience, we assume that 2γiN is
an integer. For N ∈ N, we will label the “spin configurations” σ as

σ = (σ1, . . . , σn), σi ∈ �i
N,

that is, we identify �N with �1
N × · · · × �n

N. For J ⊂ I , J = {j1, . . . , jk}, j1 <

j2 < · · · < jk, we write �N,J
def= ∏k

s=1 �
js

N , and for σ ∈ �N, we write σJ for the
projected configuration (σj )j∈J ∈ �N,J . Our spin glass Hamiltonian is defined as

Xσ = ∑
J∈P

XJ
σJ

,(1)

where XJ
σJ

, J ∈ P , σJ ∈ �N,J are independent centered Gaussian random vari-
ables with variance aJ N. The Xσ are then Gaussian random variables with vari-
ance N (Gaussian always means “centered Gaussian” through this note), but they
are correlated. E will denote expectation with respect to these random variables.
A special case is when P = {I }, that is, when only aI �= 0, in which case it has
to be one. Then the Xσ are independent, that is, one considers simply a set of 2N

independent Gaussian random variables with variance N. This is the standard ran-
dom energy model.

The generalized random energy model is a special case, too: It corresponds
to the situation where the sets in P are “nested,” meaning that P consists of an
increasing sequence of subsets. Without loss of generality, we may assume that in
this case

P = {Jm : 1 ≤ m ≤ k}, Jm
def= {1, . . . , nm},(2)

where 1 ≤ n1 < n2 < · · · < nk ≤ n. In the GREM case, the natural metric on �N

coming from the covariance structure

d(σ,σ ′) def=
√

E
(
(Xσ − Xσ ′)2

)
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is an ultrametric. In the more general case (1) considered here, this metric is not
an ultrametric.

To see this, take n = 3, P = {{1,2}, {1,3}, {2,3}}, that is, where

Xσ = X{1,2}
σ1,σ2

+ X{1,3}
σ1,σ3

+ X{2,3}
σ2,σ3

,(3)

with aJ = 1/3 for J ∈ P . Then for a, b, b′, c, c′ ∈ �N/3, b �= b′, c �= c′, one has

d
(
(a, b, c), (a, b, c′)

) = d
(
(a, b, c′), (a, b′, c′)

) =
√

2N/3,

whereas

d
(
(a, b, c), (a, b′, c′)

) = √
N,

contradicting ultrametricity.
Any of our models can be “coarse-grained” in many ways into a GREM. For

that consider strictly increasing sequences of subsets of I : ∅ = A0 ⊂ A1 ⊂ · · · ⊂
AK = I . We do not assume that the Ai are in P . We call such a sequence a chain
T = (A0,A1, . . . ,AK). We attach weights âAj

to these sets by putting

âAj

def= ∑
B∈PAj

\PAj−1

aB.(4)

Evidently
∑K

j=1 âAj
= 1, and if we assign random variables Xσ (T), according

to (1), we arrive after an irrelevant renumbering of I at a GREM of the form (2).
In particular, the corresponding metric d is an ultrametric.

We write tr(·) for averaging over �N (i.e., the coin-tossing expectation if we
identify �N with {H,T }N ).

For a function x :�N → R, set

ZN(β, x)
def= tr exp[βx], FN(β, x)

def= 1

N
log

(
ZN(β, x)

)
,

and define the usual finite N partition function, and free energy by

ZN(β)
def= ZN(β,X), FN(β)

def= FN(β,X), fN(β)
def= E

(
FN(β,X)

)
,

where X is interpreted as random function �N → R.

For any chain T, we attach to our model a GREM (Xσ (T))σ∈�N
, as explained

above, and then

fN(T, β)
def= E

(
FN

(
β,X(T)

))
,

f (T, β)
def= lim

N→∞fN(T, β).

For a GREM, the limiting free energy is known to exist, and can be expressed
explicitly, but in a somewhat complicated way (see [1, 3]). Our main result is that
our generalization of the GREM does not lead to anything new in N → ∞ limit,
shedding hopefully some modest light on the “universality” of ultrametricity.
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THEOREM 1.

f (β)
def= lim

N→∞fN(β)(5)

exists and is also the almost sure limit of FN(β).

f (β) is the free energy of a GREM. More precisely, there exists a chain T such
that

f (β) = f (T, β), β ≥ 0.(6)

f (T, β) is minimal in the sense that

f (β) = min
S

f (S, β),(7)

the minimum being taken over all chains S.

The fact that free energy is self-averaging, meaning that f (β) (if the limit exists)
is also the almost sure limit of the FN , is a simple consequence of the Gaussian
concentration inequality. We write FN as a function of the standardized variables
XJ

σJ
/
√

aJ N. As∣∣∣∣∣log
∑
i

eai − log
∑
i

ea′
i

∣∣∣∣∣ ≤ max
i

|ai − a′
i |, ai, a

′
i ∈ R,

we get that FN(β), regarded as a function of the collection (XJ
σJ

/
√

aJ N ), is Lip-

schitz continuous with Lipschitz constant β/
√

N . By the usual concentration of
measure estimates for Gaussian distributions (see, e.g., Proposition 2.18 of [6]),
we have

P[|FN(β) − EFN(β)| > ε] ≤ 2 exp
[
− ε2

2β2 N

]
.(8)

Using the Borel–Cantelli lemma, one sees that if limN→∞ fN(β) exists, then the
FN(β) converge almost surely to this limit, too, and if limN→∞ FN(β) exists al-
most surely, then the limit is nonrandom and equals limN→∞ fN(β).

As for the strategy of the proof, the existence of the limit is established through
a quite standard application of the second moment method, akin to that originally
exploited by Derrida in his seminal paper [1]; this allows to express the limiting
free energy in terms of a variational problem, which we then solve inductively.

For the reader’s convenience, we briefly describe the mechanism which lies
behind Theorem 1 for the Hamiltonian (3), but we allow for general (positive)
variances a12, a13, a23, and general γi . It is best to count the number of configura-
tions σ which reach a certain energy level λN. It is evident that only an exponen-
tially small portion of the total number 2N of configurations achieve this, roughly
formulated (we will be more precise later),

#{σ :Xσ 
 λN} 
 2Ne−ρ(λ)N , ρ(λ) > 0.
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The free energy is obtained by the Legendre transform of ρ. In order to determine
ρ(λ), we count individually for each of the three parts in (3) how many configura-
tions reach respective levels

ρ̂(λ1, λ2, λ3)
(9)


 − 1

N
log #

{
σ :X{1,2}

σ1,σ2

 λ1N, X{1,3}

σ1,σ3

 λ2N, X{2,3}

σ2,σ3

 λ3N

} + log 2,

with λ1 + λ2 + λ3 = λ. Evidently,

ρ(λ) = inf
λ1+λ2+λ3=λ

ρ̂(λ1, λ2, λ3).(10)

It turns out that one can get ρ̂ by computing expectations inside the log-
arithm, provided only some naturally defined restrictions on the λi are satis-
fied. For small λ, it is easily seen that one has an “equipartition” property, and
that the optimal λ1, λ2, λ3 are proportional to the respective variances, that is,
λ1 = a12λ, λ2 = a13λ, λ3 = a23λ, and from that one obtains

ρ(λ) = λ2/2,(11)

which is the same as if the Xσ would be uncorrelated. Increasing λ, we, however,
encounter restrictions from the structure of the Hamiltonian. First of all, λ1 has to
be such that there are any σ1, σ2 with X

{1,2}
σ1,σ2 
 λ1N = a12λN . There are 2(γ1+γ2)N

pairs (σ1, σ2), and as the X
{1,2}
σ1,σ2 are independent, the restriction is

2(γ1+γ2)N exp
[
−λ2a12N

2

]
� 1.

(We are not considering any log-corrections.) This leads to the restriction

λ ≤
√

2(γ1 + γ2) log 2

a12
(12)

for the validity of (11), and there are two similar restrictions coming from X{1,3}
and X{2,3}. Even if these three restrictions are satisfied, it can be that there are
simply totally not enough triples (σ1, σ2, σ3) left. A necessary condition for this is
certainly that the expected number of #{σ :Xσ 
 λN} is not exponentially decay-
ing, which is simply the condition that λ ≤ √

2 log 2. The somewhat astonishing
fact is that these are the only conditions one has to take into considerations for the
validity of (11). Now, there are two cases:

CASE 1. λ ≤ √
2 log 2 implies the other ones, that is,

min
1≤i<j≤3

γi + γj

aij

≥ 1.(13)
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In that case, we are simply left with the restriction λ ≤ √
2 log 2, and the free

energy is

f (β) = sup
λ≤√

2 log 2
(βλ − λ2/2),

which is the free energy of an REM. In that case the internal structure of the model
is irrelevant, at least for the free energy.

CASE 2. (13) is violated. For definiteness, assume that (γ1 + γ2)/a12 is the
smallest one.

In that case, (11) is only correct in the region (12). For λ larger, there is no
(σ1, σ2) with X

{1,2}
σ1,σ2 
 a12λN (with probability close to 1), the maximum of the

X
{1,2}
σ1,σ2 being at m12N (± log-corrections), where

m12
def=

√
2(γ1 + γ2)a12 log 2.

Therefore, one has to restrict in (10) to λ’s with λ1 = m12. The only configura-
tions σ for which Xσ 
 λN have to satisfy

X{1,2}
σ1,σ2


 m12N,(14)

but there are now only subexponentially many (σ1, σ2) left which achieve this feat,
and the difference to λN has to be made by the field

Yσ1,σ2(σ3)
def= X{1,3}

σ1,σ3
+ X{2,3}

σ2,σ3
, 1 ≤ σ3 ≤ 2γ3N,

restricting (σ1, σ2) to the few which satisfy (14). There is an upper limit λmax for
λ’s such that there are any σ3 with Y(σ3) 
 (λ−m12)N. λmaxN −m12N is simply
the maximum of 2γ3N independent Gaussians with variance (a13 + a23)N, that is,

λmax − m12
def=

√
2γ3(a13 + a23) log 2.

The situation is similar to the one in the GREM with the only difference that,
for (σ1, σ2) �= (σ ′

1, σ
′
2), the fields Yσ1,σ2 and Yσ ′

1,σ
′
2

are not independent, except
when σ1 �= σ ′

1 and σ2 �= σ ′
2. It is, however, fairly evident that, among the (σ1, σ2)

for which X
{1,2}
σ1,σ2 
 m12N there will be no pairs with such a partial overlap, with

probability close to 1, and therefore, it is quite natural one can handle the field
Yσ1,σ2 as if it would come from a second level of a two-level GREM. In fact, it
turns out that, in the Case 2, the tree of Theorem 1 is {{1,2}, {1,2,3}}, and we
replace our model with the coarse grained one with Hamiltonian X′

α1
+ X′′

α1,α2
,

where #α1 = 2(γ1+γ2)N , var(X′) = a12N, #α2 = 2γ3N, var(X′′) = (a13 + a23)N .
This way of reasoning works for the general case. There are two issues which

might be somewhat surprising. The first is that expressions (9) can always be eval-
uated by computing expectations inside the logarithm, provided one keeps some
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fairly trivial restrictions on the λi. Second, it is not entirely evident why these
restrictions finally always lead to tree structures.

It is also interesting that the system always chooses from the many GREMs
which can be obtained by coarse-grainings the one with minimal free energy.
A similar behavior has already been obtained for the GREM itself in [2].

2. Second moment estimates. We fix some notation: If (aN)N∈N and
(bN)N∈N are two sequences of positive real numbers, we write aN � bN if, for
all ε > 0, there exists N0(ε) ∈ N such that

e−εNbN ≤ aN ≤ e−εNbN

for N ≥ N0. We also write aN � bN if, for some δ > 0, one has aN ≤ bNe−δN ,

again for large enough N. In that case, we also write aN = �(bN). The same
notation are used in the case of sequences of random variables, just meaning that
the relations hold almost surely (and therefore N0 may depend on ω). For A ⊂ I

(not necessarily in P ), we set

γ (A)
def= ∑

i∈A

γi, α(A)
def= ∑

J∈PA

aA.

We rewrite FN in terms of energy levels. For a collection λ = (λJ )J∈P , λJ ∈ R

and A ⊂ I, we set

NN,A(λ)
def= #

{
σ ∈ �N,A :XJ

σJ
≥ λJ N,∀J ∈ PA

}
,

NN(λ)
def= NN,I (λ).

Clearly,

{NN,A(λ) = 0} ⊂ {NN(λ) = 0}.(15)

We express FN in terms of the NN(λ):

FN(β) = 1

N
log 2−N(βN)|P |

∫
RP

dλNN(λ)
∏

J∈P

eβλJ N

(16)

= 1

N
log

∫
RP

dλNN(λ)
∏

J∈P

eβλJ N − log 2 + O

(
logN

N

)
.

We first want to take out the λ for which NN(λ) = 0 for large N. As these are in-
teger valued random variables, it is clear that ENN(λ) � 1 implies NN(λ) = 0 for
large enough N , almost surely. It, however, turns out that this condition is not suffi-
cient for our purpose, but remark that, if for some A ⊂ I, one has ENN,A(λ) � 1,

then, by (15), one has NN(λ) = 0 for large enough N as well.
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LEMMA 2. (a) For any λ ∈ R
P and A ⊂ I , we have

ENN,A(λ) � 2γ (A)N exp

[
− ∑

J∈PA

(λ+
J )2

2aJ

N

]
,

where λ+
J

def= max(λJ ,0).

(b) There exists C > 0 such that

ENN(λ) ≤ C2N exp

[
− ∑

J∈P

(λ+
J )2

2aJ

N

]

for all λ ∈ R
P , and all N.

(c) Let λ ∈ R
P . If for some A ⊂ I one has

∑
J∈PA

(λ+
J )2

2aJ

> γ (A) log 2,

then P(NN(λ) �= 0) � 1 and, in particular, NN(λ) = 0 for large enough N, almost
surely.

PROOF. (a) and (b) follow by standard Gaussian tail estimates, and in case (c),
by (15), we have

P
(
NN(λ) �= 0

) ≤ P
(
NN,A(λ) �= 0

) ≤ ENN,A(λ),

which proves (c). �

Let


def=

{
λ ∈ R

P :
∑

J∈PA

(λ+
J )2

2aJ

≤ γ (A) log 2,∀A ⊂ I

}
,

+ def= {λ ∈  :λJ ≥ 0,∀J ∈ P }.

LEMMA 3. If λ ∈ int, then

NN(λ) � ENN(λ) � exp

[
N

(
log 2 − ∑

J∈P

(λ+
J )2/2aJ

)]
.(17)

PROOF. The second relation is Lemma 2(a). For the proof of the first, it suf-
fices to show that λ ∈ int implies

varNN(λ) � (ENN(λ))2.(18)

In fact, from (18), Chebyshev’s inequality and the Borel–Cantelli lemma immedi-
ately imply (17).
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We abbreviate P(XJ
σJ

≥ NλJ ) by pJ (N) (λ is kept fixed through this proof ).
With this notation, ENN(λ) = 2N ∏

J∈P pJ (N):

ENN(λ)2 = ∑
σ,σ ′∈�N

∏
J∈P

P
(
XJ

σJ
≥ NλJ , XJ

σ ′
J

≥ NλJ

)

= ∑
A⊂I

∑
(σ,σ ′)∈�A

∏
J∈P

P
(
XJ

σJ
≥ NλJ , XJ

σ ′
J

≥ NλJ

)

= ∑
A⊂I

|�A(N)| ∏
J∈PA

pJ (N)
∏

J∈P \PA

pJ (N)2,

where �A(N) consists of those pairs (σ, σ ′) which agree on A and disagree
on I\A. For A = ∅, 22N − |�∅(N)| � 22N, and therefore,

varNN(λ) = ∑
A �=∅

|�A(N)| ∏
J∈PA

pJ (N)
∏

J∈P \PA

pJ (N)2 + �((ENN(λ))2).

|�A(N)| = 2γ (A)N
∏
i /∈A

2γiN (2γiN − 1) = 22N2−γ (A)N + �(|�A(N)|).

As by assumption,

2−γ (A)N � ∏
J∈PA

pJ (N) � exp

[
− ∑

J∈PA

(λ+
J )2

2aJ

N

]
, A �= ∅,

we have, for any A �= ∅,

|�A(N)| ∏
J∈PA

pJ (N)
∏

J∈P \PA

pJ (N)2 � 22N
∏

J∈P

pJ (N)2,

proving varNN(λ) � (ENN(λ))2. �

Let

ψ(λ,β)
def= ∑

J∈P

(
βλJ − λ2

J

2aJ

)
.(19)

PROPOSITION 4. The free energy as defined in (5) exists and is given as

f (β) = sup
λ∈+

ψ(λ,β).(20)

PROOF. We show the lower bound for lim infN→∞ FN(β) and the upper
bound for lim supN→∞ fN(β). By the self-averaging property (8), this proves the
statement.

We use the integral representation (16). If µ = (µJ ), ν = (νJ ) satisfy µJ < νJ

for all J, we write

[µ,ν)
def= {λ :µJ ≤ λJ < νJ ,∀J ∈ P }.
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If [µ,ν) ⊂ +, we have

lim inf
N→∞ FN(β) ≥ lim inf

N→∞
1

N
log

∫
[µ,ν)

dλNN(λ)
∏

J∈P

eβλJ N

≥ lim inf
N→∞

1

N
logNN(ν)

∫
[µ,ν)

dλ
∏

J∈P

eβλJ N

≥ ∑
J

(
βµJ − ν2

J

2aJ

)
.

As this holds for arbitrary [µ,ν) ⊂ +, lim infN→∞ FN(β) ≥ supλ∈+ ψ(λ,β)

follows.
For the upper bound, let ε be an ε-neighborhood of . From Lemma 2(c), we

have

P

(
FN(β) �= 1

N
log

∫
ε

dλNN(λ)eβ
∑

J λJ N

)
� 1,

and therefore, ∣∣∣∣EFN(β) − 1

N
E log

∫
ε

dλNN(λ)eβ
∑

J λJ N

∣∣∣∣ � 1.

By Jensen’s inequality and Lemma 2(b), we have

lim sup
N→∞

1

N
E log

∫
ε

dλNN(λ)eβ
∑

J λJ N

≤ lim sup
N→∞

1

N
log

∫
ε

dλENN(λ)eβ
∑

J λJ N

≤ lim sup
N→∞

1

N
log 2N

∫
ε

dλ exp

[
N

∑
J∈P

(
βλJ − (λ+

J )2

2aJ

)]

≤ sup
λ∈ε

ψ(λ,β).

As ε > 0 is arbitrary, lim supN→∞ EFN(β) ≤ supλ∈+ ψ(λ,β) follows. �

3. The optimization problem. We first discuss the special case of a GREM.
Therefore, we assume that the sets in P are nested, that is, P = {J1, . . . , Jm},
where ∅ ⊂ J1 ⊂ · · · ⊂ Jm. If A ⊂ I, put lA

def= max{l :Jl ⊂ A}. Evidently,

∑
J∈PA

λ2
J

2aJ

≤ log 2 γ (A)

follows from
lA∑

i=1

λ2
Ji

2aJi

≤ log 2 γ
(
JlA

)
.
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Therefore, λ ∈ + is equivalent with
l∑

i=1

λ2
Ji

2aJi

≤ log 2 γ (Jl), 1 ≤ l ≤ m,

(and, of course, that all components are nonnegative). Therefore, we have proved
the following:

LEMMA 5. Assume that P is nested as above. Then

f (β) = sup

{
ψ(λ,β) :

l∑
i=1

λ2
Ji

2aJi

≤ log 2 γ (Jl), 1 ≤ l ≤ m

}
.

This lemma proves that, in our more general situation, for any chain T, the
corresponding GREM free energy is an upper bound.

COROLLARY 6. For any chain T, we have

f (β) ≤ f (T, β), β ≥ 0.

PROOF. For a given chain ∅ = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ AK = I, we consider
+

T which is obtained by dropping the conditions for the A’s which are not in the
chain. Then

f (β) = sup
λ∈+

ψ(λ,β) ≤ sup
λ∈+

T

ψ(λ,β).

We claim that

sup
λ∈+

T

ψ(λ,β) = f (T, β),

which proves the corollary. To see this equation, we write

ψ(λ,β) =
K∑

j=1

∑
J∈PAj

\PAj−1

(
βλJ − λ2

J

2aJ

)
def=

K∑
j=1

ψj(λj , β), say,

where λj
def=(λJ )J∈PAj

\PAj−1
. Set

fj (β, t)
def= sup

{
ψj(λj , β) :

∑
J∈PAj

\PAj−1

λ2
J

2aJ

= t

}
= β

√
2t âj − t,

where âj
def= ∑

J∈PAj
\PAj−1

aJ , that is, fj (β, s2/2âj ) = βs−s2/2âj . We therefore

see that

sup
λ∈+

T

ψ(λ,β) = sup

{
K∑

j=1

(
βsj − s2

j

2âj

)
:

l∑
j=1

s2
j

2âj

≤ log 2 γ (Al), 1 ≤ l ≤ K

}

= f (T, β),
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the last equality by Lemma 5. �

In order to finish the proof of Theorem 1, it only remains to construct a chain T
which satisfies f (β) ≥ f (T, β). Then one has also equality by the above corollary.

For B ⊂ I , let

α(B)
def= ∑

J∈PB

aJ

and for B ⊂ A, set

ρ(B,A)
def=

√
2 log 2(γ (A) − γ (B))

α(A) − α(B)
,

ρ̂(B)
def= min

A:A⊃B,A �=B
ρ(B,A).

We construct a strictly increasing sequence of subsets A0
def= ∅ ⊂ A1 ⊂ A2 ⊂

· · · ⊂ AK = I and parameters β0
def= 0 < β1 < β2 < · · · < βK < ∞ by recursion.

Assume that ∅ ⊂ A1 ⊂ A2 ⊂ · · · ⊂ Ak and 0 < β1 < β2 < · · · < βk are constructed
such that the following conditions are satisfied:

C1(k) βj = ρ̂(Aj−1), j ≤ k.
C2(k) For j ≤ k and any A ⊃ Aj−1 which satisfies βj = ρ(Aj−1,A), one has

A ⊂ Aj , that is, Aj is maximal with βj = ρ(Aj−1,Aj ).

For k = 0, the conditions are void. If Ak = I, then the construction is finished,

and we have K
def= k. Therefore, assume Ak �= I. Then we set βk+1

def= ρ̂(Ak), and
prove first that βk+1 > βk. We claim that, for any A ⊃ Ak, A �= Ak, one has

2 log 2
(
γ (A) − γ (Ak)

)
> β2

k

(
α(A) − α(Ak)

)
.

Indeed, because of 2 log 2(γ (Ak) − γ (Ak−1)) = β2
k (α(Ak) − α(Ak−1)),

2 log 2
(
γ (A) − γ (Ak)

)
< β2

k

(
α(A) − α(Ak)

)
would contradict condition C1(k) and equality would contradict C2(k).

It only remains to construct Ak+1 which satisfies C2(k + 1). Assume there are
two sets A,A′ ⊃ Ak, A,A′ �= Ak satisfying

ρ(Ak,A) = ρ(Ak,A
′) = βk+1.(21)

We claim that then also ρ(Ak,A ∪ A′) = βk+1. Remark that

α(A ∪ A′) ≥ α(A) + α(A′) − α(A ∩ A′),
γ (A ∪ A′) = γ (A) + γ (A′) − γ (A ∩ A′),
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and therefore,

2 log 2
(
γ (A ∪ A′) − γ (Ak)

) − β2
k+1

(
α(A ∪ A′) − α(Ak)

)
≤ 2 log 2[γ (A) + γ (A′) − γ (A ∩ A′) − γ (Ak)]

− β2
k+1[α(A) + α(A′) − α(A ∩ A′) − α(Ak)]

= β2
k+1[α(A ∩ A′) − α(Ak)] − 2 log 2[γ (A ∩ A′) − γ (Ak)] ≤ 0,

the equality by (21), and the last inequality by the definition of βk+1. From the
definition of βk+1, we therefore conclude that

2 log 2
(
γ (A ∪ A′) − γ (Ak)

) = β2
k+1

(
α(A ∪ A′) − α(Ak)

)
.

We therefore find a unique maximal set Ak+1 ⊃ Ak which satisfies ρ(Ak,Ak+1) =
βk+1, and so we have constructed βk+1 > βk, Ak+1 ⊃ Ak, Ak+1 �= Ak such that
C1(k + 1) and C2(k + 1) are satisfied. The construction terminates after a finite
number of steps.

We claim now that, with T def= (∅,A1, . . . ,AK−1, I ), we have

f (β) ≥ f (β,T).(22)

Clearly, if β > 0 is small enough, the maximum in (20) is attained in

λ
(1)
J (β)

def= aJ β for all J, and therefore,

f (β) = β2

2

for small β. This remains valid as long as (β2/2)α(A) ≤ γ (A) for all A, that is,
for β ≤ β1. For βk < β ≤ βk+1, we choose λ(k+1)(β) defined by

λ
(k+1)
J (β)

def=
{

aJ βm, for J ∈ PAm \ PAm−1, 1 ≤ m ≤ k,
aJ β, for J /∈ PAk

.(23)

This choice (23) satisfies the side conditions in the range of β we are considering,
and hence,

ψ
(
λ(k+1)(β), β

) ≤ f (β).(24)

We show now that f (β,T) = ψ(λ(k+1)(β), β) for βk ≤ β ≤ βk+1. An elementary
computation gives

ψ
(
λ(k+1)(β), β

) = β

k∑
i=1

βi[α(Ai) − α(Ai−1)] − γ (Ak) log 2 + β2

2

(
1 − α(Ak)

)

= β

k∑
i=1

βiâ(Ai) − γ (Ak) log 2 + β2

2

K∑
i=k+1

â(Ai),
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where â(Ai) is defined by (4). This is exactly the free energy of the corresponding
GREM as given in [1]. [It is, in fact, elementary to check that λ(k+1)(β) is the
maximizing vector λ for the GREM corresponding to the above chain when βk ≤
β ≤ βk+1.] We have therefore proved Theorem 1.

REMARK 7. We have, in fact, proved that

f (β) = β

k∑
i=1

βi[α(Ai) − α(Ai−1)] − γ (Ak) log 2 + β2

2

(
1 − α(Ak)

)

for βk ≤ β ≤ βk+1.
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