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INVARIANCE PRINCIPLE FOR THE COVERAGE RATE
OF GENOMIC PHYSICAL MAPPINGS

BY DIDIER PIAU

Université Lyon 1

We study some stochastic models of physical mapping of genomic se-
quences. Our starting point is a global construction of the process of the
clones and of the process of the anchors which are used to map the sequence.
This yields explicit formulas for the moments of the proportion occupied
by the anchored clones, even in inhomogeneous models. This also allows
to compare, in this respect, inhomogeneous models to homogeneous ones.
Finally, for homogeneous models, we provide nonasymptotic bounds of the
variance and we prove functional invariance results.

0. Introduction. The goal of the projects of genomic physical mapping is to
reconstruct almost completely the sequence of a genome, starting from a multi-
tude of exactly sequenced fragments, which are called clones. One approach to
the reconstruction of the overall positions of these clones in the complete genomic
sequence uses so-called anchors. These are short, exactly sequenced, portions of
the genome which are assumed to appear only once in the full genomic sequence.
An anchored clone is a clone which contains an anchor. In this paper we assume
that the positions of the anchors, hence of the anchored clones, are exactly known.
Maximal connected unions of anchored clones are called islands or, more exactly,
anchored islands, aka contigs. The complement of the islands is called the ocean.
When suitably rescaled, the full genomic sequence is identified with (a portion of )
the real line, the anchors are identified with points, and the clones and the islands
are identified with intervals.

The overall quality of the reconstitution of a given genomic sequence depends
obviously on the number of islands, on their length and on the proportion of the se-
quence which is occupied by the ocean, among other characteristics of the project.
One hopes that the islands are as few and as long as possible, and that the pro-
portion occupied by the ocean is as low as possible. Arratia, Lander, Tavaré and
Waterman [1] introduced a stochastic model of physical mapping, where the posi-
tions of the right ends of the clones and the positions of the anchors are distributed
according to independent homogeneous Poisson processes on the real line, and
where the lengths of the clones are random, i.i.d. and independent of everything
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else. For this model, Arratia et al. computed the mean values of the three quantities
of interest that we mentioned above. For related studies, see [3–5].

Motivated by the fact that actual genomic sequences do not fulfill the homo-
geneity hypotheses which underlie the stochastic model introduced by Arratia,
Lander, Tavaré and Waterman [1], Schbath [7] and Schbath, Bossard and Tavaré
[8] extended this setting in two directions. In both papers the independence prop-
erties of the model remain, but Schbath [7] studied the case when the intensities
of the Poisson processes which generate the positions of the clones and the posi-
tions of the anchors may depend on their respective positions along the genome,
and Schbath, Bossard and Tavaré [8] studied the case when the distributions of the
lengths of the clones may depend on their respective positions along the genome.
In these two wider contexts, these papers provide expressions of the mean value of
the number of islands, of the mean value of the proportion occupied by the ocean
and, under an additional technical hypothesis, of the mean value of the length of
the islands.

In the present paper we pursue the study of this class of models. As a first
contribution, we consider the class of models where the Poisson process of the
clones, the Poisson process of the anchors and the distributions of the lengths of the
clones can all be inhomogeneous simultaneously. To give a flavor of our results in
this direction, we state Proposition 1 below, which extends formulas of the papers
mentioned above, for the mean value of the number of clones and for the mean
value of the number of anchored clones which cover a point.

To state Proposition 1, we introduce the measure c(dx) on the real line as the
intensity measure of the Poisson process C of the (right ends of the) clones, the
measure a(dx) on the real line as the intensity measure of the Poisson process A
of the anchors and, for every x on the real line, the random variable Lx as the
length of a clone whose right end is at position x, and we refer to Section 1 for
more precise definitions of these objects.

For every x on the real line, nC(x) denotes the number of clones which contain
the point x, and nA(x) denotes the number of anchored clones which contain the
point x.

PROPOSITION 1 (General case). (i) The random variable nC(x) follows the
Poisson distribution whose mean value is given by the expression

E(nC(x)) =
∫ +∞
x

c(dz)P(Lz ≥ z − x).

(ii) The mean value of nA(x) is given by the expression

E(nA(x)) =
∫ +∞
x

c(dz)

∫ +∞
z−x

P(Lz ∈ dt)
(
1 − e−a([z−t,z])).

Here a([z − t, z]) denotes the measure of the interval [z − t, z] with respect to the
measure a(dx).
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(iii) The distribution of the random variable nA(x) is not Poisson. More specif-
ically, either nA(x) = 0 almost surely, or the variance of nA(x) is strictly greater
than its mean value.

In actual physical mapping projects, the condition that nA(x) = 0 almost surely
is never fulfilled. On the mathematical side, this would correspond to degeneracies
such as the fact that Lz ≤ z − x almost surely for every z ≥ x and/or the fact that
the intensity of the anchors is zero on a suitable neighborhood of x.

The homogeneous case is when c(dx) = κ dx and a(dx) = α dx for two given
positive constants κ and α, and when every Lx is distributed like a given random
variable L. The specialization of Proposition 1 to the homogeneous case is as
follows.

COROLLARY 1 (Homogeneous case). In the homogeneous case with parame-
ters κ , α and L, the mean values of nC(x) and nA(x) do not depend on the point x

and are given by the expressions

E(nC) = κE(L), E(nA) = κE
(
L(1 − e−αL)

)
.

More importantly than the slight generalizations above, our second contribution
is to provide explicit formulas for the higher moments of these quantities in the
general model with variable intensities. In the homogeneous case, our results im-
ply, for instance, that the proportion of a large genomic sequence occupied by the
ocean is asymptotically Gaussian; see Theorem 1 below.

THEOREM 1 (Homogeneous case). Consider the homogeneous case with pa-
rameters κ , α and L, and assume that L is square integrable. For any positive G,
let the random variable OG denote the measure of the intersection of the ocean
with any interval of length G, for instance the interval [0,G], and let σ 2(OG)

denote the variance of OG.

(i) There exists a positive constant � < 1 such that E(OG) = �G for every
nonnegative G.

(ii) There exist finite positive constants ν and λ such that, for every nonnega-
tive G,

νG − λ ≤ σ 2(OG) ≤ νG.

Hence σ 2(OG) ∼ νG when G → ∞. Furthermore, the function G �→ σ 2(OG) is
convex, and σ 2(OG) − νG + λ → 0 when G → ∞.

(iii) For every positive G, let �G denote the random process, indexed by the
real numbers 0 ≤ t ≤ 1, and defined by

�G(t) := (OGt − �Gt)/
√

νG.

When G → ∞, the process �G converges in distribution to a standard Wiener
process on the space of continuous functions on [0,1], equipped with the metric of
the uniform convergence.
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(iv) The constants �, ν and λ above can be written explicitly as integrals which
involve the parameters κ , α, and the distribution of L.

The starting point of our results is a global construction of the clones, the
anchors and the islands, using a single Poisson process. We expose this global
construction in Section 1. We provide alternative descriptions of this process, lo-
cating for instance the clones by their left ends instead of their right ends. A nat-
ural conjecture in this setting is that the homogeneous model would be the only
one invariant by the symmetry of the real line, but we disprove this. In Section 2
we rewrite in our general setting various formulas due to Arratia, Lander, Tavaré
and Waterman [1] or to Schbath [7] or to Schbath, Bossard and Tavaré [8]. Sec-
tion 3 provides explicit formulas for every moment of the proportion of the real
line which is occupied by the ocean in the general case and provides rather sharp
bounds of the variance in the homogeneous case. Finally, Section 4 proves the in-
variance result stated in Theorem 1 above, in the homogeneous case. On our way,
we provide asymptotics of the variance when the number of clones is vanishingly
small and we build comparison tools that yield effective upper and lower bounds
in some inhomogeneous cases.

1. Global model. In this section we build the clones, the anchors and the
islands from a single Poisson process. Sections 1.2 and 1.3 are not used in the rest
of the paper and may be omitted on a first reading.

1.1. Clones. Let R denote the real line and R
+ := [0,+∞) the nonnegative

half line. Let c(dx) denote the intensity measure of the Poisson process of the right
ends of the clones. Assume that, when the right end of a clone is located at x, its
length follows the distribution of a given random variable Lx . We represent the
clone which covers exactly the interval [x − t, x] of length t ≥ 0 by the point (x, t)

in R × R
+. The distribution of the clones is described by a Poisson process C on

R × R
+ of intensity measure m, with

m(dx dt) := c(dx)P(Lx ∈ dt).

In other words, C is a random subset of R × R
+, which is almost surely locally

finite, and such that the following holds. For all Borel subsets D and D′ of R ×
R

+ such that D ∩ D′ is empty, the random number of points of C in D and the
random number of points of C in D′ are independent. Furthermore, for every Borel
subset D of R × R

+, the number of points of C in D is a Poisson random variable
of mean value m(D).

In fact, the intensity measure m can be any Borel measure on R × R
+ with a

locally finite first marginal c, given by

c(dx) :=
∫
t≥0

m(dx dt).
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That is, one assumes that c([−G,G]) = m([−G,G]×R
+) is finite for every finite

positive G. The assumption that c is locally finite ensures that the distribution of Lx

is well defined, and given by the Radon–Nikodym derivative

P(Lx ∈ dt) := m(dx dt)/c(dx).

1.2. Alternative descriptions of the clones. At first sight, it may seem rather
arbitrary to locate the position of a clone by its right endpoint, rather than by its
midpoint or by its left endpoint. In fact, these alternative descriptions are also
characterized by Poisson processes, albeit possibly with different intensities. For
instance, using the couple (y, t) to describe the clone [y, y + t] yields a Poisson
process on R × R

+ of intensity measure m′, with

m′(dy dt) :=: c′(dy)P(L′
y ∈ dt).

One obtains m′ from m, or rather, one obtains c′(dy) and the distributions of the
random variables L′

y from c(dx) and from the distributions of the random vari-
ables Lx , as follows. For any nonnegative test function �, the expected value of
the sum over every clone [y, x] of �(y,x) reads

E

( ∑
[y,x] clone

�(y,x)

)
=

∫ ∫
m(dx dt)�(x − t, x)

=
∫ ∫

m′(dy dt)�(y, y + t).

In other words, one asks that∫
c(dx)E

(
�(x − Lx, x)

) =
∫

c′(dy)E
(
�(y,y + L′

y)
)
.

Since this equality holds for every test function �, this implies that c′(dy) and the
distributions of the random variables L′

y are given by

c′(dy) =
∫ +∞
y

c(dx)P(Lx ∈ x − dy),

P(L′
y ∈ dt) = P(Ly+t ∈ dt)c(t + dy)/c′(dy).

Similar formulas give the intensity measures associated to the description of a
clone by its midpoint and by its length, or by its two endpoints.

1.3. On the (non)specificity of the homogeneous clones. Based upon the pre-
ceding section, the reader might be led to believe that the homogeneous model is
privileged with respect to the transformations of the intensity measure m(dx dt)

into the intensity measure m′(dy dt) and of m′(dy dt) into m(dx dt). To wit, if the
intensity c(dx) and the distributions of the random variables Lx are invariant by
the translations of the real line, so are the intensity c′(dy) and the distributions of
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the random variables L′
y . Thus, in the homogeneous case, c(dx) = c′(dx) = κ dx

and the distributions of every Lx and every L′
y do coincide.

Our goal in this section is to point out that there are other cases where the
two intensity measures m and m′ coincide. To build such examples, we need to
introduce, for every x on the real line, the unit interval Ux which is centered at x,
that is,

Ux := [x − 1/2, x + 1/2).

Let B0 denote the union of the intervals U2k for every integer k, and let B1 denote
its complement. Let u0(dx) denote a finite measure on U0, and u1(dx) a finite
measure on U1. Let c(dx) denote the unique measure on R which is invariant by
the translation x �→ x + 2 and whose restrictions to U0 and to U1 are u0(dx) and
u1(dx), respectively. Thus, c = c0 + c1 with, for i = 0 and for i = 1,

ci(dx) := ∑
k

ui(2k + dx),

where both sums run over every integer k. In other words, c(dx) can be any lo-
cally finite measure on R, invariant by the translation x �→ x + 2, and the measure
c0(dx), respectively the measure c1(dx), denotes the restriction of c(dx) to B0,
respectively the restriction of c(dx) to B1.

Assume finally that Lx = 2 with full probability when x is in B0, and that
Lx = 4 with full probability when x is in B1. Since Lx is always an even inte-
ger, the endpoints of a given clone are either both in B0 or both in B1. Using
this remark, one can check that m = m′. Besides, the process which locates the
clones by their midpoint is given by a similar intensity measure, choosing with
full probability the length 4 when the midpoint belongs to B0, and choosing with
full probability the length 2 when the midpoint belongs to B1.

In the example above, the distributions of the lengths are discrete, hence the
measure m(dx dt) is singular with respect to the Lebesgue measure. However,
the same idea can be adapted to produce examples where m(dx dt) is absolutely
continuous. To see this, introduce the Poisson process which describes a clone
[y, x] by its endpoints (y, x), and assume that the intensity measure m∗ of this
Poisson process is

m∗(dy dx) := dy dx
∑
k

1{(y, x) ∈ U2k × U2k+2} + 1{(y, x) ∈ U2k−1 × U2k+3},

where the sum runs over every integer k. In words, the left endpoints and the
right endpoints of the clones both have homogeneous intensity measures, and both
endpoints of a clone belong to B0 or both endpoints belong to B1. Furthermore,
given that the left endpoint y belongs to B0, the right endpoint x is uniformly
distributed over the next unit interval of B0 to the right of y, that is, over the
connected component of B0 which contains y + 2. Given that the left endpoint y

belongs to B1, the right endpoint x is uniformly distributed over the second next
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unit interval of B1 to the right of y, that is, over the connected component of B1
which contains y + 4.

In this new example, the measure m(dx dt) is as follows. The intensity c(dx) is
the Lebesgue measure. The length Lx is uniformly distributed over Ux−2k when x

is in U2k+2, and Lx is uniformly distributed over Ux−2k+1 when x is in U2k+3. The
support of the distribution of Lx is a unit subinterval of the interval [1,3] when x

is in B0, and it is a unit subinterval of the interval [3,5] when x is in B1, hence the
distribution of Lx cannot be the same for every x on the real line. Finally, m = m′
because m∗ is invariant by the symmetries of the real line, since these exchange
the left endpoints and the right endpoints of the clones while leaving their lengths
unchanged.

1.4. Anchors. In this section and in the rest of the paper, we come back to the
(x, t) Poisson process of intensity m, which represents the clones by their right
endpoint and by their length.

The anchors are described by a Poisson process A on the real line, with intensity
a(dx), independent of the Poisson process C of the clones which we defined in
Section 1.1. Thus, for every Borel subset D of the real line, the number of anchors
in D is a random variable whose distribution is Poisson with mean value a(D),
and the number of anchors in the Borel sets D and D′ are independent random
variables as soon as D ∩ D′ is empty.

For every subset D of the real line, let I (D) denote the cone of influence of D

in R × R
+. This is the set of clones (x, t) which become anchored clones when

every point of D becomes an anchor. Thus,

I (D) := {(x, t) ∈ R × R
+; [x − t, x] ∩ D �= ∅}.

For every measurable D, the process CD := C ∩ I (D) of the clones that are an-
chored by D is deduced from C by erasing some clones, hence each CD is indeed
a Poisson process whose intensity measure mD on R × R

+ is the restriction of the
original intensity measure m to the set I (D), that is,

mD(dx dt) := 1{(x, t) ∈ I (D)}m(dx dt).

For every locally finite subset D of the real line, let P
D denote the conditioning

of P by the event {C = D}. Finally, let CA denote the process of the anchored
clones, that is,

CA := {(x, t) ∈ C; [x − t, x] ∩ A �= ∅} = C ∩ I (A).

1.5. Clones + anchors. One can, and we shall, simultaneously generate the
processes C, A and CA from a unique Poisson process, as follows. Let M :=
R

+ ∪{∗}, where ∗ denotes any point which is not in R
+. We endow the set M with

the smallest σ -algebra which contains the Borel sets of R
+ and the singleton {∗}.

We endow the set R × M with the product σ -algebra of the Borel σ -algebra of R
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and of this σ -algebra of M . Finally, we introduce a Poisson process on R × M

with intensity

g(dx dt) := m(dx dt) + a(dx)δ∗(dt).

We call this Poisson process the global process. The point (x, t) with t in R
+

represents the clone [x − t, x] and the point (x,∗) represents the anchor at x. The
restriction of the global process to the domain R × R

+ yields the process of the
clones described in Section 1.1, since its intensity, which is the restriction of g to
R × R

+, is m(dx dt). Likewise, the projection (x,∗) �→ x on the real coordinate
of the restriction of the global process to the domain R × {∗} yields the process
of the anchors described in Section 1.4, since its intensity is a(dx). Finally, the
process of the clones and the process of the anchors are indeed independent since
they are realized as the restrictions of the global Poisson process to the domains
R × R

+ and R × {∗}, which are disjoint subsets of R × M .
Proposition 2 below and Proposition 1 and Corollary 1 in our Introduction fol-

low from the construction above. The proofs are simple adaptations of the proofs
given by Arratia, Lander, Tavaré and Waterman [1], Schbath [7] and Schbath,
Bossard and Tavaré [8], hence we omit them.

PROPOSITION 2 (General case). With respect to P, A and C are independent
Poisson processes. For every locally finite D, with respect to P

D , CD is a Poisson
process. With respect to P, CA is not a Poisson process.

1.6. Ocean. Recall that the ocean O is the complement of the union of the an-
chored islands. For every Borel set D of the real line, let O(D) denote the measure
of O ∩D. For every positive real number G, let OG := O([0,G]). For every Borel
set D of the real line, let

r(D) := P(D ⊂ O).

For every n ≥ 1 and all real numbers z1, . . . , zn, let

r(z1, . . . , zn) := r({z1, . . . , zn}) = P(z1 ∈ O, . . . , zn ∈ O).

For instance, r(z) is the probability that z belongs to no anchored clone. Hence
r(z) may depend on z but r(z) corresponds to r(0) if the process of the clones and
the process of the anchors are both shifted by z. Lemma 1 below stems from the
definitions.

LEMMA 1. For every Borel set D of the real line and every integer n ≥ 1,

E(O(D)n) =
∫
Dn

r(z1, . . . , zn) dz1 · · ·dzn.

For instance,

E(OG) =
∫ G

0
r(z) dz, E(O2

G) =
∫ G

0

∫ G

0
r(z, z′) dz dz′.
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2. First moments. This section is mainly a rephrasing of results of Arratia,
Lander, Tavaré and Waterman [1] and Schbath, Bossard and Tavaré [8]. Our only
contribution here is to include both inhomogeneities simultaneously in the results,
namely, the inhomogeneities of the lengths of the clones on the one hand, and the
inhomogeneities of the positions of the right ends of the clones and of the anchors
on the other hand. We are interested in r(z), which describes locally the mean
value of the proportion of the real line which is occupied by the ocean.

LEMMA 2. Let J (x, y) denote the probability of the event that two points x

and y such that x ≤ y belong to no common clone. Then

J (x, y) := exp
(
−

∫ +∞
y

P(Lt ≥ t − x)c(dt)

)
.

Caution: we renamed J (x, x+ t) the expression J (x, t) of the papers mentioned
above.

LEMMA 3. For every z, the joint law of the positions x and y of the an-
chors which are the closest of z to the left and to the right, respectively, is
A−(z, dx)A+(z, dy), where

A−(z, dx) := A(x, z)a(dx) and A+(z, dy) := A(z, y)a(dy).

For all points x ≤ y, we use the notation

A(x, y) := exp
(
−

∫ y

x
a(dt)

)
.

THEOREM 2 (Schbath, Bossard and Tavaré [8]). For every z,

r(z) =
∫
x≤z≤y

J (x, z)J (z, y)

J (x, y)
A(x, y)a(dx)a(dy).

The contribution of the intensity measure a in r(z) corresponds to the product
A−(z, dx)A+(z, dy).

A quick look at the ratio of the functions J in the integral above could lead to
the erroneous conclusion that r(z) is not well defined when J (x, y) is not always
positive. [One knows that J (x, y) is positive when, e.g., the random variables Lt

are uniformly integrable, and c(dt) is uniformly bounded, i.e., when there exists a
finite κ+ such that c(dx) ≤ κ+ dx.] In fact, one can show that this ratio is at most 1
for any intensity c(dt) and any distributions of the random variables Lt , hence the
formula for r(z) in Theorem 2 is always valid.

We recall that, in the homogeneous case, the process of the clones has con-
stant intensity c(dx) = κ dx, the lengths of the clones are i.i.d. and distributed
like a random variable L, and the process of the anchors has constant intensity
a(dx) = α dx.
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COROLLARY 2 (Arratia, Lander, Tavaré and Waterman [1]). In the homoge-
neous case with parameters κ , α and L, r(z) = � does not depend on z and its
value is

� :=
∫ +∞

0

∫ +∞
0

α2e−α(u+v) J (u)J (v)

J (u + v)
dudv.

Here, J (u) is the probability that an interval of length u is not covered by any
unique clone, hence

J (u) := exp
(
−κ

∫ +∞
u

P(L ≥ t) dt

)
.

When, furthermore, L = 
 with full probability for a given positive real num-
ber 
, Arratia et al. deduce from this the value of � as a function of 
, κ and α.

One gets the expression of � in Corollary 2 from r(z) in Theorem 2, using the
change of variables u = z − x, v = y − z.

3. Higher moments. Higher moments of the quantities introduced above in-
volve functionals of the processes that depend on more than one point. We first
describe the computation of the variance of the proportion of the real line which is
occupied by the ocean in the general case, then we consider the higher moments
in the general case, and finally we prove precise asymptotics of the variance in the
homogeneous case.

3.1. Variance of the ocean proportion. Recall that r(z, z′) is the probability
that neither z nor z′ is covered by anchored clones. Let r0(z, z

′), respectively
r1(z, z

′), respectively r2(z, z
′), denote the probability of the same event, when the

number of anchors between z and z′ is 0, respectively 1, respectively 2 or more.
One can decompose each of these events, according to the position of the first an-
chor to the left of the interval (z, z′), which we call x in the integrals below, to the
position of the first anchor to the right of (z, z′), which we call y in the integrals
below, and to the positions of the leftmost and rightmost anchors, if any, in the
interval (z, z′), which we call s and t in the integrals below.

Thus r(z, z′) = r0(z, z
′) + r1(z, z

′) + r2(z, z
′) with, for z ≤ z′,

r0(z, z
′) :=

∫
x≤z≤z′≤y

J (x | z, z′ | y)B(dx, dy),

r1(z, z
′) :=

∫
x≤z≤s≤z′≤y

J (x | z | s)J (s | z′ | y)a(ds)B(dx, dy),

r2(z, z
′) :=

∫
x≤z≤s≤t≤z′≤y

J (x | z | s)J (t | z′ | y)B(dx, ds)B(dt, dy).

We mention that ri(z, z
′) is defined as an integral of dimension i + 2, for i = 0, 1

or 2. We used the following notation. The two-dimensional measure B is defined
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on the subset x ≤ y of R × R by the formula

B(dx, dy) := A(x, y)a(dx)a(dy).

For any x ≤ z ≤ z′ ≤ y,

J (x | z, z′ | y) := J (x, z)J (z′, y)

J (x, y)
,

J (x | z | y) := J (x, z)J (z, y)

J (x, y)
.

The quantities involved in the definitions above have the following interpretations.
First, 1{x ≤ z ≤ y}B(dx, dy) is the distribution of the couple formed by the posi-
tions of the rightmost anchor to the left of z and of the leftmost anchor to the right
of z. Second, J (x | z | y) is the probability that z is not covered by an anchored
clone when the closest anchor to the left of z is at x and the closest anchor to the
right of z is at y. Finally, J (x | z, z′ | y) is the probability that z and z′ are not cov-
ered by anchored clones when the closest anchor to the left of z is at x, the closest
anchor to the right of z′ is at y, and when there is no anchor between z and z′.
Schbath’s formula in our Theorem 2 reads

r(z) =
∫
x≤z≤y

J (x | z | y)B(dx, dy).

If one forgets the condition that s ≤ t in the definition of r2(z, z
′), one gets the

product of the integrals over (x, s) and over (t, y), which are r(z) and r(z′), re-
spectively. This implies our Lemma 4 below.

LEMMA 4. For any z ≤ z′, r2(z, z
′) = r(z)r(z′) − r3(z, z

′) where the term
r3(z, z

′) is nonnegative and is

r3(z, z
′) :=

∫
x≤z≤s,t≤z′≤y,s≥t

J (x | z | s)J (t | z′ | y)B(dx, ds)B(dt, dy).

As a consequence, the variance σ 2(OG) of OG is

σ 2(OG) =
∫ G

0

∫ G

0
(r0 + r1 − r3)(z, z

′) dz dz′.

3.2. Higher moments of the ocean proportion. As mentioned above, one can
adapt the technique used in the last section to study the mean value of any power
of OG. For instance,

E(O3
G) =

∫ G

0

∫ G

0

∫ G

0
r(z, z′, z′′) dz dz′ dz′′.

Thus, assuming for instance that n = 3, one has to compute the n-point function
r(z, z′, z′′). First, one can assume by symmetry that z ≤ z′ ≤ z′′. Let x denote the
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position of the rightmost anchor to the left of z, and y the position of the leftmost
anchor to the right of z′′. Let s and t denote the positions of the leftmost and
rightmost anchors in the interval (z, z′), and s′ and t ′ the positions of the leftmost
and rightmost anchors in the interval (z′, z′′), if these exist.

Then r(z, z′, z′′) is n! = 6 times the sum of 3n−1 = 9 terms ri,i′(z, z′, z′′). Each
term ri,i′(z, z′, z′′) corresponds to the number i = 0,1 or 2 of anchors to be con-
sidered in the interval (z, z′) and to the number i ′ = 0,1 or 2 of anchors to be
considered in the interval (z′, z′′), namely, no anchor at all, or a unique anchor,
denoted by s or by s′, or two extremal anchors, denoted by s and t , or by s′ and t ′.

To take an example, consider the case i = 2 and i′ = 1. This yields r2,1(z, z
′, z′′)

as the integral∫
D2,1

J (x | z | s)J (t | z′ | s′)J (s′ | z′′ | y)a(ds′)B(dx, ds)B(dt, dy),

where the domain of integration D2,1 has dimension 5 and is defined by the in-
equalities

x ≤ z ≤ s ≤ t ≤ z′ ≤ s′ ≤ z′′ ≤ y.

Likewise, if i = 0 and i′ = 2, r0,2(z, z
′, z′′) is the integral∫

D0,2

J (x | z, z′ | s′)J (t ′ | z′′ | y)B(dx, ds′)B(dt ′, dy),

where the domain of integration D0,2 has dimension 4 and is defined by the in-
equalities

x ≤ z, z′ ≤ s′ ≤ t ′ ≤ z′′ ≤ y.

More generally, E(On
G) is the integral of the n-point function r(z1, . . . , zn) on

the domain [0,G]n with respect to the Lebesgue measure. For every n-tuple z1 ≤
· · · ≤ zn, r(z1, . . . , zn) can be decomposed as a sum of 3n−1 contributions. Each of
these contributions corresponds to the event that each interval [zk, zk+1] contains
no anchor at all, or a unique anchor, or at least two anchors.

3.3. Variance in the homogeneous case. In this section we study the homoge-
neous case, when the intensity measures are a(dt) = α dt and c(dx) = κ dx, and
the distribution of the length Lx of a clone does not depend on its position x and is
the distribution of a random variable L. We recall that the distribution of the global
process is left invariant by the action of the translations. This implies that r(z) = �

for every z, where the value of � is given in Corollary 2. Hence,

E(OG) = G�.

Since (z, z′) �→ r(z, z′) − r(z)r(z′) is a symmetric function, σ 2(OG) is twice
an integral over z′ ≥ z. Likewise, the invariance by the translations implies that



INVARIANCE OF PHYSICAL MAPPINGS 2565

r(z, z′) = r(0, z′ − z) for every z and z′. Introducing r̄i (z) := ri(0, z), one is left
with twice some integrals of the functions r̄i (z) over z in [0,G], namely,

σ 2(OG) = 2
∫ G

0
(G − z)

(
r̄0(z) + r̄1(z) − r̄3(z)

)
dz.

The values of the quantities r̄i (z) for every nonnegative z are

r̄0(z) =
∫
x,y≥0

α2e−α(x+y+z) J (x)J (y)

J (x + y + z)
dx dy,

r̄1(z) =
∫
x,y≥0,0≤t≤z

α3e−α(x+y+z) J (x)J (t)J (z − t)J (y)

J (x + t)J (z − t + y)
dx dy dt,

r̄3(z) =
∫
x,y,s,t≥0,s+t≥z

α4e−α(x+y+s+t) J (x)J (t)J (s)J (y)

J (x + t)J (s + y)
dx dy ds dt.

We mention that r̄0(z), respectively r̄1(z), respectively r̄3(z), is defined as an inte-
gral of dimension 2, respectively 3, respectively 4.

Using the fact that the function x �→ J (x) is nondecreasing, one can bound each
r̄i (z) as follows:

r̄0(z) ≤ e−αzj (α),

r̄1(z) ≤ αze−αzj (α)2,

r̄3(z) ≤ (1 + αz)e−αzj (α)2,

with the notation

j (α) :=
∫ +∞

0
αe−αxJ (x) dx.

To prove the upper bound of r̄0(z), one uses the fact that J (y) ≤ J (x + y + z),
and one performs the integration of the upper bound. Likewise, to prove the upper
bound of r̄1(z), one uses the facts that J (t) ≤ J (x + t) and J (z− t) ≤ J (z− t +y),
and one performs the integration of the upper bound. Finally, to prove the upper
bound of r̄3(z), one uses the facts that J (t) ≤ J (x + t) and J (s) ≤ J (s + y), and
one performs the integration of the upper bound. In this last case, this yields

r̄3(z) ≤ j (α)2
∫
s,t≥0,s+t≥z

α2e−α(s+t) ds dt,

and the last double integral is indeed (1 + αz)e−αz.
Since J (x) ≤ 1, j (α) ≤ 1. Furthermore, the limit of J at infinity is 1, hence

r̄0(z) ∼ e−αzj (α)2 at infinity. Let

σ 2
i (G) :=

∫ G

0
2(G − z)r̄i(z) dz.
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From the bounds on the three functions r̄i which are stated above, it is not difficult
to prove that, when G → ∞,

σ 2
i (G) = νiG − λi + τi(G),

where τi(G) = o(1) for i = 0,1 and 3. More specifically, these bounds imply that
the numbers νi and λi , defined as

νi :=
∫ +∞

0
2r̄i (z) dz, λi :=

∫ +∞
0

2zr̄i(z) dz,

are indeed finite and positive, and simple computations show that

τi(G) :=
∫ +∞
G

2(z − G)r̄i(z) dz.

Introduce τ(G) := τ0(G) + τ1(G) − τ3(G). Since each τi(G) is nonnegative,
|τ(G)| is at most the maximum of τ0(G) + τ1(G) and τ3(G). Since j (α) ≤ 1,
our bounds on the three functions r̄i imply that

|τ(G)| ≤
∫ +∞
G

2(z − G)(1 + αz)e−αz dz.

Performing the integration, one gets

|τ(G)| ≤ 2α−2(3 + αG)e−αG.

Finally, when G → ∞, τ(G) = O(Ge−αG).
Assume now that L ≤ 
 almost surely, for a finite 
. This means that the in-

tensity measure of the global Poisson process on R × R
+ puts no mass on the set

R × (
,+∞). Assume that z and z′ are such that |z − z′| > 
. Then I (z) ∩ I (z′)
contains only clones (x, t) such that both points z and z′ belong to [x − t, x], hence
in particular, such that t > 
. Since I (z) ∩ I (z′) is a subset of R × (
,+∞), its in-
tensity measure must be zero. Thus, the events {z ∈ O} and {z′ ∈ O} are in fact
measurable with respect to the truncated cones of influence I (z)∩ (R×[0, 
]) and
I (z′) ∩ (R × [0, 
]), respectively. Since these two subsets of R × R

+ are disjoint,
{z ∈ O} and {z′ ∈ O} are independent events.

Finally, if L ≤ 
 almost surely, r(z, z′) = r(z)r(z′) as soon as z and z′ are such
that |z− z′| > 
, hence r̄0(z)+ r̄1(z)− r̄3(z) = 0 for every z > 
, and τ(G) = 0 for
every G ≥ 
.

Proposition 3 below summarizes the results of this section.

PROPOSITION 3. (i) Let ν := ν0 + ν1 − ν3 and λ := λ0 +λ1 −λ3. Then, when
G → ∞,

σ 2(OG) = νG − λ + o(1).

(ii) Assume that L ≤ 
 almost surely for a finite 
. Then, for every G ≥ 
,

σ 2(OG) = νG − λ.
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4. Functional invariance in the homogeneous case. Our main task in this
section is to prove that ν is positive, that is, not zero. We do this, first, in the limit
κ → 0 of a vanishing number of clones, then in the general case. Our techniques
also yield upper and lower bounds of the mean value and of the variance of OG

when the intensities are not constant. Finally, we prove the functional invariance
result of Theorem 1.

4.1. Variance for vanishing clones.

PROPOSITION 4 (Homogeneous case). Fix the distribution of L and the value
of α. Then, if κ is small enough, ν is positive. More precisely, when κ → 0,

ν = α−2
E(ϕ(αL))κ + o(κ),

where the function x �→ ϕ(x) is explicit, positive on x > 0, and given by the for-
mula

ϕ(x) := x − 1 + e−x(1 − x2/2).

PROOF. If κ = 0, j (α) = 1 and r̄i (z) = r∗
i (z), with

r∗
0 (z) := e−αz,

r∗
1 (z) := αze−αz,

r∗
3 (z) := (1 + αz)e−αz,

hence r∗
0 + r∗

1 − r∗
3 is identically zero. (Besides, when κ = 0, OG is almost surely

zero.) We now show that the first derivative of ν with respect to κ at κ = 0+ is
positive.

When κ = o(1), J (x) = 1 − κH(x) + o(κ) with

H(x) :=
∫ +∞
x

P(L ≥ t) dt.

This implies that r̄i (z) = r∗
i (z) + κsi(z) + o(κ), for some explicit functions si(z).

Introducing wi := ∫ +∞
0 si(z) dz and w := w0 +w1 −w3, one gets ν = κw + o(κ).

For instance,

w0 =
∫
x,y,z≥0

α2e−α(x+y+z){H(x + y + z) − H(x) − H(y)}dx dy dz,

and similar expressions of w1 and w3 obtain. After some tedious but simple com-
putations, one gets

w0 = h2 − 2h0, w1 = 2h1 − 4h0, w3 = 2h2 − 6h0,

where, for every nonnegative integer n, the value of hn is given by

hn :=
∫ +∞

0

(αx)n

n! e−αxH(x)dx.
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Summing up these three contributions yields w = 2h1 −h2. Converting everything
back in terms of the distribution of L, one finally gets

w = α−2
E(ϕ(αL)),

where ϕ is given in the statement of the proposition above. It happens that
ψ(x) := exϕ(x) defines a function ψ such that ψ(0) = 0 and whose derivative
ψ ′(x) = x(ex − 1) is obviously positive for every positive x. Thus ϕ(x) is positive
for every positive x, and w is positive for every distribution of L, except in the
degenerate case when L = 0 almost surely. This proves that ν is positive for small
values of κ . �

Other limiting cases than the one in Proposition 4 are possible. Recall that
E(OG) = �G for every nonnegative G, and that σ 2(OG) ∼ νG when G → ∞.

1. If E(L3) = o(1), then ν ∼ 1
3ακE(L3).

2. If κ = o(1), then (1 − �) ∼ κE(Le−αL).
3. If E(L) = o(1), then (1 − �) ∼ κE(L).

One can note that this last result does not depend on the value of α.

4.2. Positive dependence. Proposition 5 below deals with possibly inhomoge-
neous processes.

PROPOSITION 5 (General case). For all Borel sets Z and Z′,

P(Z ∪ Z′ ⊂ O) ≥ P(Z ⊂ O)P(Z′ ⊂ O).

In particular, r(z, z′) ≥ r(z)r(z′) for every z and z′.

Corollary 3 is a direct consequence of this proposition and of the expression
of σ 2(OG) in Section 3.3.

COROLLARY 3 (Homogeneous case). For all nonzero intensities κ and α and
every nonzero L, the constants ν and λ are positive and the function G �→ τ(G) is
nonnegative. In particular, for every G,

νG − λ ≤ σ 2(OG) ≤ νG.

Hence σ 2(OG) ∼ νG when G → ∞. Furthermore, the following properties hold.
The function G �→ σ 2(OG) is increasing and convex. When G → 0, σ 2(OG) ∼
�(1 − �)G2. When G → ∞, σ 2(OG) = νG − λ + o(1).

PROOF. As regards ν, recall from Section 3.3 that, in the homogeneous case,

ν =
∫ +∞

0
2
(
r(0, z) − �2)

dz.
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Since 0 < � < 1, r(0,0) = r(0) = � > �2. Furthermore, one can deduce from
Section 3 an expression of r(0, z) from the formulas which give ri(z, z

′) for i = 0,
1 and 2. The integrals involved are continuous with respect to z and z′ because
the functions J involved in these integrals are, and because obvious domination
properties hold. Finally, r(0, z) > �2 for every nonnegative z in a neighborhood
of 0, and r(0, z) ≥ �2 for every nonnegative z. This implies that ν > 0.

The proofs that λ is positive and that τ(G) is nonnegative are similar.
The equivalent of σ 2(OG) when G → 0 stems from the fact that r(0, z) → �

when z → 0 and from the exact formula

σ 2(OG) =
∫ G

0
2(G − z)

(
r(0, z) − �2)

dz.

Finally, this formula and the fact that r(0, z) ≥ �2 also yield the fact that the func-
tion G �→ σ 2(OG) is increasing and convex, since the derivative of this function
is ∫ G

0
2
(
r(0, z) − �2)

dz. �

PROOF OF PROPOSITION 5. For any Borel set Z, {Z ⊂ O} is a nonincreasing
event, with respect to the global Poisson process introduced in Section 1.5. To see
this, note that, if one adds some anchors and/or some clones to a given configura-
tion, the union R\O of the anchored islands does not decrease, hence the indicator
function of the event {Z ⊂ O} does not increase. Thus, our proposition is a direct
consequence of the Fortuin–Kasteleyn–Ginibre (FKG) inequality

P(D ∩ D′) ≥ P(D)P(D′),
applied to the nonincreasing events D := {Z ⊂ O} and D′ := {Z′ ⊂ O}; see [6],
for instance. �

4.3. Bounds in the general case. In the inhomogeneous case, minimal as-
sumptions on c(dx) and a(dx) yield upper and lower bounds on E(OG) and
σ 2(OG), as we now show. In this section we assume that the intensities of the
processes of the clones and of the anchors are uniformly bounded. Hence, a(dx)

and c(dx) are absolutely continuous with respect to the Lebesgue measure and
there exist finite positive constants α± and κ± such that

α− dx ≤ a(dx) ≤ α+ dx,

κ− dx ≤ c(dx) ≤ κ+ dx.

We assume furthermore that the lengths Lx of the clones are uniformly stochasti-
cally bounded from above and from below. This means that there exist nonnegative
random variables L± such that L+ is integrable, such that L− is not almost surely
zero and such that, for every x and t ,

P(L− ≥ t) ≤ P(Lx ≥ t) ≤ P(L+ ≥ t).
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In particular, the family (Lx)x must be uniformly integrable.

PROPOSITION 6. The assumptions above imply that there exist positive con-
stants �± < 1 and finite positive constants ν± such that, for every G,

�−G ≤ E(OG) ≤ �+G, ν−G ≤ σ 2(OG) ≤ ν+G.

In these inequalities, �− corresponds to the homogeneous case of parameters
κ+, α+ and L+, and �+ to the homogeneous case of parameters κ−, α− and L−.
As regards the variance, the dependence is not so straightforward, at least the de-
pendence that our techniques yield. The parameter ν+ that we exhibit depends on
α− alone, a result which may seem surprising, and the parameter ν− depends on
κ+, �+ and �−.

PROOF OF PROPOSITION 6. The bounds on E(OG) would follow from the
fact that

�− ≤ r(z) ≤ �+,

for any z and for positive �± < 1. Such bounds on r(z) themselves stem from
the fact that the distribution of the ocean, as a random subset of the real line, is
nonincreasing with respect to the intensities of the processes of the clones and of
the anchors. Hence, by a coupling argument, the value of E(OG) lies between its
value for the homogeneous processes of densities α+ and κ+ on the one hand, and
α− and κ− on the other hand, the distributions of the lengths Lx being fixed.

We now examine the influence of the distributions of the lengths. Once again by
a coupling argument, the uniform replacement of the distributions of the lengths
Lx by the distribution of L+ yields longer clones, hence longer islands, hence a
stochastically smaller ocean. This proves the lower bound of E(OG). Comparison
with L− yields the upper bound.

Our proof of the lower bound of σ 2(OG) goes as follows. One knows that

σ 2(OG) =
∫ G

0

∫ G

0

(
r(z, z′) − r(z)r(z′)

)
dzdz′,

and that the expression r(z, z′) − r(z)r(z′) is nonnegative for every z and z′.
Assume that there exist positive δ and ε such that, for every z and z′ such that
|z − z′| ≤ ε,

r(z, z′) − r(z)r(z′) ≥ δ.

The lower bound of σ 2(OG) would follow. Now, for every z ≤ z′, if z′ is in O and
if there is no right end of clone in [z, z′], then z is in O. Hence,

r(z′) = r(z, z′) + P(z /∈ O,z′ ∈ O) ≤ r(z, z′) + P(D),
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with D := {C ∩ ([z, z′] × R
+) �= ∅}. By definition of the intensity of the Poisson

process C,

P(D) = 1 − e−c([z,z′]) ≤ c([z, z′]) ≤ κ+(z′ − z).

Since r(z′) ≥ �− and r(z) ≤ �+, this proves the lower bound

r(z, z′) − r(z)r(z′) ≥ (1 − �+)�− − κ+(z′ − z).

This in turn shows the desired inequality for z ≤ z′ and z′ − z small enough.
As regards the upper bound, it is enough to bound from above the integrals of

r0(z, z
′) and r1(z, z

′), since r3(z, z
′) is nonnegative. In the expression of r0(z, z

′),
for all fixed values of x and y, J (x | z, z′ | y) is a nonincreasing function of the
distributions of the lengths Lx and of the intensity of the clones, since having more
clones and longer clones only makes the ocean smaller. Thus r0(z, z

′) is bounded
from above by its value when one replaces c(dt) by κ− dt and the distribution of
every Lx by the distribution of L−. Likewise, the interpretation of B(dx, dy) as
the joint distribution of the positions of the rightmost anchor to the left of z and
of the leftmost anchor to the right of z, and a coupling between two processes of
anchors with comparable intensities, show that the anchors become stochastically
more distant from z when one replaces a(dt) by the smaller intensity α− dt . Hence
the probability that z is not covered by an anchored clone cannot decrease. Thus,
replacing a(dt) by α− dt cannot make r0(z, z

′) decrease.
Finally, the contribution of r0 in the value of σ 2(OG) is bounded from above by

its value in the homogeneous case which uses the values α−, κ− and L−, that is,
for instance, by 2G/α−. Likewise, the contribution of r1 to the value of σ 2(OG) is
at most 2G/α−. This yields the desired upper bound with ν+ := 4/α−. �

Alternatively, when Lz ≤ 
 almost surely and for every z, recall from the end
of Section 3.3 that r(z, z′) = r(z)r(z′) as soon as |z − z′| > 
, hence σ 2(OG) is at
most the area of the part of the square [0,G]2 inside the diagonal strip |z− z′| ≤ 
,
that is, at most 2
G − 
2 when G ≥ 
, and σ 2(OG) is at most G2 for every G.
Hence σ 2(OG) ≤ 2
G for every G.

Finally, we mention that one can adapt the proofs in this section to some cases
when the intensities of the clones and of the anchors are zero in some places, as
long as the intensities stay bounded from below on regions which are spread out
enough.

4.4. Convergence in distribution. We first explain how one could prove the
convergence of the moments by elementary techniques, then we show that general
invariance results apply, which yield directly the desired convergence.
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4.4.1. Method of moments. Assume first that L ≤ 
 almost surely. Then, a cru-
cial remark from the end of Section 3.3 is that the events {Z ⊂ O} and {Z′ ⊂ O}
are independent as soon as the distance between every point in Z and every point
in Z′ is at least 
. Furthermore,

E
(
(OG − �G)n

) =
∫
Z∈[0,G]n

π(Z)dZ, π(Z) := ∏
z∈Z

(1{z ∈ O} − �).

If Z = Z′ ∪ Z′′ with |z′ − z′′| ≥ 
 for every z′ ∈ Z′ and every z′′ ∈ Z′′, one gets
E(π(Z)) = E(π(Z′))E(π(Z′′)).

For instance, if n = 3, every nontrivial partition of Z includes at least one sin-
gleton, hence E(π(Z)) is zero except when all the distances between the nonempty
subsets of Z are at most 
. Ordering the points z, z′ and z′′, we are left with the
domain

z ≤ z′ ≤ z + 
, z′ ≤ z′′ ≤ z′ + 
,

whose volume is at most 
2G. Hence E((OG − �G)3) is of order at most G.
If n = 4, the only difference with the n = 3 case is due to the partitions of Z

into two pairs Z′ and Z′′. These contribute to the result even when the distance
from Z′ to Z′′ is large. Every such E(π(Z′)) and E(π(Z′′)) is of order at most G,
hence E((OG − �G)4) is of order at most G2.

Likewise, for every positive integer k, the moments E((OG − �G)2k) and
E((OG − �G)2k+1) are both of order at most Gk .

One can also compute the asymptotics of the moments of OG as G → ∞. To do
this, one starts from the expression of E((OG − �G)2n) as the integral of E(π(Z))

over the points Z in [0,G]2n. When there exists a partition of Z into two parts
Z′ and Z′′ at a distance at least 
, E(π(Z)) is the product E(π(Z′))E(π(Z′′)).
The remaining points Z span a volume in [0,G]2n which is o(Gn), hence they
contribute to a vanishing part of the asymptotics.

This yields recursions between the asymptotic moment of degree 2n and the
asymptotic moments of even degrees at most 2n − 2. One can deduce from these
recursions the convergence of the moments of (OG − �G)/

√
G to the moments of

a Gaussian random variable.
Finally, one could adapt this strategy to the case where L is unbounded, thus

reaching the same conclusion.

4.5. Direct method. A stronger conclusion obtains directly from classical re-
sults by Doukhan, Massart and Rio [2], for every square integrable L. To see this,
introduce for every integer n, the random variable

Xn := O([n,n + 1]) − �.

Let Fn denote the σ -algebra generated by the collection (Xi)i≤n, and let Gn de-
note the σ -algebra generated by the collection (Xi)i≥n. The sequence (Xn)n is
generated by the action of the shift

ϑ : (x, t) �→ (x + 1, t),
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on R × M , since Xn = X0 ◦ ϑn for every integer n. The strong mixing coefficients
αn associated to the stationary sequence (Xn)n are defined, for any integer n ≥ 0,
by

αn := sup{P(D ∩ D′) − P(D)P(D′);D ∈ F0,D
′ ∈ Gn}.

Since |X0| ≤ 1 almost surely, the condition in Doukhan, Massart and Rio [2] re-
duces to the summability of the series of general term αn. Neglecting the influence
of the anchors does not decrease the value of αn. Thus αn ≤ P(Dn), where Dn is
the event that at least one clone covers both points 0 and n. One can bound each
P(Dn) as follows:

P(Dn) = 1 − J (n) ≤
∫ +∞
n

κP(L ≥ t) dt.

This shows that the sequence of general term P(Dn) is summable as soon as L is
square integrable. (In fact, this sequence is summable if and only if L is square
integrable; we omit the proof.) This shows that the functional invariance stated
in Theorem 1 holds, at least for the processes �G such that G is an integer. The
general case is an easy consequence, since OG depends on G in a monotone way.

Equivalently, one can write directly OG as

OG = �G +
∫ G

0
Yx dx,

where the stationary centered family Yx := 1{x ∈ O} − � is indexed by the real
numbers x. The same conclusion obtains.
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