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THE PROBABILITY OF EXCEEDING A HIGH BOUNDARY
ON A RANDOM TIME INTERVAL FOR A

HEAVY-TAILED RANDOM WALK

BY SERGUEI FOSS,1 ZBIGNIEW PALMOWSKI 2 AND STAN ZACHARY

Heriot–Watt University, University of Wrocław and Utrecht University,
and Heriot–Watt University

We study the asymptotic probability that a random walk with heavy-
tailed increments crosses a high boundary on a random time interval. We use
new techniques to extend results of Asmussen [Ann. Appl. Probab.8 (1998)
354–374] to completely general stopping times, uniformity of convergence
over all stopping times and a wide class of nonlinear boundaries. We also
give some examples and counterexamples.

1. Introduction and main results. The analysis of random walks with
heavy-tailed increments is central to the understanding of many problems in
insurance, finance, queueing networks and storage theory. In particular, we are
often interested in determining the probability of overcrossing a deterministic
curve{x + g(n)}n≥0 asx is allowed to become large.

Thus, in this paper, we consider a sequence{ξn}n≥1 of independent identically
distributed random variables with distribution functionF . We assume throughout
that F belongs to the classL of long-tailed distribution functions, where a
distribution functionG ∈ L if and only if

�G(x) > 0 for all x, lim
x→∞

�G(x − h)

�G(x)
= 1 for all fixedh > 0.(1)

Here�G denotes the tail distribution given by�G(x) = 1−G(x). We further assume
throughout that the distributionF has a finite meanmF = Eξ1. Without loss of
generality (see below), we assume

mF = 0.

Define the random walk{Sn}n≥0 by

S0 = 0, Sn =
n∑

i=1

ξi, n ≥ 1.
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For any nonnegative functiong on Z+, define also the process{Sg
n }n≥0 by

Sg
n = Sn − g(n), n ≥ 0.

The process{Sg
n }n≥0 is investigated innonlinear renewal theory (see [22]), and

also in many other examples in probability and queueing theory (see, e.g., [1, 7,
20, 21, 24]). Note also that any subadditive functional of a random walk is of this
form—see [8].

Forn ≥ 0, let

Mg
n = max

0≤i≤n
S

g
i .

Similarly, for any stopping timeσ for the random walk{Sn}n≥0 (i.e., for any
random variableσ taking values inZ+ ∪ {∞} such that, for alln ≥ 0, the event
{σ ≤ n} is independent of{ξn+1, ξn+2, . . .}), let

Mg
σ = max

0≤i≤σ
S

g
i .

Define also the decreasing functionH
g
σ by

Hg
σ (x) = ∑

n≥1

P(σ ≥ n)�F (
x + g(n)

)
.

Note that the functionHg
σ is monotone decreasing ing [i.e., if g1(n) ≥ g2(n)

for all n, thenH
g1
σ (x) ≤ H

g2
σ (x) for all x] and monotone increasing inσ [i.e., if

σ1 ≥ σ2 a.s., thenHg
σ1(x) ≥ H

g
σ2(x) for all x]. Note also that, sinceF has a finite

mean,Hg
σ is finite for all σ and allg such thatg(n) ≥ cn for somec > 0; further,

sinceF ∈ L, an elementary truncation argument along the lines of the proof of
Lemma 1(i) shows that, for anyσ such thatEσ < ∞ and nonnegative functiong,
H

g
σ (x) is finite for allx and

Hg
σ (x) = (

1+ o(1)
)
Eσ �F(x) asx → ∞.(2)

We are interested in the asymptotic distribution ofM
g
σ for a general stopping

time σ (which need not be a.s. finite). In particular, we are interested in obtaining
conditions under which

P(Mg
σ > x) ≥ (

1+ o(1)
)
Hg

σ (x) asx → ∞,(3)

and in obtaining (stronger) conditions under which

P(Mg
σ > x) = (

1+ o(1)
)
Hg

σ (x) asx → ∞,(4)

in each case with uniformity over suitable classes of stopping timesσ and
functionsg. [We shall say, e.g., that the result (3) holds with uniformity over allσ

and allg—in appropriate classes—if and only if there exists a functionδ on R+
such thatδ(x) → 0 asx → ∞ andP(M

g
σ > x) ≥ (1− δ(x))H

g
σ (x) for all x ∈ R+

and for allσ and allg.]
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The event{Mg
σ > x} may be reinterpreted as the event that the random

walk {Sn}n≥0 crosses the (arbitrary) increasing boundary{x + g(n)}n≥0 by the
stopping timeσ . The intuitive interpretation of the relation (4), in particular, is
that, forx very large, the only significant way in which the random walk can cross
this boundary is that it remains close to its mean zero up to some timen when, with
probability �F(x + g(n)), it jumps abovex + g(n). This property is the “principle
of one big jump” and is characteristic of the subexponential property (see below)
which we shall in general require (at a minimum) ofF in order to obtain conditions
for (4) to hold.

Our results below are also applicable to random walks whose increments have a
nonzero mean: it is clearly sufficient to make the obvious shift transformation. In
particular, by considering, forc > 0, the functiong(n) = cn, the results include as
a special case those for the maximum on a random interval of a random walk with
drift −c. The results obtained in this case both generalize and extend earlier results
of Asmussen [2] and Foss and Zachary [14]. We give a more detailed discussion
of this below.

In order to state our results, we require some further definitions. A distribution
functionG on R+ is subexponentialif and only if �G(x) > 0 for all x and

lim
x→∞G∗2(x)/ �G(x) = 2(5)

(whereG∗2 is the convolution ofG with itself ). More generally, a distribution
function G on R is subexponential if and only ifG+ is subexponential,
whereG+ = GIR+ and IR+ is the indicator function ofR+. It is known that
the subexponentiality of a distribution depends only on its (right) tail, and
that a subexponential distribution is long-tailed. We letS denote the class of
subexponential distributions, so that, in particular,S ⊂ L.

A distribution functionG onR belongs to the classS∗ introduced by [16] if and
only if �G(x) > 0 for all x and∫ x

0
�G(x − y)�G(y)dy ∼ 2mG+ �G(x) asx → ∞,(6)

where

mG+ =
∫ ∞

0
�G(x)dx

is the mean ofG+. It is again known that the propertyG ∈ S∗ depends only on the
tail of G. Further, ifG ∈ S∗ thenG ∈ S, and alsoGs ∈ S, where

Gs(x) = min
(

1,

∫ ∞
x

�G(t) dt

)
is the integrated, orsecond-tail, distribution function determined byG—see [16].

Let T be the class of all stopping times for the random walk{Sn}n≥0. For any
stopping timeϕ, let

Tϕ = {σ ∈ T :σ ≤ ϕ a.s.}.
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In particular, for any integerN > 0,TN is the class of stopping times almost surely
bounded byN .

For any constantc (we shall primarily be interested inc ≥ 0), letGc be the class
of nonnegative functionsg satisfying

g(1) ≥ c, g(n + 1) ≥ g(n) + c, n ≥ 1.(7)

In particular,G0 is the class of nonnegative nondecreasing functions onZ+. Note
also that the classGc is monotone decreasing inc.

As a preliminary result, we prove the following theorem, which relates to
bounded stopping times.

THEOREM 1. (i) Suppose thatF ∈ L. Then, given any integerN > 0, the
result (3) holds uniformly over allσ ∈ TN and allg ∈ G0.

(ii) Suppose, additionally, that F ∈ S. Then, given any integerN > 0, the
result (4) holds uniformly over allσ ∈ TN and allg ∈ G0.

Our main result is then Theorem 2.

THEOREM 2. (i) Suppose thatF ∈ L. Then, given anyc > 0, the result(3)
holds uniformly over allσ ∈ T and allg ∈ Gc.

(ii) Suppose, additionally, that F ∈ S∗. Then, given anyc > 0, the result(4)
holds uniformly over allσ ∈ T and allg ∈ Gc.

We have stated these results under those conditions which appear to us
most natural. There are some obvious extensions which are immediate from the
conditionF ∈ L which we assume throughout. This condition implies that also
H

g
σ ∈ L with uniformity of convergence in the definition (1) over all stopping

timesσ and nonnegative functionsg. Thus, for example, for anyc for which one
of the results of Theorems 1 or 2 holds, and for any fixedd > 0, we may expand
the corresponding classGc to include any functiong such thatg′ ≤ g ≤ g′ + d

for some functiong′ ∈ Gc—since thenHg′
σ (x)/H

g′+d
σ (x) → 1 asx → ∞ with

the required uniformity properties. One consequence of this observation is that
we may, in either of the results of Theorem 1, replaceG0 by Gc for any c ∈ R.
That we may not, in general, even for a single bounded stopping timeσ , obtain
the results of Theorem 1 with uniformity over all nonnegative functionsg is
shown by Example 1 of Section 3. See also that section for further discussion
and comments.

We now discuss briefly our main result, which is part (ii) of Theorem 2.
Consider first the slightly weaker conditionF s ∈ S, and the case where the
functiong is given byg(n) = cn for somec > 0, and the stopping timeσ = ∞.
The conclusion (4) is then equivalent to the well-known result of Veraverbeke [19]
for the asymptotic distribution of the maximum of the random walk{Sn − cn}n≥0
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with drift −c (see the Appendix for conditions under which the functionH
g
σ has

a tail equivalent integral representation). See also [12] and [11]. Now assume that
F ∈ S∗. In the case where the functiong is again given byg(n) = cn for c > 0, and
the stopping timeσ has a finite mean, it follows from (2) that the conclusion (4) is
equivalent to

P(Mg
σ > x) = (

1+ o(1)
)
Eσ �F(x) asx → ∞.(8)

(Again the event{Mg
σ > x} is most naturally interpreted in relation to the random

walk {Sn − cn}n≥0.) Asmussen [2] proved the result (8) for the stopping time
σ = τc ≡ min{n ≥ 1 :Sn − cn ≤ 0} (see also [15]). Foss and Zachary [14] extended
the result (8) to a general stopping timeσ , and showed also the necessity (for a
general stopping time) of the conditionF ∈ S∗. However, in the caseEσ = ∞
(which occurs naturally in many applications—see, e.g., Example 3 of Section 3),
the result (8) simply asserts thatP(M

g
σ > x)/ �F(x) → ∞ as x → ∞ and does

not give the asymptotic form of the tail of the distribution ofM
g
σ . Nor, as may

be deduced from the results of the present paper, does the result (8) hold with
uniformity even over all finite stopping timesσ . In the present paper we obtain
the correct asymptotics in the caseEσ = ∞, we extend our results to arbitrary
boundariesg, and we give these results in such a form that in each case we obtain
uniformity of convergence over all stopping timesσ (which need not be a.s. finite)
and over suitably wide classes of functionsg. This uniformity corresponds to the
naturalness of the condition (4), as discussed above, and of course guarantees the
quality of the asymptotic results, notably over allσ . In particular, Theorem 2 thus
unifies the earlier, quite distinct, results for the casesEσ < ∞ andσ = ∞ a.s.
(with g linear in each case).

Further, in the present paper we take Asmussen’s result (8) forg(n) = cn and
σ = τc as a starting point and use new and direct arguments to obtain our results for
general stopping timesσ and classes of functionsg. (Notably, we make no further
use, beyond its requirement for Asmussen’s result, of the conditionF ∈ S∗.)
Denisov [9] has recently given a very simple proof of (8) forg(n) = cn and
σ = τc. This, taken with the present paper, now yields a relatively simple and
direct treatment of all our results.

We note also here that, in the case where the stopping timeσ is independentof
{Sn}n≥0 and the functiong is given byg(n) = cn for c > 0, that the result (4) holds
with uniformity over all suchσ follows from the results of Korshunov [17]—see
the comments on this in [10].

In Section 2 we prove our main results, giving parallel developments of the
lower and upper bounds so as to identify carefully the conditions required for each.
We prove our results successively for bounded stopping times (Theorem 1 above),
stopping times bounded by a stopping time with a finite mean (for the upper bound
we require the stopping timeτc identified above) and for quite general stopping
times (Theorem 2 above).
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In Section 3 we give various examples to show the applicability of the results,
together with counterexamples to show what goes wrong when we drop the
conditions of our theorems.

The Appendix gives a simple integral representation, under appropriate condi-
tions, of the functionHg

σ .

2. Proofs.

PROOF OF THEOREM 1. Since the results are trivial in the caseσ = 0 a.s.
and by otherwise conditioning on the event{σ > 0}, we may assume throughout
without loss of generality thatσ ≥ 1 a.s.

SinceF ∈ L throughout, we may choose a functionh :R+ → R+ such that

h(x) ≤ x for all x ≥ 0,(9)

h is increasing, h(x) → ∞ asx → ∞,(10)

�F(x − h(x))

�F(x)
→ 1 asx → ∞.(11)

(This follows from the conditionF ∈ L by allowing the functionh to increase
sufficiently slowly—see [14].)

Note that the results of both parts of the theorem are trivial in the caseN = 1.
Given any integerN ≥ 2, consider any stopping timeσ ∈ TN and any function
g ∈ G0. Then, forx ≥ 0,

P(Mg
σ > x) =

N∑
n=1

P(σ ≥ n,M
g
n−1 ≤ x,Sg

n > x)

=
N∑

n=1

P
(
σ ≥ n,M

g
n−2 ≤ x,

Sn−1 < −h
(
x + g(n − 1)

)
, Sg

n > x
)

+
N∑

n=1

P
(
σ ≥ n,M

g
n−2 ≤ x,

(12)
Sn−1 ∈ [−h

(
x + g(n − 1)

)
, h

(
x + g(n − 1)

)]
,

Sg
n > x

)
+

N∑
n=1

P
(
σ ≥ n,M

g
n−2 ≤ x,

Sn−1 ∈ (
h
(
x + g(n − 1)

)
, x + g(n − 1)

)
, Sg

n > x
)
,

where, forn = 1, we may takeMg
n−2 = 0.
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Since, forg ∈ G0,

P(M
g
n−2 > x) ≤ P(Mn−2 > x) → 0,

asx → ∞, and, from (10),

P
(
Sn−1 /∈ [−h

(
x + g(n − 1)

)
, h

(
x + g(n − 1)

)]) ≤ P
(
Sn−1 /∈ [−h(x),h(x)]) → 0

asx → ∞, it follows that, for 1≤ n ≤ N ,

P
(
σ ≥ n,M

g
n−2 ≤ x,Sn−1 ∈ [−h

(
x + g(n − 1)

)
, h

(
x + g(n − 1)

)])
(13)

= P(σ ≥ n) + o(1)

asx → ∞, uniformly over allσ ∈ TN andg ∈ G0. Further, it follows from (11)
that, for anyn,

�F(x + g(n) ± h(x + g(n)))

�F(x + g(n))
→ 1 asx → ∞,(14)

uniformly over allg ∈ G0. Since also, for anyn, h(x + g(n − 1)) ≤ h(x + g(n)),
it follows from (13) and (14) that

N∑
n=1

P
(
σ ≥ n,M

g
n−2 ≤ x,

Sn−1 ∈ [−h
(
x + g(n − 1)

)
, h

(
x + g(n − 1)

)]
, Sg

n > x
)

= (
1+ o(1)

) N∑
n=1

(
P(σ ≥ n) + o(1)

)�F (
x + g(n)

)
(15)

= (
1+ o(1)

)
Hg

σ (x) + o
(�F (

x + g(1)
))

= (
1+ o(1)

)
Hg

σ (x)

asx → ∞, uniformly over allσ ∈ TN andg ∈ G0, where the final line in (15)
follows sinceσ ≥ 1 a.s. Since the first and third terms on the right-hand side of (12)
are positive, the result (i) of the theorem now follows from (12) and (15).

To prove (ii), we suppose thatF ∈ S. We require to show that (4) holds
uniformly over allσ ∈ TN andg ∈ G0. From (12) and (15), it is sufficient to show
that the first and third terms on the right-hand side of (12) are eacho(H

g
σ (x)) as

x → ∞, again uniformly over allσ ∈ TN andg ∈ G0. That this is true for the first
of these terms follows since, for eachn,

P
(
σ ≥ n,M

g
n−2 ≤ x,Sn−1 < −h

(
x + g(n − 1)

)
, Sg

n > x
)

≤ P
(
Sn−1 < −h

(
x + g(n − 1)

))�F (
x + g(n)

)
≤ P

(
Sn−1 < −h(x)

)�F (
x + g(1)

)
= o

(
Hg

σ (x)
)
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asx → ∞ [from (10) and sinceσ ≥ 1 a.s.] with the required uniformity.
In the case whereσ is identically equal toN andg is identically equal to 0, it

is a standard result that

P(Mg
σ > x) = P

(
max

0≤n≤N
Sn > x

)
(16)

= (
1+ o(1)

)
N �F(x) asx → ∞,

(see [11]). Since in this caseHg
σ (x) = N �F(x), it follows from (12), (15) and (16)

that, for 1≤ n ≤ N ,

P
(
Si ≤ x, i ≤ n − 2;Sn−1 ∈ (

h(x), x
];Sn > x

) = o(�F(x)) asx → ∞.(17)

For generalσ ∈ TN with σ ≥ 1 a.s. andg ∈ G0, it follows sinceg is nondecreasing
that the third term on the right-hand side of (12) is bounded above by

N∑
n=1

P
(
Si ≤ x + g(n − 1), i ≤ n − 2,

Sn−1 ∈ (
h
(
x + g(n − 1)

)
, x + g(n − 1)

]
, Sn > x + g(n − 1)

)
.

From (17), thenth term in the above sum iso(�F(x +g(n−1))), and so also (since
σ ≥ 1 a.s. andg ∈ G0) the sum iso(H

g
σ (x)), asx → ∞, uniformly over all suchσ

andg as required. �

REMARK 1. In Section 3 we give examples which show that we may not, in
general, drop the condition thatg be nondecreasing.

The proof of our main result, Theorem 2, requires the separate derivation of
upper and lower bounds forP(M

g
σ > x). In Lemma 1 below, we first establish

these bounds for classes of stopping times intermediate between those of Theorems
1 and 2.

For anya > 0, define the stopping timeτa = min{n ≥ 1 :Sn < an}. Note that,
sinceF has mean 0,Eτa is finite. For anya > 0, define also the function̄a on Z+
by ā(n) = an.

LEMMA 1. (i) Given any stopping timeϕ such thatEϕ < ∞, the result(3)
holds uniformly over allσ ∈ Tϕ and allg ∈ G0.

(ii) Suppose thatF ∈ S∗. Then, given anyc > 0, the result(4) holds uniformly
over allσ ∈ Tτc and allg ∈ Gc.

PROOF. In the proofs of both (i) and (ii), we may again assume without loss
of generality, as in the proof of Theorem 1, thatσ ≥ 1 a.s. Thus, givenϕ such that
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Eϕ < ∞, for anyσ ∈ Tϕ with σ ≥ 1 a.s. andg ∈ G0, and for any integerN > 0
and allx > 0,

Hg
σ (x) − H

g
σ∧N(x) = ∑

n>N

P(σ ≥ n)�F (
x + g(n)

)
≤ �F (

x + g(1)
) ∑
n>N

P(σ ≥ n)

≤ Hg
σ (x)

∑
n>N

P(σ ≥ n)

≤ Hg
σ (x)

∑
n>N

P(ϕ ≥ n).

Hence, using Theorem 1(i) applied to the stopping timeσ ∧ N , there exists a
function εN , which is independent ofσ andg, such thatεN(x) → 0 asx → ∞
and, forσ andg as above and forx > 0,

P(Mg
σ > x) ≥ P(M

g
σ∧N > x)

≥ (
1− εN(x)

)
H

g
σ∧N(x)

≥ (
1− εN(x)

)
Hg

σ (x)

(
1− ∑

n>N

P(ϕ ≥ n)

)
.

SinceEϕ < ∞, it now follows that

P(Mg
σ > x) ≥ (

1− ε′
N(x)

)
Hg

σ (x)(18)

for some positive functionε′
N , again independent ofσ andg, such that

lim
N→∞ lim

x→∞ ε′
N(x) = 0.

This latter condition implies that (for any such sequence of functions{ε′
N }N≥1)

there exists an integer-valued functionN on R+ such that limx→∞ ε′
N(x)(x) = 0.

Hence, from (18), we have the required result (3) with the required uniformity over
σ ∈ Tϕ andg ∈ G0.

To prove (ii), we suppose thatF ∈ S∗ and thatc > 0. Consider first the stopping
time σ = τc and the functiong = c̄. For integerN > 0, it follows from the
result of Asmussen [2] referred to in the Introduction—see also [3], Chapter X,
Theorem 9.4—that, asx → ∞,

P
(
Mc̄

τc
> x

) = (
1+ o(1)

)
Eτc

�F(x + c)

= (
1+ o(1)

)(
E(τc ∧ N) + E(τc − N)+

)�F(x + c)(19)

= (
1+ o(1)

)(
Hc̄

τc∧N(x) + E(τc − N)+ �F(x + c)
)
,
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where (19) follows sinceF is long-tailed. SinceS∗ ⊂ S, it follows also from
Theorem 1(ii) that

P
(
Mc̄

τc∧N > x
) = (

1+ o(1)
)
Hc̄

τc∧N(x) asx → ∞.(20)

Since alsoHc̄
τc∧N(x) ≤ N �F(x + c), it follows from (19) and (20) that

P
(
Mc̄

τc∧N ≤ x,Mc̄
τc

> x
)

= P
(
Mc̄

τc
> x

) − P
(
Mc̄

τc∧N > x
)

(21)

= (
1+ o(1)

)
E(τc − N)+ �F(x + c) asx → ∞.

We now prove (4) for anyσ ∈ Tτc andg ∈ Gc. For n ≥ 1, let dn = g(n) − cn.
Fix any integerN > 0. Then, forx > 0,

P(M
g
σ∧N ≤ x,Mg

σ > x) ≤ P
(
M

g
τc∧N ≤ x,Mg

τc
> x

)
(22)

≤ P
(
Mc̄

τc∧N ≤ x + dN,Mc̄
τc

> x + dN

)
(23)

≤ (
1+ o(1)

)
E(τc − N)+ �F (

x + g(1)
)
,(24)

uniformly over all suchσ and g, where (22) follows by consideration of
sample paths, while (23) follows since the conditiong ∈ Gc implies thatdn is
nondecreasing inn, and finally, (24) follows from (21) on noting thatdN ≥ d1 =
g(1) − c. Hence, from (24), using Theorem 1(ii) again and noting that, for all
x > 0, �F(x + g(1)) ≤ H

g
σ (x), we have that, asx → ∞,

P(Mg
σ > x) ≤ P(M

g
σ∧N > x) + (

1+ o(1)
)
E(τc − N)+ �F (

x + g(1)
)

≤ (
1+ E(τc − N)+ + o(1)

)
Hg

σ (x),

uniformly over all σ and g as above. SinceE(τc − N)+ → 0 asN → ∞, we
conclude, as in the final part of the proof of part (i) above, that

P(Mg
σ > x) ≤ (

1+ o(1)
)
Hg

σ (x) asx → ∞,

again uniformly over allσ andg as above. The required result (4) now follows on
using also part (i) of the lemma.�

REMARK 2. Note that the result of Asmussen used in the above lemma
requiresF ∈ S∗. This is the only point in the argument of the present paper in
which this condition is explicitly used.

The proof of the lower bound in Theorem 2 is by consideration of repeated
upcrossings by{Sn}n≥0 of boundaries of slope−a < 0, while the proof of the
upper bound is by consideration of repeated downcrossings of boundaries of
slopea > 0. In each casea is then allowed to tend to 0. Each argument requires
an application of Lemma 1 to the random walk “restarted” at these upcrossing or
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downcrossing times. We give this in Corollary 1 below, which is stated in a form
carefully adapted to its subsequent use.

For any a.s. finite stopping timeϕ and anya > 0, define the further stopping
time

ρϕ
a = ϕ + min{n ≥ 1 :Sϕ+n − Sϕ > −an}.

Note that, sinceF has mean 0,ρϕ
a is a.s. finite.

Similarly, for any a.s. finite stopping timeϕ and a > 0, define the further
stopping time

τϕ
a = ϕ + min{n ≥ 1 :Sϕ+n − Sϕ ≤ an}.

Note again thatτϕ
a is a.s. finite.

COROLLARY 1. (i) Given anya > 0, there exists a functionγa on R+ such
that limx→∞ γa(x) = 0 and

P(∃n :ϕ < n ≤ σ ∧ ρϕ
a , Sg

n − S−ā
ϕ > x)

(25)
≥ (

1− γa(x)
) ∑
n≥1

P(ϕ < n ≤ σ ∧ ρϕ
a )�F (

x + g(n) + an
)
,

for all x > 0, all a.s. finite stopping timesϕ and allσ ∈ T andg ∈ G0.
(ii) Suppose thatF ∈ S∗. Then, given anya > 0, there exists a functionδa onR+

such thatlimx→∞ δa(x) = 0 and

P(∃n :ϕ < n ≤ σ ∧ τϕ
a , Sg

n − Sā
ϕ > x)

(26)
≤ (

1+ δa(x)
) ∑
n≥1

P(ϕ < n ≤ σ ∧ τϕ
a )�F (

x + g(n) − an
)
,

for all x > 0, all a.s. finite stopping timesϕ and allσ ∈ T andg ∈ Ga .

PROOF. We first prove (i). Fixa > 0. Note that the stopping timeρa ≡ ρ0
a ≡

min{n ≥ 1 : Sn > −an} has a finite mean. It follows from Lemma 1(i) that there
exists a functionγa on R+ with limx→∞ γa(x) = 0 and such that, for anyσ ∈ T
andg ∈ G0, and allx > 0,

P(∃n : 0< n ≤ σ ∧ ρa, S
g
n > x)

(27)
≥ (

1− γa(x)
) ∑
n≥1

P(n ≤ σ ∧ ρa)�F (
x + g(n)

)
.

Now given σ and g as above and any stopping timeϕ, to prove (25), we may
assume without loss of generality thatϕ = m for some constantm (for otherwise
we may condition on each possible valuem of ϕ, and note that the functionγa

is independent ofm). Thus, consider the random walk{S′
n}n≥0 given by S′

n =
Sm+n −Sm. We haveρm

a −m = ρ′
a , whereρ′

a = min{n ≥ 1 :S′
n > −an}, and so the
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application of (27) to the random walk{S′
n}, the stopping timeσ ′ = 0 ∨ (σ − m)

(for {S′
n}) and the functiong′ ∈ G0 given byg′(n) = g(m + n) + am gives, for

x > 0,

P
(∃n : 0< n ≤ (σ ∧ ρm

a ) − m,S
g
m+n − S−ā

m > x
)

= P
(∃n : 0< n ≤ σ ′ ∧ ρ′

a, S
′
n > x + g′(n)

)
≥ (

1− γa(x)
) ∑
n≥1

P
(
n ≤ (σ ∧ ρm

a ) − m
)�F (

x + g(m + n) + am
)

(28)

≥ (
1− γa(x)

) ∑
n≥1

P
(
n ≤ (σ ∧ ρm

a ) − m
)

× �F (
x + g(m + n) + a(m + n)

)
,

where the last line follows sincea > 0. Replacen by n − m in (28) to obtain

P(∃n :m < n ≤ σ ∧ ρm
a , Sg

n − S−ā
m > x)

≥ (
1− γa(x)

) ∑
n≥m+1

P(n ≤ σ ∧ ρm
a )�F (

x + g(n) + an
)

= (
1− γa(x)

) ∑
n≥1

P(m < n ≤ σ ∧ ρm
a )�F (

x + g(n) + an
)
,

which is (25) withϕ = m as required.
The proof of (ii) is similar to that of (i) with only minor variations. Thus, we

suppose thatF ∈ S∗, and fixa > 0. It follows from Lemma 1(ii) that there exists
a functionδa on R+ with limx→∞ δa(x) = 0 and such that, for anyσ ∈ T , any
g ∈ Ga , and allx > 0,

P(∃n : 0< n ≤ σ ∧ τa, S
g
n > x)

(29)
≤ (

1+ δa(x)
) ∑
n≥1

P(n ≤ σ ∧ τa)�F (
x + g(n)

)
.

Again, givenσ ∈ T , g ∈ Ga , and any a.s. finite stopping timeϕ, to prove (26),
we may assume without loss of generality thatϕ = m for some constantm. Since
τm
a − m = τ ′

a whereτ ′
a = min{n ≥ 1 :S′

n < an}, application of the result (27) to
the random walk{S′

n}n≥0 again given byS′
n = Sm+n − Sm, the stopping time

σ ′ = 0 ∨ (σ − m) (for {S′
n}) and the functiong′ ∈ Ga now given byg′(n) =

g(m + n) − am, gives, forx > 0,

P
(∃n : 0< n ≤ (σ ∧ τm

a ) − m,S
g
m+n − Sā

m > x
)

= P
(∃n : 0< n ≤ σ ′ ∧ τ ′

a, S
′
n > x + g′(n)

)
(30)

≤ (
1+ δa(x)

) ∑
n≥1

P
(
n ≤ (σ ∧ τm

a ) − m
)�F (

x + g(m + n) − am
)

≤ (
1+ δa(x)

) ∑
n≥1

P
(
n ≤ (σ ∧ τm

a ) − m
)�F (

x + g(m + n) − a(m + n)
)
,
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where the last line follows sincea > 0. Now replacen by n−m in (30) to complete
the proof as before.�

For any functiong on Z+ and any constanta, define the functionga by
ga = g + ā, so that, for eachn, ga(n) = g(n) + an.

We require also the following technical lemma.

LEMMA 2. For anyσ ∈ T andg ∈ G0, for all 0< b < c, and for allx ≥ 0,

Hgb

σ (x) ≥ Hgc

σ (x) ≥ b

c
Hgb

σ (x + c).

PROOF. The first inequality follows from the monotonicity of�F . To prove the
second, for anyy ∈ R+ define�y� to be the least integer greater than or equal toy.
Then, for 0< b < c and ally,

c�y� ≤ c(1+ y) ≤ c + b

⌈
c

b
y

⌉
,

and so

Hgc

σ (x) =
∫ ∞

0
P(σ ≥ �y�)�F (

x + c�y� + g(�y�))dy

≥
∫ ∞

0
P

(
σ ≥

⌈
c

b
y

⌉)
�F

(
x + c + b

⌈
c

b
y

⌉
+ g

(⌈
c

b
y

⌉))
dy

= b

c

∫ ∞
0

P(σ ≥ �z�)�F (
x + c + b�z� + g(�z�))dz

= b

c
Hgb

σ (x + c). �

PROOF OFTHEOREM 2. We prove first (i). Fixa > 0 and define the sequence
of a.s. finite stopping times 0≡ ρ0 < ρ1 < ρ2 < · · · for the process{Sn} by, for
k ≥ 1,

ρk ≡ ρρk−1

a = ρk−1 + min{n ≥ 1 :Sρk−1+n − Sρk−1 > −an}.
Note thatSρk > −aρk , k ≥ 0, that is, that

S−ā

ρk > 0, k ≥ 0.(31)

For anyσ ∈ T , g ∈ G0, and for anyx > 0, define the stopping timeσx by

σx = σ ∧ min{n :Sg
n > x}.
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Then

P(Mg
σ > x) = P

( ⋃
k≥0

{Mg

ρk ≤ x; ∃n :ρk < n ≤ ρk+1, σ ≥ n,Sg
n > x}

)

= ∑
k≥0

P(M
g

ρk ≤ x; ∃n :ρk < n ≤ ρk+1, σ ≥ n,Sg
n > x)

= ∑
k≥0

P(∃n :ρk < n ≤ ρk+1, σx ≥ n,Sg
n > x)

≥ ∑
k≥0

P(∃n :ρk < n ≤ ρk+1, σx ≥ n,Sg
n − S−ā

ρk > x)

≥ (
1− γa(x)

) ∑
k≥0

∑
n≥1

P(ρk < n ≤ ρk+1, σx ≥ n)�F (
x + g(n) + an

)
= (

1− γa(x)
) ∑
n≥1

P(σx ≥ n)�F (
x + g(n) + an

)
≥ (

1− γa(x)
) ∑
n≥1

(
P(σ ≥ n) − P(Mg

σ > x)
)�F (

x + g(n) + an
)
,

where the fourth line in the above display follows by (31), while the fifth follows
from Corollary 1(i) (with γa as defined there). Since also

∑
n≥1

�F(x + g(n) +
an) ≤ ∑

n≥1
�F(x + cn), it follows that

P(Mg
σ > x)

(
1+ ∑

n≥1

�F(x + cn)

)

≥ (
1− γa(x)

) ∑
n≥1

P(σ ≥ n)�F (
x + g(n) + an

)
(32)

= (
1− γa(x)

)
Hga

σ (x)

≥ (
1− γa(x)

) c

c + a
Hg

σ (x + c + a),

where the last line above follows since the conditiong ∈ Gc means that we can
apply Lemma 2 to the functiong−c ∈ G0.

Observe that, as remarked in the Introduction, since the functionF is long-
tailed, the functionHg

σ is similarly long-tailed, with uniform convergence in the
definition (1) over allσ ∈ T andg ∈ Gc. Since alsoγa(x) → 0 and

∑
n≥1

�F(x +
cn) → 0, both asx → ∞, it now follows from (32) that

P(Mg
σ > x) ≥ (

1− γ ′
a(x)

)
Hg

σ (x)

for some positive functionγ ′
a , again independent ofσ and g, such that

lima→0 limx→∞ γ ′
a(x) = 0. The required lower bound (3) now follows, with uni-
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formity over allσ ∈ T andg ∈ Gc, as in the conclusion of the proof of part (i) of
Lemma 1.

We now prove (ii). From the result (i), it is sufficient to show that

P(Mg
σ > x) ≤ (

1+ o(1)
)
Hg

σ (x) asx → ∞,(33)

uniformly over all stopping timesσ and allg ∈ Gc. The proof is similar to, but
simpler than, that of (i)—in particular, there is no need to define the stopping
time σx . Fix a ∈ (0, c) and define the sequence of a.s. finite stopping times
0≡ τ0 < τ1 < τ2 < · · · for the process{Sn} by, for k ≥ 1,

τ k ≡ τ τk−1

a = τ k−1 + min{n ≥ 1 :Sτk−1+n − Sτk−1 ≤ an}.
Note thatSτk ≤ aτk , k ≥ 0, that is, that

Sā
τk ≤ 0, k ≥ 0.(34)

Then, for any stopping timeσ , functiong ∈ Gc, and anyx > 0,

P(Mg
σ > x) ≤ ∑

k≥0

P(∃n : τ k < n ≤ τ k+1, σ ≥ n,Sg
n > x)

≤ ∑
k≥0

P(∃n : τ k < n ≤ τ k+1, σ ≥ n,Sg
n − Sā

τk > x)

≤ (
1+ δa(x)

) ∑
k≥0

∑
n≥1

P(τ k < n ≤ τ k+1, σ ≥ n)�F (
x + g(n) − an

)
= (

1+ δa(x)
) ∑
n≥1

P(σ ≥ n)�F (
x + g(n) − an

)
= (

1+ δa(x)
)
Hg−a

σ (x),

where the functionδa is as defined in Corollary 1(ii) above. Here the second line
in the above display follows by (34), while the third follows from Corollary 1(ii).
Hence, since againg−c ∈ G0, it follows from Lemma 2 that, forx ≥ c,

P(Mg
σ > x) ≤ (

1+ δa(x)
) c

c − a
Hg

σ (x − c).(35)

Note again thatHg
σ is long-tailed, with uniform convergence in the definition (1)

over allσ ∈ T andg ∈ Gc. Hence, again arguing as in the conclusion of the proof
of part (i), we obtain the required upper bound (33) with the required uniformity.

�

REMARK 3. The proof of Theorem 2 is close in spirit to that of Theorem 1
of [23].



MAXIMA OVER RANDOM TIME INTERVALS 1951

3. Comments, examples and counterexamples. We give a number of
examples and counterexamples, together with some commentary on the case where
P(σ = ∞) > 0. We continue to assume throughout thatF ∈ L and thatF has mean
zero.

In Examples 1–3, we show the importance of conditions on the functionsg.

EXAMPLE 1. Here we show that, even for bounded stopping times, the
functionsg cannot decrease too rapidly if we are to obtain uniform convergence
over all g in the conclusion (4). Suppose thatF ∈ S, and consider the stopping
time σ ≡ 2. Consider also a sequence of functions{gm}m≥0 such thatgm(1) = m

andgm(2) = 0 for all m. Then

P(M
gm

2 > x) ≥ P(S
gm

2 > x) = 2
(
1+ o(1)

)�F(x) asx → ∞,

while

H
gm

2 (x) = �F(x + m) + �F(x).

Hence, as in the discussion following Theorem 2, we obtain the conclusion (4),
with g = gm for each fixedm. However, for anyε > 0 and for all sufficiently
largex,

lim inf
m→∞

P(M
gm

2 > x)

H
gm

2 (x)
≥ 2− ε,

so that here the conclusion (4) does not hold with uniformity over allm.

EXAMPLE 2. Note that Theorems 1 and 2 extend to cover also functionsg

which may take infinite values, provided that the definition (7) ofGc is interpreted
as requiring that if, for anyn, g(n) = ∞, then g(n′) = ∞ for all n′ > n.
[A formal proof is given by replacing the stopping timeσ by σ ∧ n, where
n = max{n′ :g(n′) < ∞} and using the existing results.]

In a continuation of the spirit of Example 1, suppose again thatF ∈ S and
consider now instead a functiong satisfyingg(1) = ∞ andg(2) = 0. Fix a > 0
and define the stopping timeσ by σ = 1 if ξ1 ≤ a andσ = 2 if ξ1 > a. Then, as
x → ∞,

P(Mg
σ > x) = P(ξ1 > a, ξ1 + ξ2 > x)

= P(ξ1 + ξ2 > x) − P(ξ1 ≤ a, ξ1 + ξ2 > x)

= (
1+ o(1)

)(
2�F(x) − F(a)�F(x)

)
= (

1+ o(1)
)(

1+ �F(a)
)�F(x),

where the third line in the above display follows from the definition of subexpo-
nentiality and since alsoF ∈ L. However,

Hg
σ (x) = �F(a)�F(x),
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so that Theorem 1 will not extend to cover this case.
Now consider an alternative stopping timeσ ′ which is independentof {ξn}n≥1

and has the same distribution asσ , that is,P(σ ′ = 1) = F(a) and P(σ ′ = 2) =
�F(a). Then, asx → ∞,

P(M
g

σ ′ > x) = �F(a)P(ξ1 + ξ2 > x) = (
2+ o(1)

)�F(a)�F(x).

SinceH
g

σ ′(x) = H
g
σ (x) = �F(a)�F(x), Theorem 1 again fails to extend to this case.

However, this example also shows that, for this functiong, the asymptotic distri-
bution of the tail ofMg

σ depends onσ not just through its marginal distribution
(as in the results of Theorems 1 and 2), but through the joint distribution ofσ and
{ξn}n≥1. See also [6] who consider a general functiong and a.s. constant stopping
times.

EXAMPLE 3. In this example we show that, for a stopping time with
unbounded support, and a functiong which increases too slowly, the tail of
P(M

g
σ > x) may be heavier than that ofH

g
σ (x). Suppose thatg ≡ 0 and thatσ is

a random variable, independent of{Sn}n≥0, such thatP(σ > n) = (1 + o(1))n−α

asn → ∞, for someα > 1. Suppose also that the distributionF has unit variance.
Then

P(Mg
σ > n) ≥ P(σ > n2)P(Sn2 > n) = (

1+ o(1)
)
cn−2α asn → ∞,

wherec = 1√
2π

∫ ∞
1 exp{−t2/2}dt . We also haveHg

σ (x) = Eσ �F(x) for all x ≥ 0.

Thus, ifF is additionally such that�F(x) = o(x−2α) asx → ∞, then

P(M
g
σ > x)

H
g
σ (x)

→ ∞ asx → ∞.

The informal explanation here is that, forg ≡ 0, even moderate deviations
contribute to the tail ofMg

σ . For more details on the asymptotics ofP(Mn > x)

asn,x → ∞, see [5].

We now consider an example where the conditions of our main Theorem 2 do
hold, and in whichσ < ∞ a.s., butEσ = ∞. In this case, whenF ∈ S∗ andg ∈ Gc

for somec > 0, it follows, as in the derivation of (2), that�F(x) = o(P(M
g
σ > x)) as

x → ∞, while, from Theorem 2(ii), we may deduce thatP(M
g
σ > x) = o(�F s(x)).

The example below shows thatP(M
g
σ > x) may be of any order between�F and�F s .

EXAMPLE 4. Suppose thatF (which, as always, is assumed to have mean 0)
is such that

�F(x) = (
1+ o(1)

)
K2x

−β asx → ∞,

for someK2 > 0 andβ > 1. ThenF ∈ S∗ and

�F s(x) = (
1+ o(1)

)
(β − 1)−1K2x

−β+1 asx → ∞.
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Consider any stopping timeσ with a tail distribution given by

P(σ ≥ n) = (
1+ o(1)

)
K1n

−α asn → ∞,(36)

for some K1 > 0 and 0< α < 1. (E.g., sinceF has finite variance, the
distribution of the stopping timeσ = min{n :Sn > 0} satisfiesP(σ ≥ n) = (1 +
o(1))Kn−1/2 for someK ∈ (0,∞)—see [13], Chapter 12.) ThenEσ = ∞ and, by
Theorem 2(ii), for anyc > 0 and asx → ∞,

P(Mc̄
σ > x) = (

1+ o(1)
) ∑
n≥1

P(σ ≥ n)�F(x + cn)(37)

= (
1+ o(1)

)
K1K2

∑
n≥1

n−α(x + cn)−β(38)

= (
1+ o(1)

)
K1K2

∫ ∞
0

t−α(x + ct)−β dt

= (
1+ o(1)

)
Cx1−α−β,

where

C = K1K2c
α−1

∫ ∞
0

u−α(1+ u)−β du,

and where (38) follows from (36) and (37) since the conditionEσ = ∞ implies
that the contributions, asx → ∞, of any finite number of the summands in
(37) and (38) may be neglected.

In the case whereF has a Weibull distribution, that is,�F(x) = (1 +
o(1))exp(−xβ) asx → ∞, for someβ ∈ (0,1), then�F s(x) = (1+o(1))K1x

1−β ×
exp(−xβ) asx → ∞. For the stopping timeσ as above and forc > 0, it follows
similarly that

P(Mc̄
σ > x) = (

1+ o(1)
)
K2x

(1−α)(1−β) exp(−xβ) asx → ∞,

for someK2 > 0.

We now discuss briefly the extent to which it is necessary thatσ should be a
stopping time for the sequence{ξn}n≥0 in order for our main results to hold.

In Example 5 we indicate briefly why some such condition is necessary.

EXAMPLE 5. Let a > 0 and defineσ = min{n :Sn > a} − 1. Then, for any
nonnegative functiong, P(M

g
σ > x) = 0 for all x ≥ a.

Now suppose again thata > 0 and consider the alternative stopping time
σ = min{n : ξn > a} − 1. Then by conditioning on each possible value ofσ and
evaluatingP(M

g
n > x|σ = n), one can straightforwardly show thatP(M

g
σ > x) ≤

c exp(−λx), for some constantsc > 0 andλ > 0, so that here the distribution of
M

g
σ is again light-tailed, in contrast to the long tail ofH

g
σ .
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We now give, with some explanation, an example in which, althoughσ is not a
stopping time for the sequence{ξn}n≥0, the equivalence (3) nevertheless holds.

EXAMPLE 6. Let {sn}n≥1 and {tn}n≥1 be two independent sequences of
independent identically distributed random variables. Suppose thats1 ∈ S with
Es1 = a, and thatt1 ≥ 0 a.s., withEt1 = b > 0. Let T > 0 be fixed, letη =
min{n : t1 + · · · + tn > T }, and letσ = η − 1.

Let c = b − a and define the sequence of independent identically distributed
random variables{ξn}n≥1, with distributionF , by ξn = sn − tn + c. Then, since
t1 is nonnegative and independent ofs1 ∈ S, it follows easily thatξ1 is tail-
equivalent tos1, and so alsoξ1 ∈ S and Eξ1 = 0. As usual, letS0 = 0, Sn =∑n

i=1 ξi , n ≥ 1, be the random walk generated by the sequence{ξn}n≥1. Then
Mc̄

σ = max0≤n≤σ

∑n
i=1(si − ti) might, for example, be interpreted as the maximum

loss to timeT of an insurance company with income at unit rate and a claim of
sizesn at each timetn. Note that, clearly,E exp(λσ) < ∞ for someλ > 0. Also
σ is not a stopping time for the random walk{Sn}n≥0. However,

sup
n≤σ

n∑
i=1

si − T ≤ Mc̄
σ ≤ sup

n≤σ

n∑
i=1

si .(39)

SinceT is fixed, σ is independent of the sequence{sn}n≥1, and s1 and ξ1 are
tail-equivalent, it follows from (39) and Theorem A 3.20 of [11], that, for anyc,

P(Mc̄
σ > x) = (

1+ o(1)
)
Hc̄

σ (x) = (
1+ o(1)

)
Eσ �F(x) asx → ∞,(40)

which is the equivalence (4) in this case. In the caseF ∈ S∗ andc > 0, we may
go further and use Theorem 2(ii) of the present paper to obtain uniformity over
all T in the first equality in (40). See [18] for some further particular results on
this model.

Note that the result follows here sinceσ is a stopping time with respect to the
sequence{sn}n≥1. In an intuitive sense (which might be made rigorous) the result
also follows since, for eachn, the event{σ ≤ n} is independent of thetails of the
sequenceξn+1, ξn+2 . . . , and this is what is really required for our present results
to hold.

Note also that the independence of the sequences{sn}n≥1 and{tn}n≥1 is vital.
Consider instead a sequence{ξn}n≥1 of independent identically distributed random
variables with distributionF ∈ S∗ and mean 0, and define the sequences{sn}n≥1
and{tn}n≥1 by sn = max{ξn,0} andtn = −min{ξn,0}. DefineT , η andσ as above.
Thenξη ≤ 0 a.s. and, for the random walk{Sn}n≥0 generated by{ξn}n≥1 and any
c > 0, we haveMc̄

σ ≡ Mc̄
η . Sinceη is a stopping time for{Sn}n≥0, it now follows

from Theorem 2(ii) that

P(Mg
σ > x) = (

1+ o(1)
)
Eη�F(x) = (

1+ o(1)
)
(Eσ + 1)�F(x) asx → ∞.
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EXAMPLE 7. Finally, we consider further the case of a stopping timeσ such
that p = P(σ = ∞) > 0. Recall that ifF ∈ S∗, then bothF ∈ S and F s ∈ S.
Provided only thatF s ∈ S (we do not here require our usual minimal assumption
thatF ∈ L), andmF = 0 as usual, then relatively straightforward arguments can
be used to show that, in this case and forc > 0, the equivalence (4) continues to
hold, and that, asx → ∞,

P(Mc̄
σ > x) = (

1+ o(1)
)
P(σ = ∞)P(Mc̄∞ > x)

= (
1+ o(1)

)
Hc̄

σ (x)(41)

= (1+ o(1))p

c
�F s(x).

However, under this weaker condition, we cannot expect any uniformity in either
σ or c.

In the case wherep = 1 (i.e., σ = ∞ a.s.), the result (41) is the well-known
theorem of Veraverbeke [19] referred to in the Introduction.

APPENDIX

Recall that, for any stopping timeσ and nonnegative functiong, the func-
tion H

g
σ is defined by

Hg
σ (x) = ∑

n≥1

P(σ ≥ n)�F (
x + g(n)

)
.

It is convenient to have a condition under which, for some purposes, we may
replace the above sum by an integral.

Assume that, forg ∈ G0, the definition of the functiong is extended to all
of R+ in such a way thatg continues to be increasing. For any suchg, define
the functionvg on R+ by

vg(x) = sup
n≥1

�F(x + g(n − 1))

�F(x + g(n))
,

whereg(0) = 0. For any stopping timeσ andg ∈ G0, define also the function̂Hg
σ

by

Ĥ g
σ (x) =

∫ ∞
0

P(σ > t)�F (
x + g(t)

)
dt.

Then, sinceg is increasing andσ is integer-valued, for allx ∈ R+,

Hg
σ (x) ≤ Ĥ g

σ (x)

≤ ∑
n≥1

P(σ ≥ n)�F (
x + g(n − 1)

)
≤ vg(x)Hg

σ (x).
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It follows, in particular, that if

vg(x) → 1 asx → ∞,(42)

then alsoHg
σ (x) = (1+ o(1))Ĥ

g
σ (x) asx → ∞.

Since F ∈ L, the condition (42) holds forg = c̄ [i.e., g(n) = cn] for any
constantc ≥ 0 (although observe that it doesnot hold with uniformity over all
c ≥ 0). More generally, the condition (42) holds forg ∈ G0 if g(n) − g(n − 1) ≤
h(g(n)) for some functionh satisfying (11).
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