The Annals of Applied Probability

2005, Vol. 15, No. 3, 1887-1935

DOI 10.1214/105051605000000250

© Institute of Mathematical Statistics, 2005

A LARGE DEVIATIONS APPROACH TO ASYMPTOTICALLY
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IN HEAVY TRAFFIC?
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In this work we study the problem of asymptotically optimal control
of a well-known multi-class queuing network, referred to as the “crisscross
network,” in heavy traffic. We consider exponential inter-arrival and service
times, linear holding cost and an infinite horizon discounted cost criterion.
In a suitable parameter regime, this problem has been studied in detalil
by Martins, Shreve and Sone8lAM J. Control Optim. 34 (1996) 2133—
2171] using viscosity solution methods. In this work, using the pathwise
solution of the Brownian control problem, we present an elementary and
transparent treatment of the problem (with fldentical parameter regime
as in [FAM J. Control Optim. 34 (1996) 2133-2171]) using large deviation
ideas introduced inAnn. Appl. Probab. 10 (2000) 75-103,Ann. Appl.
Probab. 11 (2001) 608-649]. We obtain an asymptotically optimal scheduling
policy which is of threshold type. The proof is of independent interest since
it is one of the few results which gives the asymptotic optimality of a control
policy for a network with a more than one-dimensional workload process.

1. Introduction. Stochastic networks are ubiquitous in problems involving
manufacturing, communication and computer systems. Designing good controls
for general multi-class networks is an important and challenging problem. In recent
years, using tools from diffusion approximations, there has been a significant
progress in obtaining asymptotically optimal controls for a broad range of
stochastic networks in heavy traffic. One common approach to the optimality
guestion is via certain singular control problems, the so-called Brownian control
problems (BCP), which are obtained as “formal” heavy traffic limits of queuing
networks. There are several works (e.g., [6, 7]) which use the optimal solution
of the BCP to construct control policies for the corresponding queuing networks.
These policies seem to perform quite well in simulation studies, however, there are
relatively few results showing asymptotic optimality of such policies. Recently,
in [1, 4], using large deviation ideas, a promising technigque for addressing
asymptotic optimality questions has been introduced. Using these techniques, the
authors prove asymptotic optimality of a certain threshold-based scheduling policy
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for a “parallel server model.” Other recent results on asymptotic optimality of
control policies for stochastic networks are in [8, 10-13].

In the current work we study a well-known model, often referred to as
the “crisscross network.” It has been studied in [7, 16] and in great detail in
[11] and [10]. The network is described in detail in Section 2. The basic problem
is the optimal sequencing of jobs in a two station-two customer queuing system.
We consider linear holding costs and an infinite horizon discounted cost criterion
[see (2.17)]. We believe the scheduling policy that we propose will also be
asymptotically optimal for a finite time horizon cost criterion with a linear holding
cost. However, for the sake of simplicity, we restrict our attention to the first
criterion. Even though the network is quite simple to describe, the analysis of
the control problem is rather subtle in that the form of an asymptotically optimal
scheduling policy and the methods of proof seem to strongly depend on the
parameter regime under consideration. Broadly, one can divide the study of the
problem into two different parameter regim&ase |: hipu1 — hopuo + hauz <0
andCasell: hiu1—hopo+hsuo > 0, whereh;’s are the holding costs and’s are
the asymptotic service rates (see Section 2 for precise definitidas.l yields
a simple threshold policy and the proof of asymptotic optimality of this policy is
given in [16].

Case Il is the difficult case and in [11] its analysis has been subdivided
into 4 subcasease |IA, ..., Case IID. In Case IlA, in addition to conditions
of Case Il, both houo — hzuo and hopuo — hiuy are nonnegative. The other
three subcase€hse 11B, Case IIC, Case IID) correspond to either one of these
two quantities being negative and the case where both are negative. Among the
four subcasesCase IIA is most amenable to analysis, since in this case, the
“effective cost” in the reduced workload formulatiof(w1, w») is monotonic
in both w1 andw» (see Remark 3.3). This monotonicity is critical in obtaining
an explicit, pathwise solution to the BCPCase IIA was studied in [7] with
specific numerical values of the parameters and though the authors did not
prove asymptotic optimality of the proposed policy, they provided results from
simulation studies indicating good performance of the control policy. This subcase
was studied in complete detail in [11]. The authors proposed a control policy
and proved thenear asymptotic optimality of the policy by using quite technical
machinery from viscosity solution analysis of Hamilton—Jacobi—Bellman (HJB)
equations. The proposed policy is difficult to interpret and is not very intuitive. In
addition, extension of the methodology to more complex networks appears quite
daunting. One of the technical obstacles in such extensions is that a general theory
of classical solutions to HIB equations or characterization results for the value
function via viscosity solutions of HIB equations for the limiting control problem
are not readily available. Finally, we note that, strictly speaking, [11] does not
obtain an asymptotically optimal policy. By “near optimality,” it is meant that for
eachn > 0, one can get a control policy (depending:grwhich, asymptotically,
is n-close to an asymptotically optimal strategy. In [10], using techniques from
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weak convergence theory, the authors show that the optimal costs for the queuing
network problem can be well approximated by those for the optimization problem
of the limiting control problem. The approach is quite general and powerful, but
the authors do not obtain an actual control policy which is asymptotically (near)
optimal.

In the current work we revisit the above problem (under the same parameter
regime, namelyCase 11A) using a rather different approach introduced in the
context of a “parallel server model” in [1, 4]. We present the BCP associated
with this control problem and give the equivalent workload formulation. The BCP
that we obtain is somewhat different from the one presented in [11]. Indeed, the
authors there remark that their BCP is not well posed (see Remark 3.5 for more
details on this). However, as we show in Section 3.1, the BCP presented in this
paper has an explicit pathwise optimal solution. The scheduling policy we propose
(see Definition 3.6) is directly motivated by the solution of the BCP, and therefore
is easy to interpret. The scheduling policy is of threshold type and thus is quite
simple to implement as well. In addition, our proof of the asymptotic optimality
of the policy uses rather basic large deviation ideas which, we believe, can be
extended to more general situations.

All inter-arrival and service times in this work will be assumed to be
exponentially distributed. Proofs of many of the results in this paper can be
extended to the case where the inter-arrival and service times are i.i.d. with
distributions that satisfy suitable large deviation estimates. Indeed, in the parallel
server model [1], the authors prove asymptotic optimality under precisely such
assumptions on the underlying distributions. One important difference in our
analysis is that in one of the key results of this paper (Theorem 4.9), in addition to
the one-dimensional large deviation estimates that are crucially used in the proofs
of [1], we also needample path large deviation estimates (Theorem 5.1) for the
underlying renewal processes. For a more detailed discussion on extending the
results of this paper to the nonexponential case, see Remark 5.4.

The paper is organized as follows. The network is described in Section 2, along
with the formulation of the problem and assumptions. In Section 3 we formulate
the associated BCP and the corresponding equivalent workload formulation. We
then propose a policy that is motivated by the equivalent workload formulation
and the solution of the BCP. In Section 4 the asymptotic optimality of the proposed
policy is proved through the two main results of the paper, Theorems 4.1 and 4.2.
These results are as follows. Denoting the minimum cost associated with the BCP
as J* and the cost associated wisiny control policy T" for the rth network as
J"(T"), we show in Theorem 4.1 that

liminf J"(T") > J*.
r—0o0

In Theorem 4.2 it is shown that, in the above display, the equality is achieved
if {T"} is the sequence of policy proposed in Definition 3.6 of Section 3, with an
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appropriate choice of threshold parameters. The key steps in the proof of the two
main theorems are in Theorems 4.8, 4.9 and 4.11. The proofs of these theorems
are provided in Section 5.

2. Thecrisscross network.

2.1. Queueing network model. We consider a sequence of networks indexed
by r,r € S CR™, whereS is a countable sefry,ro, ...} With1<ri <rp < ---
andr, — oo, asn — oo. A sketch of therth network is described in Figure 1.
Description for the-th network is as follows. For= 1, 2, customers (or jobs) of
Classi arrive according to a Poisson process with rdteand have independent
exponential service times &erver 1 with parametey!. Class 1 customers, once
served byServer 1, leave the system. Class 2 customers, after being served by
Server 1, proceed tBuffer 3 and are redesignated as Class 3 customers. There
they are served byserver 2. They have i.i.d. exponential service times with
parametep;. After service, these jobs exit the system. All inter-arrival and service
times are assumed to be mutually independent and all buffers have infinite capacity.
We also assume that the system starts empty.

2.2. Preliminaries. Let (2, #,P) be a complete probability space. All the
random variables and stochastic processes in this paper are assumed to be defined
on this probability space. There is no loss of generality in making this assumption
since we work with an expected loss function (see Section 2.4 for the definition of
cost) and one can always enlarge the probability space to support all the processes
considered in this paper. The expectation operation ufidgh be denoted byE.

For each positive integen > 1, let D™ be the space of right continuous
paths with left limits, from[0, co) to R™, with the usual Skorohod topology and
let B(D™) be the corresponding Borel sigma-field. All of the continuous-time

\La.rl

Buffer 1

r
H Bugfer 2 Bugfer 3

FiG. 1. The rth crisscross network.



CONTROL OF CRISSCROSS NETWORK IN HEAVY TRAFFIC 1891

processes considered in this paper will have sample pat@g"inif {Z,} andZ
are processes with paths ™ such thatZ,, converges weakly t& asn — oo,
we will use the notatior¥,, = Z to denote this.

For eachr € S andk = 1,2, let {u}(i):i = 1,2,...} be a sequence of i.i.d.
exponential random variables with meam] € (0, co). We interpretuj (i) to be
the time (in therth network) between the arrival of the — 1)st and the'th job
for Buffer k& (k = 1, 2). Similarly, the service times of the three different classes of
jobs are defined as sequences of i.i.d. exponential varigbljés :i =1, 2, ...},
with mean ¥ € (0, 00), j =1, 2, 3, corresponding to the three classes. We also
assume that tf]1e inter-arrival time sequefiggi):i =1,2,...}, k=1,2, and the
service time sequenQe; @:i=12,...}, j =1, 2,3, are mutually independent
for eachr €S.

Define

Em =) upi) forn=12...k=12
i=1

n
nin) =) viG)  forn=12...,j=123
i=1

The arrival and service processes are defined in terms of these as follows:
¥ (1) =supn > 0:& (n) <t}, t>0,k=1,2,
S8 (1) =supn > 0:n;(n) <1}, 1>0,j=123.

The symbolA; (1) represents the number of jobs (customers) that have arrived in
Buffer k up to timer. The process’” (r) counts the number of jobs th8erver j
could have completed if it had Wor{<ed continuously during the intgfall. Note

that by our assumptions on the inter-arrival and service tiriés,) and S;(-)

are Poisson processes with ratgsand”;, respectively, fok =1,2; j = 1,2, 3;

r € S. For notational simplicity, throughout the paper, we will write the limit along
the sequence, asn — oo simply as  — o0.” Also, r will always be taken to be

an element of and, thus, hereafter, the qualifiee S will not be stated, explicitly.

We assume that as— oo, these rates approach finite limits, namely, we make the
following assumption.

ASSUMPTION2.1. There exisk; € (0,00),k =1,2, andu; € (0,00), j =
1, 2, 3, such that
rli_)m()@)»,ﬁ:)»k, rim@u?:,uj, k=12,7=1223.
2.3. Sheduling control.  Scheduling control for theth network is described
by a vector-valued service allocation process
") =(T{ (1), T;(1), T3(1),  t=0,



1892 A. BUDHIRAJA AND A. P. GHOSH

where, forj = 1,2, 3, Tj’(t) denotes the cumulative amount of service time
devoted to activityj (viz., working on Class;j jobs by the responsible server)
in the time intervalO, 7]. The idle-time processes are defined as follows:

L) =t-=T{@)—T5(@), L) =t—T3(1), t>0.

Fori=1,2,t >0, I/ (¢) represents the cumulative amount of time that itthe
server has been idle in the time interjal r]. Recall that we assume that the
system is initially empty. Thus, the three queue-length processes corresponding
to the three buffers can be described as follows.tFeb,

Qi(H=A;(1)=S(T7 1), i=12
Q%(t) = S5(T5 (1)) — S5(T4(@)).

The workload proces®” (-) = {(W1(¢), W5(¢)), t = O} is defined as follows. For
t>0,

(2.1)

01(1) N Qﬁ(t)’

Wi@) = T L

(2.2) rlt rzt
Wi(t) = QZE ) + QS—E)

M3 M3

The service allocation processes are required to satisfy the conditions below.
Forj=123k=12,r€S,

(2.3) Tj’(t) EF; t>0,
(2.4) Tj’(-) is a continuous nondecreasing process \ﬂf;ﬂ(O) =0,
(2.5) I7 () is a continuous nondecreasing process Wjt{®) = 0,
(2.6) Q) =0, t>0.

From (2.3)—(2.5) and recalling the definition 4f(-) and /5 (-), we get that, for all
j=2123,

2.7 Tj’ is uniformly Lipschitz continuous with Lipschitz constant 1.

Any processT’” satisfying (2.3)—(2.6) will be referred to as an admissible control
policy for therth network. Note that we are not assuming any further measurability
condition onT” except (2.3).

Now we define fluid-scaled processes and diffusion-scaled processes corre-
sponding to the processes described above. For eaB and an admissible
control policy T"(-) with associated queue-length proce3s(-) and idle-time
procesd’ (-), define, forr > 0,
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Fluid-scaled processes.
T (1) = r~2T" (r%1), I'(t) =r~2I" (r%p),
(2.8) AT (1) =r A" (r%), ST (1) = r728" (r%n),
0" (t) =r20Q" (r’n), W’ (1) =r 2w’ (rt).

Diffusion-scaled processes.

T7(t) = r 177 (%), ") =r 1" (%),
(2.9) A"(t) =r YA (%) — M r %), S" (1) =r~HS" (%) — u'r?),
0" (1 =rto (), W) =r W (r?).
By the definitions above, we have the following identities. For allO,
(2.10) W () =M"0" (1),
where
1 1
— — 0
r M1 K2
M= 1 1
0 —= —
H3 M3
and
07 ()= (A7) = LT/ () +r(Wt — Wi T (1)), i=1.2,
o1 ( (17 @) +r( )

05(t) = (85(T5 (1)) — S5(T5(1))) + r (u5T5 (1) — usT4 (1))

We also define another process(.), which is closely related to the scaled queue
length proces®’ (). A formal limit of X" (-) is used in the BCP described in
Section 3. For > 0, let

. . " Ai
X{(t)iAf(t)—S{(]}’(r))+r(k{t—ufu—’t>, i=12,
i

(212) o o -
X5(t) = S5(T5 (1)) — S3(T5 (1)) + r(ugzt — Mg;).

From (2.11) and (2.12), we have the following relationships:

A N i _
07 (1) = X[ (1) + ruf(—fr - T[(r)), i=12
(2.13) Hi ;
A A - 2 -
O5(1) = R50) + rid(t — T5 (1)) — mg(; - Tg(t)).
We will assume that the sequence of networks is in heavy traffic. More precisely,
we will make the following assumption.



1894 A. BUDHIRAJA AND A. P. GHOSH

ASSUMPTIONZ2.2 (Heavy traffic assumption). We assume that the following
relationships hold for the limiting parameters:

A A2 A2
_+_: —_— =

(2'14) 17 17
M1 M2 u3
and there exish; e R, i =1, 2, 3, such that lim_, .o b7 = b;, where
AL hA
(2.15) b{ﬁr(—’r——l), =12, b= (_3_1)
/"L[ Mi /uL3

Under Assumptions 2.1 and 2.2, the diffusion-scaled workload process has the
following representation:

(2.16) W' (t)=M"X"(t) + 1" (1),

where, fort > 0, I7(t) = I"(r%t)/r and @)=t =T[@) — T5@), I5(t) =
t—=T3(1).

2.4. The cost function. For therth system, we consider the expected infinite
horizon discounted (linear) holding cost associated with the cofitfand the
corresponding normalized queue-length prog@ssgiven as follows:

(2.17) JN(T = E(fooo e Vh - Qr(t)dt),

where y € (0, c0) is the “discount factor” andi = (h1, h2, h3); hy € (0, 00),
k=1, 2,3, is the vector of “holding costs” for the three buffers.

The goal is to find a sequence of admissible controls which asymptotically give
the minimum possible cost, that is, find a sequeiitg such that

lim J"(T") = infliminf J"(T"),
r—00 r—00

where the infimum on the right-hand side is taken over all admissible se-
quenceq7"}.

We will make the following assumption on the service rate and holding cost
parameters.

ASSUMPTION2.3. hiuy — hopuo + hauo > 0, hopo — hapuo > 0 andhous —
hipy > 0.

This parameter regime is th€ase IIA of [11] among the different cases
mentioned in that pape€ase | considers the parameter regigus — houo +
hauz < 0. This case has a simple priority policy which is shown to be
asymptotically optimal in [16]Case |l corresponds to the complementary regime,
namelyhipy — houo + hauo > 0. In this case, for the first server, serving Class 1
jobs reduces immediate cost at an average ratg @f, whereas serving Class 2
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jobs would reduce immediate cost at an average rate@p, but increases cost

at an average rate dfzu2, since a job served from Class 2 becomes a Class 3
job. Sincehyu1 > houo — hauo, total immediate cost is reduced at a more rapid
average rate by serving Class 1 jobs. But a simple priority policySeover 1

that requires it to work on Class 1 jobs, wheneBefffer 1 is nonempty, will
cause starvation @erver 2 and is likely to cause the contentskiffer 2 to grow
without bound. In theCase IIA, we also assumoir > hipy andhopo > hauo

(or, simply, 22 > h3). Here the second condition means that it is cheaper to hold
jobs inBuffer 3 than inBuffer 2. Also, the first condition above says that working
on Buffer 2 reduces the immediate costSgtver 1 more quickly than working on
Buffer 1. In this work we show that, under Assumption 2.3, a suitable threshold
policy is asymptotically optimal. This policy (see Definition 3.6 for the precise
description of the policy) keeps a sufficient number of jobBiffer 3 (so that
Server 2 does not idle unnecessarily) and mal&sver 1 work on both the
associated buffers so that none of the buffers blow up. An example of parameters
satisfying Assumption 2.3 i81 =hp=hz=1,u1 = u2 =2, u3=1. In [7] the
authors worked with this set of parameter values.

3. Brownian control problem. We now introduce the BCP (see [3]) associ-
ated with the crisscross network introduced above. This control problem is ob-
tained by taking a formal limit of the control problems for the above sequence of
networks. More precisely, defining

- A A
(3.1) T*(@t) = (—11‘, —Zt,t), t>0,
m1 H2

we might expect, for “reasonable” control policies, thaty as oo,
(3.2) T" = T*.
From the functional central limit theorem, one has that
(3-3) (A7), 87 () = (A(), 8)),
where A is a two-dimensional Brownian motion that starts from the origin
and has diagonal covariance matrix, diag@2) and S is a three-dimensional
Brownian motion, independent of, that starts from the origin and has diagonal
covariance matrix, diag(i, u2, u3). Using (3.3), (3.2), a random time change
theorem (Lemma 3.14.1 of [2]) and the heavy traffic condition (Assumption 2.2),
one has that
(3.4) X'()= X0,
where, fort > 0,

Xi(1) = Ay (1) = Si(TF () + uibnt,  i=1,2,

X3(t) = S2(T5 (1)) — S3(T5 (1)) + (usbz — pabo)t.
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Note thatX is a three-dimensional Brownian motion that starts from origin, with
a drift (u1b1, wabo, u3bs — u2b2) and covariance matrix

2X1 0 0
0 20 —A2|.
0 —x2 2%

As stated in the beginning of Section 2.2, we can assume (by enlarging the
probability space, if needed), without loss of generality, thaf, X are defined on

(R, F,P). Thus, taking a formal limitas — oo in (2.11), (2.12), (3.2) and (2.17),
one arrives at the followingrownian control problem.

DEFINITION 3.1 [Brownian control problem (BCP)]. LeX(-) be as defined
below (3.4). The BCP is to find aft3-valued measurable stochastic process
Y () = (Y1(+), Y2(), Y3(+)), referred to as the control process, which minimizes

(3.5) E(/Ooo e h Q(t)dt),
subject to the following conditions. For alb 0,

0< 01(0) = X1(1) + paV1(0),
(3.6) 0= 02(t) = Xa(1) + u2¥2(0),

0 < Q3(t) = X3(t) + ua¥a(t) — ua¥a(r)
and
[1(-) = Y1(-) + Y»(-) is nondecreasing antd(0) =0,

3.7) N . ~
I>(-) = Y3(-) is nondecreasing and(0) = 0.

We will refer to any measurable process.) satisfying (3.6) and (3.7) as an
admissible control for the BCP.

REMARK 3.2. Our formulation of the BCP is somewhat different from that
in Harrison (cf. [5]) in that we do not work with a weak formulation and we do
not require the adaptedness of the control process. However, the diffusion control
problem is not the real topic of interest here. It is used only to prove asymptotic
optimality of our policy, namely, the result:

lim J"(T") = infliminf J"(T"),
r—00 r—00

whereT” is our proposed policy as in Definition 3.6 and the infimum on the right-
hand side is taken over dll" satisfying (2.3)—(2.6). In this regard, the formulation
considered in the current work suffices. It will be seen in Section 3.1 that the cost
in (3.5) is minimized byY* which is adapted to the filtration generated By It
follows that the infimum of the cost in (3.5)* [see (3.27)], is the same as that
taken over all probability spaces supporting a three-dimensional Brownian motion
with the same drift and covariance matrix &s
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3.1. Reduction to the equivalent workload formulation. Let Y(-) be an
admissible control for the BCP and defi@evia (3.6). Define the workload process

(3.8) W) =MQ@), >0,
where
1 1
— = 0
| M Mlz )
o = =
U3 U3

Thus, fort > 0,

01(t) =~ Q2(t)

Wi(r) = + :
(3.9) ~M1 ng
Wat) = 02(1) . Qs(t).
u3 M3
It is easy to check that
(3.10) W=MX+V  with V()= (1), (1)), t > 0.

We will now obtain a solution of the BCP using the above workload process.
We begin by considering the following simple linear programming problem. Fix
w1, wy € [0, 00). The linear program (LP) problem is as follows:

minimize,, -, .;  hiz1+ hoz2 + haz3

subject to R + 2 _ w1,
G o
— + — =wy,
M3 M3
21,22,23 > 0.

A straightforward calculation using the fact thatu, — hopo + hauo > 0 (see
Assumption 2.3) shows (cf. [11]) that the value of the LP is

(hapz — hap2)wy + (hauz)wa,
whenuawz > pows,

3.12 h(wy, wp) = :
(3.12) WL W2 =1 i yws + %(hzlxz — hip)wa,

whenuaws < pows.
In particular, ifz1, z2, z3 are nonnegative numbers such t;lf%t—% 22 — w4y and

. . w2
e + e =w2, then

(3.13) h1z1 + hozo + haza > h(wy, wp).
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Another simple calculation yields the following solution of the LP:

75 =0, 75 = paws, 73 = [3w2 — (w1,
if wawz > pows,
(3.14) w1
1= E(l/«Zwl — u3w2), 25 = pawe, 23=0,

if uawo < pows.

REMARK 3.3. Note that from Assumption 2.8u2 — hauo > 0 andhsuy —
hiu1 > 0. Thus, we have thafa(wl, wyp) is a nondecreasing function of both
w1 andw». This monotonicity property is critical in obtaining a pathwise optimal
solution to the BCP.

We now present another control problem which, because of the monotonicity
property off, can be solved explicitly. The results of [6] show that, using a solution
of this reduced control problem (referred to as EWF in Definition 3.4 below) and
the solution’ of the linear program in (3.11), one can obtain a solution of the BCP.

DEFINITION 3.4 [Equivalent workload formulation (EWF)]. Lé&(-) be as
defined below (3.4). The equivalent workload problem is to findR&rvalued
measurable stochastic process) = (I1(-), I>(-)), referred to as the control
process, which minimizes

Oo A ~
(3.15) ]E(/ e VTh(W(@)) dt),
0
subject to the following conditions. For al> 0

X1(1) N Xo(t)

0< Wit) = + I(1),
11 2
(3.16) 0< Wa(t) = X2(0) + X3() + (1) and
143 n3

I1(+), I>(-) are nondecreasing ard0) = 0.

From (3.16), using the minimality property of the one-dimensional Skorohod
problem (see Proposition B.1 of [1]), we have that if
(%))

(B.17)  (VF@0). Vi) = ( (m} X (5))

— inf ,— inf
O<s<t O<s=<t

then

(3.18) Wi(t) = Wr(@t) =miX(t) + V¥(r), i=12
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where, fori = 1,2, m is theith row of the matrixM, that is, M = [m1:m>]'.
Also, from (3.18) and Remark 3.3, it follows that, for af- 0,

(3.19) h(Wa(t), Wa(0)) = h(W5 (1), W3 (1)).

This shows thaV’* is a solution to the EWF. Usin/* and V*, we now construct
the solution of the BCP. The solution is motivated by the solution of the LP
problem in (3.11), given via (3.14). Define procesﬁ’ﬁs), i =1,2 3, as follows.
Fort >0, let

X _ - N
) 10N it uaWs (1) > naWi (1),
(3.20) Y;={ M
X3() ., U3 =, - = .
- + Vi@ - EVZ ®), if Wy @) < u2Wi ),
) 20 4 Ve, it uaWy () = paWi (),
(3.21) Yy ={ _
X3(t) 13~y . = =
n2 w2
and
(3.22) Y3 () = V5(@).

It is easy to verify that’* is an admissible control for the BCP. Also, it follows
from (3.20)—(3.22) and (3.16) that = V*. Now defineQ* via (3.6), withY there
replaced byr*.

Hence, we have that jisW; (1) > oWy (1), then

05(t) =0,
05(t) = puaWy (1)

(3.23) = (%)le + Xa(1) + p2Vi (1),
Q;(f) = MsWZ*(t) - MZWf(t)

_ _(%)5(1(:) + Xa(t) + uaV3 (1) — uaVi (1),
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and if u3Ws3 (t) < uaWj(z), then

o~ Hn1 T7% T7%

O%(1) = <E>(/L2W1 () — uaWi ()

— %u() - (ﬁ)ism Vi —
05(1) = s Wi (o)

= (X2(0) + X3(0) + 1aV3 @),
0%(1) =0.

Now we show thaf”:is a solution to the BCP described in the beginning of this
section. Note that i is any admissible control for the BCP am@l is defined
via (3.6), then, from (3.13), for all > 0,

(3.25) h-Q(t) = h(Wi(t), Wa(1)),

where W, and W, are defined via (3.9). In view of (3.25) and (3.19), in order to
show thatY'* is the solution of the BCP, it suffices to show that

(3.26) (W (6), W3 (0) = h - 0 (1).

But (3.26) is an immediate consequence of the definitionQdf [see (3.23)
and (3.24) and the fact that* defined via (3.14) is the solution of the linear
program in (3.11)].

This proves that’* is a solution for the BCP with the corresponding queue-
length O*. Let the infimum of the objective function (3.5), over all admissible
controls, in the BCP be denoted by, that is,

(3.27) J* = infE(/ooe—Wh - 0(1) dt).
0
Thus, we have that
(3.28) Jt= E(/OO e Vh- Q*(z)d;).
0

REMARK 3.5. The BCP (Definition 3.1) presented in this work is somewhat
different from the BCP studied in Section 7 of [11]. The BCP considered in [11] is
formulated in terms of a four-dimensional control process which is required to have
paths of bounded variation. Due to this restriction, the authors were unable to prove
the existence of an optimal control policy for the BCP. For precise description of
the control problem, we refer the readers to Section 7 of [11]. In the formulation
considered in the current paper, the BCP has a three-dimensional control process
which is restricted to have paths ([0, co); R3). Thus is our formulation, an
admissible control need not have paths of bounded variation. As seen above, the
BCP in Definition 3.1 has an optimal solution given via (3.20)—(3.22).
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3.2. The policy. Motivated by the solution of the BCP, we now propose our
control policy for therth network,- € S. Fix ¢, £g € (1, 00). DefinelL" = | £plogr |
and C" = |cglogr], where cp = cfp. Since we are interested in asymptotic
optimality, we can (and will) assume, without loss of generality, that-, where

rissuchthatforall >+, C' —L"—1>1 andﬁ—%(cr —L"+2)>1.

DEFINITION 3.6 (Control policy). The policy is as follows. No idling by
Server 2 unlessl?uffer 3 is empty. The sequencing control féarver 1 is as follows.
If Q5(s) — 7 01(s) <L,
serveBuffer 2 if Q%(s) < C" —1andQ5(s) #0,
serveBuffer 1 (whenitis nonempty) if eithe@5(s) > C" —1 or Q%(s) =0
If Q5(s) — 72 04(s) > L',
serveBuffer 1 (when itis nonempty) if eithe@’ (s) > Z—%(Cr —L"+2)or
05(s)=0
serveBuffer 2 if Q(s) < ﬁ—%(Cr —L"+2) and Q4(s) #0.
Server 1 idles if bothBuffer 1 andBuffer 2 are empty.

We will refer to the constantsand{g as the threshold parameters of the control
policy. It will be shown that, for a choice afand{g large enough, the above policy
is asymptotically optimal. One precise choice@ind{g is given in Remark 4.3(a).

One of the referees has conjectured that the above policy4yith0 andcg
replaced by a sufficiently large constant is asymptotically optimal as well.
However, as is explained in the following paragraph, the arguments in the current
paper crucially rely on the largenességf

Now we provide some motivation for the policy proposed above. Note that

rYxor ryxsr Ar ,ur Ar
usWs (1) — phWi (1) = Q5(1) — M—EQl(r).
1

Thus, the solution of the BCP suggests that wi@jir) — Z—%er(t) <0, then

the optimal policy should try to makgueue 3 empty, whereas when the opposite
is true, queue 1 should be emptied. This is achieved in the first regime via the

thresholdC" — 1 and in the other regime via the threshégdcr L" 4+ 2). Note

that the two threshold€" — 1 and " (Cr L" + 2) approachco asr — oo,

however, in diffusion scaling these are negligible. Furthermore, (3.19), suggests
that asymptotically there should be no idling 8srver 1 unless there is no work

in Buffer 1 andBuffer 2, and that there be no idling i§erver 2 unless there is

no work atBuffer 2 andBuffer 3. The first nonidleness condition is quite easy to
enforce, by saying that the first server works whenever there is work for it to do.
However, the second nonidleness condition is difficult to enforce, since one can get
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into the situation wherBuffer 3 is empty and s&erver 2 has no immediate work

to do butBuffer 2 is nonempty. Thus, one needs to ensure that there is always
enough work inBuffer 3 whenBuffer 2 is nonempty. This is the reason for the
thresholdL" = [ £glogr | in the policy. For our proof of asymptotic optimality, we
will need thattg is sufficiently large (see Theorem 4.9).

REMARK 3.7. This policy is preemptive-resume type. For example, if at any
time instantr Server 1 is working on jobs of Class 1 and the policy requires it to
work on Class 2 jobs, it immediately suspends all Class 1 jobs and starts working
on Class 2 jobs (suspended jobs if there are any, or new jobs). When at a later time
it turns to Class 1 jobs again, it resumes working on the suspended Class 1 job (and
spends only the excess time that it needs to complete the remaining part of the job,
so that the total time spent on this job is the same as the time needed to complete
this job if there was no interruption).

REMARK 3.8. The above policy can be written in the following form. Let
Mr
Ar={u>0:0500 - “205) < Lf},
K1

(3.29) By ={u>0:05u) = C" —1orQ5u) =0},

Cr=u>0:01(u) > M—}(Cr —L"+2) or Q%) :O},
M2

Dy ={u=>0:07(u)+ 0Q%u) #0}.

Then the (sequence of) proposed polidigs} described above in Definition 3.6
can be described as follows. Fgr= 1, 2, 3, Tj’ is the absolutely continuous

function whose derivative (defined a.e.), denoted”pyis given as follows:

T{ = (1415, +lacle,)l o,
(3-30) 75 = (1a,lgs + lacle)l o,
15 = 1(u=0: 05)-0)-
Note that, forj =1, 2, 3,

t .
Tjr ) = /0 Tjr(s) ds.

Herel 4 denotes the indicator function of a sétand A® denotes the complement
of a setA. Note that7}(r) and 7] (t) + T} (¢) are both{0,1} valued and
T/ (t) + T5 (t) = 0 if and only if both Q,(t) and Q}(¢) are zero, and’} (1) = 0

if and only if Q5(¢) is zero. In other words, the policy operates in a “nonidling”
fashion.
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4. Proof of asymptotic optimality of the proposed policy. In this section we
will prove the asymptotic optimality of the scheduling control policy introduced in
Definition 3.6. More precisely, we prove the following two results.

THEOREMA4.1. Let{T"} beany sequence of scheduling controls. Then, for J*
asin (3.28),we have
(4.1) lim inf J(T > J*.

THEOREM4.2. Thereexist ¢, £ € (1, co) such that if {77} is the sequence of

scheduling controls described in Definition 3.6 with threshold parameters ¢ and £o
with £g > ¢, then

(@ (W, I")= (W* I*)asr — oo,
(b) rirr;of’(T’)zJ*,

where J* isasin (3.28).

(4.2)

Theorem 4.1 says that the asymptotic cost associated with any scheduling policy
cannot be lower thari* defined in (3.28), while Theorem 4.2 says that the control
described in Definition 3.6 asymptotically achievgs which is the optimal cost
for the BCP.

REMARK 4.3. (a) The choice of, ¢ depends on various large deviation
estimates that are obtained in Section 5. A concrete choiae OE& (1, c0) is
as follows:

Mn1i ;
03 = —— min{n1, 2},
(4.3) H2A1

p2 = Min{n3, na},

whereny = ¢2({A1}, 1/2), n2 = s2({u'1}, 1/2), n3 = s2({u3}, minfus/2, 1}), na =
s2({uh}, min{u2/2,1}) and g2(-) is as in Corollary 5.3. Choose, K, d,0 as
in (5.33). Defineys = (2d/ K )0p» and choosé = max{4/ya, 4/(03(c — 1))} + 1.

(b) In this paper we restrict ourselves to a discounted cost, however, similar
results can be proved for some other cost criterion (with linear holding cost)
as well, by suitable modifications. The key obstacle is to prove the uniform
integrability estimates of Section 5. In particular, if the criterion is finite time
horizon total cost, then the uniform integrability estimates are easy to obtain.

(c) In this work we will also establish (see Corollary 4.10) that, under the
proposed policy (Definition 3.6),

01()05() = 0.
In [11] the authors conjectured that any optimal policy should try to get the queue-
lengths close to the set

{(z1, 22, 23) € [0, 00)3: 2123 = O}.
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Outline of the proofs. The main steps in the proof of asymptotic optimality of
the proposed policy are as follows. As a first step we show in Theorem 4.1 that
the asymptotic cost for any sequence of policies is bounded belaki bijhe key
step is proving the inequality in (4.12) and the main ingredients in its proof are the
monotonicity property described in Remark 3.3 and the minimality property of the
Skorohod map [see (4.22)]. We next show that the asymptotic cost for the sequence
{T"*} is J*. The first step in this direction is obtaining the following convergence
results for the queue-length and idle-time processes (see Corollary 4.10):

N A
Q1O or - uyun0r =L = 0
- A

Q3O o)~ (uyu 05 r<Lr/my = O

f[o ) ' 105)=dtgogr/ry 412(5) = 0.

The first two above are consequences of Theorem 4.8, while the third convergence
result follows from Theorem 4.9. The latter result, along with the continuity of the
Skorohod map, is then used to show th‘a’t’ I’) = (W*, I*). We are unable to
conclude from the above convergence that= O*; the main obstacle is showing

that

r R . TE( - ~
W1O s iy =L = WO e w020

However, using an elementary lemma (Lemma 4.7), we show that the convergence
in (4.63) holds. Since we are working with an expected cost criterion with an
unbounded cost function, in addition to the above weak convergence results, we
also need suitable uniform integrability estimates. These estimates are obtained
in Theorem 4.11. As an immediate consequence we then have (4.64) and (4.66).
Combining these, we obtain (4.67). This along with the first two convergence
results in Corollary 4.10 and the uniform integrability estimates yield (4.70). The
convergence of * to J* then follows readily.

We begin with the following definition. Le€™ be the space of continuous
functions from[0, co) to R™ with the usual topology of uniform convergence on
compact time intervals. We will suppreasfrom the notation unless necessary.

DEFINITION 4.4 (C-tightness). A sequence of processes with path®%h
(m = 1) is calledC-tight if it is tight in H™ and any weak limit point of the
sequence has paths@f* almost surely.

The following two basic lemmas are important in proving the optimality of
the proposed policy. The proofs of the these results are similar to the proofs of
Lemma 9.2 and Lemma 9.3 of [1]. However, for the sake of completeness, we
have included the proofs in the Appendix.
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LEMMA 4.5. Let {T"} be any sequence of scheduling policies. Then
(4.4) {Q"(), A"(), 8" (), T (), I ()}res is C-tight.

LEMMA 4.6. Let {T"} be any sequence of scheduling policies with the
following property:

(4.5) JAT") =liminf J' (1) < oo,

where J7(T") isasin (2.17).Consider a subseguence (T"'} of {T"} such that
(4.6) Jim JTry=J(T"Y).

Then we have

@) (07 (), A" (), 8" (), T (), 1" ()
' = (0,A(), £(), T*(),0)  asr’ — oo,

where T* is as defined in (3.1),0 isthe constant process that is zero for all ¢ > 0,
At) =At, u(t) =ut,t >0.

Now we are ready to prove Theorem 4.1.

PROOF OF THEOREM 4.1. If liminf,_ f”(TV) = 00, then (4.1) holds
trivially and so we only consi/der the case when liminf, J"(T") < cc.
Consider a subsequengE” } of {T"} such that

(4.8) lim J"(T") =liminf J"(T") < oo.

By Lemma 4.6 and (3.3), we have that,;as> oo,
(4.9) (A7), 87 (), T" () = (A(), §¢), T*()).

Using this observation along with Lemma 3.14.1 of [2] and Assumption 2.2
in (2.12), we have that

(A7 (), 87 (), T" (), X" ()) = (A(), §¢), T*(), X (),

whereX (-) is as defined below (3.4). Using the Skorohod representation theorem,
we can assume, without loss of generality, that;’as oo,

(4.10) (A"(),8" (), T" (), X" () = (A(), $(), T*(), X())  as,

uniformly on compacts (u.o.c.). A
From the definition of the cost functiafi’ given in (2.17) and Fatou’'s lemma,
we get

(4.11) lim 77 (17) = ]E( /0 e liminf(h Qr’(;))dt).

r'—o00 r'— 00
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Thus, in order to prove (4.1), it suffices to show that, for a.e.2 and allz > 0,

(4.12) liminf(h- 0" (1, ) = h- 0*(t, w),

whereQ*(¢) are given via the formulae in (3.17), (3.23) and (3.24) in term¥ @f
in (4.10). Fixw € Q such thatw is in the set of probability 1 on which the u.o.c.
convergence in (4.10) hold, and fix- 0. Consider the following two cases:

Casel: u3Wj (1, ) > uaWi(t, ), Casell: u3Wj (1, ) < ua2Wi(t, o),

where Wi*(-),i = 1,2, are defined in terms ok in (4.10) via the relations
(3.17) and (3.18). Note that, since we are invoking the Skorohod representation
theorem in (4.10), thi$V* is not the same process as in (3.18), but it has the same
law asW* in (3.18). Once again, we retain the same symbol in order to simplify
the notation.

Definen”! = (hy*, h5t, k5" as follows:

h h ho—h h
(a13) gt e, bots e 2R oy et
1 /Lg /Lz Mg

Observe that by Assumption 2.1, as> oo,
(4.14) Wtsn, =123
From the definition of”>1, Assumption 2.3 and (2.10), we get
WL 07 (1, 0) = Wyt 04 (1, w) + iyt O (t, ) + K5 051, w)
! (1, @) 05(t, w>]

=<h1m>[ : }Jruz(hz—hs)[ -
M1 7]

05(t, ) N 05t w>]
H3 J7

> [2(h — h3) Wi (1, ) + [haus] W5 (1, w)

= ai Wi (1, w) + biWS (1, ),

(4.15)

+ (hsus)[

wherea; = uz(hp — h3) andb} = haua.
Next, defineh”2 = (hg*z, hg’z, hgz) as follows:
h h h
1K1 L E(hz _ 1M1)’

hr,Z _
) 2 -
1 Wy M w2

h3us
—.

H3

2 2
(4.16) h"?= 52 =

Once more, by Assumption 2.1, as> oo,

(4.17) W2 —h, =123,
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and from the definition of’-2, Assumption 2.3 and (2.10), we get

W2 0" (t, w) = K2 041, ) + 52 0% (t, ) + h5Z 0%(t, w)

= (hlﬂl)[Qi(tr’ )y Qg(tr’ a))}
My Ko
(4.18) + B [hapa — hajen) O5(t. @) + (hajz) O5(t. )]
napg

A Mg A
> (hapD) Wi (1, ) + [E(hzuz - hm)} W5t o)
= a3 Wi (t, ) + b5SW5 (1, w),

wherea; = hipa andb = ug(hopuz — hip)/ 2.
Thus, defining

L if uaWs(r, 0) = paWi @, w),

k(w, 1) = S 5
2, if usWs(t, w) < paWi(t, w),

we have that

(4.19) R @D QN w) = ajf g, W (1, @) + b}y W5 (2, ).

Note that, from Assumption 2.3, we have thgt b* are nonnegative. Sind&” ()

is nonnegative for alt > 0 andf{, i§ are nondecreasing and start from zero, we
have from (2.16) and the minimality of the solution of the Skorohod problem (see
Proposition B.1 in [1]) that, for all > 0,

(4.20) I[(0)= = inf (M{Ri() + MpR5(s) + MpRi(s).  i=12

Forx € D1 with x(0) = 0, definel'(x) € D1 as
(4.21) Cx)() =x@) —Oinf x(s), t>0.
<s<t

Then (4.20) implies that
W (1) = T (M X5() + MBX5() + M3X50)) (1)
(4.22)
forallr>0,i =1, 2.

Now we prove the inequality in (4.12). If the left-hand side of (4.12) is infinite,
then the inequality holds trivially. Otherwise, get a further subsequence indexed
by r” (which may depend om, ¢) such that

(4.23) lim #-0" (t,w)=liminfh- 0" (t,w) < .
r"— 00 r'—00
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Notice that from (4.23), sincé; > 0, 0! (r,w) > 0, for i = 1,2,3, we have
{07 (t,w)} is a bounded sequence a& — oo for i = 1,2,3. From (4.14)
and (4.17), we have

(4.24) lim (n7F@D _ )07 (tw)=0  fori=1,23.
r’—o0

Using the above equality along with (4.19), (4.22) and the nonnegativity,df';
i =1,2, we have

lim (n- Q" (1, w))

r

= lim (A" %@D . 0" (1, w))

r’—o00

> limsup(a;,, Wi (t, @) + b}, W5 (t, )

r’—oo
> limsup{af, T (M5 XY (-, 0) + MipXY (-, ) + MigX} (-, ) (1)
(4.25) o
+ 5} o T (M5 XY () + M5 XY (- ) + My3XG (- ) (0)]

+ bZ(w,t)F(MZLf(l(" ®) + MopXo(-, w) + MasXa(., w))(t)
= a;;(w,t) Wik (t’ Cl)) + b;{k(w’t) W; (f, a))

=h-Q*(t,w),
where the fifth line follows from (4.10) and the continuity of the one-dimensional
Skorohod mapl’(-) on D! and recalling that¥” — M asr — oo. The last
equality in (4.25) follows from the definition eff, b7, i = 1, 2, definition ofk (-, -)
and (3.23)—(3.24). This proves (4.12) and the result follows.

We now proceed to the proof of Theorem 4.2. We begin with the following
elementary result.

LEMMA 4.7. Let {f},{g-} be sequences of functions in D!, and f, g be
functionsin ¢! such that f, — f, g, — g in D! asr — oo. uppose that

00
(4.26) A e—yt|{|g(t)|:0} dt =0.

Let {¢,} be a sequence of nonnegative numbers such that ¢, — 0 asr — oco. Then,
for all T > 0, the following hold:

T T
(4.27) /(; e_ytfr(t)“gr(t)zgr}dt —>/(‘) e_ytf(t)|{g(t)zo} dt asr — oo,

T T
(4.28) /(; eiytfr(t)l{gr(t)<gr}dt —)/O efytf(l‘ﬂ{g(;)fo} dt asr — o0.
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PROOF Let u be afinite measure defined @R, B(R)) via the following
relation:

(4.29) dut)=e7"dt.
It follows from (4.26) that
(4.30) g(t)#0 a.er[ul].

To prove (4.27), we will show that

431) |[ £ d "o d 0
( . ) ’/0 fr(t) {gr()=er} /L(t)_/(; f([) {g(1)>0} M(t) N asr — oo.

We can bound the left-hand side of (4.31) by

T T
(4.32) /0 | fr () —f(f)IdM(I)Jr/o L F O] g ty=e) — lgw)=0| d(2).

Since f is continuous and;, — f in D1, we have SUR, <7 I.fr (1) — f(©)| = 0.
This shows that the first term in (4.32) converges to zeno-asoo.
For the second term in (4.32), it is enough to show the following:

(433) I{g,-(t)zar} — I{g(t)zO} asr — oo for a.e.t[u].

But (4.33) is an immediate consequence of (4.30) and the fact that, gifce
continuous,

(4.34) g ()= = lig)=0) asr — oo for all ¢ such thafg () # 0.

This proves (4.33) and completes the proof of (4.27). The proof of (4.28) is similar.
O

The following three theorems, the proofs of which are deferred to Section 5, are
key to the proof of Theorem 4.2.

Let {T"} be the sequence of scheduling controls described in Definition 3.6.
Let « be a positive constant satisfying

2
(4.35) K > max{zﬂ, 4, < Hac }

9 9 9 3
uz2 (=1 pi(c—1)
whereds is as in Remark 4.3. Fore S, r > 0, define an everf (r, t) as follows:
k(CM—L"+1) }

- AT n 3 n
Ernn)= {Oijg Q3N o0 s/ 0551 <L /r) = P
(4.36) kK(C'—L"+ 1)}
> .

U{ SUP Q165 5) —uy/115) O (5)=L 7/ ,

O<s<t

Note that the even€(r,t) depends on parametets and ¢g, however, this
dependence is suppressed in the notation.
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THEOREM4.8. Let {T"} be the sequence of scheduling controls described in
Definition 3.6 with threshold parameters ¢ and £g. Let 63 be asin Remark 4.3(a).
Then there exist constants 9; € (0,00), i = 1,2, and rg > 1 such that for all
1 €[0,00), r > ro; £o € (1, 00) andczl-i-%,

(4.37) P(E(r,1) < O1(L+rP) (e~ 4 p 0Bl Do),

THEOREM4.9. Thereexistsc € [1+ 9243, oo) such that, if {77} isthe sequence
of scheduling controls described in Definition 3.6 with threshold parameters ¢
and some {g € (1, 00), then there exist constants y; > 0,i = 1,...,4,r1 > 1,
d € (0, c0) such that, for all » > r1, r € [0, 00), we have

rr
P[/[o,;) ! {05 (s)=d¢ologr/r} dI5(s) # 0]

< 1L+ 2072 g ya(L4 r2n2rilo,

(4.38)

Proofs of Theorems 4.8 and 4.9 will be given in Section 5. An immediate
corollary of the above theorems is the following.

COROLLARY 4.10. Let ¢ and the scheduling sequence {7} be as in
Theorem 4.9. Suppose that ¢ € (0, oo) is large enough so that 63(c — 1)¢ > 4
and y4¢ > 4. Then, for each fixed + > 0O, for all ¢¢ > ¢, the probabilities
(4.37) and (4.38) tend to zero as r — oo. This, in particular, implies that, as
r — 00,

Q1O on 0y -y 0500217y = 0
(4.39) Q3O om0y -y 5.0 )<Lryry = O
f[o 1050)zdtologryr H2(9) = 0.

Using the third convergence result above, we will obtain in Theorem 4.2(a)
that (W", I") = (W*, I*) asr — oco. However, we are unable to show that
Q" = Q* asr — oco. Nevertheless, as will be seen in the proof of Theorem 4.8
below, the weak convergence results in Corollary 4.10 with suitable uniform
integrability estimates (Theorem 4.11, see Remark 4.12) will suffice for the proof
of asymptotic optimality of the proposed policy.

THEOREM4.11. Suppose that ¢ is as obtained through Theorem 4.9 and ¢¢
satisfies the conditions in Corollary 4.10.Let {T"} be the sequence of scheduling
controls described in Definition 3.6 with threshold parameters ¢ and ¢g. Then the
following hold:

00 R 2
(4.40) limsup e"”E[ sup W,-’(s)] dt < oo, i=12

r—oo JO O<s<t
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Also,

[e's) R 2
(4.41) limsuplimsup e"”E[ sup W,-’(s)} dt =0, i=12.

T—o00 Fr—oo JT O<s<t
Proof of Theorem 4.11 will be given in Section 5.

REMARK 4.12. Note that (4.40) implies thai/l.’(-), i =1, 2, are uniformly
integrable (u.i.) with respect to the product measkise ., whereu is as defined
in (4.29). Also, note that (4.41), in particular, implies that

Oo A
(4.42) limsuplimsup [ e 7'E(W/(1))dr =0, i=12

T—>o00 Fr—o00 JT

Lemma 4.6 showed that {f"} is any sequence of admissible controls which
gives a finite cost asymptotically, that is, (4.5) is satisfied, tién= T*. For
the sequence of scheduling controls in Definition 3.6, we do not know a priori
that (4.5) is satisfied. In view of that, we prove the following lemma.

LEMMA 4.13. Let {T"} be the sequence of scheduling controls described in
Definition 3.6 with threshold parameters ¢ and ¢¢. Suppose that ¢ is as chosen in
Theorem 4.9 and ¢ satisfies the conditionsin Corollary 4.10.Then

(4.43) " =T,
where T* isas defined in (3.1).

PrROOF From (2.16), we have that, fer> 0,

. )?r }'\(r
(4.44) Wy (s) = 22 | X50)
M1 K2
Now, the left-hand side of (4.44) is nonnegative, and by definition of the proposed

scheduling policy (Definition 3.6)f{ is nondecreasing, starts from zero and
increases only when bog@i and Qg are zero, or, in other words, in view of (2.10),
only when the left-hand side of (4.44) is zero. LIét) be the Skorohod map
defined in (4.21). From a well-known characterization of the solution of a one-
dimensional Skorohod problem (see [1], Proposition B.1), we have from (4.44)
that (4.20) and (4.22) hold with inequalities replaced by equalities. In particular,

+ 1 (s).

(4.45) Wi (s) = r(m + ng')>(s)
M1 M2
and
(4.46) I (s)=— inf (M + M)
O<u<s 25} o
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Next recall that

05(s) N 05(s) _ X5(s) N X5(5)
[ [ 3 3

(4.47) Wh(s) = +I5(s), s=0.

From the second equality in (4.47), we get that,sfor O,

Q5(5>|

0%4(s)
—ug {Qh(s)>2dglogr/r}

n3

_ (ff5<s) LX) 05,

(4.48) JuEA uy A {Q%(s)<2dglogr/r}
A rr
+ [0,5] I {Q5(u)>dologr/r} dIZ (”))
+ [OS]I{Q500<ﬁwogr/r}d1£(u)-

Once more, from the definition of the scheduling policy (in Definition 3.6), the
left-hand side of the equation in (4.48) is honnegative and the last term on the
right-hand side of (4.48) is nondecreasing, starts from zero and increases only
when the left-hand side is zero. Also, note that since the path@igf are

- - 050 050),
piecewise constant, the procesggérl{%(.)z%logr/r} and s '{Q;(.)<2d0|ogr/r}
have paths inD!. Thus, using the characterizing property of the one-dimensional
Skorohod map and (4.47)—(4.48), we obtain

) Xo0) X5 050)
ron 2 3l L0
Wz(t)—F< s + P P I{Q5(~)<2do|09r/r}
. Tr
(4.49) +f[o’.] '{Qg(u)zdologr/r}dIZ(”))(”
Ar
t
+Q2()|

Mg {QE(I)<2do|Ogr/r}’
N rr
/[o,s] I{Q;(u)<dologr/r} dl;(u)

(ffg(s) L X50) - 056)
13 13 13

(4.50) — — inf

O<s<t

L 01 (s) <2dologr/r)

R rr
T Jos '{Q;(mzdologr/r}d”z(“))'
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Using the fact thatl’(-) is Lipschitz continuous with constant 2 along with
(4.45) and (4.49), we have the following:

sup Wl(S) < sup - F(Xi() + XEE')>(S)

451 == ossxi” \ M1 M2
1 A
<21 sup IR{(5)| 42 sup [%5(s)
M1 0<s<t il 0<s<t
and
sup W3 (s)
O<s<t
X Xt 0L
< sup r( 25)+ 3£) B er()l{é’(-)<2d o
Oss<t I M3 M3 M3 2 0
~ rr
+ [0’4]I{Qé(u)zdobgr/r}dIZ(M))(S)
1 05(s)
4.52 + Ssup — 2 A,
( ) Ofsgtr Mé {05(s)<2dplogr/r}

1 . 1 X
<2 sup [X5(s)|+2— sup |X5(s)]

s 0<s<t Ly 0<s<t
Qz(s)
+ 3— su I, A
r 0<VE[ Mg {05(s)<2dplogr/r}

rr
+2 [0,7] I{Qz(”)>do|ogr/r dl;(u).

From (3.3), (2.12) and Assumption 2.1, it follows that, fet 1, 2, 3,

(4.53) ir sup |X/(s)] -~ 0 in probability, as- — occ.

i 0<s<t

Also, note that

QE(S) 2dologr
4.54 sup 22 _ 2ologr o
( ) 05‘,2 M’é {05(s)<2dglogr/r} rl/L:rg
Now using (4.53), (4.54) and Corollary 4.10 in (4.51) and (4.52), we get that
(455) Wir = 0’ P = l, 2

This immediately yields that

(4.56) 0/=0  i=123
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Also, from (3.3), we have that

(4.57) Al() =0, SH(TT()) =0, i=12;=123.
Using (4.56) and (4.57), it follows from (2.11) that, for al+- 0,

At —ul T/ (t) =0, i=1,2,
(4.58)

usT5 (1) — usTi(t) = 0.
The result follows on combining (4.58) with Assumption 2.1 and (2.14) of
Assumption 2.2. O

We now come to the proof of the main result of this section.

PROOF OFTHEOREM 4.2. Suppose that is as obtained from Theorem 4.9
4 _ 41y wheref;, y; are as in Theorems 4.8 and 4.9, respectively.

and? = maX gy o
Henceforth, the sequendd”} will have threshold parameteks and ¢o, with
Lo € (£, 00).

From Lemma 4.13 and (3.3), we have that
(4.59) X'=X; asr—o0,i=123,

whereX is as defined below (3.4). From this, Corollary 4.10, Assumption 2.1 and
alternative expressions fav/, 1/, fori =1, 2, in (4.45), (4.46), (4.49) and (4.50),
it follows that

(4.60) (W' 1"y = (W*, I*)  asr — .

We have also used (4.54) and continuityltf) in obtaining (4.60). This proves
part (a) of the theorem.

For part (b), first we observe that from Theorem 4.11 (see Remark 4.12) and
part (a) of this theorem, it follows that

(4.61) /0 T e R(W (1) di — /0 T e TE(WED) A, i=1.2

Next observe that the reflected Brownian motid#ig and W satisfy, for every
t >0, P(usWj (1) = n2Wi(t)) = 0. Using this fact and Fubini’s theorem, it
follows that

(4.62) dt=0 a.s[P].

/ e VI, =, .
0 {usW3 (t)—p oWy (1)=0}
From Lemma 4.7 [see (4.27)], (4.60), (4.62) and the fact%hai (Zo'o% decreases
to 0 asr — oo, we have, for alll’ > 0,
T
—viywr . .
foe WLOV iy )iy =L /r 91
(4.63)

T
—Ytyr* - -
—>/0 e Wl(t)l{M3W§(t)—M2Wf(t)20}dt
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in distribution. Using uniform integrability OW{ (see Remark 4.12), we can
conclude from (4.63) that, for alf > 0,

T
—yt 2
fo e EWIOV iy 1)— iy =L /ry) 41
(4.64)

T
—yt T
—>/O e’V E(Wf(f)l{MSW;(I)_MZWf(I)ZO})dt'

From (4.42), fori = 1, and (4.64), simple calculations show that
o
—yt r N .
/ e EWLO iy - iy =L /) 41

o0
—yt T
—>/O e’V E(Wf(t)l{Mgvifé‘(t)—quf(t)ZO})dt'

Similarly, using (4.28) of Lemma 4.7 and (4.42) foe 2, it can be shown that
o0
—yt r . .
/ e EW2 OV g -y <Lryny) 40

o
—yt T
_)/o e EBWZ Oz (1) — oWz <o) 41

From (4.65), (4.66), (3.23)—(3.24) and Assumption 2.1, it follows that
Oo ~A
/o e E(EWIO! (uiig o) -pgivg =Lr /) 41

0
—yt 2
(4.67) + f e TR(uzWa OV s () — iy 1y <Lt /) 91

(4.65)

(4.66)

—>/ “VIE(Q5(1)) dt.

Now using (2.10), the left-hand side of (4.67) can be written as

OO ~A

/ e VTE(Q%(1)) dt

0
(4.68) [ (12256, \ di

' o ¢ Wi 05—t i) 0L )= r)
> —yt Ar
+fo e E(Q3O) o)~/ Oy )<Lt /) AT

From the uniform integrability otWr given in Remark 4.12 and recalling that

w; — pi, i =1,2, we have that, foy =1, 2, 3, Q' are uniformly integrable (with
respect to the measufex ). Combining this o[gservation with Corollary 4.10, it
follows that the last two terms of (4.68) tend to zero. This, in view of (4.67) and
Assumption 2.1, implies that

(4.69) /OOO e‘V’IE(Qg(t))dt — /OOO e V'E(Q5(1)) dt asr — oo.
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Now using (4.69) and (4.61) in (2.10) and (3.8), it follows immediately that

/OOO e VE(QL (1)) dt
(4.70) ©
— /0 e V'E(QF (1)) dt asr —» oo,i =1,3.

Finally, combining the above two displays with the definition of the cost function
and the representation @f in (3.28), it follows that

A 3 oo A
4.71) J(TH = ZE(/ e"”h,-Q{(t)dt) — J* asr — oo.
i—1 O
This completes the proof of the theorent.]

5. Proofs of Theorems 4.8, 49 and 4.11. We begin with the following
standard large deviations estimate for Poisson processes. This estimate will be
used in many of the arguments in this section. For a proof we refer the reader
to [9] or Theorem 5.3 of [15].

THEOREM 5.1 (Kurtz [9]). Let N (-) be a Poisson process with rate A > 0.
'I:hen for all 0 < A < A < o0, there exists a C1 € (0,00) and a function
C2:(0, 00) — (0, 00) such that, for all « > 0, ¢ > 0,

Nj(at)

o

— At

(5.1) sup IP( sup > 8) < Cle_“62(8>,

re[a,x] NO0=t=1

An immediate corollary of the above result is the following.

COROLLARY 5.2. Let {N"(-)},es be a sequence of Poisson processes with
rates ¢o” such that o" — ¢ € (0,00) as r — oco. Then there exists a C; €
(0, o0) and a function C2: (0, oo) — (0, 0o) such that, for all ¢’ > 0,0 € (0, 1),
c*>0,r €S, wehave

(5.2) P( sup

Oc*logr<s<c*logr

N'(s) —¢'s

S

ze’) < Cpe—¢Ca€0)logr

The above corollary follows from some straightforward calculations on setting
a = c*logr and e = 6¢’ in Theorem 5.1. Another important consequence of
Theorem 5.1 is the following “terminal time” estimate.

COROLLARY 5.3. Let {N"(-)},es beasin Corollary 5.2. Let ¢ > 0 be arbi-
trary. Then thereexist ¢; = ¢;({0"},¢) € (0,00),i =1,2,and r1 =r1({0"},¢) €
(0, 00) such that, for all » > rq,

(5.3) P(N"(t)> (0" +e)tor N(1) < (0" —e)t) < gre % vVt e [0, 00).
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REMARK 5.4. The large deviation estimates in the above three results are
used in the proofs of Theorems 4.8 and 4.9, which, in turn, are key to the proof
of Theorem 4.2. Proof of Theorem 4.1 does not rely on any large deviation
estimates and can be extended in a straightforward manner to the case of more
general inter-arrival and service time distributions fof (i), v; ):k=1,2,j=
1,2,3;i =1,2,...} such that the corresponding renewal procesags,, S;(-),
satisfy a functional central limit result similar to (3.3). However, in order to
extend Theorem 4.2 to a general renewal process setting, more stringent moment
conditions on the above distributions are needed. Proof of Theorem 4.8 uses the
one-dimensional large deviation estimate in Corollary 5.3. Corresponding results
for a general renewal process are well known and indeed were used by the authors
in [1] to prove the asymptotic optimality of their policy. Under precisely the
assumptions of [1] on the underlying renewal process (Assumption 3.3 of that
paper), one can extend the proof of Theorem 4.8 to a nonexponential setting. Note,
however, that the proof will need to be modified to account for the non-Markovity
by using multi-parameter filtrations and stopping times and using Lemma 7.6
of [1] in place of the strong Markov property. These modifications are fairly
straightforward. Proof of Theorem 4.9 crucially relies on Corollary 5.2, which
is a statement on the sample path large deviations of the underlying renewal
process. We conjecture that using Theorem 3.1 of [14], one can extend the proof
of Theorem 4.9 to a larger class of renewal processes which satisfy suitable
exponential moment conditions.

Now, we proceed to the proof of Theorem 4.8. We begin by defining the
following family of stopping times with respect to the filtrati¢e,” };~0, where
Fr ia{Q;(s) 0<s=<rt,j=1,23L.ForreSandn=12,..., define

75 =0,

r H r r M’é r r
r_:lnf{t>1'_ t)— —= tzL},
(5.4) n—1 n 2|Q3() MrlQl()
2 inf{t > 15, 1| 0%(t) — %er(t) <L"andQ%() <C" — 1}.
1

From the form of the scheduling policy in Definition 3.6, it follows that
05(t3,_,) < C" — 1. Thus, Q%(s) starts from belowC" — 1 on [}, 5,75, ),
and whenever the queue-length cros&&’s— 1), Server 1 stops servin@uffer 2,
causingQ5(s) to decrease monotonically. Thus, we have that

(5.5) 05(s) <C' forall s € [t5, 5,15, 11,n=21,2,....
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PROOF OF THEOREM 4.8. Recalling the definition of the diffusion-scaled
processeg)’ (s), O5(s), we can rewriteg (r, t) from (4.36) as

{ sup - 03()l{059)—(up/up 055 <L) > K (CT — LT+ 1)}

(56) O<s<r2t
U { SUP - Q1(9) (@50~ (u/up @55)=L7) > K (CT = LT+ 1)}-
O<s<r?t
Let
(5.7) n" =[] 4+ A5+ 2r%) + 1.

Note that everyry, _; (k =1,2,...) corresponds to one up-crossing @f(s) —

Z—%Qg(s) from belowL" to the threshold levdl" or above. Each such up-crossing

either requires at least one service of a Class 1 job, which, in turn, implies at least 1
arrival of a Class 1 job, or it requires one service of a Class 2 job, which implies 1
arrival of a Class 2 job has occurred. Thus, the number;pf; in the interval

[0, 7?¢] is bounded above by, (r%¢) + AL(r?t). Therefore,
P(th,r_1 < r?t) < P(AL(r%) + AS(r%0) = 1)
<P(A(r%r) 4+ AL(r%r) = O + A+ 2)r?1)
<P(AL(r%r) = W5 + Dr?r) + P(AL(r%r) = (A 4 Dr?r)

—K2r2t
b

(5.8)

<kK1e

forall r > 71 = max{ri({2}, 1, ri({25), D}, wheres = c1(1}, D +c1({35), D),
k2 =min{c2({A1}, D), c2({A5}, D}, andri(-), s1(-), s2(-) are as in Corollary 5.3.

Using (5.8) and the representation f8(r,¢) in (5.6), we have that, for
sufficiently large,

P(&(r, 1))

<P(t},r_1 < )

+ P(Tgnr_l > rzl‘,
(5.9)
sup - Q3() (05— iy 055y <L) > K (CT = LT+ 1)}

O<s<r2t
U { SUP  Q'1(9) (g5(5)~(up/up @sr=Lry > K (CT =L + 1)}>
0<s<r?t

ny2
§K1€ Kor<t
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+ ZP(rzrn_l <r?, 05(s) > k(C" —L"+1)
(5.10) "t
.
and Q5(s) — M—fQi(s) < L' for somes € [15, 1,75, A (rzt)])
31

nr
+ Z P(rzrn_l <r?, Q1) >k (C —L"+1)
n=1

(5.11) and Q(s) — (uh/u5) Q4 (s) = L
for somes €[5, 1,75, A (rzt)]>

_ 2
fkle Kor<t

2 IP) r < Zt, r i CI’ _ LI' 1

(5.12) + ,12::1 (th,_1 <71, Q7(s) > k' +1)
for somes € [t5, 1, T3, A (r2D)]),

wherex” = min{«, "—Z;} and the display in (5.12) is a consequence of the fact that,
for each summand in (5.1005(s) — Z—%Qg(s) < L". Combining this with the
condition Q4(s) > k(C' — L' + 1) gives thatQ’,(s) > Z—%[K(cf LT+ 1)L =
%Z—g(cf —LT +1)+Z—§[g(cf —L"+1)—-L"]> %Z—i(cf —L"+1), usinrg (4.35)
and the fact that > 1+ 4/63. Choosing- to be sufficiently large, so th% > %
gives that, for such, Qj(s) > «”(C" —L"+1). The sum (5.10) follows from (5.8),

the fact that (4.35) implie€" < «(C" — L" + 1) and (5.5). The third term (5.11)
is obtained using the fact that the indicator restricts us to the value®ofvhich

05(s) — Z—%Qi(s) > L', which happens only far € [75,_,13,).
Note that by our choice of [see (4.35)], we have that

(5.13) K”zmax{zﬂ, ¢ }
m2 ¢c—1

For fixedr € S andn > 1, define a sequence of “intermediate” stopping times
within [75, 4, 75,) as follows. Fom =1,2, ...,

o . _r
Mo = Ton—1
wh
Nom_1 = min[rzrn, inf{s > U;}Z_z‘(Qg(S) - M—Eer(s) <L’
1

(5.14) andQ%(s) > (C" — 1)),
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OR (Q@,(s) 2 pry s L
K1
and;(s) = “Le - L7+ 2)) ||
Ko

p
Ny = Min |:T2r”, inf{s > ng’n’i_l‘Qg(s) — Z—;er(s) > L'

andQj(s) < “—é(cr —L"+ 2)”.
M2

Now, we estimate how many/""’s there can be ifit;, _,, 75 A (rzt)]. Letn” be as

in (5.7). Note that;. _; < r? implies that there are at least a totabfarrivals

in Class 1 and Class 2 together{h 2¢]. Using an argument similar to that used
in obtaining (5.8), we have that

(5.15) Pyl <15 /\(r2t) SKle_Kzrzl,
2n"—1 2n

wherek; are as in (5.8). Now, each summand in (5.12) can be split over the sub-
intervals formed by thg’""’s spannindz;, ,, 75, A (r?t)] as

P(th, 1 <r?t, Q4(s) > k" (C" —L" 4 1) for somes € [t5, 1,75, A (r?1)])

n" r
< ke 4 > P(ng’,ﬁ_l <r?, QL5 ) < M—f(Cr —L"+2)+1,
(5.16) m=1 H2
01(s)>«k"(C" —L"+1)

for somes €[5 1, n5n A (rzf)]>-

Note that the terms correspondingste [15_,, n5n_; A (?t)] do not contribute

to the sum (for large values of), as the corresponding probabilities are zero.
This is because, fos € [n5,, 5,15, 1), Q}(s) < Z—%(Cr — L" 4+ 2), which in
view of (5.13), implies, for larger, Q’(s) < «”(C" — L" 4+ 1) for all s €
5 o msn 1 A (r?t)). Note that in all these calculations definition ©f, is
used. This observation also provides the bound tha;t’z’,ﬁ_1 < r2¢, we have

15 _q) < Z—%(Cr —L" 4+ 2) + 1, which is used in (5.16). Combining (5.12)
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and (5.16), we have, for sufficiently largechoice ofr does not depend am,
P(&(r, 1))

2
<kie Kor<t

n" n"
+2)° |:K1€_K2rzt + > P(ngz_l <r?t, Q1))
n=1 m=1
(5.17) u
<—1(C' -L"+2+1,
M2
Q5(s) >«k"(C" —L"+1)

for somes € [n5,, 1, 15, A (rzt)]ﬂ-

Let 4" denote the event in thén, n)th summand in the last term of (5.17).
On A", our policy requiresServer 1 to work continuously orBuffer 1 for all

s € [ 1, n5m A (r?)) and at the beginning of the interva} is at most
Z—%(Cr —L" +2) + 1. Also note that, for sufficiently large Buffer 1 cannot be
empty during this period. Indeed, fore [15" 1, n5" A (1)), we haves < n5" <
75, and so by definition ot} , either 05(r) — “—i 1) >L"orQs(r)>=C' —1

14
r,n

has to hold, and sincg},, > n5, _,, by definition of5, , one of the following
things must be true:

(5.18) Q%(s)—Z—%Qi(SRLr and Q4s)=C' — 1,
1

(5.19)  03(5) — M—%Qi(s) >L" and Qf(s)=> M—:l(Cr —L"+2).
M1 M2

It is easy to see that in either ca@§(s) > 0, using the fact tha€" —L" > 1 for r
sufficiently large.

Let, forr € S, @"(-) denote anM /M /1 queue-length, with arrivals at raig
and service times at raj€| . Define the stopping time

g = inf{s > 0:@"(s) < BLC L' — 1)}.
K2

Then using the memoryless property of the exponential distribution and the form
of the scheduling policy, it follows that each summand in (5.17) is bounded by

P(@’(s) > k" (C" —L" 4+ 1) for somes € [0, "1,
(5.20)

.
Q" (0) < %(Cr LT 42)+ 1).
2
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Fore, > 0, defines” = [Z—%(Cr —L"—1) —2]/2(A] + €2). Also define

(5.21) Y ={AT(T) < M +e2)s, 87 () > (uh —e2)5"),

whereA” andS" are the arrival and service processes of &V /1 queue. From
Corollary 5.3, it follows that

(5.22) P({Y"}) < kge™

for all r > 72 = max{ri({11}, e2), ri({ny}, €2)}, where k3 = c1({A1}, £2) +
s1({uh €2), ka =min{c2({A1}, €2), c2({u1}, €2)} andr1(), 1(-), c2(-) are as in
Corollary 5.3.

Let A" denote the event in (5.20). First, we argue thatydm A4’, we have
s" > B". To show this, we argue by contradiction. Note that'ik 8", then, since
Q" (s) #0foralls < 8", we have

Q" (s") =Q"(0) + A" (s") — 8" (s")
< %(cr LT 2 4 1 (M — i+ 2e0)s”
2

Choosers large enough and, > 0 small enough, such that} — ] + 2e2) <
(11—2/11), and(’“g“)s’ >14+ 3%, for all > r3. Then forr > r3,

r r _}\‘
(523) @) - L <143 <M)s -0,
12%) 12%) 2

which, by defin~ition off”, is a contradiction. This implies that for large enough
onthe seyy"NA",s” > B". Thus, on this set, forall& s < 8" and large enough,
Q" (s)=@Q"(0) + A" (s) — 8" (s)
<@ (0)+ A"(s")

< %(Cr —L"+2)+ 14+ ] +e2)s”
2

3 r
e Y (oL L
2 b
< K//(CI’ _ Lr + 1)’
where the last inequality follows on recalling that > 2% and 2% > SZ; for
larger. This proves thaP(y" N A") = 0. Therefore, using (5.20), we have that

each summand in the last term of (5.17) is bounded®@y¥"}“). Hence, using
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(5.22) and (5.17), we get, fersufficiently large (not depending aiy,
P(&(r,1)) < (1+ 2nr)K1€_K2r2t +2(n")kcze "
< 91(r4t2 + 1)(8—92r2t + r—@g(c—l)ﬂo)’

for some positive constants, i = 1, 2, 3. This completes the proof of Theo-
rem4.8. O

PROOF OF THEOREM 4.9. Let dyp = d¢g. We need to prove that, for
sufficiently larger (not depending on),

IPU 05 (s)=dglogr) A 15 (s 0]
02y 1Q2()=dologr) 2(8) #

< y1(L+ r20e 72 yg(L 4 r2n2e 1o,

(5.24)

Fix n > 1. Note that, from (5.4), it follows that, fos € [t5, ,,75,), either
O5(s) = L" -1+ Z—%Qi(s) >0, or Q5(s) > C" — 1> 0, for r large enough.
From the form of the control policy, we have that the idle-time process for the
second servel,; (-), does not increase during those intervals, and so the integrals
over those intervals are zero. Thus, we need to consider only intervals of the form
[t5,_2, T5,_1)- We subdivide such intervals using a new sequence of stopping
times as follows:

o = T2
fign 1 =min[tg,_q, inf{s > 5 ,|0%s) > (C" =D}, m=12...,
g =min[ts,_q,inf{s > 75" 1105(s) <(C" =D}, m=12...,

(5.25)
BL = min[ﬁgz_l, r?t,

inf{s>ﬁ;£ 2|Q2(s)>d—logr” m=12,....

Next, we estimate, exactly as in the proof of Theorem 4.8, how many such sub-
intervals[is" o, 5. ;) there can be withii0, %¢). Letn” be as in (5.7). Then
from (5.8), we have that the probability in (5.24) is bounded by

eyl
K1e Kor-t

(5.26) . |
- Z ]P)|:/ 2 I{QE(S)Zd(ﬂOgr} dIﬁ(S) 75 0, Tﬁn—Z <r t:|.
n=1 (%22, Tap_1/A71)

Now within these intervals, consider the subintervals formegiys. By the form
of the policy, Q%(s) > C" — 1, for s € [715,, 1. 7I5,,). Thus, Q5(s) = 0 is possible
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only for s € [775, 5, 7i5,,_1). Thus, we can conclude that

o0
(5.27) dIy(s) =Y / dI5(s).
= [ ~r,n

/[7222’72211/\’2’) Mo+ 2m—1 AT 21)

Next observe that on the s&§" , <5 Ar?t,

(5.28) OsGist H=L"—1  foralliy"_, =5t

To see this, consider the case:of 2, m = 1. Note that from (5.4)Qg(ﬁ§’n’;_2—) =
04(15,_o—) =min{L", C" —1}. This implies thaiD5(75") > L" — 1. For the case
n>1,m > 2, andr sufficiently large, we have tthg(ﬁgZ_z—) >C'—1>L",

~F,n

which meang05(ij5,, _,) = L" — 1. This proves (5.28).
Now definem” = [r?t (15 + 1)] + 1. Note thatjy", | < (t4, 1 Ar?t) implies
that the queue-lengt@;(-) has crossed the thresha@d — 1 from below at leasi:”

times before the time?r, and each such up-crossing requires service of at least one
job from Buffer 2, implying Sg(rzt) >m". Using Corollary 5.3, we get

(5.29) P(ﬁ;ﬁr,1 <Tp_1 A i’zf) = P(Sg(rzl‘) > mr) < ,336_/3”2[,
for all r > 75 = r1({ub}, 1), where B3 = c1({ub}h, 1), Ba = s2({ub}, 1), where

r1(+), ¢1(-), ¢2(+) are as in Corollary 5.3. Now, using (5.29) and (5.27), we write
each summand of the second term in (5.26) as

P[/ l{05(s)>dologry d 15 (s) # 0, T3, _5 < r2t:|
[T5,_2:Thy_1AT21)

a2 m"
(5-30) < pae P4+ Y P[/[ oy | 050)zdologr) d12(5) 70,
> 1 r

m=1 Nom—2:M2m—
~T,N

Nom—2 < Top_1 A rzt].

From (5.26) and definitions of , m", we get from (5.30) the following bound on
the probability in (5.24):

,
P[ /[o,rzf) l{055)2dglogry d12(5) # 0]

_ 2 _ 2
<Kie Kzrt+nrﬂ3€ Bar<t

n" m"
p3p> P(/[ O Ar2) l(04()2dologry d12.(5) # O,

n=1lm=1 Nom—2>M2m -1\

(5.31)

Mg < Top_1 A rzt).
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~r,n

By definition of g,.", for s € [5,,_5. B;;"), we have thatQ5(s) < dflogr.
Therefore, for such, the integrand on the right-hand side of (5.31) is zero. Hence,
we have that

each summand in (5.31) is bounded by
(5.32)
]P)(/ rn ~r.n 2 I{Q§(3)2d0|09r} dlg(s) # 0’ 18;;/;” < tgl’l—l VAN r2t>
(B o1, _1Aret)

Now we make the following selections:
[ (n2—p3) K3 kz})
0’ mn ——, -, = )
f1e ( { 8 88
4 A(ur —
)
03 G2

K =2max4, 16x2, 3212, 1613},

(5.33) K
1= ),
(2 — us)/2
2d
*
= —/,
C K 0
1 .{1 1}
f=-miny—-, —1,
2 4" 321

wherefs is as in Theorem 4.8 angh = c2({A5}, & = 22)is asin Corollary 5.3.
By Assumption 2.1 and choice ef, we can find-; > 1, such that, for alt > r4,

H2 — U3

(5.34) wp—mz—2e12——5—,

o+ €1 < 212, w3+ €1 < 2u3.

Define, fors > 0, AL(s) = AL(BL" +5) — AL(BL), g;(s) = ST(TI () +5) —
S™(T7 (By"). j = 2, 3. Now define

Si(s) — s

AR = { sup
N

0(c*logr)<s<(c*logr)

<egq,forj=2, 3},
(5.35)

AL = AR O {BEY < Th 1 ATPE).

Observing that,;"} are stopping times with respect to the filtration generated
by the queue-length processes, using the strong Markov property of the Poisson
processes, and using Corollary 5.2, we have, for some con€taand func-

tion C2(+) (not depending on),

—_~

(5.36) P[{A%"}C] < CpeCalead)(c*logr)
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Using (5.36), we can write (5.32) as
P(/ ) l{05(s)2dologr) d15(s) # 0, B," < T3, 1 A rzf)
(B iigm_y Ar2t)
(5.37) <P[{ARCN{BE" <15, 4 Ar2HY]
HF’(/ l(05(s)=dologry d13(s) # O, AZ;")
[Bm M1\ zt)
—Ca(e10)(c* logr)

<Cie

+P(ﬂ S

(5.38)
|05 dgioar dI5 (s 0,A;;”>
‘/\,Br’nn,ﬂg,z A 21‘) {Qz(‘)_dolog } 2( )#
+P(Bi =i
(5.39)

/ﬁl n ~r,n 21‘) I{QE(S)ZdolOgV} dI£ (S) 75 0’ ’A;;n)

m N1\

Now consider the event corresponding to the probability in (5.38):

(5.40) {,3 > 2,/[

Bui" Mo —1/\F r2t)

l{0}(s)2dologr} d 13 (s) # O, AS&”} = B,".

1<d0|° > ]
- Ry
2\ 4 09" ) Em

whereg; = c1({ub), e = B2 A D) + c1((A5), e = %2 A 1) and o5 = min{sa({ub),
&= “2 AD, c2({A5) e = ﬁ A1)}, wheregp and g2 are as in Corollary 5.3. To
see thls note that o@”’ by definition of 8" (recall that on the seB;"

Bi < rt), we have Q5(BL") > dzologr. And in order for Q5(B8,," + s) to
decrease byl(”’0 logr) inside [0, (8c*logr)], we need the number of services
from Buffer 2 (by Server 1) to be greater than or equal %Q logr) in (6c*logr)

~r,n

time. On the other hand, since on the sg}", using g;," > 7, _», wWe have
05(BL"—) < @ logr, we can conclude thad(B%") can be at mos logr + 1.
And Q58" + D > 2( logr) inside [0, (c*logr)] implies the number of

arrivals inBuffer 2 needs to be greater than or equa}(éi logr)—1> Z(%O logr)
in time (6c*logr), for r large. Thus, for sufficiently large, we can bound the

We claim that, for large values of

IP[ sup
(5.41) 0=s=(6c*logr)

do
O5(BL" +5) — (Z Iogr>

7 —choc*
< gqr ¢,
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probability in (5.41) by
. 1/d ~ 1/d
(5.42) P[sg(ec* logr) > §<ZO> Iogr} —HP’[ 5Oc*logr) > Z(ZO) |0gr:|.

Also note that, ifs; = min{1, £} and 8’2 = min{1, Q}, by the choices made
in (5.33), we have, for large enough,

2u2do 1(d0)
<=\ )

6" + £2) < 0222 2puz) <
K K 2\ 4

2do 202do 1 /do
O™ (M + ) < 6220 (2 —<—).
C ( 2+82)< K ( 2)< K < a\ 7

Using this observation and Corollary 5.3, we get that the sum in (5.42) is bounded
by
IP’[S’£ (Oc*logr) > (u5+ e2)0c* logr] + P[AE(@C* logr) > (A + £5)0c* logr]
< gyr .

This completes the proof of the claim in (5.41).
Now, using (5.41), for large values of we can bound (5.38) by

P(/%;" > ’7%—2’/ ) {05 (5)=dologry d 12 (s) # O, AZ;")
[Bin" i1 AF21)
< gprm2

~r,n

d
+ P[an_l — Bt —0c*logr < EO logr,

(5.43)
roprn 3 (do rn
sup Q585" +5) =5 (“Lloar ). 55 |
0<s<6c* logr 2\ 4
~1,1 rn * dO
+P[nz’m_1 — B, —6c*logr > rd logr,
(5.44)

ol 05057 02 3( 1) 3]
Now we get a bound on each of (5.43) and (5.44). For the event in (5.43), note
that Q4(B" +5) < 3(©logr) for s < 6c*logr, and within an additionaf? logr

units of time, Q5(s) becomes greater than or equalkdogr [see the definition

of the setB;;" in (5.40)]. This implies that there are more th@% logr) arrivals

in Buffer 2 in time % logr. Recalling the definition of, = min{1, A,/2} and the
choices made in (5.33), we have that, fdarge enough,

do do do
AL )— < (2h2)— < —.
(2+82)K<( 2)K<4
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Observing thatg;"} are stopping times with respect to the filtration generated
by the queue-length processes, using the strong Markov property of the Poisson
processes, we get that the distribution (conditioned orottiield generated by
queue-length processes stoppedft) of A’ 5(@c*logr + ) — A’(ec logr) is

the same as that of,(-). This, together with the display above, yields that, for
sufficiently large, (5. 43) is bounded by

]P’[A’(C[l? Iogr> (%) Iogr} < IP[AQ(C;{—OIogr) > Ay +&5)— |09r]

< gfrmsedo/K,
wheregl =gi({AS), e = A—zz AD},i=1,2,are asin Corollary 5.3.

Next we show that, for sufficiently large, (5.44) is zero. Note that by the
choices made in (5.33), a#;", we have that, for sufficiently large,

. 2d, 1/d,
S5(s) < (up +e1)s < Qu2)=2logr < = (—0 |09r)
K 2\ 4
(5.45) 2
forall s e [ec* logr, 70 Iogr]

Since on the set in (5.4405%(B,;" + Oc*logr) > 2( logr), this means
Q5(B,;" + s) never becomes zero farin the interval[6c* Iogr, (2dp/K) logr].

So, on the set in (5.44)5(B,;" + s) never becomes zero forin the interval
[0, (2dp/ K) logr]. Hence, using the fact that our policy requifsver 1 to work
on Buffer 2 continuously in the intervdlg};", " + 6c*logr + % logr], on the
setin (5.44), we have that

Q3(,B’” +0c*logr + — Iogr>

. do
(Gc logr + — Iogr) — 55 <9c* logr + © Iogr>

(5.46) > (uh — 231)<9c logr + — Iogr>

(2 — n3) do
—T_I gr

=cglogr > C".

However, (5.46) is a contradiction to the fact that, on the set in (5.44), we have
~F,n

Nom—1 > By + 6c*logr + %Iogr. This proves that (5.44) is zero. Thus, the
term (5.38) is bounded by

(547) § r §29C +§/’r—§2d0/K
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Now we consider (5.39). First note that fer=1,m = 1, (5.39) is zero, since
05(0) = 0. For all othern > 1,m > 1, consider the event corresponding to the
probability in (5.39):

{ﬁ;’"’n = ﬁgyZ—Z’ / o ~T,n I{QE(S)ZdOIOQr} dlé’(S) 7é o’ 'A):;ln} = G;;n
(B gy Ar2t)
We claim that, for large values of

IP’(H inf Q5B +5) < %Eologr}

O<s<6c*logr

(5.48) U{ inf Q’z(ﬁ,ig“r”f%(6{70'09”)”’@;5”)

0<s<(fc*logr)

_ *
< par P9,

whereps = c1({uf}, e = B2 A D + ca({ubl, e = B2 A 1) and p2 = min{g2({u5),
e=2 A1), c2({ub), e =52 A} andg;, i =1,2, are as in Corollary 5.3.
To see the claim, note that, @3;", .." = 75, _, and from (5.28)Q%(ii5 _5) >
Lologr —1. Andifris large enough so thé(ﬁo logr)—1> %0 logr, thenin order
for 05(B,;" +-) to decrease b%(ﬂo logr)—1in(fc*logr) time, we need the num-
ber of Class 3 services in that time interval to be greater than or eq(@llugr).
On the other hand, note that, by definitiongjf", we haveQ5(B,;") > %0 logr.
And in order forQ5(B,;" + -) to decrease b%(%o logr) inside[0, (6c* logr)], we
need the number of Class 2 services in that time interval to be greater than or equal
to %(%0 logr). So for large values of, the probability in (5.48) is bounded by

(5.49) P[Sg(ec* logr) > %ologr} + P[Sg(ec* logr) > %(d?f) Iogr].

Also note that, by the choices made in (5.33), if weset min{l, u3/2}, e4 =
min{1, u2/2}, we have, for large enough, that

2do 43 Lo
Oc* (s 0=——=(2u3) = 0d —4g < —,
" (uz+e3) < K(MS) <7

2do 2uzdo 1 /do
Oc*(ub 60— (2 — —
c(up+€a) < K(M2)< X <2<4>

Using the above observations and Corollary 5.3, we get that, for lardpe sum
in (5.49) is bounded by

P[S5@c*logr) > (14 + e3)0c* logr]
+P[S5(Oc*logr) > (uh + ea)0c* logr] < pyr=P20¢",
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This completes the proof of the claim (5.48). Now using (5.48), for large values
of r, we can bound (5.39) as follows:

]P’(ﬂﬁi" ='7§}Z_2»/ vn rm o N105()=dologry d12(s) #0, AZ;")
[Bm NP 1)

Nom—

_ *
< pyr—rebe

2co
+ P[ﬁr’”_ — B —6c*logr < —————logr,
am—1 Fm (2 — 1t3)

1/d
(5.50) 058" +5) > 5(?0 Iogr) fors <6c*logr,

. V4
inf O58," +5) > EO logr, @;;”}

0<s=<6Oc*logr

2co
+ ]P’|:ﬁr’"_ — B —6c*logr > ————— logr,
am=1 - Fm (2 — 113)

1/d
(5.51) 058" +5) > E(ZO Iogr) fors <6c*logr,

. Lo
inf 0538, +5) > 0 logr, G;;”].

0<s<6c*logr

We will next show that both the terms (5.50) and (5.51) are zero. First observe
that, from (5.45), we have that, on};”, for r sufficiently large, Q5(8," + -)

m

never becomes zero in the intervfc*logr, (2dp/K)logr]. Thus, on the
sets corresponding to terms (5.50) and (5.5Q%(8,;" + -) is not zero on
[0, (2dp/K) logr].

On the event in (5.50), we have

L
05(B)" +6c*logr) > 70 logr
and

[(B," +0c*logr), i, 4]

2
C [(ﬂ;;” +6c*logr), (B, +6c*logr) + __ %0 Iogr]
(2 — 13)]

Thus, by definition ofC;;” and conditions of the event in (5.50), we must
have thatQ5(B;," + 6c*logr + s) is zero for some in [0, (Mff%) logr]. This
means that, for somein the above interval,Q5(8;," + 6c* logr) — Q5(B);" +
Oc*logr + s)] > %0 logr. Now since Q5(8,," + -) never becomes zero in the
interval [0, (2do/K ) logr], this decrease i@5(s) is bounded b)[S‘g((Qc* logr) +

5) — S5((@c*logr) + )] — [S5(0c* logr) — S5(0c* logr)]. Hence, the probability
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in (5.50) is bounded above by

IP[ sup (S5(6c*logr + s)
0=<s=2cglogr/(ua—p3)

S * < * A * fo r,n
— S5(6c*logr +5)) — (S5(6c* logr) — S5(0c*logr)) > 2 logr; A, }

We claim that, for allr large enough, the above probability is zero. To see the

claim, note that, for alls < (z;fg'_op?s’), we have from (5.33) thaic* logr + s €

[6c*logr, c*logr]. Thus, by definition of4/;” and (5.33), we get, for all such
that

(S5(0c*logr +s) — S5(@c*logr + 5)) — (S5(6c* logr) — S5(Hc* logr))
< (53— ph + 2e1)(Oc* logr +5) — (u — b — 2e1)(Oc* logr)
=4e1(0c* logr) + (us — pub + 261)s
<4s1(6c*logr) — 3 (2 — pa)s
< (4e1 — 3(u2 — 13))(6c* logr)
<0,

for r large enough so thats — u5 + 2e1) < —(u2— p13)/2. This proves the claim.
Thus, the expression in (5.50) is zero. We now show that (5.51) is zero as well. To
see that, recall that, on the event in (5.52}(8,," + -) never becomes zero in the
interval[0, (2do/K) logr]. This implies that

2col
Qé(ﬁ;;" +6clogr + =220 )
(2 — 13)
ok 2cologr . 2cologr
> Sz<ec logr + 7) _ 53(9c logr + —)
(5.52) (2 — pn3) (2 — pn3)
' , - N 2cologr
> (1 — s — 261) <9c logr + 7>
(2 — 13)
— 2col
- (2 — pn3) 2cologr — cologr > C'.

- 2 (2 — 13)

However, (5.52) contradicts the definition g, _, in view of the fact that, on

the set in (5.51)f5" | > BL" + 6c*logr + (2:;"_03;). This proves that (5.51) is

zero. Hence, we have proved that (5.39) is boundegiby”2°<". Using the above
observation and (5.47), the term in (5.37) is bounded by

A(r) = Cle—[C2(819)](C* logr) + gir—ﬁ@C* + gi/r—§é/d0/K + )017'_'0296*.
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Using (5.32) and (5.31), we get the following bound on the left-hand side of (5.24),
for large enough:

rr
P[ /[07,) 1052 dologr/n 412(8) 7 O]

(553) E Kle*l(zl’zt +nr’33€7/34r2t +nrmrA(r)

< (L4207 4 yg(L+ r2n)2r 7,

for some constanty; > 0,i = 1,...,4, which are independent of. This
completes the proof of the theorent]

PROOF OFTHEOREM 4.11. We will only prove (4.41). The proof of (4.40)
is similar and therefore is omitted. Consider first the gasel. In view of (4.45),
the main step is to obtain bounds for the following integrals:

o0 R 2
(5.54) j e"”EH sup |Xl.’(s)|} }dr, i=1,2
T

O<s<t

By definition of X/ (-), we have that, for = 1, 2,

A 2 A 2
sup (X7 (s))" < 3( sup |A{(s)|)

O<s<t O<s<t
(5.55)
. 2 A )\i 2
+ 3( sup |S{(s)|> + 3<rul’<—’r — —)t) .
O<s<t M i

By Doob’s maximal inequality [for the martingal@l’ (s) — A]s)], we have

) . 2
/ e"”EH sup |A{(s)|} }dt
T O<s<t

- 2
(5.56) :r—Z/ e—V’EH sup |A{(s)—)»fSI} }dl
T

O<s<r2t
o0
§4A§/ te” " dr.
T

In a similar way, one shows that

00 . 2 00
(5.57) / e—V’EH sup |S{(s)|} ]dz 54;4/ te= ! dt.
r T

O<s<t

Combining (5.56), (5.57), (5.55) and using Assumption 2.2, we obtain

00 R 2
(5.58) limsuplimsup e‘V’EH sup |X,-’(s)|} ]dt:O, i=1,2

T—oco r—oo JT O<s<t
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Finally, combining (5.58) and (4.45) with the fact that) is Lipschitz continuous,
we have (4.41) for = 1.
Proof of (4.41), fori = 2, is similar. We will only prove the key steps. Let

(5.59) Y= [ grmagoorsn 4B50)

From (4.49), it is clear that we need to get an estimate on
o0 o o0

(5.60) / TEAY V) di = f eVt / P(Y! > /a)dudt.
T T 0

Theorem 4.9 and the fact thégt(s) < rs Yyields the following bound on the integral
in (5.60):

242

m A
r _ n r
/O P(Y] > Vu)du= /0 IP’(/[OJ) I{Qg(s)zdologr/r}dIZ (s) > ﬁ) du

2.2 A o
=ri P( /[OJ) ' (05)=dologr/ry 112(5) 7 0)

< r2t2(y1(1 + rzt)e_yzrzl +y3(1+ rzt)zr_y“z").

Substituting the above estimate in (5.60), one obtains after some straightforward
calculations that

(5.61)

o0
(5.62) limsuplimsup [ e "'E(Y/)?dt =0.
t

T—o0o0 Fr—o0 JT

Using (4.54), it follows that
. . o Q5(s) 2

5.63) limsuplimsu V’E( sup =221, », ) dt =0.
(5.63) T_)oop msupf e 0§s£z s 1056)<2dologr/r)

Now, as in the first half of the proof [see (5.58)], we can prove that

00 A 2
(5.64) limsuplimsup e‘VtIEH sup |X{(s)|} }dt =0, i=23.

T—oo r—o0 JT O<s<t

Thus, from (4.49), (5.62), (5.63) and the Lipschitz property of the Skorohod map,
we get (4.41) foi = 2. This completes the proof of the theorent

APPENDIX: PROOFS OF LEMMAS 4.5 AND 4.6

PROOF OFLEMMA 4.5. From (3.3), it follows that
(A1) (A"(), 8" () = (A(), u())  asr— oo,

wherea(t) = At, u(-) = ut; t > 0. Also, it follows from (2.7) and definition of the
fluid-scaled processes in (2.8) thgf(-) is uniformly Lipschitz continuous with
Lipschitz constant less than or equal to 1. This fact and (A.1) imply that

(A.2) {A"(), §" (), T"(-)},es is C-tight.
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Now, by definition of the queue-length process (2.1) and fluid-scaled
processes (2.8), we have

011 = A1) — S{(T{ ),
05(1) = Ap(1) — S5(T5 (1)),
(A3) 05(1) = 85(T3 (1) — S5(13.(1)),
Lo =t—T{ @) —T5@),
@) =1t —T@).
From (A.2), (A.3) and Lemma 3.14.1 of [2], we get
(A.4) {Q" (). I"()}res is C-tight.
Combining (A.2) and (A.4), we have (4.4)0

PROOF OFLEMMA 4.6. From Lemma 4.5, we have
(A.5) {07 (), A"(), 8" (), T" (), I" ()}, is C-tight
Thus, it is sufficient to show that all weak limit-points of the above sequence are
given by the right-hand side of (4.7).
Suppose that(Q(-), A(-), S(),T(-),I(-)) is a limit-point of the sequence
in (A.5), obtained along a subsequence indexedrty Using the Skorohod

representation theorem, we can assume that this convergence takes place almost
surely, uniformly on compacts:

(07 (), A7), 87, T (), 17 ()
—(0(), A(), 8¢, T(),1(-))  asr’” — oo.
From (A.1), we have thad (-) = A(-) andS(-) = u(-). Recall that, by assumption,
lim, oo J* (T"") = J({T""}) < 0. Thus, using Fatou's lemma, we get

1 A 4 S -
0= lim —J"(T" )zE(fo e V' liminf(h - Q" (t))dt)

r’"—oor r’’—o0

:E(/Oooe_w(h : Q(t))dt).

Sinceh; >0,i =1,2,3, andQ has continuous paths, a.s., we have from the above
equation thatQ () = 0. Using this along with (A.3) and (A.1), we now see that,
forallr >0,

0=t — urTa(t), 0= Aot — pu2Ta(t), 0= p2To(t) — usTs(t),
L) =t—Ti(t) — T2(t), L) =t — T3(1).

The result now follows on recalling the definition @f(-) and Assumption 2.2.
O

(A.6)
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