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We consider the problem of utility maximization for small traders on
incomplete financial markets. As opposed to most of the papers dealing with
this subject, the investors’ trading strategies we allow underly constraints
described by closed, but not necessarily convex, sets. The final wealths
obtained by trading under these constraints are identified as stochastic
processes which usually are supermartingales, and even martingales for
particular strategies. These strategies are seen to be optimal, and the
corresponding value functions determined simply by the initial values of the
supermartingales. We separately treat the cases of exponential, power and
logarithmic utility.

Introduction. In this paper we consider a small trader on an incomplete
financial market who can trade in a finite time intery@l 7] by investing in
risky stocks and a riskless bond. He aims at maximizing the utility he draws from
his final wealth measured by some utility function. The trading strategies he may
choose to attain his wealth underly some restriction formalized by a constraint.
For example, he may be forced not to have a negative number of shares or that his
investment in risky stocks is not allowed to exceed a certain threshold. We will be
interested not only in describing the trader’s optimal utility, but also the strategies
which he may follow to reach this goal. As opposed to most of the papers dealing
so far with the maximization of expected utility under constraints, we essentially
relax the hypotheses to be fulfilled by them. They are formulated as usual by the
requirement that the strategies take their values in some set, which is supposed to
simply be closed instead of convex. We consider three types of utility functions. In
Section 2 we carry out the calculation of the value function and an optimal strategy
for exponential utility. In this case, the investor is allowed to have an additional
liability, and maximizes the utility of its sum with terminal wealth. In Section 3
we consider power utility, and in Section 4 the simplest one: logarithmic utility.
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The method that we apply in order to obtain value function and optimal strategy
is simple. We propose to construct a stochastic prodssiepending on the
investor’s trading strategy, and such that its terminal value equals the utility
of the trader’s terminal wealth. As mentioned above, to model the constraint,
trading strategies are supposed to take their values in a closed set. In our market,
the absence of completeness is not explicitly described by a set of martingale
measures equivalent to the historical probability. Instead, we ch®bdseich that
for every trading strategy, R’ is a supermartingale. Moreover, there exists at
least one particular trading strategy such thatR”" is a martingale. Hereby, the
initial value is supposed to not depend on the strategy. Evidently, the strategy
related to the martingale has to be the optimal one. Then the value function of the
optimization problem is just given by the initial value Bf".

Since we work on a Wiener filtration, the powerful tool of backward stochastic
differential equations (BSDE) is available. It allows the construction of the
stochastic control procegs’, and thus the description of the value function in
terms of the solution of a BSDE.

In a related paper, El Karoui and Rouge [7] compute the value function and
the optimal strategy for exponential utility by means of BSDE, assuming more
restrictively that the strategies be confined to a convex cone. Sekine [15] relies on
a duality result obtained by Cvitanic and Karatzas [2], also describing constraints
through convex cones. He studies the maximization problem for the exponential
and power utility functions, and uses an attainability condition which solves the
primal and dual problems, finally writing this condition as a BSDE. In contrast to
these papers, we do not use duality, and directly characterize the solution of the
primal problem. This allows us to pass from convex to closed constraints.

Utility maximization is one of the most frequent problems in financial
mathematics and has been considered by numerous authors. Here are some of
the milestones viewed from our perspective of maximization under constraints
using the tools of BSDEs. For a complete market, utility maximization has been
considered in [9]. Cvitanic and Karatzas [2] prove existence and uniqueness
of the solution for the utility maximization problem in a Brownian filtration
constraining strategies to convex sets. There are numerous papers considering
general semimartingales as stock price processes. Delbaen et al. [4] give a duality
result between the optimal strategy for the maximization of the exponential utility
and the martingale measure minimizing the relative entropy with respect to the real
world measureP. This duality can be used to characterize the utility indifference
price for an option. Also relying upon duality theory, Kramkov and Schachermayer
[12] and Cvitanic, Schachermayer and Wang [3] give a fairly complete solution
of the utility optimization problem on incomplete markets for a class of general
utility functions not containing the exponential one. See also the review paper by
Schachermayer [16] for a more complete account and further references.

The powerful tool of BSDE has been introduced to stochastic control theory by
Bismut [1]. Its mathematical treatment in terms of stochastic analysis was initiated
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by Pardoux and Peng [14], and its particular significance for the field of utility
maximization in financial stochastics clarified in [6].

1. Preliminaries and the market model. A probability space(2, ¥, P)
carrying anm-dimensional Brownian motioiW;)co,7] is given. The filtration
IF is the completion of the filtration generated W

Let us briefly explain some special notation that will be used in the paper.
| - | stands for the Euclidean norm iR™. For ¢ > 1, LY denotes the set of
Fr-measurable random variabléssuch thatE[|F|7] < oo, for k € N, #*(R?)
the set of allR?-valued stochastic processeésvhich are predictable with respect
to F and satisfyE[ [y |9;|¥dt] < oco. #®°(R?) is the set of allF-predictable
R?-valued processes that axex P-a.e. bounded of0, 7] x 2. Note here that
we write A for the Lebesgue measure i) 7'] or R.

Let M denote a continuous semimartingale. The stochastic exponérifi)
is given by

&(M), = exp(M, — 3(M),), te[0,T],

where the quadratic variation is denoted(By). Let C denote a closed subset of
R™ anda € R™. The distance betweenand( is defined as

distc(a) = gyg la — b|.

The setll¢(a) consists of those elements Gfat which the minimum is obtained:
Mc(a)={beC:la—b|=distc(a)}.

This set is not empty and evidently may contain more than one point.

The financial market consists of one bond with interest rate zeradandn
stocks. In casd < m, we face an incomplete market. The price process of stock
evolves according to the equation

asi . ; .
(1) Si’:b;dt+o,’th, i=1....d,

t

where b’ (resp.o?) is anR-valued (respR*"-valued) predictable uniformly
bounded stochastic process. The lines of dhe m-matrix o are given by the

.....

we assume thato!” is uniformly elliptic, that is,K1; > oo'" > ¢l;, P-a.s. for
constantk > ¢ > 0. The predictabl®™-valued process

0y =0/"(00/") b, 1€[0,T],

is then also uniformly bounded.
A d-dimensionalf-predictable process = (1;)o</<7 IS called trading strategy

if fnd?s is well defined, for examplg’oT l7i0:]12dt < 0o P-a.s. Forl<i <d,the
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processr; describes the amount of money invested in stomktimer. The number

of shares |s,’;—; The wealth procesX™ of a trading strategyt with initial capital
t

x satisfies the equation

d ot . 1
XF=x+3 [ Zas , =x+ | m0,dW,+6,du), €[0T,
' i=1 0 Si,u ’ 0

In this notationrr has to be taken as a vectori*“. Trading strategies are self-
financing. The investor uses his initial capital and during the trading intgdyal],
there is no extra money flow out of or into his portfolio. Gains or losses are only
obtained by trading with the stock.

The optimal trading strategy we will find in this paper happens to be in the class
of martingales of bounded mean oscillation, briefly called BMO-martingales. Here
we recall a few well-known facts from this theory following the exposition in [10].
The statements in [10] are made for infinite time horizon. In the text they will
be applied to the simpler framework of finite time horizon, replaaagvith T'.

Let G be a complete, right-continuous filtratioR,a probability measure and a
continuous loca{ P, G)-martingale satisfyingfo = 0. Let 1< p < oco. ThenM is
in the normed linear space BMOf

IMlgvo, == sup  E[Mr — M:|”|§.]"? < cc.
7 G-stopping time
By Corollary 2.1 in [10], M is a BMO,-martingale if and only if it is a
BMO,-martingale for every; > 1. Therefore, it is simply called a BMO-mar-
tingale. In particularM is a BMO-martingale if and only if

1M ||lgmo, = sup  E[M)r — (M);4:1Y? < <.
7 G-stopping time

This means local martingales of the fofy = fé & dW, are BMO-martingales if
and only if

T 1/2
@ IMlewo, = sup E[/ ||ss||2ds|9f] <.
t G-stopping time T

Due to the finite time horizon, this condition is satisfied for bounded integrands.
According to Theorem 2.3 in [10], the stochastic exponeng&all) of a
BMO-martingaleM is a uniformly integrable martingale. i is a probability
measure defined byQ = & M)y dP for a P-BMO martingale M, then the
Girsanov transform of aP-BMO martingale is a BMO-martingale undep
(Theorem 3.6 in [10]).

Suppose our investor has a liabilify at time T'. This random variable is
assumed to b&r-measurable and bounded, but not necessarily positive. He tries
to find a trading strategy that is optimal in presence of this liab#ityin a sense
to be made precise in the beginning of the following section.
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In order to compute the optimal trading strategy, we use quadratic Backward
Stochastic Differential Equations (BSDE) and apply a result of Kobylanski [11]
to get existence of a solution for our BSDE. This result is proved for bounded
terminal random variables. Therefore, we have to assumeé-timbounded.

2. Exponential utility. In this section we specify the sense of optimality for
trading strategies by stipulating that the investor wants to maximize his expected
utility with respect to the exponential utility from his total weakt§. — F. Let us
recall that, fore > 0, the exponential utility function is defined as

U(x) =—exp(—ax), x eR.

The definition of admissible trading strategies guarantees that there is no
arbitrage. In addition, we allow constraints on the trading strategies. Formally,
they are supposed to take their values in a closed set, thaf(is) € C, with
C € R4 \We emphasize thaf is not assumed to be convex.

DEFINITION 1 (Admissible strategies with constraihts Let C be a closed set
in R4 The set of admissible trading strategiésconsists of alki-dimensional
predictable processes = (7;)o<;<r Which satisny[fOT |7r;00|2dt] < oo and
7, €C A ® P-a.s., as well as

{exp(—aXT) : T stopping time with values if0, ']}

is a uniformly integrable family.

REMARK 2. The condition of square integrability in Definition 1 guarantees
that there is no arbitrage. In fact, the square integrability condition @md the
boundedness &f yields thatE[supy., .7 (X7)?] < co. According to Theorem 2.1
in [14], (X;, ;0;) is the unique solution of the BSDE

T T
Xo=Xr— [ (oW, = [ (mo)6.ds,
t t
with E[fy (XT)?ds] < oo, E[fy (m505)2ds] < oo. So the initial capitalX
needed to attaix7 is uniquely determined. In particular, Theorem 2.2 in [6] yields

if X5 =0andX7 >0 P-a.s., thenrX7 =0 P-a.s.

REMARK 3. In accordance with the classical literature (see [5]) the uniform
integrability condition in Definition 1 coincides with the notion of class D.

REMARK 4. If X™ is square integrable and e C} ® P-a.s., aswell ax” is
bounded from below ofD, T, it is obvious thatr € .
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Fort € [0, T, w € 2 define the sef; (w) € R™ by
®3) Ci(w) = Coy (o).

The entries of the matrix-valued processre uniformly bounded. Therefore, we
get

4) min{|a|:a € C;(w)} < k1 for A ® P-a.e(t, w)

with a constank; > 0. Furthermore, for evergw, 1), the setC; () is closed. This
is crucial for our analysis.

REMARK 5. Writing
pl:nlatv te[o’ T]’

the set of admissible trading strategiéss equivalent to a set of R1*"-valued
predictable stochastic processgswith p € A iff E[fOT |p(t)|%dt] < oo and
p:(w) € C;(w) P-a.s., as well as

{exp(—a XP) : t stopping time with values if0, T']}

is a uniformly integrable family.
Such a procesp € 4 will also be named strategy, arf”’ denotes its wealth
process.

So the investor wants to solve the maximization problem

Vi(x):= supE[ exp( a<x+fT7rdS’ F
= sk ~exf—a (v [ g - F)) |

TeA

wherex is the initial wealth.V is called value function. Losses, that is, realizations
with X™ — F < 0, are punished very strongly. Large gains or realizations with
X" — F > 0 are weakly valued.

REMARK 6. We shall show below that the sup is taken by a particular strategy
p* which is admissible in the sense of our definition. Note that this process might
not lead to a wealth process which is bounded from below, and therefore not
admissible in this sense. For further details, see [13] and [17].

The maximization problem is evidently equivalent to
T
(5) V(x)= supE[— exp(—a(x +/ (AW, +6,dt) — F))]
PEA 0

In order to find the value function and an optimal strategy, we construct a family
of stochastic processé&?) with the following properties:
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o RY) = —exp(—a(X) — F)) forall p € 4,
. Ré”) = Rg is constant for alp € #,

e R is a supermartingale for gl € 4 and there exists a* € 4 such thatk (7"
is a martingale.

The proces®?) and its initial valueRg depend, of course, on the initial capiial
Given processes possessing these properties, we can compare the expected utilities
of the strategiep € A andp™ € A by

6) E[—exp(—a (X} — F))] < Ro(x) = E[—exp(—a (X} — F))] =V (x),

whencep* is the desired optimal strategy. To construct this family, we set
RP = —exp(—a(X" —Y))),  t€[0,T], pean,

where(Y, Z) is a solution of the BSDE

T T
Y,=F—/ ZsdW; —f f(s, Zy)ds, tel0,T].
t t

In these terms we are bound to choose a functforfor which R??) is a
supermartingale for alp € 4 and there exists @* € 4 such thatR??") is a
martingale. This functiory’ also depends on the constraint ¢€t), where(p;)
takes its values [see (3)]. We get

V(x)=RYY = —exp(—a(x — Yp))  forall p e s.

In order to calculatef, we write R as the product of a (local) martingale”’
and a (not strictly) decreasing proce$®’ that is constant for somg* € 4. For
t €[0, T, define

t t
Mt(p) = exp(—a(x — Yo)) exp(—/o a(ps — Zg)dWy — %/0 ocz(ps — Zs)zds).
ComparingR® and M (P A(P) yields

5 t
Mm=—w%/v@mmamg, 1[0, 71,
0
with
_ 1.2 2
U(ta P, Z) - _apet +af(tv Z) + éa |p - Z| .
In order to obtain a decreasing procel®’, evidently f has to satisfy
v(t, pr, Z) >0 forall p e A
and

v(t’p;ka Zt) =0
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for some particulap® € 4. Forz € [0, T'], we have

1 o 2 1 o 2
—v(t, pr, Zy) = Z|pi|l" —ap| Ze + =0, | + S| Zi1° + f(t, Zy)
o 2 o 2

1
Pt — (Zt + —91>
o

o 1
Pt — (Zt + —91>
2 o

2 g 1 1?2 « >
—=|Zi 4+ =0 +=Z7+ f(t, Zy)
2 o 2

N[ R

2

1 2
_Ztet_z_letl + f(t, Zy).
o

Now set
o . 1 1 2
flt=-2 dls@(z + 6, ct<w>) 26+ =162
2 o 2a
For this choice, we get(z, p, z) > 0 and for

1
pl e e, w) (Zt + aet), te[0,T],

we obtainu(-, p*, Z) =0.

Here we see why the s& and, hence(; on which trading strategies are
restricted is assumed to be closed. In order to find the value function, we have
to minimize the distance between a point and a set. Furthermore, there must exist
some element ig; realizing the minimal distance. Both requirements are satisfied
for closed sets. In a convex set the minimizer is unique. This would lead to a unique
utility maximizing trading strategy. However, we prove existence of a possibly
nonunique trading strategy solving the maximization problem for closed but not
necessarily convex constraints.

THEOREM7. The value function of the optimization probl€®) is given by
V(x) =—exp(—a(x — Yo)),

where Yy is defined by the unique solutiaqly, Z) € H>®(R) x #2[R™) of the
BSDE

T T
(7) Y, =F —/ Zs dW, —/ fs.Z)ds,  1€[0,T],
t t
with
_ 1 1
fe)=—2 dlslz(z + =6, C) + 20 + —16]2.
2 o 20

There exists an optimal trading strategy € 4, with

1
(8) p e llc,(w) (Z, + —6,), te€[0,T], P-as.
o
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PROOFE In order to get the existence of solutions of the BSDE (7), we
apply Theorem 2.3 of [11]. According to Lemma 11 below, for fixed R™,
(f(t,2)ef0.77 defines a predictable process. A sufficient condition for the
existence of a solution is condition (H1) in [11]: there are constagts; such
that

9 | f(t,2)| < co+ cilz)? forall z e R" P-a.s.

By means of (4), we get, fare R™,t € [0, T,

: 1 ) 1 2
dlstz(z—l-&@,,C,) <2lz| +2(5|9’|+k1) .

So (9) follows from the boundedness &f Theorem 2.3 in [11] states that the
BSDE (7) possesses at least one solutinZ) € #°°(R) x H2(R™).

To prove uniqueness, suppose that solutioiis Z1) € #®°(R) x #H2(R™),
(Y2, Z?) € H>®(R) x H2(R™) of the BSDE are given. Then we have

T T
yl- Y2=—f (Zl—ZZ)dW—/ (f(s,ZY — f(s,Z%) ds.
Now note that, fos € [0, T'], z1, z2 € R™, we may write
fs, 2 — f(s,29)
o . 1 1 . 2 1 1 2
- —§[d|s€<z + -0, cs) - dus12<z + -0, c)} + (L = 0,

Using the Lipschitz property of the distance function from a closed set, we obtain
the estimate

15,28 — f(5,29)] < calz® — 2% + ea(12 + 122D (124 = 22))
<31+ 124 + 122D = 22).
Let us set

f.z2H - fa. 23
B(1) = Zt— 77
0, if Z} —z2=0.

. ifzl—272+0,

Then we obtain from the preceding estimate
BOI <c@+1ZH+122),  t€l0,T].

Moreover, from the boundedness of' and Y2, the P-BMO property of
fo Zi(s)dW;,i = 1,2, follows, see Lemma 12. This in turn entails thaB (s) d W
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is a P-BMO martingale. But this allows us to give an alternative description of the
difference of solutions in

T T
Yl—Yzz—/ (z;l—zf)dws—/ B(s)(ZY — 7?) ds

T
_ _/ (Z} — Z2)[dW, + B(s) ds].

This process is a martingale under the equivalent probability meauvehich

has density
T
6(~ [ poyaw,)

with respect toP. Since Y} = F = Y2, we therefore conclude¢’! = Y2 and
71 =72, and uniqueness is established.

To find the value function of our optimization problem, we proceed with the
unique solution(Y, Z) € #>*(R) x #2(R™) of (7). Let p* denote the predictable
process constructed in Lemma 11 foe Z + %9. Thenfi,(”*)(w) =-1forArQP
almost all(z, w). By Lemma 12 below/(py — Z;) dW; is a P-BMO martingale,

whenceR?") is uniformly integrable (Theorem 2.3 in [10]). Since, moreover,
Y is a bounded process, we obtain the uniform integrability of the family

{exp(—a X ") ¢ stopping time in0, T1}. Therefore,p* € #. Hence, R is
a martingale and

. T
A R )

= —exp(—a(x — Yo)).

It remains to show thakR(”) is a supermartingale for afi € 4. Sincep € 4, the
processM = Mo&(—«o [(ps — Zs) dWs) is a local martingale. Hence, there exists
a sequence of stopping timeés,),.en Satisfying lim, .~ t, = T P-a.s. such that
(M;x+,): is a positive martingale for eaghe N. The process\?) is decreasing.

Thus,R,(ﬁ),n = M,MHAE’A’)W is a supermartingale, that is, for< ¢,
E[RD, 17] < R,
For any setd € ¥;, we have
E[R{%), 14] < E[R{Z,, 14].

Since {Rfﬁ),n . and {RAEIA’),n . are uniformly integrable by the definition of
admissibility and the boundednessiafwe may let: tend tooo to obtain

E[RP1,4] < E[RP1,4].

This implies the claimed supermartingale propertyR6f. O
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REMARK 8. If the processf;psdW, is a BMO martingale andE[expx
(—a(X(Tp) — F))] < oo, a variant of an argument of the above proof can be used
to see thap € . In fact, we see that/?) is a uniformly integrable martingale,

while A is decreasing. Henc®? is a supermartingale. This just states that,
for stopping timeg,

—exp(—a(XP) — ;) = E[—exp(—a (X" — F))|£.].
Consequently,
exp(—aXP)) < exp(—aY;) E[exp(—a(X¥ — F))| 7]

This clearly implies uniform integrability oi{exp(—axi”)):r stopping time
in [0, T']}.

We can show that the strategy is optimal in a wider sense. In fact, an investor
who has chosen at time 0 the strategfy will stick to this decision if he starts
solving the optimization problem at some later time between O0ZanBor this
purpose, let us formulate the optimization problem more generally for a stopping
time t < T and an¥;-measurable random variable which describes the capital
at time r, that is, X, = X? for somep € 4. So we consider the maximization
problem

(20) V(r,X;)= esssuﬁf[— exp(—a(Xﬁ—/;T ps (AW + 0 ds)—F))’}‘f]

peEA

PrRoOPOSITION9 (Dynamic principle). The value function > — exp(—a(x —
y)) satisfies the dynamic programming principeat is
V(t,X:)=—exp(—a(X; — Y7))

for all stopping times < T, whereY; belongs to a solution of the BSOE). An
optimal strategy that attains the essential supremur(iLD) is given byp*, the
optimal strategy constructed in Theorédm

PrRoOE Fort €0, T], set

T T
R, = —exp(—a(X, — Yt))8<—/ a(ps — Zs)dWs> exp(/ (s, ps. Zs)ds>
t t

and apply the optional stopping theorem to the stochastic exponential. The claim
follows as in Theorem 7.0

REMARK 10. If the constraintC on the strategies is a convex cone, the
value functionV and the optimal strategy™ both constructed in Theorem 7 are
equivalent to those determined in [15] and [7].
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Sekine considers the utility function— —% exp(—ax). He obtains the value
function

1 _
V(x) = ——exp(—ax + Yo),
o

starting with the BSDE

_ T T _
Y,:ozF—/ zsdws—/ Fs,6.2)ds,  1€[0,T],
t t
where
F(.6.2) =0T, G +6,) — 317 — T, G+ 612

We evidently have to show thal; = «¥; for t € [0, T] or, equivalently,
af (t,6, ) = f(t,6;,z). Note that for a convex set, the projectionllc(a) is
unigue. IfC is a convex cone anfl > 0, then8T1¢(a) = ¢ (Ba). The equality
for the functionsf and f therefore follows. El Karoui and Rouge [7] have obtained
the same BSDE and value function before Sekine.

In the following lemma we return to a technical point in the proof of Theorem 7.
We show that it is possible to define a predictable process which satisfies (8).
Instead of referring to a classical section theorem, see [5], we prefer to give a
direct and constructive proof.

LEMMA 11 (Measurable selection).Let (a/)/ef0,7], (o,),e[o 1 be RIxm_ya-
lued (resp_ R4*™_valued) predictable stochastic processe&s c R? a closed set
andC; = Cat,t e [0, T].

(a) The process

d = (dist(a,, éal))te[O,T]

is predictable
(b) There exists a predictable processwith

a;y € g, (ar) forall t €[O, T].

PROOF In order to prove (a), observe thais the composition of continuous
mappings with predictable processes. Koe N, let H* denote the space of
compact subsets @&* equipped with the Hausdorff metric ami( H*) the Borel
sigma algebra with respect to this metric. The mapping &%tx H” — R is
jointly continuous, hence B (R™) ® B(H™) — B(R))-measurable. Now consider
jiR&m x HY — H™ that maps a compact subs€tin R by applying a
(d x m)-matrix & to a compact subset of R”. More formally, j mapsC to
the following set:

={beR"3éeC:b=27C5).
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The mapping; is also jointly continuous and, thereforeB (R"*¢) @ B(H?) —
B(H™))-measurable. Hence, (a) follows for compé?ct~ B

If more generallyC is closed but not bounded, takg = C N B,, whereB,
is the closed ball with radius centered at the origin. According to what has
already been shown, for € N, dist(a,, C,o,) defines a predictable process and
dist(a;, C,0,) converges to digt;, Co;), for n — oo. This proves the first claim.

In order to prove the second claim, we first concentrate on the case of
compactf?. We have to show that, for € R” and a compact sek C R™,
there exists a8 (R") ® B(H™) — B(R™))-measurable mapping(z, K) with
£(z,K) € [Tz (z). This is achieved by the definition of a sequence of mappings
£,(z, K) with a subsequence of randomly chosen index that converges to an
element ofI1;(z). The choice of the converging subsequence will depend in a

measurable way onandX .

Forn e N, let G, = (x]");en be a dyadic grid with mipeg, dist(z, x) < % for
allz e R™. Let the elements of the grid,, be numbered by, = {g" :i e N}. Let
K, be the elements of the grid with distance at mg-jsfrom G,,. Since we can

describe the set&, as the intersections of the discrete 6gtwith the closed set
of all points inR™ having distance at mo&tfrom K, and this closed set depends

continuously onk, Kn is measurable irK. For anyz € R”, let I1,(z, K) be
the set of all pomts ink,, with minimal distance fronz. SlnceK is measurable
in K, I, (z, K) is obviously measurable it, K). To defineg, (z, K), we have
to choose one point ifil,(z, K). Let it be the one with minimal index in the
enumeration of5,,. This choice preserves the measurabilit;(z’nl?) Hence, we
obtain thatg, (z, K) is (B(R™) ® B(H™) — B(R™))-measurable. Furthermore,
liminf,_ o |£,(z, K)| < oo for all (z, K). This is one assumption in Lemma 1.55
in [8] that we aim to apply. This lemma is stated for equivalence classes of random
variables, where two random variables are equivalent if they are equal almost
everywhere with respect to a probability measure. Considering carefully the proof,
we see that we can apply this lemma, also without reference to any measure, to
obtain a result for everyz, K) € R™ x H™.

Lemma 1.55 in [8] yields a strictly increasing sequerieg),en Of integer
valued, B(R™)® B(H™) — B(R))-measurable functions and a mappédgR™ x
H™ — R™ measurable with respect to the corresponding produelgebra,
satisfying

lim £ B K)=£&(z, K) VzeR", Ke H".

n—oo
But & is a selection. Indeed, for evenye N,

| dist(z, &, (z, K)) — dist(z, K)| < Ti

n

SII—\

Since&,, converges t@, we obtain dist, K) =0, hence¢ € K and distz, &) =
dist(z, K). Thus, by constructior§(z, K) € I (z) for all (z, K) e R™ x H™.



1704 Y. HU, P. IMKELLER AND M. MULLER

We may then choose
a*=&(a,Co)

to satisfy the requirements of the second part of the assertion in the compact case.
Finally, if C is only closed, we may proceed similarly as in the proof for (a). Let

al =&(a, (C N By)oy), t €[0,T]. This time we apply Lemma 1.55 in [8] to the

sequence of predictable proces&ey),,cn and the measur® ® A on Q2 x [0, T'].

We obtain a strictly increasing sequence of random indigés, r) measurable

with respect to the predictabte-algebra and a predictable processuch that

lim a" @V w)=a,(w)  for P@ 1 a.e.(o,1).
For the process, we have digi;, Co)=0P®rae O

LEMMA 12. Let(Y, Z) € #°(R) x H2(R™) be a solution of the BSDE),
and letp* be given by Lemmalfora =Z + %9. Then the processes

f ZsdWy, / p:dWs
0 0
are P-BMO martingales

PrROOF Letk denote the upper bound of the uniformly bounded prodess
Applying Itd’s formula to(Y — k)2, we obtain, for stopping times< T,

T
E[/ Z2ds
T

ff} — E[(F = )25 ] — |Ys — k2

T
— ZE[/ Ys —k)f(s, Zy)ds
T
The definition off yields, for all(z, z) € [0, T] x R™,

7.

1 2
S, 2) <20+ —16:]°.
2

Therefore, there exist positive constanisc, andcq such that

T
E[/ |Zs|%ds &L}]
T

?‘L’}-
Hence, |y Z; d W, is a BMO martingale.
We next deal with the stochastic integral procesgfThe triangle inequality

implies
. 1

T
5%] §c1+czE[f \Z, + 1] ds
T

T
<&+ %E[f | Z|%ds
T

1
|p*|§‘z+—e‘+
(04
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The definition ofp™* together with (4), yields for some constaRis ko,
IP,*I§2IZr|+§I9tl+k1§2lzzl+k2, 1[0, T],
and, thus, for every stopping time< T,

T T
e [ iniials | <] [ sz
T T

This implies theP-BMO property of [y p¥dW,. O

3. Power utility. In this section we calculate the value function and charac-
terize the optimal strategy for the utility maximization problem with respect to

1
Uy(x)=—x7, x>0, ye1l).
14

This time, our investor maximizes the expected utility of his wealth at time
without an additional liability. The trading strategies are constrained to take values
in a closed se€> C RY. In this section we shall use a somewhat different notion of
trading strategyp = (5');=1..._q denotes the part of the wealth invested in stack

The number of shares of sto¢ks given by”’ L. A d-dimensionalF-predictable

processp = (p;)o<:<r IS called trading strategy (part of wealth) if the following
wealth process is well defined:

¢ d X(p) ~
Si,s

i,s

t -
(11) x? =x +f dSis=x +f0 XP 5o (dWy + 6, ds),

and the initial capitak is positive. The wealth proces§?) can be written as
xP =x8</ 5505 (AW + 6, ds)) . te[0,T].
t
As before, it is more convenient to introduce
pf:ﬁlal’ te[oa T]
Accordingly, p is constrained to take its values in
Ci(w)=Co(w), te€l0,T],weQ.

The setsC; satisfy (4). In order to formulate the optimization problem, we first
define the set of admissible trading strategies.

DEFINITION 13. The set of admissible trading strategi¢sconsists of all
d-dimensional  predictable processesp = (pr)o<:<r that satisfy

pr € Ci(@)P @ r-a.s. andfy |ps|?ds < oo P-a.s.
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Define the probability measui@ ~ P by

19 (- [oaw)

The set of admissible trading strategies is free of arbitrage because, for every
p € A, the wealth procesX® is a local Q-martingale bounded from below,
hence, aQ-supermartingale. Sinc® is equivalent toP, the set of trading
strategiesk is free of arbitrage.

The investor faces the maximization problem

(12) V(x) = supE[U(xP)].

peA
In order to find the value function and an optimal strategy, we apply the same
method as for the exponential utility function. We therefore have to construct a
stochastic procesk® with terminal value

~ T dS
(0) s

R =U +/ X0 —)
T <x 0 sMs Ss

and an initial value?”’ = R that does not depend gn R(*) is a supermartingale

forall p € 4 and a martingale for @* € 4. Thenp* is the optimal strategy and
the value function given by (x) = Rg. Applying the utility function to the wealth
process yields

t t 4
(X7 =x¥ exp(/o yps AWy +/O ypsbs ds — %/O leslzds), 1[0, T].

This equation suggests the following choice:

~ t t t
(13) Rf”)=xyeXp</O J/pdes+/o Vpsésds—%fo leslzds+Yz>,

where(Y, Z) is a solution of the BSDE
T T
Y,=O—/ stWS—/ f(s, Zs)ds, te[0,T].
t t

In order to get the supermartingale propertyRSf), we have to construct (z, z)
such that, for € [0, T'],

(14) thet—%)/|/3t|2+f(l, Zz)S—%|VPt+Zt|2 for all p € 4.

R will even be a martingale if equality holds fpi € 4. This is equivalent to

1 1 2 1y1Z,+6% 1,
Z)<Zyld- - (Z,+0)| -2 17,02
.20 =5y@A=y)\p 1_y( (0 =5 1, 51Zi]
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Hence, the appropriate choice ffris

_r@-y) . 1 vliz+612 1 ,
f(l‘,Z)—TdIST?(l_y(Z-FQt),Ct)—2(1—_)/)—E|Z| s

and a candidate for the optimal strategy must satisfy

1
,Ot* € HC;(w)(ﬁ(Zt +9t)), tel[0,T].

In the following theorem both value function and optimal strategy are described.

THEOREM 14. The value function of the optimization problem is given by
V(x) = x¥ exp(Yo) forx > 0,

where Yy is defined by the unique solutidiy, Z) € #®°(R) x #2(R™) of the
BSDE

T T
(15) Y,=0—f zdes—/ f(s,Z)ds,  1el0,T],
t t

with

_y@d-y) . 1 yiz+61> 1 ,
f(f,Z)—lesg(l_y(Z-i-@t),Ct)—m—ém .

There exists an optimal trading strategy € /4 with the property
1
(16) p; € Hcf(a))(m(zz + 02‘))-

PROOF According to Lemma 11(f (¢, z)):¢c[0.7] IS @ predictable stochastic
process which also depends en Due to (4) and the boundedness ®f
Condition (H1) for Theorem 2.3 in [11] is fulfilled. We obtain the existence of
a solution(Y, Z) € #>®(R) x #H?(R™) for the BSDE (15). Uniqueness follows
from the comparison arguments in the uniqueness part of the proof of Theorem 7.

Let p* denote the predictable process constructed with Lemma 1% fer
ﬁ(z + 6). Lemma 17 below shows that* € A. By Theorem 2.3 in [10], the

processk¥*) is a martingale with terminal value

~ (% T T r
0 0 0

This is the power utility from terminal wealth of the trading stratedgyTherefore,
the expected utility op* is equal toI?é” ) — x¥ exp(Yo).
To show that this provides the value function, et 4. (14) yields

~ t
R§’”=xyexp(Yo)8(/ <yps+zs)dws) exp(/ vsds>, 110,71,
t 0
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for a proces® with vy, <0 A ® P-a.s.
The stochastic exponential is a local martingale. There exists a sequence of
stopping timest,),eN, lim, 0 T, = T such that

E[R®, |7]<R¥. ., s<i,

for every n € N. Furthermore,R® is bounded from below by 0. Passing to
the limit and applying Fatou’s lemma yields th&t” is a supermartingale. The

terminal vaIueR(Tp’x) is the utility of the terminal wealth of the trading strategy
Consequently,

E[UXY)] < RS =x” exp(Yp)  forall p € A, 0

Again, we can show that an investor starting to act at some stopping time in the
trading intervalO, 7] will perceive the strategy* just constructed as optimal. Let
t < T denote a stopping time arxi, an #;-measurable random variable which
describes the capital at timeg that is,X, = X7 forap e 4 and an initial capital
x > 0. Consider the maximization problem

T
(17) V(t, X1) =esssurE[U(Xf +/ X 05 (dWs + 6 ds))‘?,].
PEAL T

PROPOSITION15 (Dynamic principle). The value function” exp(y) satisfies
the dynamic programming principléhat is

V(t, Xo) = (Xo)” exp(Yy)
for all stopping times < T, whereY; is given by the unique solutiofY, Z) of
the BSDE(15). An optimal strategy which attains the essential supremu(i i
is given byp* constructed in Theorery.
PROOFE See Proposition 9.

REMARK 16. Suppose that the constraint §&is a convex cone. Then the
optimal strategy* constructed in Theorem 14 is the same as in [15].

Sekine uses the utility function— %xV and obtains the value function
- 1 -
V(x)==x"exp((1—y)Yo),

14

whereYy is defined by the unique solutiafY, Z) € #*°(R) x F#2(R™) of the
BSDE

- T . T -
Yt=0—/ stWS—/ g(s, Zy)ds, te[0,T].
t '
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Here

6,2 1
2 2

3 _ 0 21—
g1, 5) = @—HQG+ f)‘— 4

refee )
1—y 2 © ety )

As for the exponential utility function, we have to shat — y)Y = Y or,
equivalently,(1 — y)g(z, ﬁ = f(z,z). In fact, we have

z+@‘1
6, — I
2 2" Q(l—y)
S e ()
— — I,
2 11—y 11—y

6,2 1

(l—y)g(t, %) =(1- V)[
-y

2
=60,Ic,(z+6;) — 5 ¢, (z+6,)|

1
1-v)
1 5 1 2
— élzl +zlc, (z+6;) — §|Hct(z+9,)|

=(z+6)c (z+6,) — 2_7)/|1_Ic (Z+0t)|2— :—L|Z|2
' 20—y G 2

14 2 1 5
=— I1 )" — =|z|°.
2(1_)/)’ c (z+ l‘)’ 2|Z|

To obtain the last equality, we use

(z + 00T, (z +6,) = |TIe, (2 + 6,)]?

[see (18) below].
For the functionf, we obtain

2

1—
f@&):y(Zy)l_y@+90—na(l_yg+@0
v @6 —}I 2
21—y 2Z
1
= —1K y(z+61)Hc,(z+9z) + 2(+_w|ncr(z+9z)\2— EIZI2

14 2 1 5
=——"|I 0| — =lz|°
2a—yﬂ ¢ @+00[" =Szl

Forr € [0, T], z € R™, we therefore have

a-ng(r =)= .o,

Z
1-y



1710 Y. HU, P. IMKELLER AND M. MULLER

It remains to prove that, for a convex coGeanda € R™, the following equality
holds:

(18) Mc(a)(a —Tc(a) =
If TTc(a) =0, then the identity is satisfied. If not, consider the half liféc (a),

A > 0. This half line is part of the con€, soTl¢(a) is also the projection af on
the half line. O

LEMMA 17. Let(Y, Z) € #®(R) x #2(R™) be a solution of the BSDE5),
and letp* be given by(16). Then the processes

/ Zs dWj, / p¥dW,
0 0

PROOF We can use the same line of reasoning as in the proof of Lemma 12.
The argument given there has to be slightly modified, however. We may take a
lower boundk for Y, and apply 1t6’s formula tgY — k|2, to conclude in the same
manner as before.[]

are P-BMO martingales

4. Logutility. To complete the spectrum of important utility functions, in this
section we shall consider logarithmic utility. As in the preceding section, the agent
has no liability at timeT'. Trading strategies and wealth process have the same
meaning as in Section 3 [see (11)]. The tradlng strategim® constrained to take
values in a closed sef> c RY. For p;, = j,0,, the constraints are described by
C, = Co0,,t € [0, T]. In order to compare the logarithmic utility of the terminal
wealth of two trading strategies, we have to impose a mild integrability condition
on p. Recall thatp! > 1 means that the investor has to borrow money in order to
buy stocki and if p’ < 0, then the investor has a negative number of siodkn
integrability condition orp is not restrictive.

DEFINITION 18. The set of admissible trading strategiés consists of all
R?-valued predictable processessatisfying E[fOT lps|2ds] < oo and p; € C;
P ® A-a.s.

For the logarithmic utility function,

U(x) =log(x), x>0,

we obtain a particularly simple BSDE that leads to the value function and the
optimal strategy. The optimization problem is given by

V(x) = sup E[log(X'")]
pEA]
(19)

T T
=Iog<x)+supE[/ pdes+f (pses—%wz)ds],
pEA] 0 0
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where the initial capitat is positive again. As in Section 2, we want to determine a
processk® with RY” =log(x ), and an initial value that does not dependoon
Furthermore R is a supermartingale for all € A;, and there exists a* € A;

such thatR®") is a martingale. The strategy is the optimal strategy anﬂg* is
the value function of the optimization problem (19).
We can choose, fare [0, T],

t t
R =togx + Yo+ [ (ou+Z0dWs+ [ (<310 =62+ 302+ f(9) s
where
f@) = 3disf@,,C) —316,1°,  1€0,T],
and(Y;, Z;) is the unigue solution of the following BSDE:
T T
Y,:O—f ZSdWs—/ f(s)ds, te€[0,T].

t t
Due to Definition 18, the boundednessiaéind (4), the stochastic integral Rf”
is a martingale for alp € ;. Hence,R? is a supermartingale for al € ;. An

optimal trading strategy*, which satisfieso; € Ilc, (6;), can be constructed by
means of Lemma 11. The initial valig satisfies

Yo = —E[/OT f(s)ds].

% T
V(x) =Rl (x) :Iog(x)—i—E[—/o f(s)ds].

Hence,

In particular,p* only depends o#, o and the se€» describing the constraints on
the trading strategies.
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