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INSTABILITY IN STOCHASTIC AND FLUID
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The fluid model has proven to be one of the most effective tools for
the analysis of stochastic queueing networks, specifically for the analysis of
stability. It is known that stability of a fluid model implies positive (Harris)
recurrence (stability) of a corresponding stochastic queueing network, and
weak stability implies rate stability of a corresponding stochastic network.
These results have been established both for cases of specific scheduling
policies and for the class of all nonidling policies.

However, only partial converse results have been established and in certain
cases converse statements do not hold. In this paper we close one of the
existing gaps. For the case of networks with two stations, we prove that if
the fluid model is not weakly stable under the class of all nonidling policies,
then a corresponding queueing network is not rate stable under the class of all
nonidling policies. We establish the result by building a particular nonidling
scheduling policy which makes the associated stochastic process transient.
An important corollary of our result is that the conditionρ∗ ≤ 1, which
was proven in [Oper. Res. 48 (2000) 721–744] to be the exact condition
for global weak stability of the fluid model, is also the exact global rate
stability condition for an associated queueing network. Hereρ∗ is a certain
computable parameter of the network involving virtual station and push start
conditions.

1. Introduction. In a series of papers, starting in the early 1990’s, researchers
established a strong connection between the stability of a queueing network and
the stability of the corresponding fluid model. Initiated by Rybko and Stolyar [20]
and generalized by Dai [7], Stolyar [21] and Chen [4], among others, it has been
demonstrated that the stability of a fluid model implies stability of a corresponding
queueing network. The stability results in the aforementioned papers were
established both for classes of policies, for example, the set of nonidling policies,
and specific policies, for example, First-In-First-Out (FIFO) (Dai [7] discusses
both types of results). The fluid model is a continuous, deterministic analog of
a discrete stochastic queueing network. It is defined through a set of equations
which nominally take as parameters only the mean values of the random variables
associated with the queueing network.
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Since the stability behavior of the fluid model is often significantly easier to
analyze than that of the stochastic model, the results above have led to sweeping
advances in understanding the stability of queueing networks via the fluid model.
A short list of such papers includes [1, 3, 5, 11, 12, 16]. However, a major element
needed for a satisfactory theory of stability via fluid models is a converse to the
aforementioned stability results. Specifically, if the fluid model isnot stable in
some sense, does this imply instability of the corresponding queueing network?
Unfortunately, it turns out that formulating an appropriate converse is a delicate
matter. Partial converses which appear in the literature refer both to the fluid model
and the fluid limit model, which is the set of weak limits of the rescaled stochastic
process. Dai [8] introduces the notion of a weakly unstable fluid limit model.
Roughly speaking, the fluid limit model is weakly unstable if there exists a uniform
time at which all fluid limits which start at zero are strictly positive. If the fluid
limit model is weakly unstable, Dai provides a concise proof showing that in the
stochastic network, the queue length process diverges to infinity with probability
one. This result provides a partial converse to the stability results mentioned earlier.
Puhalskii and Rybko [19] use large deviations methods to prove another partial
converse to the stability theorems. Their result implies that if there exists an initial
fluid model state for which all fluid trajectories with “close” initial states satisfy
a uniform rate of divergence condition, then the queueing process is not positive
Harris recurrent. Under stronger conditions on the fluid trajectories they prove
transience of the queueing process. In two different papers, Meyn focuses on
networks which can be represented by countable state Markov chains. In [17],
Meyn uses martingale methods to show that if all fluid limits eventually diverge
at some uniform rate, then the state process associated with the queueing network
is transient. Meyn [18] uses Markov chain techniques to prove another transience
result. In that paper, if the fluid limits satisfy a uniform homogeneity condition
and a uniform lower bound for trajectories starting from some open set, this again
implies that the state process for the associated queueing network is transient. In
each of the papers [17] and [18], Meyn explains how the results can be extended
to networks with more general state spaces.

In all of the papers above which prove a converse result to the original stability
theorems in [4, 7, 21], some uniform requirement over a set of fluid trajectories
or, more precisely, a set of fluid limits (sometimes restricted to fluid limits starting
from a particular type of state), is needed for the result to be applicable. Recall that
the original stability results of Dai [7] and Chen [4] require thatall fluid trajectories
are stable in some sense. Hence, we use the term “partial converse” above because
there is some gap between the stability and instability results. To close the gap
between the stability and instability results, one might consider analyzing directly
the set of fluid limits. However, this approach presents certain difficulties, since the
fluid limits are defined in a nonconstructive way, as weak limits of the underlying
stochastic process. Moreover, it is shown in [15] that computing fluid limits of
a queueing system is an algorithmically undecidable problem for a certain class
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of scheduling policies. In contrast, the fluid trajectories are defined by the set
of solutions of a fluid model, a series of a fairly simple and reasonably tractable
differential equations. It is this latter notion of fluid model which we use herein.

In [4], it is shown that a multiclass queueing network is globally rate stable
if the corresponding fluid network is globally weakly stable (see Section 2.2.2
in this paper for definitions). In this paper we present a result which is a full
converse to Chen’s stability result. It is a full converse in that, for some networks,
in particular, two station networks, the result implies that the stochastic network
is globally, rate stable if and only if the corresponding fluid network is globally
weakly stable. In particular, this implies that if there is just one linearly divergent
fluid trajectory, then the stochastic network is not rate stable under some nonidling
policy. Combining our main result with the result of Dai and VandeVate [12], we
show that a certain computable condition of the formρ∗ ≤ 1 is a necessary and
sufficient condition for rate stability in networks with two stations. This is the first
tight condition for stability for such a general class of networks. Our proof uses a
series of large deviations estimates to establish the result and the only restriction in
the stochastic network is that the estimates are applicable to the primitive stochastic
processes defining the network. For a comprehensive discussion of various stability
concepts in fluid and queueing networks, and theρ∗ ≤ 1 condition, we suggest
Dai [9].

It should be noted that a strength of the transience results in [8, 17–19] is that
they can be applied to networks under a class of policies or just one particular
policy (like FIFO or a static buffer priority policy), whereas our result only applies
to the class of nonidling policies. In other words, the advantage of the previous
transience results is that they can be used to determine if a given network is stable
under a particular scheduling policy. Our result can be used only to determine if
there exists one scheduling policy, within the class of nonidling policies, which
makes a network unstable. It should be noted though that, in general, it is more
difficult to apply the previous results because of more stringent requirements on
the behavior of the fluid model trajectories.

One is naturally led to ask if our result can be extended to apply to networks
operating under a particular policy rather than the class of all nonidling policies.
Unfortunately, a paper by Dai, Hasenbein and VandeVate [10] essentially rules out
the possibility of obtaining a full converse which can also be applied to particular
policies. In that paper, it is shown that the stability of a queueing network under a
fixed static buffer priority policy depends on more than just the mean value of the
service and interarrival times. Hence, no mean-value based fluid model can sharply
determine stability for the network considered, which implies that no general
stability converse can be formulated for a network operating under an arbitrary,
but specific policy.

Our paper is organized as follows, in Section 2 we introduce stochastic and
fluid multiclass networks and describe mathematical preliminaries. In Section 3
we present the main results of our paper and their implications. All of the proofs
are presented in Section 4.
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2. Preliminaries—model description and assumptions. We start by de-
scribing the model of interest—a multitype queueing network. In the following
section we describe a stochastic multitype queueing network and in Section 2.2
we introduce a fluid queueing network.

2.1. Stochastic multitype queueing networks.

2.1.1. Network description. An open stochastic multitype queueing network
is a network ofJ stationsσ1, σ2, . . . , σJ each processing one or multiple types
of jobs. For each typei = 1,2, . . . , I , there is an external stream of jobs arriving
to the network. The intervals between successive arrivals of jobs corresponding
to typei are given by the i.i.d. sequenceXi

1,Xi
2, . . . ,Xi

k, . . . . If E[Xi
1] exists, we

defineλi ≡ 1/E[Xi
1] to be the arrival rate for typei. More detailed assumptions

about the stochastic processes {Xi
k, k = 1,2, . . .} are provided later. We denote

by Ai(t) the cumulative arrival process which counts the number of arrivals up to
time t . That is,Ai (t) = max{k :

∑
r≤k Xi

r ≤ t}.
Each job of typei has to be processed on a fixed ordered sequence of stations

σ(i,1), σ (i,2), . . . , σ (i, Ji), where eachσ(i, l) is one of the stationsσ1, . . . , σJ .
We refer to(i,1), (i,2), . . . , (i, Ji) as stages corresponding to the typei. We allow
the repetition of stations, that is,σ(i, j ′) = σ(i, j ′′) for j ′ �= j ′′, meaning some
jobs need to be processed on the same station multiple times (which is common in
some manufacturing environments). In particular,Ji could be bigger thanJ . We
slightly abuse the notation sometimes by usingσ to also denote the set of classes
which are served at stationσ .

Each stationσ = σj , j ≤ J , has one server and, in particular, can work on
only one job at a time. Other jobs awaiting processing onσ accumulate into
queues. Typei jobs in the queue corresponding to stage(i, j) will be referred
to asclass (i, j) jobs. Once a job of class(i, j) is processed, it is moved into the
next queue(i, j + 1) at the stationσ(i, j + 1), or leaves the network ifj = Ji . The
processing times for jobs of typei at stagej are random and are given by the i.i.d.
sequenceSi,j

1 ,Si,j
2 , . . . ,Si,j

k , . . . . If E[Si,j
1 ] exists, we defineµi,j ≡ 1/E[Si,j

1 ] to be
the service rate for jobs in class(i, j). Again, more detailed assumptions regarding
the stochastic processes{Si,j

k , k = 1,2, . . .} are provided later.
Let d = ∑

i Ji denote the total number of classes in the network. We denote by
Q(t) = (Qi,j (t)) ∈ Z

d+ the vector of queue lengths in our queueing network at time
t ≥ 0. In order to completely specify the stochastic dynamics ofQ(t), we need to
specify the vector of initial queue lengthsq = Q(0) and thescheduling policy U
which gives gives the protocol at each stationσ for resolving the contention for
service, when several jobs are competing for the same station. Some common
policies include the First-In-First-Out (FIFO) policy which gives priority to jobs
which arrived earlier to the station, Last-In-First-Out (LIFO) defined analogously,
Global-FIFO (GFIFO) which gives priority to jobs which arrived earlier into the
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entire network [based on time stamps of a job’s arrival to class(i,1)] and static
buffer priority policies which are based on a ranking of classes in each station and
give priority to jobs with the higher ranking, and so on. All of these policies are
examples ofnonidling policies, which are defined as policies that require each
stationσ to work at full capacity as long as there are any jobs waiting to be
processed byσ .

Throughout the paper we will be only considering head-of-the-line (HOL) type
nonidling scheduling policies. Under an HOL policy, at most, one job of each
class at a given station can receive service at a given time. Furthermore, under
the HOL assumption, jobs are served in FIFO order within a given class. FIFO,
GFIFO and static buffer priority are examples of HOL policies. Adopting the HOL
assumption in this paper is really not a restriction since the main goal of this paper
is to construct an unstable (in a sense to be defined) nonidling scheduling policy.
Indeed, we construct an unstable policy which happens to be of HOL type. In
addition to being HOL, the policy we use to prove the main result ispreemptive
resume. Under such a policy, if the processing of a job of classi is interrupted to
serve a job from another classj , then the classi job is ejected from service and
placed at the head of the line for processing at a later time. When classi is again
chosen for service, the remaining processing time for the ejected job is the same
as it was at the moment it was ejected.

For each(q, z1, z2) ∈ Z
d+ ×�I+d+ , we say that the state of the stochastic process

at timet is (q, z1, z2) if at time t the vector of queue lengthsQ(t) is q, the vector
of residual interarrival times isz1 (hence, the dimensionI for this component
of the state) and the vector of residual service times isz2. For many scheduling
policies, including the policy constructed in this paper, the state spaceZ

d+ × �I+d+
is adequate to describe the underlying stochastic process of the network.

For each class(i, j), let Ti,j (t) denote the total amount of time stationσ(i, j)

spent processing class(i, j) jobs during the time interval[0, t]. Let Di,j (t) denote
the cumulative departure process for class(i, j) jobs, that is,Di,j (t) is the number
of class(i, j) jobs that stationσi,j processed during the time interval[0, t]. For
each stationσ , let Qσ (t) = ∑

(i,j)∈σ Qi,j (t) and letTσ (t) = ∑
(i,j)∈σ Ti,j (t). The

following relations follow immediately from the definitions. For all 1≤ i ≤ I,2≤
j ≤ Ji andt ≥ 0,

Qi,1(t) = Qi,1(0) + Ai (t) − Di,1(t),(1)

Qi,j (t) = Qi,j (0) + Di,j−1(t) − Di,j (t),(2)

Di,j (t) = max

{
k :

∑
r≤k

Si,j
r ≤ Ti,j (t)

}
.(3)

Also for every 0≤ t1 ≤ t2 and every stationσ ,∑
(i,j)∈σ

(
Ti,j (t2) − Ti,j (t1)

) ≤ t2 − t1.(4)
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Finally, if the scheduling policyU is nonidling, then for every 0≤ t1 ≤ t2 and
every stationσ , if Qσ (t) > 0 for all t1 ≤ t ≤ t2, thenTσ (t2) − Tσ (t1) = t2 − t1.
In other words, if the total queue in stationσ was always positive during the time
interval [t1, t2], then the station was always working on jobs full time during this
interval.

Let

λmax = max
i

{λi, λ
−1
i },(5)

µmax = max
i,j

{µi,j ,µ
−1
i,j },(6)

Jmax = max
i

{Ji}.(7)

For technical purposes, we introduceC—a very large constant which exceeds all
the parameters of the network. Specifically,

C > 13(λmax+ µmax)
2IJ 3

max.(8)

For any stationσ , let |σ | denote the number of classes in the setσ . For any vector
q ∈ �d , we let ‖q‖ = ∑

1≤i≤d |qi | denote theL1 norm. For any nondecreasing
nonnegative functionf (t) and anyt1 ≤ t2, we letf (t1, t2) denotef (t2) − f (t1).

2.1.2. Stochastic assumptions. Below, we introduce some basic assumptions
on the sequences of random variables which represent the primitive data in our
stochastic networks, and an assumption on the behavior of the network process
itself.

DEFINITION 1. Consider a sequence of i.i.d. nonnegative random variables
Z1,Z2, . . . ,Zn, . . . with E[Z1] ≡ α < ∞. Such a sequence satisfies large devia-
tions (LD) bounds if for everyε > 0, there exist constantsL = L(ε),V = V (ε) > 0
such that, for anyz > 0,

P

(∣∣∣∣∣
∑

1≤i≤n

Zi − z − αn

∣∣∣∣∣ ≥ εn
∣∣∣ Z1 ≥ z

)
≤ V e−Ln,(9)

for all n ≥ 1, and the counting processN(t) ≡ max{n : Z1 + · · · + Zn ≤ t} satisfies

P

(∣∣∣∣N(t + z) − t

α

∣∣∣∣ ≥ εt
∣∣∣ Z1 ≥ z

)
≤ V e−Lt ,(10)

for all t ≥ 0.

It is important that the constantsL,V in the definition above do not depend
on z > 0. This uniformity will become useful when we analyze arrival and
service processes with the presence of some residual interarrival and service
times. For simplicity, we assume common constantsL = L(ε),V = V (ε)

instead of individual constants corresponding to indicesi, j . Our main stochastic
assumptions are as follows:
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ASSUMPTION A. The sequences {Xi
n, n = 1,2, . . .} and {Si,j

n , n = 1,2, . . .}
are i.i.d. for every 1≤ i ≤ I and 1≤ j ≤ Ji .

ASSUMPTION B. For eachi, j , the large deviation bound (9) holds for
the sequences {Xi

n, n = 1,2, . . .} and {Si,j
n , n = 1,2, . . .} and (10) holds for the

associated renewal processes.

ASSUMPTION C. For every state(q, z1, z2), every n > 0, we haveτ ≡
inf{t :‖Q(t)‖ ≥ n | Q(0) = (q, z1, z2)} < ∞ with probability one, under any
scheduling policy.

One way to verify Assumption B is via the following sufficient condition for the
large deviations bounds to hold for i.i.d. sequences.

LEMMA 1. Suppose Z1,Z2, . . . ,Zm, . . . , is a nonnegative i.i.d. sequence
with E[Z1] = α such that there exists a function F(θ), θ ≥ 0, taking values in
�+ ∪ {∞}, which is finite on some interval [0, θ0] and which satisfies

sup
z≥0

E
[
eθ(Z1−z) | Z1 ≥ z

] ≤ F(θ),(11)

for every θ ≥ 0. Then this sequence satisfies the LD bounds (9) and (10).

The proof of Lemma 1 is provided in the Appendix. It is simple to check
that condition (11) is satisfied by many distributions including the exponential,
Erlang and any distribution with bounded support. Note that, by settingz = 0,
condition (11) implies that the distribution ofZ1 has a moment generating function
for θ ∈ [0, θ0].

Assumption C is intentionally broad, in that it does not involve the stochastic
primitives directly. The assumption holds for a wide range of distributions, given
Assumptions A and B. For example, if at least one of the service time distributions
has unbounded support, then Assumption C holds. However, Assumption C holds
under even weaker conditions.

We adopt Assumptions A, B and C for the remainder of the paper. Whenever
we talk about the probabilityP{·} of any event, the probability is understood with
respect to the stochastic processes{Xi

n,Si,j
n }. If the vector of initial queuesQ(0)

is a random vector itself, then the probability is also with respect to the probability
distribution ofQ(0).

2.1.3. Stability and rate stability. One of the main features one desires to
have in a multitype queueing network is stability. Various equivalent definitions of
stability have been used in the literature, among which positive Harris recurrence
is one of the most commonly used definitions. Under the condition that the
interarrival times{Xi

k} are unbounded and spread out (see [7]), then positive Harris
recurrence is defined as follows.
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DEFINITION 2. A multitype queueing network operating under a scheduling
policy U is defined to be Harris recurrent if there existsb > 0 such that for any
initial vector of queue lengthsQ(0), the timeτ = inf{t :‖Q(t)‖ ≤ b} is finite with
probability one. The network is defined to be positive Harris recurrent or stable, if,
in addition,E[τ ] < ∞, where the expectation is conditioned on the initial vector
of queue lengthsQ(0). The network is defined to be globally stable if it is stable
for every nonidling scheduling policyU.

The positive Harris recurrence property, under some additional technical
assumptions, implies the existence of a unique stationary distribution for the queue
length processQ(t).

A somewhat weaker definition of stability is rate stability. This is the form of
stability we are primarily concerned with in this paper.

DEFINITION 3. A multitype queueing network operating under a scheduling

policy U is defined to be rate stable if for every typei, limt→∞
Di,Ji

(t)

t
= λi ,

a.s. The network is defined to be globally rate stable if it is rate stable for every
nonidling scheduling policyU.

In words, rate stability means with probability one the arrival rate is equal to
the departure rate. From (1) and (2), rate stability implies limt→∞

Di,j (t)

t
= λi and

limt→∞
Qi,j (t)

t
= 0 a.s. for alli, j . In other words, for a rate stable system, even if

the total queue length‖Q(t)‖ diverges ast goes to infinity, it grows, at most, at a
sub-linear rate a.s.

2.2. Fluid model.

2.2.1. Fluid equations. Fluid models are continuous deterministic counter-
parts of stochastic queueing networks, intended to capture the most essential dy-
namic properties of the queue length process. The term fluid model is sometimes
used interchangeably with the terms “fluid limits” and “functional law of large
numbers.” For many types of queueing networks (see, e.g., [2, 6, 7, 13, 20]), it has
been established that the rescaled queue length processQ(nt)/n for a large scal-
ing parametern converges weakly to a certain continuous deterministic process,
satisfying a series of functional equations, which we describe below. To avoid con-
fusion, we define thefluid limit model to be the set of weak limits ofQ(nt)/n as
n → ∞, and we define the fluid model to be the set of solutions of the system of
equations below (formal definition follows). Then the set of fluid limits is a subset
of the set of solutions to the fluid model.

Given a multitype queueing network with arrival ratesλi and service ratesµi,j ,
the corresponding HOL fluid model (or fluid network) is defined by the fol-
lowing system of equations and inequalities with time dependent variables
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Q̄i,j (t), Āi(t), D̄i,j (t), T̄i,j (t), t ≥ 0. We first provide the system of equations and
inequalities, and immediately after we give a physical explanation for each of
these equations. For everyi = 1, . . . , I, j = 1,2, . . . , Ji , σ = σ1, . . . , σJ , t ≥ 0
and 0≤ t1 ≤ t2,

Q̄i,1(t) = Q̄i,1(0) + Āi(t) − D̄i,1(t),(12)

Q̄i,j (t) = Q̄i,j (0) + D̄i,j−1(t) − D̄i,j (t),(13)

Āi(t) = λit,(14)

D̄i,j (t) = µi,j T̄i,j (t),(15) ∑
(i,j)∈σ

(
T̄i,j (t2) − T̄i,j (t1)

) ≤ t2 − t1,(16)

Q̄i,j (t), Āi(t), D̄i,j (t), T̄i,j (t) ∈ �+.(17)

In addition, for all i, j, T̄i,j (t) is a nondecreasing function oft and Āi,j (0),

T̄i,j (0) = 0.

The value ofQ̄i,j (t) represents the total amount of fluid present in buffer(i, j)

at timet . We also refer to it as class(i, j) fluid. Āi(t) represents the total amount of
fluid corresponding to typei, that arrived externally during the time interval[0, t].
The fluid arrival process is assumed to be linear with rateλi , hence, (14).D̄i,j (t) is
the amount of class(i, j) fluid that was processed by stationσ(i, j) during [0, t].
T̄i,j (t) represents the portion of the time interval[0, t] that stationσ(i, j) spent
processing class(i, j) fluid. Inequality (16) enforces the physical constraint that
any given station can spend at most 100% of its time processing fluid.

Equations (12) and (13) are simply flow conservation equations: all class
(i, j − 1) fluid becomes class(i, j) fluid after processing, for allj ≤ Ji , and class
(i, Ji) fluid leaves the network after processing. The last constraint (17) simply
says that all the variables involved are nonnegative real numbers. Note that only the
expectations 1/λi = E[Xi

1] and 1/µi,j = E[Si,j
1 ] of interarrival and service times

appear in the fluid model. The higher-order moments of the network primitives are
not reflected in the model.

For each stationσ , we let

Q̄σ (t) = ∑
(i,j)∈σ

Q̄i,j (t),(18)

that is,Q̄σ (t) is the total fluid level in stationσ at timet . Also let

T̄σ (t) = ∑
(i,j)∈σ

T̄i,j (t).(19)

So, T̄σ (t) is the total amount of time stationσ spent processing fluid during
the time interval[0, t]. Equivalently,Īσ (t) ≡ t − T̄σ (t) represents the cumulative
amount of idling experienced by stationσ during the time interval[0, t].
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From (16), it follows that the function̄Ti,j (t) is Lipschitz continuous. Using
(12)–(17), it can be checked that all of̄Qi,j (t), Āi(t), D̄i,j (t), T̄i,j (t) are also
Lipschitz continuous. Any solution(Q̄i,j (t), Āi(t), D̄i,j (t), T̄i,j (t)) of the system
of equations and inequalities (12)–(17) is defined to be a fluid solution. For
simplicity, henceforth we use(Q̄(t), T̄ (t)) to denote a fluid solution, wherēQ(t)

and T̄ (t) stand, respectively, for vectors(Q̄i,j (t)) and(T̄i,j (t)). A fluid solution
(Q̄(t), T̄ (t)) is defined to be nonidling if for every stationσ , Īσ (t) increases only
at timest whenQ̄σ (t) = 0. Formally, the fluid solution is nonidling if for every
stationσ , ∫ ∞

0
Q̄σ (t) dĪσ (t) = 0.(20)

The integral is well defined becauseĪσ (t) is a Lipschitz continuous function and,
as a result, is almost everywhere differentiable in�+ with respect to the Lebesgue
measure on�+.

DEFINITION 4. The set of nonidling feasible solutions to the system of
equations (12)–(17) and (20) is defined to be the nonidlingfluid model.

When a queueing network operates under a specific scheduling policy, for
example, under a fixed buffer priority policy, additional constraints can be added
to the fluid equations in order to reflect the policy. In this paper we are only
considering the case of all the nonidling policies, and thus the nonidling fluid
model defined is the one of interest. For the remainder of the paper, we drop the
modifier “nonidling” and simply refer to the “fluid model.”

The following lemmas are used later in the paper. The proofs of both lemmas
are straightforward and thus omitted (note that Lemma 3 appeared as Property 2
in [4]).

LEMMA 2. Suppose (Q̄(t), T̄ (t)) is a fluid solution defined over a time
interval [0, θ ]. Then Q̄′(t) ≡ Q̄(0) + t

θ
(Q̄(θ) − Q̄(0)), T̄ ′(t) ≡ t

θ
T̄ (θ) defined

over [0, θ ] is also a fluid solution. Moreover, suppose the solution (Q̄(t), T̄ (t))

is nonidling and for every station σ , either Q̄σ (t) > 0 for all t ∈ [0, θ ] or
Q̄σ (0) = Q̄σ (θ) = 0. Then the solution (Q̄′(t), T̄ ′(t)) is also nonidling.

LEMMA 3. Suppose (Q̄(t), T̄ (t)) is a nonidling fluid solution defined over a
time interval [0, θ ]. Then for any β > 0, Q̄′(t) ≡ βQ̄(β−1t), T̄ ′(t) ≡ βT̄ (β−1t) is
a nonidling fluid solution defined over the interval [0, βθ ].

In the proofs in later sections, we need to define certain types of fluid models
with a finite decomposition property. We define this notion below.
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DEFINITION 5. A fluid model is defined to satisfy theFinite Decomposition
Property (FDP) if there exist valuesν,B > 0, with the following property. For
every nonidling fluid solution(Q̄(t), T̄ (t)) defined over an interval[0, θ ] such that
Q̄(t) �= 0 on this interval, there exist a nonidling fluid solution(Q̃(t), T̃ (t)) also
defined over[0, θ ] and a sequence of times instances 0= t0 < t1 < t2 < · · · < tM =
θ such that:

1. M ≤ νθ sup0≤t≤θ
1

‖Q̄(t)‖ + B and inf0≤t≤θ ‖Q̃(t)‖ ≥ inf0≤t≤θ ‖Q̄(t)‖.
2. Q̃(tm) = Q̄(tm) for all m = 0,1, . . . ,M .
3. For each interval(tr , tr+1),0≤ r ≤ M − 1 and each stationσ eitherQ̃σ (t) > 0

for all t ∈ (tr , tr+1) or Q̃σ (t) = 0 for all t ∈ (tr , tr+1).

The next proposition shows that the FDP requirement is not restrictive for fluid
models arising from two station networks.

PROPOSITION1. Fluid networks with two stations (J = 2) satisfy FDP.

Although we only consider multitype fluid networks in this paper, the proposi-
tion actually holds for any two station fluid network, for example, networks with
proportional routing. This general form of Proposition 1 is proved in Section 4.2.
At this point we do not know whether FDP holds for general networks (i.e., with
J > 2).

2.2.2. Global stability and global weak stability. Just as for stochastic
queueing networks, we can define stability and global stability for fluid networks.

DEFINITION 6. A fluid solution(Q̄(t), T̄ (t)) is defined to be stable if there
exists aτ < ∞ such thatQ̄(t) = 0 for all t ≥ τ . A fluid model is defined to be
globally stable if there exists aτ < ∞ such that every nonidling fluid solution
(Q̄(t), T̄ (t)) satisfying‖Q̄(0)‖ = 1 also satisfies̄Q(t) = 0 for all t ≥ τ .

REMARKS. 1. The condition‖Q̄(0)‖ = 1 in the definition above is a necessary
scaling condition. One cannot have a uniform emptying timeτ without a bound on
the initial state.

2. The definition of global stability is somewhat different from the perhaps more
natural: “network is defined to be globally stable if it is stable for all nonidling
policies.” While it is possible that both definitions are equivalent and it is known
to hold in many cases, it has not yet been established in general. Definition 6 is
used more often because it simplifies certain technical considerations.

Below, we define a stability notion for fluid networks which is the analogue of
the rate stability definition for stochastic networks.
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DEFINITION 7. A fluid model is defined to be globally weakly stable if for
any nonidling fluid solution(Q̄(t), T̄ (t)), Q̄(0) = 0 impliesQ̄(t) = 0 for all t ≥ 0.

In words, a fluid model is weakly stable if one cannot construct a nonzero fluid
solution which starts from zero. We did not introduce the notion of a weakly stable
fluid solution, since this would just mean introducing a trivialQ̄(t) = 0 solution
[also it is easy to check that̄Q(t) = 0, for all t impliesTi,j (t) = λi

µi
t for all (i, j)].

2.3. The connections between stochastic and fluid queueing networks. The
most immediate connection between a stochastic network and the corresponding
fluid queueing network is provided by the results of Dai [7] and Stolyar [21].
Roughly speaking, they show that for a broad class of scheduling policies, if
a stochastic network is operating under a policyU, each weak limitQ̄(t) =
limn

Q(nt)
t

and T̄ (t) = limn
T(nt)

t
of the stochastic queue length processQ(t) and

cumulative work processT(t), with a sequence of initial statesQ(0) = nγ �,
where γ is a fixed positive constant, is a deterministic continuous function
(Q̄(t), T̄ (t)) which is a fluid solution of the corresponding fluid model. If the
policy U is nonidling, then each obtained fluid solution is also nonidling. Thus,
the queue length process, after an appropriate rescaling using certain scaled initial
states, converges to a fluid solution.

This rescaling process provides the basic tool for connecting the stability of
stochastic and fluid networks. In fact, this connection was the primary motivation
for introducing fluid model techniques [20]. The following theorem establishes a
fundamental relationship between the stability of the stochastic and fluid models.

THEOREM 4 (Dai [7], Stolyar [21]). Consider a multitype queueing network.
If the corresponding fluid model is globally stable, then the stochastic network is
globally stable.

Theorem 4 actually holds for a broader class of networks and also for networks
operating under specific scheduling policies. If one is given a particular scheduling
policy U, one can sometimes identify additional constraints that the fluid limits
limn Q(nt)/n must satisfy.

More relevant to the topic of the present paper is the following related result.

THEOREM 5 (Chen [4]). Consider a multitype queueing network. If the
corresponding fluid model is globally weakly stable, then the stochastic network is
globally rate stable.

Our understanding of global stability and global weak stability is fairly complete
for fluid models corresponding to queueing networks with two stations (J = 2),
thanks to the results of Bertsimas, Gamarnik and Tsitsiklis [1] and Dai and
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VandeVate [12]. Both of these papers obtain necessary and sufficient conditions
for global stability of fluid networks for the caseJ = 2. Moreover, a certain
parameterρ∗ is introduced in [12]. This parameter is called the maximum virtual
traffic intensity. It is shown that the fluid model is globally stable iffρ∗ < 1 and is
globally weakly stable iffρ∗ ≤ 1. The conditionρ∗ ≤ 1 then implies rate stability
of the underlying stochastic network by Theorem 5. One of the main results of
our paper is to establish a converse:ρ∗ > 1 implies the stochastic network is not
globally rate stable. In particular,ρ∗ ≤ 1 is the tight global rate stability condition
for multitype networks with two stations.

3. Main results. In this section we provide the main results and corollaries of
this paper. All proofs, along with the needed lemmas, are provided in Section 4.
Our first result concerns the structural properties of nonidling fluid solutions. The
result is introduced primarily because it is needed to prove the main result of the
paper, but we believe that it is interesting in its own right and thus state the result
in this section.

THEOREM 6. Suppose the fluid model of a multitype queueing network is
not weakly stable. Then there exists a positive constant γ > 0 such that for any
initial state q ∈ �d+, there exists a nonidling fluid solution (Q̄(t), T̄ (t)) satisfying
Q̄(0) = q and ‖Q̄(t)‖ ≥ γ t for all t ≥ 0.Namely, the solution is linearly divergent.
Moreover, this solution satisfies

inf
t≥0

‖Q̄(t)‖ ≥ ‖q‖
2

min
(

γ

C
,1

)
,(21)

where C is defined by (8).

Intuitively, the notion of a fluid model not being weakly stable seems weaker
than linear divergence. In particular, a fluid model is not weakly stable if there
exists a solution which “pops up from zero” at some point, after starting in the zero
state. Theorem 6 shows that if one solution pops up, then a different solution can
be constructed which diverges to infinity linearly, that is, we construct a stronger
fluid solution (in the sense of instability) from a seemingly weaker solution. This
stronger fluid solution can then be used to infer the instability of a class of
associated stochastic networks. Finally, we note that the divergent solution can
be constructed from any initial statēQ(0) = q ∈ �d+, including the zero state.

We are now prepared to state the main result of the paper, which connects the
instability of fluid models and stochastic networks.

THEOREM7. Consider a multitype stochastic network satisfying Assumptions
A, B and C. Suppose the associated fluid model is not globally weakly stable, and
satisfies FDP. Then, for any initial state (q, z1, z2) ∈ Z

d+ × �I+d , there exists a
nonidling scheduling policy for which the resulting queue level process satisfies
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lim inf t→∞ ‖Q(t)‖
t

> 0 with probability one. In particular, the stochastic process
associated with the queueing network is unstable, under some nonidling policy.

The rate of divergence to infinity implied by the theorem above will be explicit.
We will show that constructed policy results in

lim inf
t→∞

‖Q(t)‖
t

≥ max(γ /C,1)

8max(1,3/γ )
(22)

with probability one. The import of Theorem 7 is more apparent from the
corollaries provided below.

COROLLARY 1. Consider a multitype stochastic network with J = 2. If the
associated fluid model is not globally weakly stable, then the queueing network is
unstable in the sense that lim inf t→∞ ‖Q(t)‖

t
> 0 with probability one from each

initial state under some nonidling scheduling policy.

Corollary 1 follows from Theorem 7 and Proposition 1, which states that FDP
holds for fluid networks with two stations. Recall that one motivation for our work
is the stability Theorems 4 and 5. Thus, Corollary 1 provides a complete converse
of Theorem 5 for two station multitype networks. A missing piece in the theory
for generalJ is to determine if all fluid models satisfy FDP. If such a result holds,
then Theorem 7 would imply a converse for networks with an arbitrary number of
stations.

We note also that Theorem 5 is valid when we consider fluid and queueing
networks under specific scheduling policies. However, for networks operating
under specific policies (rather than a class of policies), a general converse to the
theorems of Chen and Dai is not possible as demonstrated in [10].

Dai and VandeVate [12] derived explicit necessary and sufficient conditions
for global weak stability of fluid models of multitype networks in terms of a
certain parameterρ∗ related to the so-called virtual traffic intensity and push start
conditions. They prove that such fluid networks are weakly stable iffρ∗ ≤ 1.
Considering Theorem 5 along with Corollary 1, those results now yield complete
necessary and sufficient conditions for rate stability of two station stochastic
mutlitype networks.

COROLLARY 2. A stochastic two station multitype network is globally rate
stable if and only if ρ∗ ≤ 1.

4. Proofs of main results. In this section we provide all of the proofs of our
main results. The first proof, of Theorem 6, shows that if the fluid is not globally
weakly stable, there exists a linearly divergent fluid solution.
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4.1. Linearly divergent fluid solutions.

PROOF OFTHEOREM 6. We assume in the theorem that a given fluid model is
not globally weakly stable. Hence, there exists a nonidling solution which satisfies
Q̄(0) = 0 and Q̄(t0) �= 0 for somet0 > 0. First note that, without the loss of
generality, we may assume thatQ̄(t) �= 0 for all 0 < t ≤ t0. Otherwise, we can
find t̂ = sup{0 ≤ t < t0 : Q̄(t) = 0} and consider the fluid solution on[t̂ , t0] only.
Note thatt̂ < t0 by the continuity ofQ̄(t) and the fact that̄Q(t0) �= 0. Next, using
Lemma 3 with someβ > 0, we can obtain a new solution defined on[0, βt0] with
Q̄′(0) = 0 and‖Q̄′(βt0)‖ = β‖Q̄(t0)‖. If we setβ = t−1

0 , then we have a solution
defined on[0,1] with Q̄′(0) = 0 and‖Q̄′(1)‖ = ‖Q̄(t0)‖/t0. Hence, again without
loss of generality, we sett0 = 1, that is, we assume we are given a nonidling
solution withQ̄(0) = 0 andQ̄(1) �= 0.

We now build a new fluid solution by constructing it iteratively over the intervals
[0,1), [1,2), [2,4), . . . , [2n,2n+1), . . . . We denote the solution that is constructed
in this manner by(Q̄o(t), T̄ o(t)). For the initial interval[0,1), consider our initial
fluid solution Q̄(t) satisfyingQ̄(0) = 0, Q̄(1) �= 0. We first modify the solution
by settingQ̄(0) = q, whereq ∈ �d+. Next, for everyt ≤ 1 and every class(i, j),
on the interval[0, t] we spend exactlȳTi,j (t) time units processing class(i, j)

flow, plus whatever necessary additional amount is required to make the solution
nonidling. In other words, we can think of the flow “created” and “processed” by
the nonweakly stable solution̄Q(t) as high priority flow, and the remaining flow
as low priority flow. Note that the allocation of the additional processing effort
required is not necessarily uniquely determined by the original allocationT̄ (t). In
any case, the resulting solution satisfiesQ̄o(0) = q andQ̄o

i,j (t) ≥ Q̄i,j (t) for all

classes(i, j) andt ≤ 1. In particular,‖Q̄o(1)‖ ≥ ‖Q̄(1)‖ > 0.
Assume now the solution has been constructed over the time horizon[0,2n] for

n ≥ 0. We now extend it over[2n,2n+1]. The idea of the construction is similar to
the first interval, except that we “stretch” the original solutionQ̄(t) by a factor
of 2n and then use this solution to extend our current solution by defining it
on [2n,2n+1]. That is, consider the scaled solution(βQ̄(β−1t), βT̄ (β−1t)) with
β = 2n. This solution is defined overt ∈ [0,2n). Next, for eacht ∈ [2n,2n+1], let
T̄ o(t) be defined bȳT o(t)− T̄ o(2n) = 2nT̄ (2−n(t −2n)), plus any extra processing
effort required to make the solution nonidling.

It can be easily checked that the resulting solutionQ̄o(t) satisfiesQ̄o
i,j (t) ≥

2nQ̄i,j (2−n(t − 2n)) for all t ∈ [2n,2n+1] and all i, j which implies‖Q̄o(t)‖ ≥
2n‖Q̄(2−n(t − 2n))‖. In particular,‖Q̄o(2n+1)‖ ≥ 2n‖Q̄(1)‖.

We have constructed a nonidling fluid solutionQ̄o(t) which diverges to infinity
at time instancestn = 2n, n = 0,1, . . . . To complete the proof of the theorem, we
show that, for some constantγ0 > 0, ‖Q̄o(t)‖ ≥ γ02n for all t ∈ [2n,2n+1]. First
let us show that this implies the theorem. For anyt > 0, find the largest integern
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such that 2n ≤ t , that is, letn = log2 t�. We have‖Q̄o(t)‖ ≥ γ02n ≥ γ02log2 t−1 =
γ0t/2. Settingγ = γ0/2, we obtain the result.

To show the existence ofγ0, note that for anyt1 < t2 and any feasible fluid
solutionQ̄(·), we have

‖Q̄(t2)‖ ≥ ‖Q̄(t1)‖ − ∑
1≤i≤I

µi,Ji
(t2 − t1)

(23) ≥ ‖Q̄(t1)‖ − C(t2 − t1).

This implies that, for allt ∈ [2n,2n + 2n−1‖Q̄(1)‖/(2C)], Q̄o(t) satisfies

‖Q̄o(t)‖ ≥ ‖Q̄o(2n)‖ − C(t − 2n)

≥ 2n−1‖Q̄(1)‖ − C(t − 2n)

≥ 2n−2‖Q̄(1)‖.
If 2n + 2n−1‖Q̄(1)‖/(2C) ≥ 2n+1, then we simply setγ0 = (1/4)‖Q̄(1)‖.
Otherwise, let

γ1 = min
{
‖Q̄(t)‖ :

‖Q̄(1)‖
4C

≤ t ≤ 1
}
.

This minimum exists sincēQ(t) is continuous and it is positive since‖Q̄(t)‖ > 0
for all 0 < t ≤ 1. Then, for all 2n + 2n−1‖Q̄(1)‖/(2C) ≤ t ≤ 2n+1, we have
‖Q̄o(t)‖ ≥ 2n‖Q̄(2−n(t − 2n))‖ ≥ 2nγ1. We takeγ0 = min{(1/4)‖Q̄(1)‖, γ1} and
we have proven the first inequality in the theorem statement.

The last part of the proposition follows almost immediately. Using (23) with
t1 = 0 andt2 = t , we have‖Q̄(t)‖ ≥ ‖q‖ − Ct ≥ ‖q‖/2 for t ≤ ‖q‖/(2C). On the
other hand, by construction,‖Q̄(t)‖ ≥ γ t ≥ γ ‖q‖/(2C), whenevert ≥ ‖q‖/(2C).
This completes the proof of the theorem.�

Theorem 6 will be used for proving our main result, Theorem 7. Specifically,
we will construct a nonidling scheduling policy for the discrete network which,
with high probability, results in a trajectory very close to the fluid trajectory built
in the proof of Theorem 6. We will use the large deviations bounds (9) and (10)
multiple times to obtain bounds on the deviation between the fluid and stochastic
trajectories.

4.2. FDP in fluid networks with two stations.

PROOF OFPROPOSITION1. Consider a network with two stations,σ1 andσ2,
and suppose we have a nonidling fluid solution(Q̄(t), T̄ (t)) which is nonzero over
time interval[0, θ ]. By continuity, inf0≤t≤θ ‖Q̄(t)‖ > 0. The next result follows
from Proposition 1 in [1]. There exists a nondecreasing sequenceti such that
supi ti = θ and such that for all times less thanθ the following hold:
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• Q̄σ1(t4m+1) > 0, Q̄σ2(t4m+1) = 0 and fort ∈ [t4m+1, t4m+2], Q̄σ1(t) > 0;
• Q̄σ1(t4m+2) > 0, Q̄σ2(t4m+2) = 0 and for t ∈ (t4m+2, t4m+3), Q̄σ1(t),

Q̄σ2(t) > 0;
• Q̄σ2(t4m+3) > 0, Q̄σ1(t4m+3) = 0 and fort ∈ [t4m+3, t4m+4], Q̄σ2(t) > 0;
• Q̄σ2(t4m+4) > 0, Q̄σ1(t4m+4) = 0 and for t ∈ (t4m+4, t4m+5), Q̄σ1(t),

Q̄σ2(t) > 0.

Moreover, one ofti , i = 1,2,3,4, is equal to zero. Whent2, t3 or t4 is zero,ti
with lower value ofi is not defined.

The characterization above essentially divides the trajectory of a fluid solution
into four different segments. On the segment of the trajectory betweent4m+1 and
t4m+2, the trajectory is either on the boundary of the state space [whereQ̄σ2(t) = 0]
or in the interior of the state space. We next claim that such a segment can
be “linearized” such that it remains a nonidling solution, yetQ̄σ2(t) = 0 for all
t ∈ [t4m+1, t4m+2]. In other words, the linearized solution is on the boundary for
the entire interval. To achieve the linearization, we define

Q̃(t) = Q̄(t4m+1) + t − t4m+1

t4m+2 − t4m+1
[Q(t4m+2) − Q(t4m+1)]

and

T̃ (t) = T̄ (t4m+1) + t − t4m+1

t4m+2 − t4m+1
[T (t4m+2) − T (t4m+1)],

for all t ∈ [t4m+1, t4m+2]. Using Lemma 2, it follows that the new solution
(Q̃(t), T̃ (t)) is both feasible and nonidling, given that the original solution was
also. In a similar manner, we linearize the fluid solution(Q̄(t), T̄ (t)) on all
intervals of the form[t4m+3, t4m+4]. Hence, in each interval the new solution
remains on one of the axes, unless it is crossing the interior, from one axis to
the other.

We now demonstrate that(Q̃(t), T̃ (t)) has the properties described in Defini-
tion 5. First, we claim that for eachm,

t4m+3 − t4m+1 ≥ inf
0≤t≤θ

‖Q̄(t)‖/C,

(24)
t4m+3 − t4(m+1)+1 ≥ inf

0≤t≤θ
‖Q̄(t)‖/C.

Indeed, by construction,

Q̃σ1(t4m+1) > 0, Q̃σ2(t4m+1) = 0

and

Q̃σ2(t4m+3) > 0, Q̃σ1(t4m+3) = 0.

In particular,

Q̃σ1(t4m+1) = ‖Q̃(t4m+1)‖ ≥ inf
0≤t≤θ

‖Q̃(t)‖ ≥ inf
0≤t≤θ

‖Q̄(t)‖ > 0.
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Note that total rate at which fluid can depart from a given station is bounded
above by

∑
i,j µi,j < C. Thus, sinceQ̃σ1(t4m+3) = 0, we havet4m+3 − t4m+1 ≥

inf0≤t≤θ‖Q̄(t)‖/C. An analogous argument demonstrates thatt4m+3− t4(m+1)+1 ≥
inf0≤t≤θ ‖Q̄(t)‖/C. Since the interval lengths are bounded strictly away from zero,
the total number of pointsti in [0, θ ] is at most(2θC/ inf0≤t≤θ ‖Q̄(t)‖)+2, where
the+2 accounts for the end points of[0, θ ]. Settingν = 2C,B = 2 yields the first
FDP property (1). Properties (2) and (3) are automatically satisfied by our con-
struction of(Q̃(t), T̃ (t)) above. �

4.3. Transient paths in the stochastic network. Most of this section is devoted
to the proof of Theorem 14 of Section 4.4, which, as we will show, implies the main
result of our paper, Theorem 7. In the proof we repeatedly use probabilistic bounds
of the form c1 exp(−c2n), wherec1, c2 > 0 are constants which depend on the
parameters of our queueing network andn is a scaling parameter which takes on a
large value. In various expressions,c2 is usually related to the constantL appearing
in the large deviations bounds in (9) and (10) and the network parameters
λi,µi,j , |I |,C, as well as parameterγ introduced in Theorem 6. We will also be
considering finite sums of the bounds of the formc′

1 exp(−c1n) + c′
2 exp(−c2n) +

· · · + c′
m exp(−cmn). In general, theci, c

′
i take on different values andm is a

constant, independent ofn. Such sums can be bounded above byc′ exp(−cn) for
c = min1≤k≤m ck andc′ = ∑

c′
i .

In our proofs, the actual values of the constants are not important, only the fact
that they are independent ofn. Therefore, to simplify the exposition, we simply use
the notationO(exp(−�(n))) and we write expressions likeO(exp(−�(n))) +
O(exp(−�(n))) = O(exp(−�(n))), where the standard notationO(·) and�(·)
hides the actual constantsc andc′.

4.3.1. Proof preliminaries and the scheduling policy U. In order to precisely
state the next series of detailed results, we need to define a nonidling policyU.
The definition of this policy involves a number of preliminary observations and
definitions.

First, let

θ = max
(

1,
3

γ

)
.(25)

The parameterθ depends only on parameters of the model sinceγ depends only
on the parameters of the model.

Consider any initial state(q, z1, z2) ∈ Z
d+ ×�I+d+ . Let n = ‖q‖. By Theorem 6,

there exists a nonidling fluid solution(Q̄(t), T̄ (t)) which satisfiesQ̄(0) = q and
‖Q̄(t)‖ ≥ γ t for all t ≥ 0. Since FDP is assumed then by Proposition 1, the
solution (Q̄(t), T̄ (t)) can be modified to a solution which satisfies properties
described in Definition 5. Let

θ0 = θ‖q‖ = ‖q‖max
(

1,
3

γ

)
,(26)
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in which case we have

‖Q̄(θ0)‖ ≥ 3‖q‖.(27)

By Theorem 6, the fluid solution is also such that

inf
t

‖Q̄(t)‖ ≥ ‖q‖
2

min
(

γ

C
,1

)
.(28)

Since FDP is satisfied, there exists another solution(Q̃(t), T̃ (t)) and a sequence
0 = s0 < s1 < · · · < sM = θ0, such that inf0≤t≤θ0 ‖Q̃(t)‖ ≥ inf0≤t≤θ0 ‖Q̄(t)‖ and,
for every interval[sr , sr+1] and for each stationσ , either Q̃σ (t) is zero within
(sr , sr+1), or it is strictly positive within(sr , sr+1). For simplicity, we assume that
(Q̄(t), T̄ (t)) is this modified solution. In such a modified solution we also note
that

M ≤ νθ0 sup
0≤t≤θ0

1

‖Q̃(t)‖ + B ≤ νθ0
2

‖q‖ max
(

C

γ
,1

)
+ B

(29)
≤ 2ν max

(
1,

3

γ

)
max

(
C

γ
,1

)
+ B,

where we used (26) and (28). In particular, we obtain a bound onM which depends
only on the parameters of the model (and is independent of‖q‖), sinceν, γ and
C depend only on the parameters of the model. Note, on the other hand, that the
partition sr , r = 0,1, . . . ,M , does depend onq. Recalling the notation‖q‖ = n,
we rewrite (27) and (28) as

‖Q̄(nθ)‖ ≥ 3‖q‖ = 3n(30)

and

inf
0≤t≤θn

‖Q̄(t)‖ ≥ n

2
min

(
γ

C
,1

)
.(31)

Our next goal is to describe a nonidling scheduling policyU = U(δ) implemented
over the time horizon[0, θ0] = [0, θn]. Recall that our starting state is(q, z1, z2).
In particular,Q(0) = Q̄(0) = q. The policyU attempts to mimic the fluid solution
described above, over the same time interval. We parameterize the policy with a
constantδ > 0, which is any constant satisfying

δ ≤ 1

12CM+3 min
(

γ

C
,1

)
.(32)

Let tm = mδn for m = 0,1, . . . , �θ/δ�. We describe the policyU on each time
interval Im = [tm, tm+1). For each time intervalIm, each stationσ nominally
allocatesT̄i,j (tm, tm+1) time units to serving class(i, j), for every class(i, j) ∈ σ .
To be precise, we first order all the classes at a station in a fixed, but arbitrary
manner. During the interval a class(i, j) is chosen for service, and we work on
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jobs from that class for̄Ti,j (tm, tm+1) time units or until we exhaust the jobs from
class(i, j). Note that we cannot reach the end of the intervalIm, by the feasibility
of T̄ (·) over this interval. When we are done processing jobs of type(i, j), the
next class in the chosen order of service is picked for processing. Note that we
assume a preemptive resume mechanism when switching between classes. If after
going through all the classes, the time spent is strictly less thantm+1− tm and there
are still jobs at the station, the station works on any available jobs. If no jobs are
available, the station idles. Once the next time instancetm+1 occurs, the policy is
“reset,” in terms of the time allocations.

In other words, according to our scheduling policy, on each intervalIm each
station tries to spend exactly the same amount of time on jobs in each class
(i, j) as the fluid solution(Q̄(t), T̄ (t)) does, while maintaining the nonidling
requirement. Our main goal is to show that, in general, the resulting stochastic
process stays fairly close to the fluid trajectory(Q̄(t), T̄ (t)), when the stochastic
network operates under the disciplineU.

From the fluid equation(16) we have
∑

(i,j)∈σ T̄i,j (tm, tm+1) ≤ tm+1 − tm, for
eachm. As a result, any policyU is feasible. From the description above, it is
certainly nonidling. We now analyze the dynamics of our network when policyU
is implemented. For convenience, we introduces−1 ≡ s0 = 0.

LEMMA 8. Under the policy U (in fact, under any scheduling policy), for
every m = 0,1, . . . , � θ

δ
�,

sup
tm≤t≤tm+1

‖Q̄(t) − Q̄(tm)‖ ≤ Cδn(33)

and

P

{
sup

tm≤t≤tm+1

‖Q(t) − Q(tm)‖ > Cδn

}
≤ O

(
exp(−�(n))

)
.(34)

PROOF. Applying (12), (13) and (16), we have

‖Q̄(t) − Q̄(tm)‖ ≤
(∑

i

λi + ∑
i

µi,Ji

)
(t − tm) < C(tm+1 − tm) = Cδn,

which proves (33). We now prove (34). By Assumption B [specifically bound (10)],
for everyi and everyt ∈ [tm, tm+1],

P{|Ai (t) − Ai(tm)| > 2λiδn} ≤ P{|Ai (tm+1) − Ai (tm)| > 2λiδn}(35)

≤ O
(
exp(−�(n))

)
,(36)

sincetm+1 − tm = δn. Similarly, for all i andj andt ∈ [tm, tm+1],
P{|Di,j (t) − Di,j (tm)| > 2µi,j δn} ≤ O

(
exp(−�(n))

)
.(37)
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Applying (1) and (2), we obtain

P

{
sup

tm≤t≤tm+1

|Qi,j (t) − Qi,j (tm)| > 2(λi + µi,j−1 + µi,j )δn

}
≤ O

(
exp(−�(n))

)
.

By summing these probabilities over all(i, j), we obtain

P

{
sup

tm≤t≤tm+1

‖Q(t) − Q(tm)‖ >

(
2

∑
i

λiJi + 4
∑
i,j

µi,j

)
δn

}

≤ ∑
i,j

O
(
exp(−�(n))

) = O
(
exp(−�(n))

)
,

implying

P

{
sup

tm≤t≤tm+1

‖Q(t) − Q(tm)‖ > Cδn

}
≤ O

(
exp(−�(n))

)
,

which is (34). �

A large part of the remainder of the paper is devoted to proving Proposition 2
below. The proof is quite lengthy and we split the argument into several sections.

PROPOSITION 2. Under the policy U = U(δ), for every r = −1,0,1, . . . ,

M − 1, every tm ∈ [sr , sr+1] and every class (i, j),

P{|Qi,j (tm) − Q̄i,j (tm)| ≤ δCr+3n} ≥ 1− O
(
exp(−�(n))

)
.(38)

The proof is done by using various induction steps. The “outer” induction is
on r , which indexes the trajectory decomposition pointssr . The “inner” induction
is done on the stagesj of the classes(i, j) classes in the network, and is outlined
in various lemmas below.

We start the outer induction withr = −1. Then fortm ∈ [s−1, s0] = {0}, we
simply havetm = 0 and the bound in (38) holds trivially for all classes(i, j) since
Q(0) = Q̄(0) = q, with probability one. Next we suppose the bounds in (38) hold
for −1,0,1, . . . , r − 1. We then show that the bounds hold forr . The necessary
bounds will be established by a sequence of lemmas. Our first lemma simply says
that assuming the bounds (38) hold for allr ′ ≤ r − 1 andtm ∈ [sr ′, sr ′+1], a similar
bound holds at the end pointsr .

LEMMA 9. If the bound (38) holds for all r ′ ≤ r − 1, then, for every i, j ,

P{|Qi,j (sr ) − Q̄i,j (sr)| > δCr+2n + 2δCn} ≤ O
(
exp(−�(n))

)
.
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PROOF. Find the largesttm′ ≤ sr . Then tm′+1 = tm′ + δn > sr ≥ tm′ . By
Lemma 8, we have|Q̄i,j (sr ) − Q̄i,j (tm′)| ≤ Cδn and

P{|Qi,j (sr ) − Qi,j (tm′)| ≥ Cδn} ≤ O
(
exp(−�(n))

)
.

Sincetm′ ∈ [sr−1, sr ], then by the assumption of our induction inr ,

P{|Qi,j (tm′) − Q̄i,j (tm′)| ≥ Cr+2δn} ≤ O
(
exp(−�(n))

)
.

Combining the last three inequalities, we obtain the result.�

In Section 4.3.2 we obtain probabilistic lower bounds on the number of jobs
processed during the time interval[sr , tm), for any tm ∈ [sr , sr+1], under the
scheduling policyU(δ).

4.3.2. Lower bounds on the departure process. The next lemma shows that,
with high probability, in the first stage in the route of each job type the total number
of jobs processed during the time interval[sr , tm] is not too far behind the amount
of fluid processed during the same time interval in the fluid solution. A subsequent
lemma establishes a similar bound for stages two and higher. Recall that we fixedr

and we assume by induction that (38) holds forr ′ ≤ r − 1.

LEMMA 10. For every i ≤ I and every m such that sr ≤ tm ≤ sr+1,

P{Di,1(sr , tm) ≥ D̄i,1(sr , tm) − 2δCr+2n} ≥ 1− O
(
exp(−�(n))

)
(39)

and

P{Ti,1(sr , tm) ≥ T̄i,1(sr , tm) − 3µmaxδC
r+2n} ≥ 1− O

(
exp(−�(n))

)
.(40)

PROOF. We start with proving bound (39). Bound (40) will be an easy
corollary.

Part I. Fix a specific class(i,1), and timetm0, sr ≤ tm0 ≤ sr+1, and introduce
the event

D
(
tm0

) ≡ {
Di,1

(
sr , tm0

)
< D̄i,1

(
sr , tm0

) − 2δCr+2n
}
.(41)

Note then that (39) is equivalent to havingP{D(tm0)} ≤ O(exp(−�(n))) for
everyi andtm0 ∈ [sr , sr+1]. Next, we introduce the events

A ≡ {∀ tm ∈ [sr , sr+1] : Ai(sr , tm) ≥ λi(tm − sr) − δCn},(42)

Q ≡ {Qi,1(sr) ≥ Q̄i,1(sr ) − δCr+2n − 2δCn}.(43)

From Lemma 9 and the inductive assumption, we have

P{Q} ≥ 1− O
(
exp(−�(n))

)
.(44)
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Now fix any tm ∈ [sr , sr+1] and consider

P{Ai (sr , tm) ≥ λi(tm − sr) − δCn}
= P

{
Ai(sr , tm) ≥ λi(tm − sr) − δCn

tm − sr
(tm − sr)

}
,

where without loss of generality we may assumetm > sr . If tm − sr ≤ δn, then the
probability above is equal to one, since the right-hand side of the inequality inside
the probability is negative. Suppose nowtm − sr ≥ δn. We have

δCn

tm − sr
≥ δCn

θn
= δC

θ
.

Settingε = δC
θ

and using the large deviations Assumption B with thisε, we obtain
that

P{Ai(sr , tm) ≥ λi(tm − sr) − δCn} ≥ 1− O
(
exp(−�(tm − sr))

)
(45) ≥ 1− O

(
exp(−�(n))

)
,

wheretm − sr ≥ δn is used in the last inequality. The number of differenttm in
[sr , sr+1] is at mostθn/(δn) = θ/δ. Summing over all suchtm, we conclude

P{A} ≥ 1− (θ/δ)O
(
exp(−�(n))

) = 1− O
(
exp(−�(n))

)
.(46)

Hence,

P
{
D

(
tm0

)} = P
{
D

(
tm0

)|A ∩ Q
}
P{A ∩ Q} + P

{
D

(
tm0

)|A ∩ Q
}
P{A ∩ Q}

≤ P
{
D

(
tm0

) ∩ A ∩ Q
} + O

(
exp(−�(n))

)
,

where in the inequality we useP{A ∩ Q} ≤ O(exp(−�(n))), which holds by
(44) and (46). Thus, to show (39), it suffices to prove

P
{
D

(
tm0

) ∩ A ∩ Q
} ≤ O

(
exp(−�(n))

)
.(47)

We denote the event(D(tm0) ∩ A ∩ Q) by Dc(tm0). We first show that given
Dc(tm0), there exists, with probability one, a time instancetm with sr ≤ tm ≤ tm0,
such that the following events occur:

F (tm) ≡ {Qi,1(tm) ≥ δCn}(48)

and

G(tm) =
{

Di,1(tm, tm+1) ≤ µi,1T̄i,1(tm, tm+1) − 2δ2Cn

θ

}
.(49)

That is, we claim

P

{ ⋃
{m : sr≤tm≤tm0}

(
F (tm) ∩ G(tm)

) | Dc

(
tm0

)} = 1.(50)
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On the other hand, we also claim that, for eachtm ∈ [sr , sr+1],
P{G(tm) | F (tm)} ≤ O

(
exp(−�(n))

)
,(51)

which implies thatP(F (tm) ∩ G(tm)) ≤ O(exp(−�(n))). Together with (50), this
would imply

P
{
Dc

(
tm0

)} ≤
P{⋃sr≤tm≤tm0

F (tm) ∩ G(tm)}
P{⋃sr≤tm≤tm0

F (tm) ∩ G(tm) | Dc(tm0)}

≤ ∑
tm∈[sr ,sr+1]

P{F (tm) ∩ G(tm)}
P{⋃sr≤tm≤tm0

F (tm) ∩ G(tm) | Dc(tm0)}

≤ O
(
exp(−�(n))

)
,

where again, for the last inequality, we use the fact that the number oftm in the
interval [sr , sr+1] is at mostθ/δ andθ/δ exp(−�(n)) = exp(−�(n)). We could
then conclude that (47) holds and we would be done. Thus, we need to show
(50) and (51). We start by proving (51). Note that during the time intervalIm,
policy U(δ) either allocates at least̄Ti,1(tm, tm+1) time units to process class
(i,1) jobs, or all theQi,1(tm) > δCn jobs initially present are processed. In the
second caseG(tm) does not hold sinceδCn > µi,1T̄i,1(tm, tm+1). In the first case,

if T̄i,1(tm, tm+1) < 2δ2Cn
µi,1θ

, thenG(tm) obviously does not hold, since the right-hand

side in the inequality in (49) is negative. Otherwise,T̄i,1(tm, tm+1) ≥ �(n). In this
case, we can apply the large deviations bound (10) which holds by Assumption B.
Settingε = 2δ2Cn/(T̄i,1(tm, tm+1)θ) ≥ 2δC/θ in the bound, we obtain

P

{
Di,1(tm, tm+1) < µi,1T̄i,1(tm, tm+1) − 2δ2Cn

θ

}
≤ O

(
exp

(−�(T̄i,1(tm, tm+1))
))

= O
(
exp(−�(n))

)
,

where in the last equation we useT̄i,1(tm, tm+1) ≥ �(n) and as usual,δ,C andθ

are hidden in the�(·) notation. We conclude that (51) holds.
We now prove (50). Note that iftm0 − sr < δn, then the right-hand side of the

inequality in the eventD(tm0) is negative and, therefore, the eventsD(tm0) and
Dc(tm0) cannot occur. Thus, we assume there exists at least onetm ∈ [sr , tm0). We
haveDi,1(sr , tm0) ≥ ∑

{m : sr≤tm≤tm0−1} Di,1(tm, tm+1) and

D̄i,1
(
sr , tm0

) ≤ ∑
{m : sr−δn≤tm≤tm0−1}

D̄i,1(tm, tm+1)

≤ ∑
{m : sr≤tm≤tm0−1}

D̄i,1(tm, tm+1) + δCn.
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The eventD(tm0) implies that there exists atm ∈ [sr , tm0−1] such that

Di,1(tm, tm+1) < µi,1T̄i,1(tm, tm+1) − 2δCr+2n − δCn

�(tm0 − sr)/δn�

≤ µi,1T̄i,1(tm, tm+1) − 2δCr+2n − δCn

(θ/δ) + 1
(52)

≤ µi,1T̄i,1(tm, tm+1) − 2δ2Cr+2n − δ2C

θ + δ
,(53)

≤ µi,1T̄i,1(tm, tm+1) − 2δ2Cn

θ
,

where we usedtm0 − sr ≤ θn in (52) and we use in (53) the fact thatθ ≥ 1 by (25),
δ ≤ 1 by (32) and, as a result,θ +δ ≤ 2θ and(2Cr+2−C)/2 ≥ (2C2−C)/2 > 2C.

Among tm ∈ [sr , tm0), select the largestm such thatDi,1(tm, tm+1) ≤ µi,1T̄i,1 ×
(tm, tm+1) − 2δ2Cn

θ
and denote it bŷm. By the derivation above, the set of suchtm

is nonempty. Thus,

Di,1(tm̂, tm̂+1) ≤ µi,1T̄i,1(tm̂, tm̂+1) − 2δ2Cn

θ
.(54)

Moreover, ifm̂ < m0 − 1, then for allm̂ < m ≤ m0 − 1, we have

Di,1(tm, tm+1) ≥ µi,1T̄i,1(tm, tm+1) − 2δ2Cn

θ
,

or

Di,1
(
tm̂+1, tm0

) ≥ µi,1T̄i,1
(
tm̂+1, tm0

) − (m0 − m̂)2δ2Cn

θ
(55) ≥ µi,1T̄i,1

(
tm̂+1, tm0

) − 2δCn,

wherem0 − m̂ ≤ θ/δ is used. Note, that the bound (55) holds trivially ifm̂ =
m0 − 1. Next, note that the eventD(tm0) jointly with (55) implies

Di,1(sr , tm̂+1) = Di,1
(
sr , tm0

) − Di,1
(
tm̂+1, tm0

)
≤ µi,1T̄i,1

(
sr , tm0

) − 2δCr+2n − (
µi,1T̄i,1

(
tm̂+1, tm0

) − 2δCn
)

(56)

= µi,1T̄i,1(sr , tm̂+1) − 2δCr+2n + 2δCn.

Thus,

Di,1(sr , tm̂) ≤ Di,1(sr , tm̂+1)

≤ µi,1T̄i,1(sr , tm̂+1) − 2δCr+2n + 2δCn(57)

≤ µi,1T̄i,1(sr , tm̂) − 2δCr+2n + 3δCn,
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whereµi,1T̄i,1(tm̂, tm̂+1) ≤ µi,1δn < δCn is used. Now recall from (1) that

Qi,1(tm̂) = Qi,1(sr ) + Ai(sr , tm̂) − Di,1(sr , tm̂).(58)

Then conditioned onDc(tm0) = D(tm0) ∩ A ∩ Q and using (57), we obtain

Qi,1(tm̂) ≥ Q̄i,1(sr ) + λi(tm̂ − sr) − µi,1T̄i,1(sr , tm̂)

− δCr+2n − 2δCn − δCn + 2δCr+2n − 3δCn.

Recall from (12) thatQ̄i,1(sr)+λi(tm̂−sr)−µi,1T̄i,1(sr , tm̂) = Q̄i,1(tm̂) ≥ 0. Then

Qi,1(tm̂) ≥ Q̄i,1(tm̂) + δCr+2n − 6δCn > δCn.(59)

We have established that if the eventDc(tm0) holds, then (54) and (59) hold for
sometm̂ ≤ tm0. In other words, (50) holds. This completes the proof of (39).

Part II. We now prove (40). Fix atm ∈ [sr , sr+1]. Note that the bound (40) is
trivial if T̄i,1(sr , tm) < 3µmaxδC

r+2n. So, suppose the previous inequality does
not hold. Let

 = µi,1T̄i,1(sr , tm) − 2δCr+2n ≥ δCr+2n ≥ �(n),(60)

where we useµi,1µmax≥ 1. Let

ε = δCn


≥ δ

θ
,

where we use < µi,1T̄i,1(sr , tm) < Cθn. We condition on the eventD(tm),
which by (39) holds with probability at least 1− exp(−�(n)), and use large
deviations Assumption B with theε above to obtain

P
{
Ti,1(sr , tm) ≥ µ−1

i,1

(
µi,1T̄i,1(sr , tm) − 2δCr+2n

) − δCn | D(tm)
}

= P{Ti,1(sr , tm) ≥ µ−1
i,1 − ε|D(sr , tm) ≥ }

≥ 1− O
(
exp(−�())

)
≥ 1− O

(
exp(−�(n))

)
,

where the last inequality follows from the last inequality in (60). To finish the
argument, we observe thatµ−1

i,12δCr+2 + δCn < 3µmaxδC
r+2n. �

We now establish a similar lower bound for classes corresponding to stages two
and higher.

LEMMA 11. For every i ≤ I , j ≤ Ji and m such that sr ≤ tm ≤ sr+1,

P{Di,j (sr , tm) ≥ D̄i,j (sr , tm) − 2δjCr+2n} ≥ 1− exp(−�(n))(61)

and

P{Ti,j (sr , tm) ≥ T̄i,j (sr , tm) − 3µmaxδjCr+2n} ≥ 1− exp(−�(n)).(62)
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PROOF. The proof is very similar to the one for Lemma 10. We only highlight
the differences. The proof is done by induction inj ; the base casej = 1 is covered
by Lemma 10. So let us fix aj > 1 and assume that the assertion holds for all
(i, j ′) with j ′ ≤ j − 1. We again define an event related to the inequality insideP

in (61). For a class(i, j) and any timetm0 with sr ≤ tm0 ≤ sr+1, let

D
(
tm0

) = {Di,j (sr , tm) < D̄i,j (sr , tm) − 2δjCr+2n}.(63)

We need to showP{D(tm0)} ≤ O(exp(−�(n))) for every tm0 ∈ [sr , sr+1]. As in
Lemma 10, we introduce the event

Q ≡ {Qi,j (sr ) ≥ Q̄i,j (sr ) − δCr+2n − 2δCn},(64)

but instead of the eventA defined by (42), consider

D ≡ {∀ tm ∈ [sr , sr+1] : Di,j−1(sr , tm) ≥ D̄i,j−1(sr , tm) − 2δ(j − 1)Cr+2n}.(65)

Again using Lemma 9 (and the “outer” inductive assumption), we obtain
P{Q} ≥ 1 − exp(−�(n)) and by the inductive assumption onj , P{D} ≥ 1 −
O(exp(−�(n))) [where, as before, we sum several expressions of the order
O(exp(−�(n))) over tm ∈ [sr , sr+1] to get againO(exp(−�(n)))]. Next, let
Dc(tm0) = D(tm0) ∩ Q ∩ D . We need to showP{Dc(tm0)} ≤ O(exp(−�(n))).
For everytm ∈ [sr , tm0], we introduce the eventF (tm) as in (48), exceptQi,j is
used instead ofQi,1. Finally, we introduceG(tm), defined as follows:

G(tm) =
{

Di,j (tm, tm+1) ≤ µi,j T̄i,j (tm, tm+1) − 2δ2Cnj

θ

}
.

Arguing as in the proof of Lemma 10, we claim that (50) and (51) hold with the
new event definitions. The proof of (51) is identical to the one of Lemma 10.
For (50), we repeat the argument until we get to (57), instead of which we get

Di,j (sr , tm̂) ≤ µi,1T̄i,j (sr , tm̂) − 2jδCr+2n + 3δCn.(66)

Then we obtain

Qi,j (tm̂) = Qi,j (sr ) + Di,j−1(sr , tm̂) − Di,j (sr , tm̂)(67)

≥ Q̄i,j (sr) + µi,j−1T̄i,j−1(sr , tm̂) − µi,j T̄i,j (sr , tm̂)

− δCr+2n − 2δCn − 2δ(j − 1)Cr+2n + 2δjCr+2n − 3δCn(68)

= Q̄i,j (tm̂) + δCr+2n − 5δCn(69)

≥ δCn,

where (2) is used for (67), conditioning onDc(tm0) is used in (68), and (13) is used
in (69). This proves (50) and completes the proof of (61). The proof of the lower
bound forTi,j (·) follows the proof of Lemma 10, almost line for line.�
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4.3.3. Upper bounds on the departure processes. In this section we obtain
upper bounds, similar to the bounds in Lemmas 10 and 11, on the cumulative
departuresDi,j (sr , tm), for values ofm such thatsr < tm ≤ sr+1.

For every stationσ , by construction of the sequences0, s1, . . . , sM , we have
either Q̄σ (t) > 0 for all sr < t < sr+1 or Q̄σ (t) = 0 for all sr < t < sr+1. We
consider these cases separately.

LEMMA 12. Given any station σ , suppose the interval (sr , sr+1) is such
that Q̄σ (t) > 0 for all sr < t < sr+1. Then, for every class (i, j) ∈ σ and every
tm ∈ [sr , sr+1],

P{Ti,j (sr , tm) ≤ T̄i,j (sr , tm) + 3δ|σ |µmaxJmaxC
r+2n}

(70) ≥ 1− O
(
exp(−�(n))

)
and

P{Di,j (sr , tm) ≤ D̄i,j (sr , tm) + 4δ|σ |µ2
maxJmaxC

r+2n}
(71) ≥ 1− O

(
exp(−�(n))

)
.

PROOF. Given any stationσ , suppose that̄Qσ(t) > 0 for all sr < t < sr+1. By
the nonidling constraint (20), we have that∑

(i,j)∈σ

T̄i,j (sr , sr+1) = sr+1 − sr .(72)

Fix any tm ∈ [sr , sr+1] and fix any class(i, j) ∈ σ . Applying Lemmas 10 and 11
to sr andtm, we have that with probability at least 1− O(exp(−�(n))), for every
class(i ′, j ′) ∈ σ ,

Ti′,j ′(sr , tm) ≥ T̄i′,j ′(sr , tm) − 3δj ′µmaxC
r+2n

≥ T̄i′,j ′(sr , tm) − 3δµmaxJmaxC
r+2n,

where we use (7) in the second inequality. Applying (72) and the feasibility
inequality (4), we obtain that with probability at least 1− O(exp(−�(n))),

Ti,j (sr , tm) ≤ tm − sr − ∑
(i,j) �=(i′,j ′)∈σ

Ti′,j ′(sr , tm)

≤ tm − sr − ∑
(i,j) �=(i′,j ′)∈σ

(
T̄i′,j ′(sr , tm) − 3δµmaxJmaxC

r+2n
)

(73)

≤ T̄i,j (sr , tm) + 3δ|σ |µmaxJmaxC
r+2n.

Let us define the eventT as follows:

T = {Ti,j (sr , tm) ≤ T̄i,j (sr , tm) + 3δ|σ |µmaxJmaxC
r+2n},
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that is,P{T } ≥ 1− O(exp(−�(n))) per (73). Next, consider

P{Di,j (sr , tm) > µi,j T̄i,j (sr , tm) + 4δ|σ |µ2
maxJmaxC

r+2n | T }
≤ P

{
Di,j (sr , tm) > µi,j

(
T̄i,j (sr , tm) + 3δ|σ |µmaxJmaxC

r+2n
)

+ δ|σ |µ2
maxJmaxC

r+2n | T }
.

Applying the large deviation bound (10) with

ε = δ|σ |µ2
maxJmaxC

r+2n

T̄i,j (sr , tm) + 3δ|σ |µmaxJmaxCr+2n
≥ δ|σ |µ2

maxJmaxC
r+2

θ + 3δ|σ |µmaxJmaxCr+2

[whereT̄i,j (sr , tm) ≤ θn is used], we obtain

P{Di,j (sr , tm) > µi,j T̄i,j (sr , tm) + 4δ|σ |µ2
maxJmaxC

r+2n | T }
≤ exp

(−�
(
T̄i,j (sr , tm) + 3δ|σ |µmaxJmaxC

r+2n
)) ≤ exp(−�(n)),

where the constantε is hidden in�(·). Taking this together withP {T } ≥ 1 −
O(exp(−�(n))), we have proven the lemma.�

We now analyze stationsσ for which the fluid amount stays zero during the
interval [sr , sr+1]. In the following lemma we obtain an analogue of Lemma 12
for this second case.

LEMMA 13. Given any station σ , suppose the interval (sr , sr+1) is such
that Q̄σ (t) = 0, for all sr < t < sr+1. Then for every (i, j) ∈ σ and every
tm ∈ [sr , sr+1],

P{Di,j (sr , tm) ≤ D̄i,j (sr , tm) + 5δjµ2
maxIJ 2

maxC
r+2n}

(74) ≥ 1− O
(
exp(−�(n))

)
.

PROOF. Consider any stationσ such thatQ̄σ (t) = 0, for all sr < t < sr+1.
Applying fluid equations (12) and (13), we obtain that, for every class(i, j) ∈ σ

and everytm ∈ [sr , sr+1],
D̄i,j−1(sr , tm) = D̄i,j (sr , tm),(75)

where for the casej = 1, D̄i,j−1(·) is understood as̄Ai(·).
The proof now proceeds by induction inj . We start with the base step,j = 1.

So, consider any class(i,1) ∈ σ . Applying (75), we have

D̄i,1(sr , tm) = Āi(sr , tm).(76)

Applying (1), we have

Qi,1(tm) = Qi,1(sr) + Ai (sr , tm) − Di,1(sr , tm) ≥ 0.(77)



INSTABILITY IN QUEUEING NETWORKS 1681

Next, lettm′ ≡ max{m : tm ≤ sr}. In particular, 0≤ sr − tm′ ≤ δn. We then have

P{Ai (sr , tm) > Āi(sr , tm) + 2δCn}
(78) ≤ P{Ai (tm′, tm) > Āi(sr , tm) + 2δCn}

≤ P{Ai (tm′, tm) > Āi(tm′ + δn, tm) + 2δCn}(79)

≤ P{Ai (tm′, tm) > Āi(tm′, tm) + δCn},(80)

whereĀi(tm′, tm′ + δn) ≤ λiδn < Cδn is used in (80). Note that whentm′ = tm,
the probability in (80) is zero since the left-hand side is negative. Thus, we
assumetm′ > tm. Let ε = δCn/(tm − tm′) ≥ δCn/(θn) = δC/θ > 0. Using the
large deviations Assumption B with thisε, we obtain

P{Ai (tm′, tm) > Āi(tm′, tm) + δCn} = P{Ai (tm′, tm) > Āi(tm′, tm) + ε(tm − tm′)}
≤ O

(
exp(−�(tm − tm′))

)
≤ O

(
exp(−�(n))

)
,

wheretm − tm′ ≥ δn is used in the last inequality. Combining this bound with (80),
we obtain

P{Ai (sr , tm) > Āi(sr , tm) + 2δCn} ≤ O
(
exp(−�(n))

)
.(81)

Applying Lemma 9, we have

P{Qi,1(sr) ≤ Q̄i,1(sr ) + δCr+2n + 2δCn} ≥ 1− O
(
exp(−�(n))

)
.

By our assumption that̄Qσ(t) = 0 for all sr < t < sr+1 and by continuity, we have
Q̄σ (sr) = 0. Using this fact, we now have

P{Qi,1(sr ) ≤ δCr+2n + 2δCn} ≥ 1− O
(
exp(−�(n))

)
.(82)

Now, from (77), we have

Di,1(sr , tm) = Qi,1(sr) + Ai (sr , tm) − Qi,1(tm)

≤ Qi,1(sr) + Ai (sr , tm).

Applying (81) and (82), we obtain that, with probability at least 1−
O(exp(−�(n))),

Di,1(sr , tm) ≤ Āi(sr , tm) + 2δCn + δCr+2n + 2δCn

≤ Āi(sr , tm) + 5δµ2
maxIJ 2

maxC
r+2n.

Combining this with (76), we obtain the required bound. This completes the proof
of the base step.

We now prove the inductive step. So, fixj > 1 and suppose that the assertion
holds for 1,2, . . . , j − 1. We now consider a particular class(i, j) ∈ σ . We have,
from (2),

Qi,j (tm) = Qi,j (sr ) + Di,j−1(sr , tm) − Di,j (sr , tm) ≥ 0.(83)
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Again, by Lemma 9, we have

P{Qi,j (sr ) ≤ Q̄i,j (sr ) + δCr+2n + 2δCn} ≥ 1− O
(
exp(−�(n))

)
,

which implies

P{Qi,j (sr ) ≤ δCr+2n + 2δCn} ≥ 1− O
(
exp(−�(n))

)
,(84)

again sinceQ̄σ (sr) = 0.
Consider the stationσν′ containing(i, j − 1). If σν′ is also such that̄Qσ ′(t) = 0

for all sr < t < sr+1 (e.g., whenν′ = ν), then by the inductive assumption onj ,

P{Di,j−1(sr , tm) ≤ D̄i,j−1(sr , tm) + 5δ(j − 1)µ2
maxIJ 2

maxC
r+2n}

≥ 1− O
(
exp(−�(n))

)
.

Otherwise,σν′ is such thatQ̄σν′ (t) > 0 for all sr < t < sr+1. Then Lemma 12
becomes applicable, and applying (71) toσν′ , we have that, with probability at
least 1− O(exp(−�(n))),

Di,j−1(sr , tm) ≤ D̄i,j−1(sr , tm) + 4δ|σν′ |µ2
maxJmaxC

r+2n

< D̄i,j−1(sr , tm) + 5(j − 1)δµ2
maxIJ 2

maxC
r+2n,

where we use|σν′ | ≤ ∑
i Ji ≤ IJmax and j > 1. Hence, in either case we have

a probabilistic bound onDi,j−1(sr , tm). Combining this with (83) and (84), we
obtain that, with probability at least 1− O(exp(−�(n))),

Di,j (sr , tm) ≤ D̄i,j−1(sr , tm) + δCr+2n + 2δCn + 5δ(j − 1)µ2
maxIJ 2

maxC
r+2n

< D̄i,j−1(sr , tm) + δ
(
3+ 5(j − 1)µ2

maxIJ 2
max

)
Cr+2n

< D̄i,j−1(sr , tm) + 5δjµ2
maxIJ 2

maxC
r+2n.

Finally, recalling (75), we obtain the desired bound. This completes the proof of
the inductive step. �

With the lemmas above in hand, we are now ready to finish the proof of
Proposition 2, by completing the outer inductive step onr .

PROOF OFPROPOSITION2. Fix anytm ∈ [sr , sr+1]. By Lemma 9,

P{|Qi,j (sr ) − Q̄i,j (sr )| ≤ δCr+2n + 2δCn} ≥ 1− O
(
exp(−�(n))

)
.

Next, for any class(i, j), recall that we have

Qi,j (tm) = Qi,j (sr ) + Di,j−1(sr , tm) − Di,j (sr , tm),(85)

with Di,j−1(·) replaced byAi (·) when j = 1. Combining Lemmas 10, 11,
12 and 13, we obtain that

P{|Di,j (sr , tm) − D̄i,j (sr , tm)| ≤ 5jδµ2
maxIJ 2

maxC
r+2n}

≥ 1− O
(
exp(−�(n))

)
.
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Recalling (45) and (81), we have that

P{|Ai (sr , tm) − Āi(sr , tm)| ≤ 2δCn} ≥ 1− O
(
exp(−�(n))

)
.

Combining the previous two bounds with (85) and the fluid analogs (12)
and (13), we obtain that, with probability at least 1− O(exp(−�(n))),

|Qi,j (tm) − Q̄i,j (tm)| ≤ δCr+2n + 2δCn + 10δjµ2
maxIJ 2

maxC
r+2n < δCr+3n,

where the bound (8) is used. This completes the proof of Proposition 2.�

4.4. Proof of the main theorem. In this section we present the final two proofs.
The next theorem is the last result needed before proving Theorem 7.

THEOREM 14. Suppose the fluid model of a stochastic multitype network is
not globally weakly stable and satisfies the FDP property. Then for any initial
state Q(0) = (q, z1, z2) ∈ Z

d+ × �I+d+ , under the nonidling scheduling policy U,
we have

P
{∥∥Q(θ‖q‖)∥∥ ≥ 2‖q‖} ≥ 1− O

(
exp(−�(‖q‖)))(86)

and

P

{
inf

0≤t≤θ‖q‖ ‖Q(t)‖ ≥ ‖q‖
4

max
(

γ

C
,1

)}
≥ 1− O

(
exp(−�(‖q‖))).(87)

PROOF. We first prove (87). Fix anytm and find thesr such thattm ∈ [sr , sr+1].
We have

P

{
sup

tm≤t≤tm+1

‖Q(t) − Q̄(t)‖ > 3Cr+4δn

}

≤ P

{
sup

tm≤t≤tm+1

‖Q(t) − Q(tm)‖ > Cδn

}

+ P{‖Q(tm) − Q̄(tm)‖ > Cr+4δn}
+ P

{
sup

tm≤t≤tm+1

‖Q̄(tm) − Q̄(t)‖ > Cδn

}

≤ O
(
exp(−�(n))

)
.

In fact, observe that the last probability in the right-hand side above is equal to
zero by (33) of Lemma 8. The first probability in the right-hand side is at most
O(exp(−�(n))) by (34) of Lemma 8, and the second probability is also at most
O(exp(−�(n))) by (38) of Proposition 2 and the fact that

∑
Ji < C.

Combining the inequality above with (31), we obtain

P

{
inf

tm≤t≤tm+1
‖Q(t)‖ <

n

2
min

(
γ

C
,1

)
− 3Cr+4δn

}
≤ O

(
exp(−�(n))

)
.
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From (32) and sincer ≤ M − 1, we have

n

2
min

(
γ

C
,1

)
− 3Cr+4δn ≥ n

4
min

(
γ

C
,1

)
.

Thus,

P

{
inf

tm≤t≤tm+1
‖Q(t)‖ <

n

4
min

(
γ

C
,1

)}
≤ O

(
exp(−�(n))

)
.

By summing over allm = 0,1, . . . , �θ/δ�, we obtain

P

{
inf

0≤t≤θn
‖Q(t)‖ <

n

4
min

(
γ

C
,1

)}
≤

⌈
θ

δ

⌉
O

(
exp(−�(n))

) = O
(
exp(−�(n))

)
,

where the last equality follows since by (25) and (32), the value of�θ/δ� is
bounded above by a constant. Recall, finally, that‖q‖ = n. This completes the
proof of (87).

We now prove (86). Find the largesttm ≤ θn. In particular,θn − tm ≤ δn.
Applying (34) with t = θn, we obtain

P{‖Q(θn) − Q(tm)‖ > Cδn} ≤ O
(
exp(−�(n))

)
.(88)

Applying (33) att = θn, we obtain

‖Q̄(θn) − Q̄(tm)‖ ≤ Cδn.(89)

Applying (38) to thetm chosen above, we obtain

P{|Qi,j (tm) − Q̄i,j (tm)| > δCM+2n} ≤ O
(
exp(−�(n))

)
.(90)

Next, we note that

P{‖Q(tm) − Q̄(tm)‖ > δCM+3n}

≤ P

{⋃
i,j

|Qi,j (tm) − Q̄i,j (tm)| > δCM+3n

IJmax

}

≤ P

{⋃
i,j

|Qi,j (tm) − Q̄i,j (tm)| > δCM+3n

C

}

= P

{⋃
i,j

|Qi,j (tm) − Q̄i,j (tm)| > δCM+2n

}

≤ ∑
i,j

P{|Qi,j (tm) − Q̄i,j (tm)| > δCM+2n}

≤ O
(
exp(−�(n))

)
.

In the last step, we employ (90) and then sum over alli and j to obtain a new
exponential bound. Combining (88), (89) and the last bound, we obtain

P{‖Q(θn) − Q̄(θn)‖ > 3δCM+3n} ≤ O
(
exp(−�(n))

)
.
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Sinceδ < 1/(3CM+3), we obtain

P{‖Q(nθ) − Q̄(nθ)‖ > n} ≤ O
(
exp(−�(n))

)
.

Recalling from (30) that‖Q̄(nθ)‖ ≥ 3n and recalling‖q‖ = n, we obtain

P{‖Q(nθ)‖ < 2‖q‖} ≤ O
(
exp(−�(n))

)
,

which implies (86). This completes the proof of Theorem 14.�

It should be noted that the constant “2” which appears in (86) is completely
arbitrary. In all of the proofs in which the constant appears, it can be replaced by
any constant greater than unity. We are now ready to prove our main result.

PROOF OF THEOREM 7. We fix a large valuen0 (the actual value will be
specified later). Consider any initial state(q, z1, z2) with ‖q‖ ≥ n0. We apply
the policy U for the time interval[0, θ0], whereθ0 = θ‖q‖. If at time θ0 the
resulting stateQ(θ0) is such that‖Q(θ0)‖ ≥ 2n0, then we apply the policyU again
with q reset toQ(θ0), till the corresponding timeθ1 = θ0 + θ‖Q(θ0)‖. If again
‖Q(θ1)‖ ≥ 2‖Q(θ0)‖ ≥ 4n0, we continue with policyU until the corresponding
time θ2 and check whether‖Q(θ2)‖ ≥ 2‖Q(θ1)‖ ≥ 8n0, and so on. Either this
process continues indefinitely or for some time instanceθi , we get‖Q(θi)‖ <

2‖Q(θi−1)‖. Setθ−1 = 0 by convention. LetEm,m = 0,1, . . . , denote the event
‖Q(θi)‖ ≥ 2‖Q(θi−1)‖ and

inf
θi−1≤t≤θi

‖Q(t)‖ ≥ ‖Q(θi−1)‖
4

max
(

γ

C
,1

)
,(91)

for all i ≤ m. In particular, the event implies‖Q(θm)‖ ≥ 2m+1n0 ≥ n0. Let
E1 = ⋂

m Em, that is,E1 implies that the process of exceeding the bounds continues
indefinitely. We now show thatP{E1} ≥ α > 0, whereα depends only on the
parameters of the model and onn0 andγ (and is independent for example from the
componentsz1, z2). By (86) and (87) of Theorem 14, the probability of the event
E1 ≡ ⋂∞

m=0 Ei is at least

1− 2
∞∑

m=0

O
(
exp(−�(2m‖q‖))) > 1−

∞∑
m=0

O
(
exp(−�((m + 1)‖q‖)))

= 1− O(exp(−�(‖q‖)))
1− O(exp(−�(‖q‖)))

> 1− O
(
e−�(n0)

)
.

We taken0 sufficiently large so thatα ≡ 1 − O(e−�(n0)) > 0. The parameters
hidden in�(·) depend only on the parameters of the model (including the large
deviations parametersV,L) andγ . Thus, the probability ofE1 is positive (and, in
fact, is close to unity), provided thatn0 is sufficiently large.
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Next, we show that the eventE1 implies

lim inf
t

‖Q(t)‖
t

≥ max(γ /C,1)

8max(1,3/γ )
> 0.(92)

We first show by induction inm that eventE1 implies ‖Q(θm)‖/θm ≥ 1/θ for
all m ≥ 1. Whenm = 1, the ratio is at least 2‖q‖/(θ‖q‖) > 1/θ . Suppose the
assertion holds fori = 1,2, . . . ,m − 1. Note thatθm = θm−1 + θ‖Q(θm−1)‖ and
by E1, ‖Q(θm)‖ ≥ 2‖Q(θm−1)‖. Therefore,

‖Q(θm)‖
θm

≥ 2‖Q(θm−1)‖
θm−1 + θ‖Q(θm−1)‖

= 2‖Q(θm−1)‖/θm−1

1+ θ‖Q(θm−1)‖/θm−1
.

But by the inductive assumption,‖Q(θm−1)‖/θm−1 ≥ 1/θ . This immediately
implies that the expression above is also at least 1/θ , and the induction is
completed. Now for everyt ≥ θ0 = θ‖q‖, we find θm such thatθm−1 ≤ t < θm.
Using (91), we obtain

‖Q(t)‖
t

≥ ‖Q(θm−1)‖
4θm

max
(

γ

C
,1

)

= 1

4(θm−1/‖Q(θm−1)‖) + 4θ
max

(
γ

C
,1

)

≥ max(γ /C,1)

8θ
> 0,

where the last inequality follows since‖Q(θm−1)‖/θm−1 ≥ 1/θ . This shows (92).
Now, suppose the eventEi fails to occur at someθi , and thusE1 does not

occur. We then “restart” the process of attempting to obtain an infinite sequence
of pointsθi with the properties outlined above. Let us callE2 the event that the
sequence is obtained after restarting the process again as follows. At that time
at whichEi fails, we switch to any nonidling nonpreemptive scheduling policy.
Applying Assumption C, with probability one, there exists a timeτ1 for which
‖Q(τ1)‖ ≥ n0. Note that it is possible thatτ1 = θi . We apply the policyU starting
from time τ1. Repeating the argument forE1, with probability greater thanα,
we obtain a new infinite sequence of time instancesθ ′

i such that‖Q(θ ′
i+1)‖ ≥

2‖Q(θ ′
i )‖, that is,E2 occurs. IfE2 does not occur, we again restart the process.

Finally, the probability of eventually obtaining a sequence of pointsθi with the
stated properties is given byP(E) ≡ P(

⋃∞
k=1 Ek), where theEk are defined as

above in the natural way. Since the probability of each eventEk is bounded below
by α, and this lower bound on probability does not depend on whether or not the
other events occur, the probability ofE is one.
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Finally, we show below that the eventE implies (22), that is,

lim inf
t

‖Q(t)‖
t

≥ max(γ /C,1)

8max(1,3/γ )
> 0.(93)

Let k be the smallest integer for whichEk occurs. Denote byTk the time
corresponding to the beginning of this event. Fix any state(q, z1, z2) and t0 > 0
and condition onTk = t0,Q(t0) = q. Applying (92) to the eventEk , we obtain

lim inf
t

‖Q(t)‖
t0 + t

≥ max(γ /C,1)

8max(1,3/γ )
> 0.(94)

Sincet0 is fixed, the lower bound (93) holds as well. Integrating over the choices
of (q, z1, z2) andt0, we complete the proof of the theorem.�

5. Conclusions and further work. The present work leaves many interesting
questions open. The most immediate one is whether the result connecting global
weak stability and rate stability holds for networks with any number of stations.
One way to prove this conjecture would be to establish the Finite Decomposition
Property for fluid networks with more than two stations. Of course, the question
of whether (strong) global stability of the fluid model is equivalent to positive
Harris recurrence remains open even for networks with two stations. There the
difficulty lies in being able to analyze the dynamics of the stochastic network at
the critical regimeρ∗ = 1. Finally, we mention that our assumption that interarrival
and service times are i.i.d. is used to simplify the exposition and our result should
hold for networks with more general primitives as long as the associated processes
satisfy appropriate large deviations bounds.

APPENDIX

PROOF OF LEMMA 1. We begin by proving (9). The proof of (10) is then
derived using (9). Our method uses the standard derivation of LD upper bounds on
i.i.d. sequences.

Part I. Let us fix arbitraryε > 0 andθ > 0. Then we note the following hold for
all n ≥ 1:

P

{ ∑
1≤i≤n

Zi ≥ nα + nε + z
∣∣∣Z1 ≥ z

}
= P

{
eθ

∑
1≤i≤n Zi ≥ eθ(nα+nε+z) | Z1 ≥ z

}

≤ E[eθ(Z1−z) | Z1 ≥ z](E[eθZ2])n−1

enθ(α+ε)

≤ F(θ)(E[eθZ2])n
enθ(α+ε)

,

where we usez ≥ 0 andE[eθZ2] ≥ 1. It is a standard result in large deviations
theory [14] thatE[eθZ2]/eθ(α+ε) ≡ e−L(ε) < 1 for some value ofθ = θ(ε) ∈ [0, θ0]
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as long asE[eθZ2] is finite on [0, θ0]. Thus, our tail probability is at most
F(θ(ε))e−L(ε)n. We fix a suitableθ and takeV = F(θ).

We now prove a complimentary bound. Again fix arbitraryε > 0 andθ > 0,

P

{ ∑
1≤i≤n

Zi ≤ nα − nε + z
∣∣∣Z1 ≥ z

}
= P

{
e−θ

∑
1≤i≤n Zi ≥ e−θnα+θnε−θz | Z1 ≥ z

}

≤ E[e−θ(Z1−z) | Z1 ≥ z](E[e−θZ2])n−1

e−nθα+nθε

≤ (E[e−θZ2])n−1

e−(n−1)θ(α−ε)
eθα−θε,

where we useE[e−θ(Z1−z) | Z1 ≥ z] ≤ 1. Again we use a standard result in large
deviations theory [14] stating thatE[e−θZ2]/e−(θα−θε) ≡ e−L(ε) < 1 for some
value ofθ = θ(ε) ∈ [0, θ0]. We takeV = eL(ε)+θα−θε. This proves (9).

Part II. We now prove (10). Consider a fixed, but arbitraryε > 0.
We first obtain a bound which is valid for allt ≥ 1. Note that (9) easily implies

two one-sided versions of the LD inequality. Applying one such one-sided version
of (9) with n = �t/α + εt� ≥ 1 andε̃ = α2ε/(1 + αε + α) > 0, then there exist
L̃,V1 > 0 such that

P

{ �t/α+εt�∑
i=1

Zi − z ≤ α�t/α + εt� − ε̃�t/α + εt�
∣∣∣Z1 ≥ z

}
≤ V1e

−L̃�t/α+εt�,

for all t ≥ 0. Next since�t/α + εt� ≥ t/α + εt and for t ≥ 1, �t/α + εt� ≤
t/α + εt + t , we have

P

{ �t/α+εt�∑
i=1

Zi − z ≤ α[t/α + εt] − ε̃[t/α + εt + t]
∣∣∣Z1 ≥ z

}
≤ V1e

−L̃�t/α+εt�,

for all t ≥ 1. Multiplying through inside the probability yields

P

{ �t/α+εt�∑
i=1

Zi − z ≤ t + αεt − αεt
∣∣∣Z1 ≥ z

}
≤ V1e

−L̃�t/α+εt�.

Further simplification gives

P

{ �t/α+εt�∑
i=1

Zi ≤ t + z
∣∣∣Z1 ≥ z

}
≤ V1e

−L̃�t/α+εt�,

for all t ≥ 1. Using the duality relationship between a counting process and its
increments, the above implies

P{N(t + z) ≥ t/α + εt | Z1 ≥ z} ≤ V1e
−L̃�t/α+εt�.(95)
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Finally, settingL1 = L̃(1/α + ε), we have

V1e
−L̃�t/α+εt� ≤ V1e

−L1t ,

for all t ≥ 1. Hence, we can rewrite (95) as

P{N(t + z) ≥ t/α + εt | Z1 ≥ z} ≤ V1e
−L1t ,(96)

for all t ≥ 1.
For t < 1 and anyV2 > 1, note thatV2 ·exp(−L2t) ≥ 1 if we setL2 ≡ lnV2 > 0.

Hence,

P{N(t + z) ≥ t/α + εt | Z1 ≥ z} ≤ V2e
−L2t(97)

holds trivially for all t < 1 with such aV2 and L2. Finally, setting V3 ≡
max{V1,V2} andL3 ≡ min{L1,L2}, then combining with (96) and (97), we obtain

P{N(t + z) ≥ t/α + εt | Z1 ≥ z} ≤ V3e
−L3t ,

for all t ≥ 0.
This proves one side of the inequality in (10). The other direction is proved by

an exactly analogous argument. The final result is then obtained by combining the
two directions, applying Boole’s inequality and again using appropriate constants
B andL. �
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