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UTILITY MAXIMIZATION WITH A STOCHASTIC CLOCK
AND AN UNBOUNDED RANDOM ENDOWMENT1

BY GORDAN ŽITKOVI Ć

Carnegie Mellon University

We introduce a linear space of finitely additive measures to treat the
problem of optimal expected utility from consumption under a stochastic
clock and an unbounded random endowment process. In this way we establish
existence and uniqueness for a large class of utility-maximization problems
including the classical ones of terminal wealth or consumption, as well as the
problems that depend on a random time horizon or multiple consumption
instances. As an example we explicitly treat the problem of maximizing
the logarithmic utility of a consumption stream, where the local time of an
Ornstein–Uhlenbeck process acts as a stochastic clock.

1. Introduction. When we speak of expected utility, we usually have one
of the following two cases in mind: expected utility of consumption on a finite
interval or the expected utility of terminal wealth at some future time point.
These two cases correspond to two of the historically most important problem
formulations in the classical calculus of variations and optimal (stochastic)
control—theMeyer formulation E[ ∫ T

0 L(s, x(s)) dt] → max and theLagrange
formulation E[ψ(x(T ))] → max, wherex(·) denotes the controlled state function
or stochastic process, andL andψ correspond to the optimization criteria. These
formulations owe a great deal of popularity to their analytical tractability; they fit
very well into the framework of the dynamic programming principle often used
to tackle optimal control problems. Even though there are a number of problem
formulations in the stochastic control literature that cannot be reduced to either
a Meyer or a Lagrange form [see Section 2.7, pages 85–92 of Yong and Zhou
(1999), for an overview of several other classes of stochastic control models], the
expected utility theory in contemporary mathematical finance seems to lag behind
in this respect. The introduction of convex duality into the treatment of utility-
maximization problems by Karatzas, Lehoczky and Shreve (1987) and Karatzas,
Lehoczky, Shreve and Xu (1991), as well as its further development by Kramkov
and Schachermayer (1999), Cvitanić, Schachermayer and Wang (2001), Karatzas
and Žitkovíc (2003) and Hugonnier and Kramkov (2004) (to list but a small subset
of the existing literature) offerhope that this lag can be overcome.
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This paper aims to formulate and solve a class of utility-maximization problems
of the stochastic clock type in general incomplete semimartingale markets with
locally bounded stock prices and a possibly unbounded random endowment
process. More specifically, our objective is to provide a mathematical framework
for maximizing functionals of the formE[ ∫ T

0 U(ω, t, ct ) dκt ], whereU is a time
and uncertainty-dependent utility function (a utility random field),ct is the
consumption density process andκt is an arbitrary nondecreasing right-continuous
adapted process on[0, T ] with κT = 1. Two particular choicesκt = t/T and
κt = 1{t=T } correspond to the familiar Meyer and Lagrange formulations of the
utility-maximization problem, but there are many other financially feasible ones.
The problems of maximization of the expected utility at terminal timeT , whenT is
a stopping time that denotes the retirement time or a default time, form a class of
examples. Another class consists of problems with the compound expected utility
sampled at a sequence of stopping times. Furthermore, we could model random
consumption prohibition by settingκt = ∫ t

0 1{Ru∈C} du for some index processRt

and a setC ⊆ R.
The notion of a stochastic clock already was presented explicitly by Goll

and Kallsen (2003) (where the phrase “stochastic clock” was introduced) and
implicitly in Žitkovi ć (1999, 2002) and Karatzas and Žitković (2003). Goll and
Kallsen (2003) treated the case of a logarithmic utility with no random endowment
process, under additional assumptions on existence of the optimal dual process.
Karatzas and Žitković (2003) established existence and uniqueness of an optimal
consumption process in an incomplete semimartingale market in the presence of a
bounded random endowment. Their version of the stochastic clock is, however,
relatively limited—it is required to be a deterministic process with no jumps
on [0, T ). This assumption was crucial for their treatment of the problem using
convex duality and is related to the existence of a cadlag version of the optimal
dual process. Related to the notion of a stochastic clock is the work by Blanchet-
Scalliet, El Karoui, Jeanblanc and Martellini (2003), which deals with utility-
maximization on a random horizon not necessarily given by a stopping time.
Also, recent work by Bouchard and Pham (2004) treated wealth-path-dependent
utility-maximization. These authors used a duality relationship between the wealth
processes and a suitably chosen class of dual processes viewed as optional
measures on the product space[0, T ] × �.

In the present paper we extend the existing literature in several ways. We
prove existence and describe the structure of the optimal strategy under fairly
unrestrictive assumptions on the financial market and the random endowment
process.

First, we allow for a general stochastic clock and a general utility that satisfies
the appropriate version of the requirement of reasonable elasticity given by
Kramkov and Schachermayer (1999).

Second, we allow a random endowment process that is not necessarily bounded:
We require only a finite upper-hedging price for the total endowment at timet = T .
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The case of a nonbounded random endowment in the utility maximization
literature was consideredby Hugonnier and Kramkov (2004), but only in the case
of the utility of terminal wealth and using techniques different from ours. The
only restriction warranting discussion is the one we place on the jumps of the
stock-price processS. Namely, we requireS to be locally bounded. The reason
for this requirement [not present in Karatzas and Žitković (2003), but appearing
in Hugonnier and Kramkov (2004)] is that the random endowment process is no
longer assumed to be bounded and the related notion of acceptability (developed
only in the locally bounded setting) has to be employed.

Finally, we present an example in which we deal completely explicitly
with a utility-maximization problem in an Itô process market model with
constant coefficients, where the stochastic clock is the local time at 0 of an
Ornstein–Uhlenbeck process. This example illustrates how uncertainties in future
consumption prohibitions introduce incompleteness into the market and describes
the optimal strategy to face them.

To tackle the problem of utility maximization with the stochastic clock, we
cannot depend on existing techniques. We still use the convex-duality approach,
but to be able to formulate and solve the dual problem, we introduce and study
the properties of two new Banach spaces: consumption densities and finitely
additive measures. Also, we simplify the formulation of the standard components
of the convex-duality treatment by defining the dual objective function directly
as the convex conjugate of the primal objective function in the suitably coupled
pair of Banach spaces. In this way, the mysterious regular parts of the finitely
additive counterparts of the martingale measures used in Cvitanić, Schachermayer
and Wang (2001) and Karatzas and Žitković (2003) in the definition of the dual
problem appear in our treatment more naturally, in an a posteriori fashion.

The paper is organized as follows. After this Introduction, Section 2 describes
the model of the financial market and poses the utility-maximization problem. In
Section 3 we introduce the functional-analytic setup needed for the convex-duality
treatment of our optimization problem. Section 4 introduces the convex conjugate
of the utility functional and states the main result. An example that admits an
explicit solution is treated in Section 5. Finally, the Appendix contains the proof
of our main result.

2. The financial market and the optimization problem.

2.1. The stock-price process. We consider a financial market on a finite
horizon [0, T ], T ∈ (0,∞), consisting of ad-dimensional locally bounded
semimartingale(St )t∈[0,T ] = (S1

t , . . . , Sd
t )t∈[0,T ]. The process(St )t∈[0,T ] is defined

on a stochastic base(�,F , (Ft )t∈[0,T ],P) that satisfies the usual conditions. For
simplicity we also assume thatF0 is P-trivial and thatF = FT . Together with
the stock-price process(St )t∈[0,T ], there is a numeraire assetS0 and all values
are denominated in terms ofS0

t . This amounts to the standard assumption that
(S0

t )t∈[0,T ] is equal to the constant process 1.
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2.2. Admissible portfolio processes. A financial agent invests in the market
according to an(Ft )t∈[0,T ]-predictable S-integrable d-dimensional portfolio
process(Ht )t∈[0,T ]. The stochastic integral((H · S)t )t∈[0,T ] is called thegains
process and represents the net gains from trade for the agent who holds a portfolio
with Hk

t shares of the assetk at timet , for k = 1, . . . , d .
A portfolio process(Ht )t∈[0,T ] is calledadmissible if there exists a constant

x ∈ R such thatx + (H ·S)t ≥ 0 for all t ∈ [0, T ], with probability 1. Furthermore,
an admissible process(H)t∈[0,T ] is calledmaximal admissible if there exists no
other admissible process(H̃ )t∈[0,T ] such that

(H · S)T ≤ (H̃ · S)T a.s. and P[(H · S)T < (H̃ · S)T ] > 0.

The family of all processes(XH
t )t∈[0,T ] of the form XH

t � (H · S)t , for an
admissibleH , is denoted byX. The class of processes(XH

t )t∈[0,T ] ∈ X that
corresponds to maximal admissible portfolio processes(H)t∈[0,T ] is denoted
by Xmax.

We complement the widespread notion of admissibility by the less known
notion of acceptability [introduced by Delbaen and Schachermayer (1997)],
because admissibility is not adequate for dealing with nonbounded random
endowment processes, as was shown in the context of utility maximization from
terminal wealth by Hugonnier and Kramkov (2004). A portfolio process(H)t∈[0,T ]
is called acceptable if it admits a decompositionH = H+ − H− with H+
admissible andH− maximal admissible.

2.3. Absence of arbitrage. To rule out the arbitrage opportunities in our
market, we state the following assumption:

ASSUMPTION 2.1. There exists a probability measureQ on F , equivalent
to P, such that the process(St )t∈[0,T ] is aQ-local martingale.

The celebrated paper of Delbaen and Schachermayer (1994) showed that the
condition in Assumption 2.1 is equivalent to the notion of no free lunch with
vanishing risk (NFLVR)—a concept closely related to and only slightly stronger
than the classical notion of absence of arbitrage. The condition NFLVR is therefore
widely excepted as an operational proxy for the absence of arbitrage, and the
Assumption 2.1 will be in force throughout the rest of the paper.

The set of all measuresQ ∼ P as in Assumption 2.1 is denoted byM and we
refer to the elements ofM as the equivalent local martingale measures.

2.4. Endowment and consumption. Apart from being allowed to invest in the
market in an admissible way, the agent (a) is continuously getting funds from an
exogenous source (random endowment) and (b) is allowed to consume parts of his
or her wealth as time progresses. These capital in- and out-flows are modeled by
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nondecreasing processes(Et )t∈[0,T ] and(Ct )t∈[0,T ] in V, whereV denotes the set
of all cadlag(Ft )t∈[0,T ]-optional processes vanishing at 0 whose paths are of finite
variation. Here and in the rest of the paper we always identifyP-indistinguishable
processes without explicit mention.

The linear spaceV can be given the structure of a vector lattice by equipping it
with a partial order�, that is compatible with its linear structure: We declare

F 1 � F 2 if the process(F 2
t − F 1

t )t∈[0,T ] has nondecreasing paths.

The cone of all nondecreasing processes inV is thepositive cone of the vector
latticeV and we denote it byV+. Also, thetotal-variation process(|F |t )t∈[0,T ] ∈
V+ is associated with eachF ∈ V.

The process introduced in (a) above and denoted by(Et )t∈[0,T ] ∈ V+ represents
the random endowment, that is, the valueEt at time t ∈ [0, T ] stands for the
cumulative amount of endowment received by the agent during the interval[0, t].
The process(Et )t∈[0,T ] is given exogenously and we assume that the agent
exerts no control over it. On the other hand, the amount and distribution of the
consumption is decided by the agent, and we model the agent’s consumption
strategy by the consumption process(Ct )t∈[0,T ] ∈ V+; the value Ct is the
cumulative amount spent on consumption throughout the interval[0, t]. We find
it useful in later sections to interpret the processes inV+ as optional random
measures on the Borel sets of[0, T ].

2.5. Wealth dynamics. Starting from the initial wealth ofx ∈ R (which
can be negative) and the endowment process(Et )t∈[0,T ], our agent is free to
choose an acceptable portfolio process(Ht )t∈[0,T ] and a consumption process
(Ct )t∈[0,T ] ∈ V+. These two processes play the role of system controls. The
resulting wealth process(X(x,H,C)

t )t∈[0,T ] is given by the wealth dynamics
equation

X
(x,H,C)
t � x + (H · S)t − Ct + Et , t ∈ [0, T ].(2.1)

A consumption process(C)t∈[0,T ] ∈ V+ is said to be(x,E)-financeable if there
exists an acceptable portfolio process(H)t∈[0,T ] such thatX(x,H,C)

T ≥ 0 a.s. The
class of all(x,E)-financeable consumption processes is denoted byA(x,E) or
simply byA(x) when there is no possibility of confusion.

REMARK 2.1. The introduction of the concept of financeability, which
suppresses explicit mention of the portfolio process(Ht )t∈[0,T ], is justified
later when we specify the objective (utility) function. It depends only on the
consumption, not on the particular portfolio process used to finance it, so we find
it useful to formulate a static version of the optimization problem in which the
portfolio process(Ht )t∈[0,T ] does not appear at all.
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REMARK 2.2. The notion of financeability imposes a weak solvency restric-
tion on the amount of wealth the agent can consume: Even though the total wealth
process(X(x,H,C)

t )t∈[0,T ] is allowed to take strictly negative values before timeT ,
the agent must plan consumption and investment in such a way to be able to pay all
debts by the end of the planning horizon with certainty. In other words, borrowing
is permitted, but only against the future endowment so that there is no chance of
default. With this interpretation it makes sense to allow the initial wealthx to take
negative values—the initial debt might very well be covered from the future en-
dowment. Finally, we stress that our notion of financeability differs from the one
introduced in El Karoui and Jeanblanc-Picqué (1998), where no borrowing was
allowed. Treatment of a consumption problem with such a stringent financeability
condition seems to require a set of techniques different from ours and we leave it
for future research.

2.6. A characterization of financeable consumption processes. In the treat-
ment of our utility-maximization problemin the main body of this paper, the so-
called budget-constraint characterization of the setA(x) proves to be useful. The
idea is to describe the financeable consumption processes in terms of a set of lin-
ear inequalities. We provide such a characterization in the following proposition
under the assumption that the random variableET (which denotes the total cumu-
lative endowment over the horizon[0, T ]) admits an upper-hedging price, that is,
U(ET ) � supQ∈M EQ[ET ] < ∞.

PROPOSITION 2.2. Suppose that the total endowment ET admits an upper-
hedging price, that is, U(ET ) < ∞. Then the process (Ct)t∈[0,T ] ∈ V+ is (x,E)-
financeable if and only if

EQ[CT ] ≤ x + EQ[ET ] ∀Q ∈ M.(2.2)

PROOF. Only if: Assume first that(Ct)t∈[0,T ] ∈ A(x,E) and pick an accept-
able portfolio process(Ht )t∈[0,T ] such that the wealth process(X

(x,H,C)
t )t∈[0,T ]

defined in (2.1) satisfiesX(x,H,C)
T ≥ 0 a.s. By the definition of acceptability, there

exists a decompositionH = H+ − H− into an admissibleH+ and a maximal
admissibleH− portfolio process. LetM′ be the set of allQ ∈ M such that
((H− · S)t )t∈[0,T ] is a Q-uniformly integrable martingale. For anyQ ∈ M, the
process((H+ ·S)t )t∈[0,T ] is aQ-local martingale bounded from below and, there-
fore, is aQ supermartingale. Hence,((H · S)t )t∈[0,T ] is aQ supermartingale for
all Q ∈ M′ and

0 ≤ EQ[X(x,H,C)
T |F0] = x + EQ[(H · S)T |F0] + EQ[ET − CT |F0]

(2.3)
≤ x + EQ[ET ] − EQ[CT ] for all Q ∈ M′.

The set M′ of all Q ∈ M such thatH− · S is a Q-uniformly integrable
martingale is convex and dense inM in the total-variation norm [see Delbaen
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and Schachermayer (1997), Theorem 5.2]. Therefore, the claim follows from (2.3)
and the density ofM′ in M.

IF: Let (Ct)t∈[0,T ] ∈ V+ be a process that satisfiesEQ[CT ] ≤ x + EQ[ET ]
for all Q ∈ M. Since ET ≥ 0 admits an upper-hedging price, there exists a
constantp > 0 and a maximal admissible portfolio process(H E

t )t∈[0,T ] such that
p + (H E ·S)T ≥ ET a.s. [see Lemma 5.13 in Delbaen and Schachermayer (1998)].
Define the process

Ft � esssup
Q∈M

EQ[CT − ET + p + (H E · S)T |Ft ]

and note thatF0 ≤ x +p. Then(Ft )t∈[0,T ] is a nonnegativeQ-supermartingale for
all Q ∈ M, permitting a cadlag modification [see Kramkov (1996), Theorem 3.2].
Thus the optional decomposition theorem [see Kramkov (1996), Theorem 2.1]
asserts the existence of an admissible portfolio processes(HF

t )t∈[0,T ] and a finite-
variation process(Gt)t∈[0,T ] ∈ V+ such that

Ft = F0 + (HF · S)t − Gt for all t ∈ [0, T ] a.s.

If follows that x + p + (HF · S)T ≥ CT − ET + p + (H E · S)T , so for the
acceptable portfolio process(Ht )t∈[0,T ], defined byHt � HF

t − H E
t , we have

x + (H · S)T − CT + ET ≥ 0. �

2.7. The utility functional and the primal problem. To define the objective
function of our optimization problem, we need two principal ingredients: a utility
random field and the stochastic clock process.

The notion of a utility random field as defined below appeared in Žitković
(1999) and Karatzas and Žitković (2003), and we use it because of its flexibility
and good analytic properties—there are no continuity requirements in the temporal
argument and so it is well suited for our setting.

As for the notion of a stochastic clock, it models the the agent’s (either
endogenously or exogenously imposed) notion of the passage of time with respect
to which the consumption rate is calculated and utility is accumulated. Several
examples that often appear in mathematical finance are given below. Before that
let us give the formal definition of the concepts involved:

DEFINITION 2.3.

1. A utility random field U :� × [0, T ] × (0,∞) → R is an F ⊗ B[0, t] ⊗
B(0,∞)-measurable function that satisfies the following conditions.
(a) For a fixed(ω, t) ∈ � × [0, T ], the functionx �→ U(ω, t, x) is a utility

function, that is, a strictly concave, increasingC1 function that satisfies the
Inada conditions

lim
x→0+Ux(ω, t, x) = ∞ and lim

x→∞Ux(ω, t, x) = 0 a.s.,

whereUx(·, ·, · ) denotes the derivative with respect to the last argument.
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(b) There are continuous, strictly decreasing (nonrandom) functions
Ki : (0,∞) → (0,∞), i = 1,2, that satisfy

lim sup
x→∞

K2(x)

K1(x)
< ∞

and constantsG < D ∈ R such that we have

K1(x) ≤ Ux(ω, t, x) ≤ K2(x)

for all (ω, t, x) ∈ � × [0, T ] × (0,∞) and

G ≤ U(ω, t,1) ≤ D

for all (t,ω) ∈ [0, T ] × �.
(c) For every optional process(ct )t∈[0,T ], the process(U(ω, t, ct ))t∈[0,T ] is

optional.
(d) FieldU is reasonably elastic, that is, it satisfies AE[U ] < 1, where AE[U ]

denotes the asymptotic elasticity of the random fieldU , defined by

AE[U ] � lim sup
x→∞

(
esssup

(t,ω)∈[0,T ]×�

xUx(ω, t, x)

U(ω, t, x)

)
.

2. The stochastic clock (κt )t∈[0,T ] is an arbitrary process inV+, such that
κT = 1, a.s.

REMARK 2.3. The requirementκT = 1 in Definition 2.3 is a mere normal-
ization. We impose it to be able to work with probability measures on the product
space[0, T ] × � (see Section 3).

We are now in the position to define the notion of a utility functional which
takes consumption processes as arguments and returns their expected utility. This
expected utility [as defined below in assumption (2.4)] depends only on the part
of the consumption process(Ct )t∈[0,T ] that admitts a density with respect to the
stochastic measuredκ , so the choice of a consumption plan with a nontrivial
component singular todκ is clearly suboptimal. For that reason we restrict
our attention only to consumption processes(Ct)t∈[0,T ] whose trajectories are
absolutely continuous with respect todκ , that is, only processes of the form
Ct = ∫ t

0 ct dκt , for a nonnegative optional process(ct )t∈[0,T ], which we refer to
as the consumption density of the consumption process(Ct )t∈[0,T ]. For simplicity,
we assume that the random endowment admits adκ density (et )t∈[0,T ] in that
Et = ∫ t

0 eu dκu for all t ∈ [0, T ], a.s. This assumption is clearly not necessary
since the restrictions, which the size of the random endowment places on the
choice of the consumption process, depend only on the valueET , as we showed in
Proposition 2.2. We impose it to simplify notation by having all ingredients defined
as elements of the same Banach space (see Section 3).
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The utility derived from a consumption process should, therefore, be viewed as a
function of the consumption density(ct )t∈[0,T ] and we define theutility functional
as a function on the set of optional processes:

U(c) � E

∫ T

0
U(ω, t, ct ) dκt for an optional process(ct )t∈[0,T ].(2.4)

To deal with the possibility of ambiguities of the form(+∞) − (−∞) in
Definition 2.3, we adopt the following convention, which is standard in the utility-
maximization literature: When the integralE

∫ T
0 (U(ω, t, ct ))

− dκt of the negative
part (U(ω, t, ct ))

− of the integrand from (2.4) takes the value−∞, we set
U(c) = −∞. In other words, our financial agent is not inclined toward the risks
that defy classification, as far as the utility random fieldU is concerned. Finally,
we add a mild technical integrability assumption on the utility functionalU . It is
easily satisfied by all our examples and it is crucial for the simplicity of the proof
of Proposition 4.1.

ASSUMPTION2.4. For any nonnegative optional process(ct )t∈[0,T ] such that
U(c) > −∞ and any constant 0< δ < 1 we haveU(δc) > −∞.

2.8. Examples of utility functionals.

EXAMPLE 2.5 (Utility randomfields). 1. LetU(x) be a utility function that
satisfies lim supx→∞ xU ′(x)

U(x)
< 1. Also, suppose there exist functionsA : (0,∞) →

R andB : (0,∞) → (0,∞) such thatU(δx) > A(δ) + B(δ)U(x) for all δ > 0 and
x > 0. A family of examples of such utility functions is supplied by the HARA
family

Uγ (x) =


xγ − 1

γ
, γ < 1, γ = 0,

log(x), γ = 0.

Then the (deterministic) utility random field

U(ω, t, x) = exp(−βt)Uγ (x)

conforms to Definition 2.3, and satisfies Assumption 2.4.
2. If we take a finite numbern of (Ft )t∈[0,T ]-stopping timesτ1, . . . , τn, positive

constantsβ1, . . . , βn andn utility functionsU1(·), . . . ,Un(·) as in part 1 and define

U(ω, t, x) =
n∑

i=1

exp(−βit)U
i(x)1{t=τi (ω)},

the random fieldU can be easily redefined on the complement of the union of the
graphs of stopping timesτi , i = 1, . . . , n, to yield a utility random field satisfying
Assumption 2.4.
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EXAMPLE 2.6 (Stochastic clocks I). 1. Setκt = t , for t ≤ T = 1. The utility
functional takes the form of utility of consumptionU(c) = E

∫ 1
0 U(ω, t, ct ) dt .

2. Forκt = 0 for t < T and forκT = 1, we are looking at the utility of terminal
wealthE[U(XT )], whereU(x) = U(ω,T , x). Formally, we get an expression of
the formU(c) = E[U(ω,T , cT )], but clearlycT = XT in all but suboptimal cases.

3. A combinationκt = t/2 for t < T = 1, and κT = 1, of the two cases
above models the utility of consumption and terminal wealthU(c) = E[ ∫ 1

0 U(ω, t,

ct ) dt + U(XT )].

EXAMPLE 2.7 (Stochastic clocks II). 1. Letτ be an a.s. finite(Ft )t∈[0,T ]-
stopping time. We can think ofτ as a random horizon such as retirement time or
some other market-exit time. Then the stochastic clockκt = 0 for t < τ , andκt = 1
for t ≥ τ models the expected utilityE[U(Xτ )] of the wealth at a random timeτ .
The random endowmentEτ has the interpretation of the retirement package. In
the case in which the random horizonτ is unbounded, it is enough to apply a
deterministic time change to fall back within the reach of our framework.

REMARK 2.4. As the anonymous referee pointed out, the case of a random
horizon τ given by a mere random (as opposed to a stopping) time can be
included in this framework by definingκ as the conditional distribution ofτ ,
given the filtration(Ft )t∈[0,T ], as in Blanchet-Scalliet, El Karoui, Jeanblanc and
Martellini (2003).

2. Example 2.7 can be extended to go well with the utility function from part 2
of Example 2.5. For ann-tuple of(Ft )t∈[0,T ]-stopping times, we set

κt =
n∑

i=1

1

n
1{t≥τi},

so that

U(c) = 1

n

n∑
i=1

E
[
exp(−βiτi)U

i(cτi

)]
.

3. If we setκt = 1 − exp(−βt) for t < τ andκt = 1 for t ≥ τ , we can add
consumption to part 1 of Example 2.7,

U(c) = E

[∫ τ

0
exp(−βt)U(ω, t, ct ) dt + (

1− exp(−βτ)
)
U(Xτ )

]
,

which models the utility from consumption up to and remaining wealth at random
time τ . The possibly inconvenient factor(1 − exp(−βτ)) in front of the terminal
utility term can be dealt with by absorbing it into the utility random field.
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EXAMPLE 2.8 (Stochastic clocks IV). 1. In this example we model the
situation when the agent is allowed to withdraw consumption funds only when
a certain index processRt satisfiesRt ∈ C for some Borel setC ⊆ R. In terms of
the stochastic clockκ , we haveκt = min(

∫ t
0 1{Rt∈C} dt,1). TheRt could take the

role of a political indicator in an unstable economy where the individual’s funds are
under strict control of the government. Only in periods of political stability (i.e.,
whenRt ∈ C) are the withdrawal constraints relaxed to allow withdrawal of funds
from the bank. It should be stressed here that the time horizon in this example is
not deterministic. It is given by the stopping time

inf
{
t > 0 :

∫ t

0
1{Ru∈C} du ≥ 1

}
.

2. An approximation to the situation in part 1 of Example 2.8 arises when we
assume that the setC is of the form(−ε, ε) for a constantε > 0. If ε is small
enough, the occupation time

∫ t
0 1{Ru∈C} du can be well approximated by the scaled

local time 1
2ε

lRt of the processRt at 0. Thus, we may setκt = 1∧ lRt . An instance
of such a local-time-driven example is treated explicitly in Section 5.

2.9. The optimization problem. Having introduced the notion of the utility
functional, we turn to the statement of our central optimization problem and we
call it theprimal problem. We describe it in terms of its value functionu :R → R as

u(x) � sup
c∈A(x)

U(c), x ∈ R,(2.5)

whereA(x) denotes the set of alldκ densities of(x,E)-financeable consumption
processes. Since we are working exclusively with consumption processes that
admit adκ density, no ambiguities should arise from this slight abuse of notation.
To have a nontrivial optimization problem, we impose the following standard
assumption:

ASSUMPTION2.9. There exists a constantx > 0 such thatu(x) < ∞.

REMARK 2.5. 1. Assumption 2.9 is, of course, nontrivial, although quite
common in the literature. In general, it has to be checked on a case-by-case basis.
In the particular case when the stock-price process is an Itô process on a Brownian
filtration with bounded coefficients, Assumption 2.9 is satisfied when there exist
constantsM > 0 andλ < 1 such that

0 ≤ U(t, x) ≤ M(1+ xλ) for all (t, x) ∈ [0, T ] × (0,∞).

For reference, see Karatzas and Shreve [(1998), Remark 3.9, page 274].
2. Part 1(b) of Definition 2.3 of a utility random field implies thatU(c) ∈

(−∞,∞) for any constant consumption process(ct )t∈[0,T ], that is, a process
(ct )t∈[0,T ] such thatct ≡ x for some constantx > 0. It follows thatu(x) > −∞
for all x > 0.
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3. The functional-analytic setup. In this section we introduce several
linear spaces of stochastic processes and finitely additive measures. They prove
indispensable in the convex-duality treatment of the optimization problem defined
in (2.5).

3.1. Some families of finitely additive measures. Let O denote theσ -algebra
of optional sets relative to the filtration(Ft )t∈[0,T ]. A measureQ defined onFT

and absolutely continuous toP induces a measureQκ onO if we set

Qκ [A] = EQ

∫ T

0
1A(t,ω) dκt for A ∈ O.(3.1)

For notational clarity, we always identify optional stochastic processes(ct )t∈[0,T ]
and random variablesc defined on the product space[0, T ] × � measurable with
respect to the optionalσ -algebraO. Thus, the measureQκ can be seen as acting
on an optional processes by means of integration over[0, T ] × � in the Lebesgue
sense. In that spirit we introduce the notation

〈c,Q〉 �
∫
[0,T ]×�

c dQ,(3.2)

for a measureQ on the optionalσ -algebraO, and an optional processc whenever
the defining integral exists. A useful representation of the action〈c,Qκ〉 of Qκ on
an optional process(ct )t∈[0,T ] is given in the following proposition.

PROPOSITION3.1. Let Q be a measure on FT , that is, absolutely continuous
with respect to P. For a nonnegative optional process (ct )t∈[0,T ] we have

〈c,Qκ〉 = E

∫ T

0
ctY

Q
t dκt ,

where (Y
Q
t )t∈[0,T ] is the cadlag version of the martingale (E[dQ

dP
|Ft ])t∈[0,T ].

PROOF. Define a nondecreasing cadlag process(Ct)t∈[0,T ] by Ct �
∫ t
0 cu dκu.

By the integration-by-parts formula we have

Y Q
τ Cτ =

∫ τ

0
Y

Q
t− dCt +

∫ τ

0
Ct− dY

Q
t + ∑

0≤t≤τ

�Y
Q
t �Ct

=
∫ τ

0
Y

Q
t dCt +

∫ τ

0
Ct− dY

Q
t

for every stopping timeτ ≤ T . Following Protter [(1990), Theorem III.17,
page 107], the process(

∫ t
0 Cu− dY

Q
u )t∈[0,T ] is a local martingale, so we can find

an increasing sequence of stopping times(τn)n∈N that satisfyP[τn < T ] → 0 as
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n → ∞ such thatE
∫ τn

0 Ct− dY
Q
t = 0 for everyn ∈ N. Taking expectations and

letting n → ∞, the monotone convergence theorem implies that

〈c,Qκ〉 = EQ[CT ] = E[Y Q
T CT ] = lim

n→∞ E

∫ τn

0
Y

Q
t dCt

= E

∫ T

0
Y

Q
t dCt = E

∫ T

0
ctY

Q
t dκt . �

REMARK 3.1. Note that the advantage of Proposition 3.1 over an invocation
of the Radon–Nikodym theorem is the fact that the version obtained by the Radon–
Nikodym derivative is merely optional and not necessarily cadlag.

We defineMκ � {Qκ :Q ∈ M}. The setMκ corresponds naturally to the set of
all martingale measures in our setting, and considering measures on the product
space[0, T ] × � instead of the measures onFT is indispensable for utility
maximization with a stochastic clock. Most of the existing approaches to optimal
consumption start with equivalent martingale measures onFT and relate them to
stochastic processes on(Ft )t∈[0,T ] through some process of regularization. In our
setting, the generic structure of the stochastic clock(κt )t∈[0,T ] renders such a line
of attack impossible.

However, as it turns out,Mκ is too small for duality treatment of the utility
maximization problem. We need to enlarge it to contain finitely additive as well
as countably additive measures. To make headway with this enlargement, we
consider the set of all bounded finitely additive measuresQ on O, such that
Pκ [A] = 0 implies Q[A] = 0, and we denote this set byba(O,Pκ). It is well
known thatba(O,Pκ), supplied with the total-variation norm, constitutes a Banach
space which is isometrically isomorphic to the topological dual ofL∞(O,Pκ) [see
Dunford and Schwartz (1988) or Bhaskara and Bhaskara (1983)]. The action of an
elementQ ∈ ba(O,Pκ) on c ∈ L∞(O,Pκ) is denoted by〈c,Q〉—a notation that
naturally supplements the one introduced in (3.2).

On the Banach spaceba(O,Pκ) there is a canonical partial ordering transferred
from the pointwise order ofL∞(O,Pκ), equipping it with the structure of a Banach
lattice. The positive orthant ofba(O,Pκ) is denoted byba(O,Pκ)+. An element
Q ∈ ba(O,Pκ)+ is said to be purely finitely additive or singular if there exists
no nontrivial countably additiveQ′ ∈ ba(O,Pκ)+ such thatQ′[A] ≤ Q[A] for
all A ∈ O. It is the content of the Yosida–Hewitt decomposition [see Yosida
and Hewitt (1952)] that eachQ ∈ ba(O,Pκ)+ can be uniquely decomposed as
Q = Qr + Qs , with Qr ,Qs ∈ ba(O,Pκ)+, whereQr is aσ -additive measure and
Qs is purely finitely additive.

Having defined the ambient spaceba(O,Pκ), we turn our attention to the
definition of the setDκ which serves as a building block in the advertised
enlargement of the setMκ . Let (Mκ)◦ be the polar ofMκ in L∞(O,Pκ) and
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let Dκ be the polar of(Mκ)
◦ (the bipolar ofMκ ), that is,

(Mκ)◦ � {c ∈ L∞(O,Pκ) : 〈c,Q〉 ≤ 1 for all Q ∈ Mκ},
Dκ � {Q ∈ ba(O,Pκ) : 〈c,Q〉 ≤ 1 for all c ∈ (Mκ)◦}

and we note immediately thatDκ ⊆ ba(O,Pκ)+, because(Mκ)
◦ contains the

negative orthant−L∞+ (O,Pκ) of L∞(O,Pκ).
Finally, for y > 0 we define

Mκ(y) � {ξQ : ξ ∈ [0, y],Q ∈ Mκ} and Dκ(y) � {yQ :Q ∈ Dκ}.
Observe thatMκ(y) ⊆ Dκ(y) for eachy ≥ 0. Even thoughMκ(y) typically is a
proper subset ofDκ(y) for any y > 0, the following proposition shows that the
difference is, in a sense, small.

PROPOSITION 3.2. For y > 0, Mκ(y) is σ(ba(O,Pκ),L∞(O,Pκ)) dense
in Dκ(y).

PROOF. It is enough to provide a proof in the casey = 1. We start by showing
that Dκ(1) is contained in theσ(ba(O,Pκ),L∞(O,Pκ)) closure Cl(Mκ −
ba(O,Pκ)+) of the setMκ − ba(O,Pκ)+, where

Mκ − ba(O,Pκ)+ � {Q − Q′ :Q ∈ Mκ,Q′ ∈ ba(O,Pκ)+}.
Suppose, to the contrary, that there existsQ∗ ∈ Dκ(1)\Cl(Mκ −ba(O,Pκ)+). By
the Hahn–Banach theorem there exists an elementc∗ ∈ L∞(O,Pκ), and constants
a < b such that〈c∗,Q∗〉 ≥ b and〈c∗,Q〉 ≤ a for all Q ∈ Cl(Mκ − ba(O,Pκ)+).
SinceMκ −ba(O,Pκ)+ contains all negative elements ofba(O,Pκ), we conclude
that c∗ ≥ 0 Pκ -a.s. and so 0≤ a. Furthermore, the positivity ofb implies that
Pκ [c∗ > 0] > 0, since the probability measures inMκ are equivalent toPκ .
Therefore, 0< a < b and the random variable1

a
c∗ belongs to(Mκ)

◦. It follows
that〈c∗,Q∗〉 ≤ a, a contradiction with the fact that〈c∗,Q∗〉 ≥ b.

To finalize the proof we pickQ ∈ D ′
κ(1) � {Q ∈ Dκ(1) : 〈1,Q〉 = 1} and take a

directed setA and a net(Q̃α)α∈A in Mκ − ba(O,Pκ)+ such that̃Qα → Q. Such a
net exists thanks to the result of the first part of this proof. EachQ̃α can be written
asQ̃α = QMκ

α −Q+
α with QMκ

α ∈ Mκ andQ+
α ∈ ba(O,Pκ)+ for all α ∈ A. Weak-∗

convergence of the net̃Qα implies that〈1,Q+
α 〉 → 0 and thereforeQ+

α → 0 in the
norm and weak-∗ topologies. ThusQMκ → Q and we conclude thatMκ is dense
in D ′

κ(1). It follows immediately thatMκ(1) is dense inDκ(1). �

3.2. The space VM
κ . Let VM

κ stand for the vector space of all optional random
processes(ct )t∈[0,T ] verifying

‖c‖M < ∞ where‖c‖M � sup
Q∈Mκ

〈|c|,Q〉.

It is quite clear that‖ · ‖M defines a norm onVM
κ . We establish completeness in

the following proposition.
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PROPOSITION3.3. (VM
κ ,‖ · ‖M) is a Banach space.

PROOF. To prove thatVM
κ is complete under‖ · ‖M , we take a sequence

(cn)n∈N in VM
κ such that

∑
n ‖cn‖M < ∞. Given a fixed but arbitrarỹQκ ∈ Mκ ,

the inequality‖c‖M ≥ 〈|c|, Q̃κ〉 holds for everyc ∈ VM
κ and thus the series∑∞

n=1 |cn| converges inL1(O, Q̃κ). We can, therefore, find an optional process
c0 ∈ L1(Q̃κ ,O) such thatc0 = limn→∞

∑n
k=1 ck in L1(Q̃κ,O) andQ̃κ -a.s.

For an arbitraryQκ ∈ Mκ we have〈∣∣∣∣∣c −
n∑

k=1

ck

∣∣∣∣∣,Qκ

〉
≤

∞∑
k=n+1

〈|ck|,Qκ〉 ≤
∞∑

k=n+1

‖ck‖M.

By taking the supremum over allQκ ∈ Mκ , it follows thatc0 ∈ VM and
∑∞

k=1 ck =
c0 in ‖ · ‖M . �

REMARK 3.2. A norm of the form‖ · ‖M first appeared in Delbaen and
Schachermayer (1997), who studied the Banach-space properties of the space of
workable contingent claims.

At this point, we can introduce the third (and final) update of the notation
of (3.2). Let VM

κ+ denote the set of nonnegative elements inVM
κ . For c ∈ VM

κ+
a constanty > 0 andQ ∈ Dκ(y), we define

〈c,Q〉 �
{〈c′,Q〉 : c′ ∈ L∞(O,Pκ)+, c′ ≤ c Pκ -a.s.

}
.(3.3)

Proposition 3.2 implies that〈c,Q〉 ≤ y‖c‖M < ∞ for any Q ∈ Dκ(y). We can
therefore extend the mapping〈·, ·〉 to a pairing (a bilinear form) between the vector
spacesVM

κ andbaM, wherebaM is defined as the linear space spanned byDκ ,
that is,

baM � {Q ∈ ba(O,Pκ) :∃y > 0,Q+,Q− ∈ Dκ(y) such thatQ = Q+ − Q−}.
The linear spacebaM plays the role of the ambient space in which the dual
domain is situated. It replaces the spaceba appearing in Cvitanić, Schachermayer
and Wang (2001) and Karatzas and Žitković (2003), and allows us to deal with
unbounded random endowment and the stochastic clock.

In this way the action〈·,Q〉 defined in (3.3) identifiesQ ∈ baM with a linear
functional on(VM,‖ · ‖M) and, by the construction of the pairing〈·, ·〉, the dual
norm

‖Q‖baM � sup
c∈VM

κ :‖c‖M≤1
|〈c,Q〉|

of Q ∈ Dκ(y) (seen as a linear functional onVM
κ ) is at most equal to 2y. We

can, therefore, identifybaM with a subspace of the topological dual ofVM
κ and

Dκ(y) with its bounded subset. Moreover, by virtue of its definition as a polar
set of(Mκ)

◦, Dκ(y) is closed inbaM in the σ(baM,VM
κ ) topology, so that the

following proposition becomes a direct consequence of Alaoglu’s theorem.
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PROPOSITION3.4. For every y > 0, Dκ(y) is σ(baM,VM
κ ) compact.

Finally, we state a version of the budget-constraint characterization of admis-
sible consumption processes, rewritten to achieve a closer match with our newly
introduced setup. It follows directly from Propositions 2.2 and 3.2.

PROPOSITION3.5. For any y > 0, x ∈ R and a nonnegative optional process
(ct )t∈[0,T ], we have the equivalence

c ∈ A(x,E) ⇐⇒ y〈c,Q〉 ≤ xy + 〈e,Q〉 for all Q ∈ Dκ(y),

where Et = ∫ t
0 eu dκu. Moreover, to check whether c ∈ A(x,E), it is enough to

show y〈c,Q〉 ≤ xy + 〈e,Q〉 for all Q ∈ Mκ(y) only.

4. The dual optimization problem and the main result.

4.1. The convex conjugate V and related functionals. We define a convex
functionalV : baM → (−∞,∞] by

V(Q) � sup
c∈VM+

(
U(c) − 〈c,Q〉)(4.1)

and call it the convex conjugate ofV. The functionalV plays the central role in the
convex-duality treatment of our utility-maximization problem.

By strict concavity and continuous differentiability of the mappingx �→
U(ω, t, x), there exists a unique random fieldI :� × [0, T ] × (0,∞) that solves
the equationUx(ω, t, I (ω, t, y)) = y. Using the random fieldI , we introduce a
functional I, defined on and taking values in the set of strictly positive optional
process, byI(Y )t (ω) = I (ω, t, Yt ). The functionalI is called the inverse marginal
utility functional. We note for the future use the well-known relationship

U
(
ω, t, I (ω, t, y)

) = V (ω, t, y) + yI (ω, t, y),
(4.2)

(ω, t, y) ∈ � × [0, T ] × (0,∞),

where V is the convex conjugate of the utility random fieldU , defined by
V (ω, t, y) � supx>0[U(ω, t, x) − xy] for (ω, t, y) ∈ � × [0, T ] × (0,∞).

For a functionf :X → �R with an arbitrary domainX, taking values in the
extended set of real numbers�R = [−∞,∞], we adopt the standard notation
Dom(f ) = {x ∈ X :f (x) ∈ (−∞,∞)}.

The following proposition represents the convex conjugateV in terms of the
regular part of its argument, relating the definition (4.1) to the corresponding
formulations in Cvitaníc, Schachermayer and Wang (2001) and Karatzas and
Žitković (2003).
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PROPOSITION 4.1. The domain Dom(V) of the convex conjugate V of U
satisfies Dom(V) ⊆ baM+ and Dom(V) + baM+ ⊆ Dom(V). For Q ∈ Dom(V), we
have V(Q) = V(Qr), where Qr ∈ baM+ is the regular part of the finitely additive
measure Q. Moreover, there exists a nonnegative optional process Y Q, such that

V(Q) = E

∫ T

0
V (t, Y

Q
t ) dκt .(4.3)

When Q is countably additive, the process (Y
Q
t )t∈[0,T ] coincides with the

synonymous martingale defined in Proposition 3.1.

PROOF. ForQ /∈ baM+ , there exists an optional setA such thatq � −Q[A] > 0.
For a constantε > 0, we define a sequence(cn)n∈N of optional processes by
cn � ε + n1A. Let G being the constant from part 1(b) of Definition 2.3. Then

V(Q) ≥ U(cn) − 〈cn,Q〉 ≥ E

∫ T

0
U(ω, t, ε) dκt − ε + nq ≥ G − ε + nq → ∞

yields V(Q) = ∞ and so Dom(V) ⊆ baM+ . To show that Dom(V) + baM+ ⊆
Dom(V), we need only to note that it follows directly from the monotonicity ofV.

For the second claim, letQ ∈ baM+ and let Sing(Q) denote the family of all
optional setsA ⊆ [0, T ] × � such thatQs(A) = 0, whereQs denotes the singular
part of the finitely additive measureQ. For A ∈ Sing(Q), δ > 0 and an arbitrary
c ∈ VM+ , we define an optional processĉ = ĉ(δ,A) by ĉ � c1A + δc1Ac . Excluding
the trivial cases whenU(c) = −∞ or U(c) = +∞, we assumeU(c) ∈ R, so that
Assumption 2.4 implies thatU(δc),U(ĉ) ∈ R, as well. Now

U(c) − 〈c,Qr〉 − U(ĉ) + 〈ĉ,Q〉
(4.4)

= E

∫ T

0

(
U(t, ct ) − U(t, δct )

)
1Ac dκt − (1− δ)〈c1Ac,Qr〉 + δ〈c,Qs〉.

According to Bhaskara Rao and Bhaskara Rao [(1983), Theorem 10.3.2, page 234],
Sing(Qκ) contains sets with thePκ probability arbitrarily close to 1, so we can
make the right-hand side of the expression in (4.4) arbitrarily small in absolute
value by a suitable choice ofA ∈ Sing(Q) andδ. It follows immediately that

V(Qr ) = sup
c∈VM

[U(c) − 〈c,Qr〉] ≤ sup
c∈VM

[U(c) − 〈c,Q〉] = V(Q)

and the equalityV(Q) = V(Qr) follows from the monotonicity ofV.
Note further thatQr is a countably additive measure on theσ -algebra of

optional sets, absolutely continuous with respect to the measurePκ . It follows
by the Radon–Nikodym theorem that the optional process(Y

Q
t )t∈[0,T ] defined by

Y Q(t,ω) = dQr

dPκ

satisfies 〈c,Qr〉 = E

∫ T

0
ctY

Q
t dκt .(4.5)
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Let us now combine the representation (4.5) with the fact thatV(Q) = V(Qr ).
By the definition of the convex conjugate functionV ,

V(Q) = V(Qr) = sup
c∈VM+

(
U(c) − 〈c,Qr〉)

= sup
c∈VM+

E

∫ T

0

(
U(t, c(t)) − c(t)Y

Q
t

)
dκt ≤ E

∫ T

0
V (t, Y

Q
t ) dκt .

The reverse inequality follows from the differentiability of the functionV (t, ·) by
taking a bounded sequence inVM , which converges to− ∂

∂y
V (t, y) monotonically,

in the supremum that definesV(Qr ). �

REMARK 4.1. The action of the functionalI can be extended to the set of all
Q ∈ baM+ that satisfyY Q

t > 0 Pκ -a.e. byI(Q)t � I(Y Q)t , obtaining immediately
I(Q) = I(Qr).

4.2. The dual problem. The convex conjugateV serves as the main ingredient
in the convex-duality treatment of the primal problem. We start by introducing the
dual problem, with the value functionv:

v(y) � inf
Q∈Dκ (y)

VE (Q),

(4.6)
y ∈ [0,∞) whereVE (Q) � V(Q) + 〈e,Q〉.

For y < 0, we setv(y) = +∞ and note thatv(0) < ∞ precisely when the utility
functionalU is bounded from above.

4.3. The main result. Finally we state our central result in the following
theorem. The proof is given through a number of auxiliary results in the
Appendix A.

THEOREM 4.2. Let the financial market (Si
t )t∈[0,T ], i = 1, . . . , d , be arbitra-

ge-free as in Assumption 2.1 and let the random endowment process (Et )t∈[0,T ]
admit a density (et )t∈[0,T ] so that Et = ∫ t

0 eu dκu, where (κt )t∈[0,T ] ∈ V+ is a
stochastic clock. Let U be a utility random field as defined in Definition 2.3 and
let U be the corresponding utility functional. If U satisfies Assumption 2.4and the
value function u satisfies Assumption 2.9,then:

1. The concave value function u(·) is finite and strictly increasing on (−L(E),∞)

and u(x) = −∞ for x < −L(E), where L(E) � infQ∈M EQ[ET ] denotes the
lower hedging price of the contingent claim ET .

2. We have limx→(−L(E))+ u′(x) = +∞ and limx→∞ u′(x) = 0.
3. The dual value function v(·) is finitely valued and continuously differentiable

on (0,∞) and v(y) = +∞ for y < 0.
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4. We have limy→0+ v′(y) = −∞ and limy→∞ v′(y) = −L(E).
5. For any y ≥ 0, there exists a solution to the dual problem (4.6), that is,

v(y) = V(Q̂y) + 〈e, Q̂y〉 for some Q̂y ∈ Dκ(y).
6. For x > −L(E), the primal problem has a solution (ĉx

t )t∈[0,T ] that is unique
dκ-a.e.

7. The unique solution (ĉx
t )t∈[0,T ] of the primal problem is of the form ĉx

t =
I(Q̂y)t , where Q̂y is a solution of the dual problem that corresponds to y > 0
such that x = −v′(y).

4.4. A closer look at the dual domain. Given that the solution of the
primal problem can be expressed as a function of the process(Y

Q
t )t∈[0,T ]

from Proposition 4.1, it is useful to have more information on its probabilistic
structure. WhenQ ∈ Mκ , Proposition 3.1 implies thatY Q is a nonnegative cadlag
martingale. In general, we can only establish the supermartingale property for a
(large enough) subclass of (Pκ -a.s.) maximal processes in{Y Q :Q ∈ D(1)}. In
the contrast with the case studied in Karatzas and Žitković (2003), we cannot
establish any strong trajectory regularity properties such as right continuity and
have to satisfy ourselves with the weaker property of optional measurability.

PROPOSITION4.3. For Q ∈ D(1) there exists an optional process (Ft)t∈[0,T ],
taking values in [0,1], and Q′ ∈ D(1) such that the following statements hold:

1. We have Y
Q
t = Y

Q′
t Ft .

2. The process (Y
Q′
t )t∈[0,T ] has a dκ version which is an optional supermartin-

gale.
3. There exists a sequence of martingale measures {Qn}n∈N such that Y Qn → Y Q′

dκ-a.e.

PROOF. We start by observing thatE[ ∫ T
0 Y

Q
t c(t) dκt ] ≤ 〈c,Q〉 ≤ 1 for all

c ∈ A(1,0). In other words,Y Q is in thePκ polar set ofA(1,0) in the terminology
of Brannath and Schachermayer (1999). By the characterization in Proposition 3.5,
A(1,0) can be written as the polar ofMκ , and the bipolar theorem of Brannath and
Schachermayer (1999) states thatY Q is an element of the smallest convex, solid
and closed (inPκ probability) set containingMκ . Therefore, there exists a process
(Ft )t∈[0,T ], taking values in[0,1], and an optional process(Yt )t∈[0,T ], (Pκ -a.s.)
maximal in the bipolar ofMκ , such thatY Q

t = YtFt . Moreover, the same theorem
implies that there exists a sequence{Q(n)}n∈N in M and a sequence{F (n)}n∈N

of optional processes taking values in[0,1], such thatY Q(n)

t F
(n)
t → Yt Pκ a.s.

The sequence of positive processesY Q(n)
is bounded inL1(Pκ); thus the theorem

of Komlós [see Schwartz (1986)] asserts the existence of a nonnegative optional
process(Ỹt )t∈[0,T ] and a sequence of finite convex combinations of the elements of

the sequence{Q(n)}n∈N (still denoted by{Q(n)}n∈N) such thatY Q(n)

t → Ỹt Pκ -a.s.
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It is now a simple consequence of Fatou’s lemma thatỸ is an element of the bipolar
of Mκ dominatingYt . SinceYt is maximal, we conclude that̃Yt = Yt Pκ -a.s. The
supermartingale property of(Y )t∈[0,T ] follows from Fatou’s lemma applied to the

sequence{(Y Q(n)

t )t∈[0,T ]}n∈N.

We are left now with the task of producingQ′ ∈ D(1) such thatYt = Y
Q′
t .

To do that, takeQ′ to be any cluster point of the sequence{Q(n)}n∈N in D(1)

in the σ(baM,VM
κ ) topology. The existence of such aQ′ is guaranteed by

Proposition 3.4. Finally, it is a consequence of Cvitanić, Schachermayer and Wang

[(2001), Lemma A.1, page 16] thatYt = Y
Q′
t Pκ -a.s. �

5. An example. To illustrate the theory developed so far, in this section we
present an example of a utility-maximization problem with a random clock given
by the local time at 0 of an Ornstein–Uhlenbeck process.

5.1. Description of the market model. Let (Bt ,Wt)t∈[0,∞) be two correlated
Brownian motions defined on a probability space(�,F ,P) and let(Ft )t∈[0,∞)

be the filtration they generate, augmented by theP-null sets to satisfy the usual
conditions. We assume that the correlation coefficientρ ∈ (−1,1) is fixed so that
d[B,W ]t = ρ dt .

The financial market consists of one riskless assetS0
t ≡ 1 and a risky asset

(St )t∈[0,∞) which satisfies

dSt = St(µdt + σ dBt), S0 = s0,

whereµ ∈ R is the stock appreciation rate andσ > 0 is the volatility.
Apart from the tradeable asset(St )t∈[0,∞), there is an Orstein–Uhlenbeck

process(Rt)t∈[0,∞) defined as the unique strong solution of

dRt = −αRt dt + dWt, R0 = 0.

We call (Rt)t∈[0,∞) the index process and interpret it as the process that models a
certain state variable of the economy, possibly related to political stability or some
aspect of the government’s economic policy. The index process is nontradable and
its role is to impose constraints on the consumption: We are allowed to withdraw
money from the trading account only when|Rt | < ε. An agent with an initial
endowmentx and a utility random fieldU(·, ·, ·) then naturally tries to choose
a strategy so as to maximize the utility of consumption of the form

E

∫ τ

0
U

(
ω, t, c(t)

)
1{|Rt |<ε} dt(5.1)

on some trading horizon[0, τ ]. If we introduce the notationκε
t = 1

ε

∫ t
0 1{|Rt |<ε} dt ,

the expression in (5.1) becomes (up to a multiplicative constant)

E

∫ τ

0
U

(
ω, t, c(t)

)
dκε

t .(5.2)
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Assuming thatε is a small constant, the processκε can be approximated by
the local timeκt of the processRt . We define the time horizonτ = τ1, where
τs � inf{t > 0 :κt > s} is the inverse local-time process. In this way our agent gets
exactly one unit of consumption time (as measured by the clockκ) from the start
to the end of the trading interval. It is, therefore, our goal to solve the following
problem, defined in terms of its value functionu(·):

u(x) = sup
c∈A(x,0)

E

∫ τ1

0
U(ω, t, ct ) dκt , x > 0.(5.3)

5.2. Absence of arbitrage. The time horizonτ defined above is clearly not
a bounded random variable, so the results in the main body of this paper do not
apply directly. However, to pass from an infinite to a finite horizon, it is enough
to apply a deterministic time change that maps[0,∞) onto [0,1) and to note that
no important part of the structure of the problem is lost in this way (we leave the
easy details of the argument to the reader). Of course, we need to show that all the
assumptions of Theorem 4.2 are satisfied. The validity of Assumption 2.9 has to
be checked on a case-by-case basis (see Remark 5.1 for the case of log utility).
Therefore, we are left with Assumption 2.1. To proceed, we need to exhibit a
countably additive probability measureQ equivalent toP such that the asset-
price process(St )t∈[0,∞) is aQ-local martingale on the stochastic interval[0, τ1].
The obvious candidate is the measureQ0 defined in terms of its Radon–Nikodym
derivative with respect toP by

dQ0

dP
= Z0

τ1
whereZ0

τ1
� exp

(−θBτ1 − 1
2θ2τ1

)
(5.4)

andθ = µ/σ is the market price of risk coefficient. Once we show thatE[Z0
τ1

] = 1,
it follows directly from Girsanov’s theorem [see Karatzas and Shreve (1991),
Theorem 3.5.1, page 191] that(S)t∈[0,∞) is a Q-local martingale on[0, τ1]. The
equivalence of the measuresQ0 andP is a consequence of the fact thatτ1 < ∞
a.s, which follows from the following proposition which lists some distributional
properties of the process(Rt )t∈[0,∞) and its local time(κt )t∈[0,∞).

PROPOSITION 5.1. For ξ < 0 and x ≥ 0, let Hξ(x) denote the value of the
Hermite function

Hξ(x) = 1

2�(−ξ)

∫ ∞
0

e−s−2x
√

ss−ξ/2−1ds.(5.5)

For the Ornstein–Uhlenbeck process (Rt)t∈[0,∞) and the inverse (τs)s∈[0,∞) of its
local time at 0 (κt )t∈[0,∞), we have the explicit expressions

E[exp(−λτs)|R0 = 0] =
{

exp
(−sψ(λ)

)
, λ > −α,

∞, λ ≤ −α,
(5.6)
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where the Laplace exponent ψ(λ) is given by

ψ(λ) = α
21+λ/α�(1/2+ λ/2α)2

√
2π�(λ/α)

,(5.7)

and, with T0 = inf{t > 0 :Rt = 0}, we have

E[exp(−λT0)|R0 = r] = j (λ, |r|),(5.8)

where

j (λ, r) � 2λ/α �((1+ λ/α)/2)

�(1/2)
H−λ/α

(
r√
2

)
.

PROOF. See equation (2.0.1) of Borodin and Salminen [(2002), page 542]
for (5.6) and equation (4.0.1) of Borodin and Salminen [(2002), page 557]
for (5.8). Use the identityDζ (x) = 2−ζ/2 exp(−x2/4)Hζ (x/

√
2). �

To prove the equalityE[Z0
τ1

] = 1, it is be enough to show thatE[exp(1
2θ2τ1)] <

∞ by the Novikov’s criterion [Karatzas and Shreve (1991), Proposition 3.5.12,
page 198]. Equation (5.6) of Proposition 5.1 implies that forα > θ2/2, we have
E[exp(1

2θ2τ1)] < ∞, which proves the following proposition.

PROPOSITION 5.2. When α > θ2/2, there is no arbitrage on the stochastic
interval [0, τ1].

5.3. The optimal consumption and portfolio choice. It was shown in Karatzas
and Žitkovíc (2003) that the maximal dual processes in the context of the financial
markets driven by Itô processes with bounded coefficients are in fact local
martingales and their structure was described. This result can be extended to our
case as follows.

THEOREM 5.3. Let the utility random field U satisfy Assumptions 2.4and 2.9.
Then, for x > 0, there exists a predictable process (νx

t )t∈[0,∞) such that the
Pκ -a.e. unique solution (ĉx

t )t∈[0,∞) of the problem posed in (5.3) is given by
ĉx
t (ω) = I (ω, t,Zνx

t (ω)). The process (Zνx

t )t∈[0,∞) is a local martingale that
satisfies

dZνx

t = Zνx

t

(
νx
t dWt − (θ + ρνx

t ) dBt

)
, Zνx

0 = y,(5.9)

where y > 0 is the unique solution of −v′(y) = x. The portfolio process
(πx

t )t∈[0,∞) that finances (ĉx)t∈[0,∞) and the process (νx
t )t∈[0,∞) are given by

πx
t = Xt

σSt

(θ + ρνx
t ) + ψB

t

σStZ
νx

t

, νx
t = 1

XtZ
νx

t

ψW
t ,(5.10)
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where (Xt )t∈[0,∞) is the wealth process that corresponds to (πx
t )t∈[0,∞) and

(ĉx
t )t∈[0,∞), given by

dXt = πx
t dSt − ĉx

t dκt , X0 = x,(5.11)

and (ψB)t∈[0,∞) and (ψW)t∈[0,∞) are predictable processes such that

xy +
∫ τ1

0
ψB

t dBt +
∫ τ1

0
ψW

t dWt =
∫ τ1

0
Zνx

t ĉx
t dκt .(5.12)

PROOF. By Theorem 4.2, there exists aPκ -a.e. unique optimal consumption
density ĉx ∈ A(x,0) given by ĉx

t = I (t, Y
Q
t ) for some Q ∈ Dκ(y). Since

(Y
Q
t )t∈[0,∞) solves the dual optimization problem and is, therefore,Pκ -a.e.

maximal, Proposition 4.3 states that there exist a sequence{Q(n)}n∈N in M such
that Y Q(n) → Y Q Pκ -a.s. By taking a further sequence of convex combinations
which exist thanks to Komlós’s theorem [see Komlós (1967) and Schwartz (1986)],

we can assume thatY Q(n)

T → Y
Q
T P-a.s. andY Q(n)

t → Y
Q(n)

t P × λ-a.e. Without
going into tedious but straightforward details, we note that it is the consequence
of the continuity of local martingales on Brownian filtrations, the filtered bipolar
theorem [Žitkovíc (2002), Theorem 2], and Lemma 2.5, Theorem 2.10 and
Proposition 4.1 in Karatzas and Žitković (2003) that(Y Q

t )t∈[0,∞) possesses a
Pκ version of the formY

Q
t = yZν

t , whereZν is a local martingale of the form (5.9).
Knowing that ĉx ∈ A(x,0), there exists a portfolio process(πx

t )t∈[0,∞) such
that the wealth process(Xt )t∈[0,∞) given by (5.11) satisfiesXτ1 ≥ 0. The
saturation of the budget constraint (see Lemma A.3.2) forcesXτ1 = 0. Itô’s lemma
shows that the process

Mt = XtZ
ν
t +

∫ t

0
Zν

uĉx
u dκu(5.13)

is a nonnegative local martingale withMτ1 = ∫ τ1
0 Zν

uĉx
u dκu. By Lemma A.3.2,

we haveE[Mτ1] = x = M0. Therefore,M is a martingale on[0, τ1]. The second
equality in (5.10) follows by applying Itô’s formula to (5.13) and equating
coefficients with those in the expansion (5.12).�

5.4. The case of logarithmic utility. To get explicit results, we consider now
the agent whose utility function has the formU(ω, t, x) = exp(−βt) log(x),
where the impatience rateβ is a positive constant. The expressions (5.10) prove
indispensable because it is possible to get an explicit expression for the processes
(ψW

t )t∈[0,∞) and (ψB
t )t∈[0,∞) from (5.12). The key feature of the logarithmic

utility that allows us to do this is the fact that the inverse marginal utility function
I is given byI (t, y) = exp(−βt)/y, so that the right-hand side of (5.12) becomes

Mτ1 �
∫ τ1

0
Zν

t ĉx
t dκt =

∫ τ1

0
e−βt dκt .(5.14)
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To progress with the explicit representation of the processes(ψW
t )t∈[0,∞) and

(ψB
t )t∈[0,∞) from (5.12), in the following lemma we prove a useful fact about the

conditionalβ potential of the local time(κt )t∈[0,∞), that is, the random process
(Gt)t∈[0,∞) defined byGt � E[ ∫ τ1

0 exp(−βu)dκu|Ft ].

LEMMA 5.4. A version of the process G is given by

Gt =


exp(−βt)j (β, |Rt |)1− exp(−(1− κt )�(β))

�(β)
+

∫ t

0
e−βu dκu,

κt ≤ 1,∫ τ1

0
e−βu dκu, κt > 1,

(5.15)

where the functions ψ and j are defined in (5.7)and (5.8).

PROOF. We start by defining a family of stopping timesT0(t) = inf{u ≥
t :Ru = 0} and note that becausedκu does not charge the complement of the zero
set ofRt , we have

Gt = E

[∫ τ1

T0(t)
e−βu dκu|σ(κt ,Rt)

]
+

∫ t

0
e−βu dκu.(5.16)

Replacement of theσ -algebraFt by σ(κt ,Rt ) is permitted by the Markov property
of the process(κt ,Rt).

Whenκt ≥ 1, the value ofGt is trivially given by (5.15), so we can restrict our
attention to the value of the functiong(t, r, k) = E[ ∫ τ1

T0(t)
e−βu dκu|κt = k,Rt = r]

for k < 1, because then (5.16) implies thatGt = g(t,Rt , κt ) + ∫ t
0 exp(−βu)dκu

on {κt < 1}. Using again the strong Markov property and time homogeneity of
(κt ,Rt), we obtain

g(t, r, k) = E

[
e−βT0(t)

∫ τ1

T0

e−β(u−T0(t)) dκu|Rt = r, κt = k

]
(5.17)

= e−βtE
[
e−βT0(0)

∣∣R0 = r
]
E

[∫ τ1−k

0
e−βtdκt |R0 = 0, κ0 = 0

]
.

The second term in the above expression is given in (5.8). As for the third term, a
change of variables yields

E

[∫ τ1−k

0
e−βt dκt

]
=

∫ 1−k

0
E[e−βτu]du = 1− e−(1−k)ψ(β)

ψ(β)
.(5.18) �

We have developed all the tools required to prove the following result

PROPOSITION5.5. In the setup of Theorem 5.3,set U(ω, t, x) = exp(−βt)×
log(x). Then we have the following explicit representations of the processes
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(πx
t )t∈[0,∞), (νx

t )t∈[0,∞) and (ĉx
t )t∈[0,∞):

νx
t = −sgn(Rt )h

( |Rt |√
2

)
where h(z) � −2β

α

H−β/α−1(z)

H−β/α(z)
,(5.19)

πx
t = Xt

σSt

(
θ + ρ sgn(Rt )h

( |Rt |√
2

))
,(5.20)

ĉx
t = Xt

1− exp(−�(β))

(1− exp(−(1− κt)�(β)))
.(5.21)

Finally, the process (νx
t )t∈[0,T ] is bounded and so the optimal dual process

(Zνx

t )t∈[0,T ] is a martingale.

PROOF. Use of the Itô–Tanaka formula and expression (5.15) yields

ψB
t = 0 and

(5.22)

ψW
t = exp(−βt)sgn(Rt)

∂

∂r
j (β, |Rt |)1− exp(−(1− κt )�(β))

�(β)
.

Moreover, the martingale property of processMt from (5.13) implies thatXtZ
νx

t =
Gt − ∫ t

0 e−βu dκu, and so (5.8), (5.10) and (5.12) can be combined into the explicit
expression of the optimal dual process

ν
y
t = sgn(Rt)

(∂/∂β)j (β, |Rt |)
j (β, |Rt |) .

Representation (5.8) and the identity∂
∂x

Hξ (x) = 2ξHξ−1(x) [see Lebedev (1972),
equation 10.5.2, page 289] complete the proof of (5.19).

Theorem 4.2 part 7 and identities (5.10) and (5.22) imply that

ĉx
t = Xt�(β)

yj (β, |Rt |)(1− exp(−(1− κt)�(β)))
,

wherey satisfiesx = −v′(y). To get a more explicit expression fory, we combine
(5.14) and (5.12) to getxy = E[ ∫ τ1

0 exp(−βt) dκt ]. After repeating the calculation
in (5.18) withk = 0, we need only to rearrange the terms and remember thatRt = 0
dκ-a.e. to obtain (5.21).

We are left with the proof of the boundedness of the process(νx
t )t∈[0,∞). The

asymptotic formula 10.6.3 in Lebedev [(1972), page 291] implies thatHξ(x) ∼
Cξx

ξ asx → ∞ for some positive constantCξ depending onξ < 0. Therefore,
there exists a constantD > 0 such thath(x) ∼ Dx−1 as x → ∞. Because
of the existence of the limit limx→0+ h(x), we conclude thath is a bounded
function on[0,∞). Hence,(νx

t )t∈[0,∞) is a bounded process, making(Zνx

t )t∈[0,T ]
a martingale. �
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REMARK 5.1. In the generic setup of Theorem 5.3, we have explicitly
assumed thatu(x) < ∞ for at least onex > 0. In the case of the logarithmic utility
random field treated above, the validity of such an assumption is implied by the
chain of inequalities in whichQ0 andZ0

τ1
are as in (5.4), that is

u(x) − x = sup
c∈A(x,0)

(
U(c) − x

) ≤ V(Q0) = E

∫ τ1

0

(−1− log(Z0
t )

)
dκt

≤ E

[∫ τ1

0

1

2
(θB2

t + 1+ θ2t) dκt

]
= 1

2

∫ 1

0
E

[
θ
(
1+ B2

τs

) + θ2τs

]
ds(5.23)

≤ θ

2
+ (θ2 + 1)

2

∫ 1

0
E[τs]ds ≤ θ + (θ2 + 1)E[τ1]

2
< ∞.

The fact thatE[τ1] < ∞ [which can easily be deduced from (5.6)] implies both the
final inequality in (5.23) and the equalityE[B2

τ1
] = E[τ1] through Wald’s identity

[see Problem 2.12, page 141 in Karatzas and Shreve (1991)].

APPENDIX: A CONVEX-DUALITY PROOF OF THEOREM 4.2

We have divided the proof into several steps, each of which is stated as a separate
lemma. Throughout this section all the conditions of Theorem 4.2 are assumed to
be satisfied.

LEMMA A.1 (Global properties of the value functions).The value function
u(·) is convex, nondecreasing and [−∞,∞) valued, while v is concave and
(−∞,∞] valued. Moreover, the primal and the dual value functions u(·) and v(·)
are convex conjugates of each other.

PROOF. 1. Concavity ofu(·) and convexity ofv(·) are inherited from the
properties of the objective functionsU(·) and V(·) [see Ekeland and Témam
(1999), proof of Lemma 2.1, page 50, for the standard argument]. The increase
of u(·) follows from the inclusionA(x,E) ⊆ A(x′,E) for x < x′.

2. By the Assumption 2.9, there existsx̃ ∈ R such thatu(x̃) < ∞. It follows
immediately by concavity ofu(·) thatu(x) < ∞ for all x ∈ R.

3. To establish the claim thatv(·) is the convex conjugate ofu(·), we define
the auxiliary domainA′(x,E) � A(x,E) \ ⋃

x′<x A(x′,E). Note that (a) the
monotonicity of the utility functionalU(·) implies that

sup
c∈A(x,E)

U(c) = sup
c∈A′(x,E)

U(c)

and (b) the Proposition 2.2 implies that supQ∈Dκ (y)〈c − e,Q〉 = xy for anyy > 0
andc ∈ A′(x,E). Having established the weak-∗compactness of the dual domain
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Dκ(y) in 3.4, the minimax theorem [see Sion (1958)] implies that

sup
x∈R

[u(x) − xy] = sup
x∈R

(
sup

c∈A′(x,E)

U(c) − xy

)

= sup
x∈R

sup
c∈A′(x,E)

(
U(c) − sup

Q∈Dκ (y)

〈c − e,Q〉
)

= sup
x∈R

sup
c∈A′(x,E)

inf
Q∈Dκ (y)

(
U(c) − 〈c,Q〉 + 〈e,Q〉)

= sup
c∈VM

κ+
inf

Q∈Dκ (y)

(
U(c) − 〈c,Q〉 + 〈e,Q〉)

= inf
Q∈Dκ (y)

sup
c∈VM

κ+

(
U(c) − 〈c,Q〉 + 〈e,Q〉)

= inf
Q∈Dκ (y)

(
V(Q) + 〈e,Q〉) = v(y). �

LEMMA A.2 (Existence in the dual problem).For y ∈ Dom(v) there exists
Q̂y ∈ Dκ(y) such that

v(y) = VE (Q̂y) = V(Q̂y) + 〈e, Q̂y〉.

PROOF. For y ∈ Dom(v), let (Qn)n∈N be a minimizing sequence forv(y),
that is, a sequence inDκ(y), such that(VE (Qn))n∈N is real valued and decreasing
with limit v(y). SinceDκ(y) is a closed and bounded subset of the dual(VM

κ )∗
of VM

κ , by Proposition 3.4, the product spaceDκ(y) × [v(y),VE (Q1)] is
compact. Therefore, the sequence(Qn,VE (Qn))n∈N has a cluster point(Q̂y, v∗)
in Dκ(y) × [v(y),VE (Q1)]. By the decrease of the sequence(VE (Qn))n∈N, we
havev∗ = limn VE (Qn) = v(y). On the other hand, by the definition (4.1) of the
functionalV(·), the epigraph of its restrictionVE (·) :Dκ(y) → R is closed with
respect to the product of the weak-∗ and Euclidean topologies. Therefore,(Q̂y, v∗)
is in the epigraph ofVE and thusv(y) = v∗ ≥ VE (Q̂y) = V(Q̂y) + 〈Q̂y, e〉. �

LEMMA A.3 (Consequences of reasonable elasticity).

1. We have Dom(v) = (0,∞).
2. We have v(·) is continuously differentiable and, for y > 0, its derivative satisfies

yv′(y) = −〈(Q̂y)r , I(Q̂y)〉 + 〈e, Q̂y〉,
where Q̂y ∈ Dκ(y) is a minimizer in the dual problem [i.e., v(y) = VE (Q̂y)].

3. The inequality

yv′(y) ≥ −〈Qr , I(Q̂y)〉 + 〈e, Q̂y〉
holds for all Q ∈ Dκ(y).



STOCHASTIC CLOCK 775

4. We have limy→0v′(y) = −∞ and limy→∞ v′(y) ∈ [infQ∈M EQ[ET ],
supQ∈M EQ[ET ]]

5. We have I(Q̂y) ∈ A(−v′(y), e) and 〈I(Q̂y), (Q̂y)r〉 = 〈I(Q̂y), Q̂y〉.

PROOF. Thanks to the representationv(y) = E
∫ T
0 V (t, Y

Q̂y

t ) dκt , and the

fact that E
∫ T
0 Y

Q
t dκt ≤ 1 for all Q ∈ Dκ(1), the proofs of parts 1–4 of this

lemma follow (almost verbatim) the proofs of the following statements in
Karatzas and Žitković (2003): 1. Lemma A.5, page 30; 2. Lemma A.6, page 31;
3. Proposition A.7, page 32. 4. Lemma A.8, page 33.

To prove claim 5, we observe that the combination of parts 3 and 4 implies that

〈I(Q̂y), yQ〉 ≤ −yv′(y) + 〈e, yQ〉 for all Q ∈ Mκ .

From Proposition 3.5 it follows thatI(Q̂y) ∈ A(−v′(y), e), so 〈I(Q̂y),Q〉 ≤
−yv′(y) + 〈e,Q〉 for all Q ∈ D(y). In particular, 〈I(Q̂y), Q̂y〉 ≤ −yv′(y) +
〈e, Q̂y〉, yielding immediately the inequality〈I(Q̂y), Q̂y〉 ≤ 〈I(Q̂y), (Q̂y)r〉. The
second part of the claim follows by the trivial inequality〈I(Q̂y), Q̂y〉 ≥
〈I(Q̂y), (Q̂y)r〉. �

LEMMA A.4 (Existence in the primal problem).For x > − limy→∞ v′(y),
the primal problem (2.5)has a solution, that is, there exists ĉx ∈ A(x,E) such that
u(x) = U(ĉx). Moreover, the optimal consumption density process ĉx is Pκ -a.s.
unique.

PROOF. Using the continuous differentiability of the dual value functionv(·)
and Lemma A.5, we conclude that for anyx > limy→∞ v′(y) there exists a unique
y > 0 such thatv′(y) = −x. Let Q̂y be the solution to the dual problem that
corresponds toy and define the candidate solutionĉx to the primal problem by

ĉx � I(Q̂y).

By Lemma A.3,ĉx ∈ A(x,E). The optimality of the consumption density process
ĉx follows from the fact that

U(ĉx) = U(I(Q̂y)) = V(Q̂y) + 〈I(Q̂y), Q̂y〉 = V(Q̂y) + 〈I(Q̂y), (Q̂y)r〉
= v(y) − yv′(y) = u(x),

using Lemma A.3 and the conjugacy ofu(·) andv(·). ThePκ -a.s. uniqueness of
ĉx is a direct consequence of the strict concavity of the mappingx �→ U(ω, t, x)

coupled with convexity of the feasible setA(x,E). �

LEMMA A.5. We have limy→∞ v′(y) = L(E), where L(E) = infQ∈MEQ[ET ].
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PROOF. Let x′ = limy→∞ v′(y). Part 4 of Lemma A.3 states thatx′ ≥ L(E),
so we need only to prove thatx′ ≤ L(E). Suppose, to the contrary, that there
existsx0 > L(ET ) of the formx0 = v′(y0) for somey0 > 0 so thatx′ > x0. The
optimal consumption process(C−x0

t )t∈[0,T ] that corresponds to the initial capital
−x0 exists by Lemma A.4 and satisfiesEQ[C−x0

T ] ≤ −x0+ EQ[ET ] for anyQ ∈ M
by Proposition 2.2. Taking the infimum overQ ∈ M, we reach a contradiction:

0 ≤ inf
Q∈M

EQ[C−x0
T ] ≤ −x0 + L(ET ) < 0.

Therefore,x′ ≤ L(E). �
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