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UTILITY MAXIMIZATION WITH A STOCHASTIC CLOCK
AND AN UNBOUNDED RANDOM ENDOWMENT?

BY GORDAN ZITKOVIC
Carnegie Mellon University

We introduce a linear space of finitely additive measures to treat the
problem of optimal exected utility from @nsumption under a stochastic
clock and an unbounded random endowment process. In this way we establish
existence and uniqueness for a large class of utility-maximization problems
including the classical ones of terminal wealth or consumption, as well as the
problems that depend on a random time horizon or multiple consumption
instances. As an example we explicitly treat the problem of maximizing
the logarithmic utility of a consumption stream, where the local time of an
Ornstein—Uhlenbeck process acts as a stochastic clock.

1. Introduction. When we speak of expected utility, we usually have one
of the following two cases in mind: expected utility of consumption on a finite
interval or the expected utility of terminal wealth at some future time point.
These two cases correspond to two of the historically most important problem
formulations in the classical calculus of variations and optimal (stochastic)
control—the Meyer formulation E[fOT L(s, x(s))dt] — max and theLagrange
formulation E[y (x(T))] — max, wherex(-) denotes the controlled state function
or stochastic process, aiidands correspond to the optimization criteria. These
formulations owe a great deal of popularity to their analytical tractability; they fit
very well into the framework of the dynamic programming principle often used
to tackle optimal control problems. Even though there are a number of problem
formulations in the stochastic control literature that cannot be reduced to either
a Meyer or a Lagrange form [see Section 2.7, pages 85-92 of Yong and Zhou
(1999), for an overview of several other classes of stochastic control models], the
expected utility theory in contemporary mathematical finance seems to lag behind
in this respect. The introduction of convex duality into the treatment of utility-
maximization problems by Karatzas, Lehoczky and Shreve (1987) and Karatzas,
Lehoczky, Shreve and Xu (1991), as well as its further development by Kramkov
and Schachermayer (1999), CvitanSchachermayer and Wang (2001), Karatzas
and Zitkov (2003) and Hugonnier and Kramkov (2004) (to list but a small subset
of the existing literature) offenope that this lag can be overcome.
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This paper aims to formulate and solve a class of utility-maximization problems
of the stochastic clock type in general incomplete semimartingale markets with
locally bounded stock prices and a possibly unbounded random endowment
process. More specifically, our objective is to provide a mathematical framework
for maximizing functionals of the forn‘E[fOT U(w,t,c;)dk;], whereU is a time
and uncertainty-dependent utility function (a utility random field),is the
consumption density process af)ds an arbitrary nondecreasing right-continuous
adapted process qf), 7] with k7 = 1. Two particular choices; = ¢t/T and
k; = ly—1y correspond to the familiar Meyer and Lagrange formulations of the
utility-maximization problem, but there are many other financially feasible ones.
The problems of maximization of the expected utility at terminal timevhenT is
a stopping time that denotes the retirement time or a default time, form a class of
examples. Another class consists of problems with the compound expected utility
sampled at a sequence of stopping times. Furthermore, we could model random
consumption prohibition by setting = /§ 1(z,cc du for some index procesg,
and asetC C R.

The notion of a stochastic clock already was presented explicitly by Goll
and Kallsen (2003) (where the phrase “stochastic clock” was introduced) and
implicitly in Zitkovi € (1999, 2002) and Karatzas and Zitko2003). Goll and
Kallsen (2003) treated the case of a logarithmic utility with no random endowment
process, under additional assumptions on existence of the optimal dual process.
Karatzas and Zitko (2003) established existence and uniqueness of an optimal
consumption process in an incomplete semimartingale market in the presence of a
bounded random endowment. Their version of the stochastic clock is, however,
relatively limited—it is required to be a deterministic process with no jumps
on [0, 7). This assumption was crucial for their treatment of the problem using
convex duality and is related to the existence of a cadlag version of the optimal
dual process. Related to the notion of a stochastic clock is the work by Blanchet-
Scalliet, EI Karoui, Jeanblanc and Martellini (2003), which deals with utility-
maximization on a random horizon not necessarily given by a stopping time.
Also, recent work by Bouchard and Pham (2004) treated wealth-path-dependent
utility-maximization. These authors used a duality relationship between the wealth
processes and a suitably chosen class of dual processes viewed as optional
measures on the product spafeT’] x .

In the present paper we extend the existing literature in several ways. We
prove existence and describe the structure of the optimal strategy under fairly
unrestrictive assumptions on the financial market and the random endowment
process.

First, we allow for a general stochastic clock and a general utility that satisfies
the appropriate version of the requirement of reasonable elasticity given by
Kramkov and Schachermayer (1999).

Second, we allow a random endowment process that is not necessarily bounded:
We require only afinite upper-hedging price for the total endowment atiten .
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The case of a nonbounded random endowment in the utility maximization
literature was considerday Hugonnier and Kramkow2004), but only in the case

of the utility of terminal wealth and using techniques different from ours. The
only restriction warranting discussion is the one we place on the jumps of the
stock-price procesS. Namely, we requires to be locally bounded. The reason

for this requirement [not present in Karatzas and Zitka{#003), but appearing

in Hugonnier and Kramkov (2004)] is that the random endowment process is no
longer assumed to be bounded and the related notion of acceptability (developed
only in the locally bounded setting) has to be employed.

Finally, we present an example in which we deal completely explicitly
with a utility-maximization problem in an I1td6 process market model with
constant coefficients, where the stochastic clock is the local time at O of an
Ornstein—Uhlenbeck process. This example illustrates how uncertainties in future
consumption prohibitions introduce incompleteness into the market and describes
the optimal strategy to face them.

To tackle the problem of utility maximization with the stochastic clock, we
cannot depend on existing techniques. We still use the convex-duality approach,
but to be able to formulate and solve the dual problem, we introduce and study
the properties of two new Banach spaces: consumption densities and finitely
additive measures. Also, we simplify the formulation of the standard components
of the convex-duality treatment by defining the dual objective function directly
as the convex conjugate of the primal objective function in the suitably coupled
pair of Banach spaces. In this way, the mysterious regular parts of the finitely
additive counterparts of the martingale measures used in Gyjtadhachermayer
and Wang (2001) and Karatzas and Zitko¢2003) in the definition of the dual
problem appear in our treatment more naturally, in an a posteriori fashion.

The paper is organized as follows. After this Introduction, Section 2 describes
the model of the financial market and poses the utility-maximization problem. In
Section 3 we introduce the functional-analytic setup needed for the convex-duality
treatment of our optimization problem. Section 4 introduces the convex conjugate
of the utility functional and states the main result. An example that admits an
explicit solution is treated in Section 5. Finally, the Appendix contains the proof
of our main result.

2. Thefinancial market and the optimization problem.

2.1. The stock-price process. We consider a financial market on a finite
horizon [0, T], T € (0, c0), consisting of ad-dimensional locally bounded
semimartingal€s;);c[o,77 = (st ..., S,d),e[o,T]. The processs;);c(o,77 is defined
on a stochastic bag&, ¥, (#;):<0,7], P) that satisfies the usual conditions. For
simplicity we also assume th& is P-trivial and that¥ = ¥7r. Together with
the stock-price processS;)co, 7], there is a numeraire assg? and all values

are denominated in terms 6P. This amounts to the standard assumption that
(59),c0.7 is equal to the constant process 1.
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2.2. Admissible portfolio processes. A financial agent invests in the market
according to an(¥;).cj0,r1-predictable S-integrable d-dimensional portfolio
process(H;);c[o,71- The stochastic integrak H - S);).c[0,7] is called thegains
process and represents the net gains from trade for the agent who holds a portfolio
with Htk shares of the assktat timer, fork=1,...,d.

A portfolio process(H;);co,7] iS calledadmissible if there exists a constant
x € Rsuchthat + (H - S); > 0forallt € [0, T, with probability 1. Furthermore,
an admissible proces$7),¢(0,7] is calledmaximal admissible if there exists no
other admissible proce:sﬁ),e[oﬂ such that

(H-S)r <(H-Sr a.s. and P[(H-S)r <(H-S)7]>0.

The family of all processe$X/?),cio.r; of the form XH £ (H - §),, for an
admissibleH, is denoted byX. The class of processe{é’f’),e[oj] € X that
corresponds to maximal admissible portfolio procesgé3$;cjo0,7) is denoted
by Xmax-

We complement the widespread notion of admissibility by the less known
notion of acceptality [introduced by Delbaen and Sabhermayer (1997)],
because admissibility is not adequate for dealing with nonbounded random
endowment processes, as was shown in the context of utility maximization from
terminal wealth by Hugonnier and Kramkov (2004). A portfolio proa@$$ <o, 7
is called acceptable if it admits a decompositionrd = H* — H~ with H*
admissible and? ~ maximal admissible.

2.3. Absence of arbitrage. To rule out the arbitrage opportunities in our
market, we state the following assumption:

ASSUMPTION 2.1. There exists a probability measugeon ¥, equivalent
to P, such that the process;);c[o,77 is aQ-local martingale.

The celebrated paper of Delbaen and Schachermayer (1994) showed that the
condition in Assumption 2.1 is equivalent to the notion of no free lunch with
vanishing risk (NFLVR)—a concept closely related to and only slightly stronger
than the classical notion of absence of arbitrage. The condition NFLVR is therefore
widely excepted as an operational proxy for the absence of arbitrage, and the
Assumption 2.1 will be in force throughout the rest of the paper.

The set of all measurdd ~ P as in Assumption 2.1 is denoted by and we
refer to the elements of( as the equivalent local martingale measures.

2.4. Endowment and consumption. Apart from being allowed to invest in the
market in an admissible way, the agent (a) is continuously getting funds from an
exogenous source (random endowment) and (b) is allowed to consume parts of his
or her wealth as time progresses. These capital in- and out-flows are modeled by
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nondecreasing process&s);cjo.r] and(C;)co,77 in 'V, where’V denotes the set
of all cadlag(¥;);<[o, 77-optional processes vanishing at 0 whose paths are of finite
variation. Here and in the rest of the paper we always idefitifiydistinguishable
processes without explicit mention.

The linear spac& can be given the structure of a vector lattice by equipping it
with a partial orderx, that is compatible with its linear structure: We declare

F1<F?  ifthe processF? — F1);ci0.71 has nondecreasing paths.

The cone of all nondecreasing processe®iis the positive cone of the vector
lattice V and we denote it by . Also, thetotal-variation process|F|;).c0.1] €
V. is associated with eadhi € V.

The process introduced in (a) above and denote@bye(o.7] € V+ represents
the random endowment, that is, the values; at timer € [0, T] stands for the
cumulative amount of endowment received by the agent during the in{€val
The process(&;):ci0,r] IS given exogenously and we assume that the agent
exerts no control over it. On the other hand, the amount and distribution of the
consumption is decided by the agent, and we model the agent’s consumption
strategy by the consumption procegS;).cjo0.r] € V+; the valueC; is the
cumulative amount spent on consumption throughout the int¢@val. We find
it useful in later sections to interpret the processe&’in as optional random
measures on the Borel sets[0f T'].

2.5. Wealth dynamics. Starting from the initial wealth ofx € R (which
can be negative) and the endowment proo&s$ co,7], our agent is free to
choose an acceptable portfolio procé&s$s);cj0,77 and a consumption process
(Ci)ieo,1] € V+. These two processes play the role of system controls. The
resulting wealth processx,("’H’C))te[o,T] is given by the wealth dynamics
equation

(2.1) XOHOL L (H-S),—C,+6&, tel0,Tl.

A consumption proces&);cj0.7] € V+ is said to be(x, &)-financeable if there

exists an acceptable portfolio proc&$$),<0,r1 such thatX(Tx’H’C) >0 a.s. The
class of all(x, &)-financeable consumption processes is denotedby, &) or
simply by A (x) when there is no possibility of confusion.

REMARK 2.1. The introduction of the concept of financeability, which
suppresses explicit mention of the portfolio proc&s$s)co,77, is justified
later when we specify the objective (utility) function. It depends only on the
consumption, not on the particular portfolio process used to finance it, so we find
it useful to formulate a static version of the optimization problem in which the
portfolio process H;);c[o,7] does not appear at all.
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REMARK 2.2. The notion of financeability imposes a weak solvency restric-
tion on the amount of wealth the agent can consume: Even though the total wealth

process{X,("’H ’C))te[o,r] is allowed to take strictly negative values before tifme

the agent must plan consumption and investment in such a way to be able to pay all
debts by the end of the planning horizon with certainty. In other words, borrowing
is permitted, but only against the future endowment so that there is no chance of
default. With this interpretation it makes sense to allow the initial weatthtake
negative values—the initial debt might very well be covered from the future en-
dowment. Finally, we stress that ourtiam of financeability dffers from the one
introduced in El Karoui and Jeanblanc-Picqué (1998), where no borrowing was
allowed. Treatment of a consumption problem with such a stringent financeability
condition seems to require a set of techniques different from ours and we leave it
for future research.

2.6. A characterization of financeable consumption processes. In the treat-
ment of our utility-maximization problerm the main body of this paper, the so-
called budget-constraint characterization of thesét) proves to be useful. The
idea is to describe the financeable consumption processes in terms of a set of lin-
ear inequalities. We provide such a chaeaiziation in the following proposition
under the assumption that the random variahlgwhich denotes the total cumu-
lative endowment over the horizd, 7']) admits an upper-hedging price, that is,
U(E7) £ supye  EL[E7] < o0.

PROPOSITION2.2. Suppose that the total endowment &, admits an upper-
hedging price, that is, U(E7) < co. Then the process (C;)ci0,77 € V+ IS (x, €)-
financeableif and only if

(2.2) EQ[Cr) <x +EQ[&r]  VQe M.

PROOFE Only if: Assume first thatC;);c[0,7] € A(x, &) and pick an accept-
able portfolio proces$H; )0, such that the wealth proce(sX,(x’H’C)),e[O,T]

defined in (2.1) satisfieX(Tx’H’C) > 0 a.s. By the definition of acceptability, there
exists a decompositiol = H, — H_ into an admissible#, and a maximal
admissible H_ portfolio process. LetM’ be the set of allQ € M such that
((H™ - S)t)iero, 17 1s a Q-uniformly integrable martingale. For arfy € M, the
proces(H™ - S),)ie(0.7] is aQ-local martingale bounded from below and, there-
fore, is aQ supermartingale. Hencé(H - S););c[0,77 is aQ supermartingale for
allQ e M" and

03 0 < EQX{ 9| %o) = x + EQ(H - $)7|Fo] + EXEr — Cr|Fol

' <x+E%e1—EQCr]  forall Qe .
The setM’ of all Q € M such thatH— - S is a Q-uniformly integrable
martingale is convex and dense . in the total-variation norm [see Delbaen
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and Schachermayer (1997), Theorem 5.2]. Therefore, the claim follows from (2.3)
and the density of" in M.

IF: Let (Cy)iefo,1] € V+ be a process that satisfi@)[Cr] < x + Eglér]
for all Q € M. Since & > 0 admits an upper-hedging price, there exists a
constantp > 0 and a maximal admissible portfolio proceéif}g)ze[o,n such that
p+(HE.S)r > &7 a.s. [see Lemma 5.13 in Delbaen and Schachermayer (1998)].
Define the process

F, 2 esssufig[Cr — &r + p + (H® - 8)7|F/]
QeM
and note thaFp < x + p. Then(F;),c[0,77 IS @ nonnegativ@-supermartingale for
all Q € M, permitting a cadlag modification [see Kramkov (1996), Theorem 3.2].
Thus the optional decomposition theorem [see Kramkov (1996), Theorem 2.1]
asserts the existence of an admissible portfolio proce{%ﬁése[oﬂ and a finite-
variation proces$G,)c0,7] € V+ such that

F,=Fo+ (HF-S),—G, foralltel0,T]a.s.

If follows that x + p + (HF - §)7 > Cr — &7 + p + (H® - S)r, so for the
acceptable portfolio process,);cjo.7], defined byH, = HF — HE, we have
x+H-S)r—-—Cr+8&r>0. O

2.7. The utility functional and the primal problem. To define the objective
function of our optimization problem, we need two principal ingredients: a utility
random field and the stochastic clock process.

The notion of a utility random field as defined below appeared in Zitkovi
(1999) and Karatzas and Zitk@v{2003), and we use it becseiof its flexibility
and good analytic properties—there are no continuity requirements in the temporal
argument and so it is well suited for our setting.

As for the notion of a stochastic clock, it models the the agent’s (either
endogenously or exogenously imposed) notion of the passage of time with respect
to which the consumption rate is calculated and utility is accumulated. Several
examples that often appear in mathematical finance are given below. Before that
let us give the formal definition of the concepts involved:

DEFINITION 2.3.

1. A dtility random field U:Q2 x [0,T] x (0,00) > R is an ¥ ® B[0,7] ®
B(0, co)-measurable function that satisfies the following conditions.
(a) For a fixed(w, ) € 2 x [0, T'], the functionx — U (w, t, x) is a utility
function, that is, a strictly concave, increasifi§ function that satisfies the
Inada conditions

Iim Uy(w,t,x)=00 and I|lim U,(w,t,x)=0 a.s.,
x—0+ X—>00

whereU, (-, -, -) denotes the derivative with respect to the last argument.
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(b) There are continuous, strictly decreasing (nonrandom) functions
K;:(0,00) = (0,00),i =1, 2, that satisfy

lim supKZ(x)
X—00 Kl(x)

<X

and constant& < D € R such that we have
K1(x) < Ux(w,t,x) < K2(x)
forall (w,7,x) € 2 x [0, T] x (0, 00) and
G<U(w,t,1)<D

forall (r, w) €[0, T] x .

(c) For every optional process;);cjo,r], the processU(w,t, ¢;)):efo,1] IS
optional.

(d) FieldU is reasonably elastic, that is, it satisfies[A§ < 1, where ARU ]
denotes the asymptotic elasticity of the random fiélddefined by

. Uy(w,t,
AE[U] 2 limsu esssup M)
x—>00 \ (1,w)e0,T]xe U@, 1,x)
2. The stochastic clock (k;):;c0,r] IS an arbitrary process iV, such that
kr =1, a.s.

REMARK 2.3. The requirementr = 1 in Definition 2.3 is a mere normal-
ization. We impose it to be able to work with probability measures on the product
spacqg0, T'] x 2 (see Section 3).

We are now in the position to define the notion of a utility functional which
takes consumption processes as arguments and returns their expected utility. This
expected utility [as defined below in assumption (2.4)] depends only on the part
of the consumption process’; );c[0.7] that admitts a density with respect to the
stochastic measuréx, so the choice of a consumption plan with a nontrivial
component singular t@alx is clearly suboptimal. For that reason we restrict
our attention only to consumption process€s);cj0,7;7 Whose trajectories are
absolutely continuous with respect #x, that is, only processes of the form
C; = [é ¢ dky, for a nonnegative optional proce&s); o, 77, which we refer to
as the consumption density of the consumption proG€ssc(o, 71. For simplicity,
we assume that the random endowment admiti adensity (e;);c0.77 In that
& = fé e,di, for all t € [0, T], a.s. This assumption is clearly not necessary
since the restrictions, which the size of the random endowment places on the
choice of the consumption process, depend only on the ¥&luas we showed in
Proposition 2.2. We impose it to simplify notation by having all ingredients defined
as elements of the same Banach space (see Section 3).
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The utility derived from a consumptiom@cess should, therefore, be viewed as a
function of the consumption density; );<0,71 and we define thatility functional
as a function on the set of optional processes:

T
(2.4) U(c)éIE/ U(w,t,ct)di; for an optional procesg:;);c[o.7]-
0

To deal with the possibility of ambiguities of the forifit-oo) — (—o0) in
Definition 2.3, we adopt the following coantion, which is standard in the utility-
maximization literature: When the integﬂﬁlfoT(U(w, t,c;))” dk, of the negative
part (U(w,t,c;))~ of the integrand from (2.4) takes the valueco, we set
U(c) = —oo. In other words, our financial agent is not inclined toward the risks
that defy classification, as far as the utility random figlds concerned. Finally,
we add a mild technical integrability assumption on the utility functidiialt is
easily satisfied by all our examples and it is crucial for the simplicity of the proof
of Propositia 4.1.

ASSUMPTIONZ2.4. For any nonnegative optional procéss; o, 77 such that
U(c) > —oo and any constant @ § < 1 we havdJ(8¢) > —oo.

2.8. Examples of utility functionals.

ExamPLE 2.5 (Utility randomfields). 1. LetU(x) be a utility function that
satisfies limsup , xg(g) < 1. Also, suppose there exist functioas (0, co) —
R andB: (0, oo) — (0, 00) such thatU (§x) > A(8) + B(8)U (x) for all § > 0 and
x > 0. A family of examples of such utility functions is supplied by the HARA

family

U, (x) = xyT_l vy <Ly #0,
log(x), y =0.
Then the (deterministic) utility random field
U(w,t,x) =exp(—BnU, (x)
conforms to Definition 2.3, and satisfies Assumption 2.4.

2. If we take a finite number of (#;);c[0,77-Stopping timeg, ... ., 7,, positive
constantsy, . .., 8, andn utility functionsU(.), ..., U"(-) asin part 1 and define

U, 1,x) =Y eXp(—Bi)U" () L=z )
i=1
the random fieldJ can be easily redefined on the complement of the union of the
graphs of stopping times, i =1, ..., n, to yield a utility random field satisfying
Assumption 2.4.
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EXAMPLE 2.6 (Stochastic clocks ). 1. Set=rt, forr <T = 1. The utility
functional takes the form of utility of consumptidsi(c) = E [01 Uw,t,c)dt.

2. Fork; =0fort < T and forky = 1, we are looking at the utility of terminal
wealthE[U (X7)], whereU (x) = U(w, T, x). Formally, we get an expression of
the formU(c) = E[U (w, T, c7)], but clearlycy = X7 in all but suboptimal cases.

3. A combinationk;, =t/2 for t < T = 1, andky = 1, of the two cases
above models the utility of consumption and terminal wellith) = E[ fol Uw,t,
cdt +U(X7)].

EXAMPLE 2.7 (Stochastic clocks II). 1. Let be an a.s. finitg#;);c(0.71-
stopping time. We can think af as a random horizon such as retirement time or
some other market-exit time. Then the stochastic ckgek O forz < 7, andk, =1
for > T models the expected utilitig[U (X ;)] of the wealth at a random time
The random endowmer&; has the interpretation of the retirement package. In
the case in which the random horizenis unbounded, it is enough to apply a
deterministic time change to fall back within the reach of our framework.

REMARK 2.4. As the anonymous referee pointed out, the case of a random
horizon t given by a mere random (as opposed to a stopping) time can be
included in this framework by defining as the conditional distribution of,
given the filtration(¥;),c0,77, as in Blanchet-Scalliet, EI Karoui, Jeanblanc and
Martellini (2003).

2. Example 2.7 can be extended to go well with the utility function from part 2
of Example 2.5. For an-tuple of (%;);¢[0,71-Stopping times, we set

nq
K=y ~Li=n),
i=1 "

so that
1 :
Ue)="~ > E[exp(—Bit)U' (cr;)].
i=1

3. If we setk, =1 — exp(—ft) for t < t andk, = 1 fort > 7, we can add
consumption to part 1 of Example 2.7,

U(e) = E[/Ot exp(—BH)U (w, t,cy)dt + (1 — exp(—ﬁr))U(X,)},

which models the utility from consumptiaup to and remaining wealth at random
time 7. The possibly inconvenient factét — exp(—pg7)) in front of the terminal
utility term can be dealt with by absorbing it into the utility random field.
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ExAMPLE 2.8 (Stochastic clocks IV). 1. In this example we model the
situation when the agent is allowed to withdraw consumption funds only when
a certain index proces®, satisfiesR; € C for some Borel se€ C R. In terms of
the stochastic clock, we havex; = min(fé Lir,ecydt, 1). The R; could take the
role of a political indicator in an unstadéconomy where the individual’s funds are
under strict control of the government. @nh periods of political stability (i.e.,
whenR; € C) are the withdrawal constraints relaxed to allow withdrawal of funds
from the bank. It should be stressed here that the time horizon in this example is
not deterministic. It is given by the stopping time

t
inf{t > 0:/ Lir,ecydu > 1}.
0

2. An approximation to the situation in part 1 of Example 2.8 arises when we
assume that the sét is of the form(—¢, ¢) for a constant > 0. If ¢ is small
enough, the occupation timg 1(x,<cy du can be well approximated by the scaled
local time 2—18ltR of the proces®; at 0. Thus, we may set = 1 A X, An instance
of such a local-time-driven example is treated explicitly in Section 5.

2.9. The optimization problem. Having introduced the notion of the utility
functional, we turn to the statement of our central optimization problem and we
call it theprimal problem. We describe it in terms of its value functianR — R as
(2.5) u(x)2 sup U(o), x eR,

ceA(X)
whereA(x) denotes the set of allk densities of(x, &)-financeable consumption
processes. Since we are working exclusively with consumption processes that
admit adk density, no ambiguities should arise from this slight abuse of notation.
To have a nontrivial optimization problem, we impose the following standard
assumption:

ASSUMPTION2.9. There exists a constant- 0 such that:(x) < oc.

REMARK 2.5. 1. Assumption 2.9 is, of course, nontrivial, although quite
common in the literature. In general, it has to be checked on a case-by-case basis.
In the particular case when the stock-price process is an Itd process on a Brownian
filtration with bounded coefficients, Assumption 2.9 is satisfied when there exist
constantsy > 0 and < 1 such that

0<U(, x)<MA+x") for all (r, x) € [0, T] x (0, 00).

For reference, see Karatzas and Shreve [(1998), Remark 3.9, page 274].

2. Part 1(b) of Definition 2.3 of a utility random field implies thid(c) €
(—o00, 00) for any constant consumption proce@s)cjo,r], that is, a process
(ct)iefo,77 such that; = x for some constant > 0. It follows thatu(x) > —oo
for all x > 0.
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3. The functional-analytic setup. In this section we introduce several
linear spaces of stochastic processes and finitely additive measures. They prove
indispensable in the convex-duality treatment of the optimization problem defined
in (2.5).

3.1. Some families of finitely additive measures. Let @ denote ther-algebra
of optional sets relative to the filtratio{¥;),cj0,71. A measureQ defined onFr
and absolutely continuous Binduces a measuf@, on O if we set

T
(3.1) QK[A]zEQ/O Lt w)de, forAeo.

For notational clarity, we always identify optional stochastic proce&s@so.7]
and random variablesdefined on the product spafi®@ 7] x 2 measurable with
respect to the optional-algebra®. Thus, the measur®, can be seen as acting
on an optional processes by means of integration [@/ef] x 2 in the Lebesgue
sense. In that spirit we introduce the notation

(3.2) (c,Q) & cdQ,
[0,T1xQ

for a measuré) on the optionab -algebra@, and an optional procegsvhenever
the defining integral exists. A useful representation of the ag¢tip®, ) of Q, on
an optional proces&:;);c[o,7] is given in the following proposition.

PrROPOSITION3.1. LetQ beameasureon #7, that is, absolutely continuous
with respect to P. For a nonnegative optional process (c;);e[o, 77 We have

T Lo
(€0 =E [ a¥ldu.
where (Y,Q)IE[O,T] isthe cadlag version of the martingale (E[‘fi% |FiDiefo.1]-

ProoOF Define a nondecreasing cadlag proa@s3;cjo.rj by C: = [6 cudry.
By the integration-by-parts formula we have

T T
Y?C,:/O Y,@dc,+/o cav?+ ¥ arlac

O<t<t
T T
:/ Y,QdCt+/ c,_dy®
0 0

for every stopping timer < T. Following Protter[(1990), Theorem 111.17,
page 107], the proces{% Cu_dY;@)te[o,T] is a local martingale, so we can find
an increasing sequence of stopping tinies, <y that satisfyP[z, < T] — 0 as
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n — oo such that[EfO’” Ci_ dY,@ = 0 for everyn € N. Taking expectations and
lettingn — oo, the monotone convergence theorem implies that

Tn
(c.Q) =E¥Cr] =E[Y2Cr] = lm E /O y2dc,
T T
:E/O v2dc, :E/O Y2 d,. 0

REMARK 3.1. Note that the advantage of Proposition 3.1 over an invocation
of the Radon—Nikodym theorem is the fact that the version obtained by the Radon—
Nikodym derivative is merely optional and not necessarily cadlag.

We defineM, £ {Q, :Q € M}. The setM, corresponds naturally to the set of
all martingale measures in our setting, and considering measures on the product
space[0, T] x © instead of the measures dfy is indispensable for utility
maximization with a stochastic clock. Most of the existing approaches to optimal
consumption start with equivalent martingale measure$pmnd relate them to
stochastic processes 0ff;);<[0, 7] through some process of regularization. In our
setting, the generic structure of the stochastic clagkc[o, 77 renders such a line
of attack impossible.

However, as it turns outM, is too small for duality treatment of the utility
maximization problem. We need to enlarge it to contain finitely additive as well
as countably additive measures. To make headway with this enlargement, we
consider the set of all bounded finitely additive measugesn @, such that
P.[A] = 0 implies Q[A] = 0, and we denote this set ya(®,P,). It is well
known thatba(@, P,), supplied with the total-variation norm, constitutes a Banach
space which is isometrically isomorphic to the topological dudl®f o, P, ) [see
Dunford and Schwartz (1988) or Bhaskara and Bhaskara (1983)]. The action of an
elementQ € ba(@,P,) onc € L*°(0, P,) is denoted byc, Q)—a notation that
naturally supplements the one introduced in (3.2).

On the Banach spad®(O, P, ) there is a canonical partial ordering transferred
from the pointwise order ai>° (O, P, ), equipping it with the structure of a Banach
lattice. The positive orthant dfa(®, P,) is denoted bypa(®, P,),. An element
Q € ba(0,P,), is said to be purely finitely additive or singular if there exists
no nontrivial countably additivé)’ € ba(@9,P,), such thatQ'[A] < Q[A] for
all A € ©@. It is the content of the Yosida—Hewitt decomposition [see Yosida
and Hewitt (1952)] that eacl) € ba(®, P,)+ can be uniquely decomposed as
Q=Q" +Q*, with Q", Q* € ba(®, P,),, whereQ" is ac-additive measure and
Q* is purely finitely additive.

Having defined the ambient spaba(@, P,), we turn our attention to the
definition of the setD, which serves as a building block in the advertised
enlargement of the seu,. Let (M,)° be the polar ofM, in L*°(O,P,) and
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let D, be the polar of M, )° (the bipolar ofM,), that is,
(M)° 2 {cel®O,P):{c,Q)<1forallQe M,},
D £{Qeba(@,P,):(c,Q) <1forallce (M)}

and we note immediately thab, < ba(@, P,), becausgM,)° contains the
negative orthant-L.S°(0, P) of L*>°(O, Py).
Finally, for y > 0 we define

M () =2 {EQ:E€(0,y],Qe M} and De(y) = {yQ: Qe D).

Observe thatM, (y) € D, (y) for eachy > 0. Even thoughM, (y) typically is a
proper subset ofb, (y) for any y > 0, the following proposition shows that the
difference is, in a sense, small.

PrROPOSITION 3.2. For y > 0, M, (y) is o(ba(@,P,),L*(O,P,)) dense
in D, ().

PROOF Itis enough to provide a proof in the case- 1. We start by showing
that D, (1) is contained in theo (ba(®, P,),L*°(0,P,)) closure C{M, —
ba(o, P,)+) of the setM,, — ba(@, P,)+, where

M —ba(0,P); 2 {Q-Q:Qe M, Q eba(@,Py)-}.

Suppose, to the contrary, that there exi@gtss D, (1) \ Cl(M, —ba(O,P,)+). By
the Hahn—Banach theorem there exists an elenteaf.>° (@, P,), and constants
a < b such that{c*, Q*) > b and(c*, Q) < a for all Q € CI(M, — ba(O,P,)+).
SinceM, —ba(0, P,)+ contains all negative elementslzd(©, P,.), we conclude
that c* > 0 P.-a.s. and so & a. Furthermore, the positivity ob implies that
P.[c* > 0] > 0O, since the probability measures if, are equivalent tdP,.
Therefore, O< a < b and the random variabléc* belongs to(M,)°. It follows
that(c*, Q*) < a, a contradiction with the fact that*, Q*) > b.

To finalize the proof we pick) € D, (1) £1QeD): (1, Q) =1} and take a
directed setd and a netQqy)gca in M, —ba(0,P,) suchthat), — Q. Such a
net exists thanks to the result of the first part of this proof. Eaglran be written
asQqy = Q — QF with Q2% € M, andQ] € ba(O, P,)4 foralla € A. Weak*
convergence of the n&,, implies that(1, Q) — 0 and therefor&; — 0 in the
norm and weak-topologies. Thu§*« — Q and we conclude that(, is dense
in O/ (1). It follows immediately that, (1) is dense iD,(1). O

3.2. The space VKM. Let 'V,;M stand for the vector space of all optional random
processesc;); <o, 7] Verifying
A

lclly <oo  where|clly = sup(lc|, Q).
QeM;

It is quite clear that| - |4 defines a norm orV,;M. We establish completeness in
the following proposition.
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PROPOSITION3.3. (VM. || - | isa Banach space.

PROOF  To prove thatv* is complete undef| - ||, we take a sequence
(cn)nen in VM such thaty, ||cn||M < 0o. Given a fixed but arbitrar®), € M,

the inequality||c||x > (lc], Qc) holds for everyc € VM and thus the series
Y021 len| converges inL(@, Q,). We can, therefore, find an optional process
co € LY@y, 0) such thato = lim, oo Y_; cx in LY@y, ©) andQ,-a.s.

For an arbitraryQ, € M, we have

<C—ZCI<,@K>S Y (erl, Qo) < Z llexllae-
k=1

k=n+1 k=n+1
By taking the supremum over &ll, € M,, it follows thatcg € VM and) 22 ¢k =
coin |-y O

REMARK 3.2. A norm of the form|| - || 4 first appeared in Delbaen and
Schachermayer (1997), who studied the Banach-space properties of the space of
workable contingent claims.

At this point, we can introduce the third (and final) update of the notation
of (3.2). Let V¥ denote the set of nonnegative elementsjtf. Forc € VX
a constany > 0 andQ € D, (y), we define

(3.3) (¢, Q= {(,Q):c’ e L®(O,Py) 4, ¢’ <cPe-ass).

Proposition 3.2 implies thafc, Q) < ylicllu < oo for any Q € D, (y). We can
therefore extend the mappirng-) to a pairing (a bilinear form) between the vector
spacesyM and ba™, whereba™ is defined as the linear space spannediy
that is,

baM £ (Q e ba(®,P,):3y >0,Q", Q™ € D (y) suchthal =QT — Q).

The linear spacéda™ plays the role of the ambient space in which the dual
domain is situated. It replaces the sphaeaappearing in Cvitaiti, Schachermayer
and Wang (2001) and Karatzas and Zitkoy2003), and allows us to deal with
unbounded random endowment and the stochastic clock.

In this way the action(-, Q) defined in (3.3) identifie§) € ba™ with a linear
functional on(VM, || - ||.4) and, by the construction of the pairirig -), the dual
norm

IQllpgx = sup  [{c, Q)|

ceVMilell <1

of Q € D(y) (seen as a linear functional OVIKM) is at most equal to 2 We
can, therefore, identifpa™ with a subspace of the topological dualgf* and

D, (y) with its bounded subset. Moreover, by virtue of its definition as a polar
set of (M,)°, De(y) is closed inba™ in theo(ba‘M, VM) topology, so that the
following proposition becomes a direct consequence of Alaoglu’s theorem.
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PROPOSITION3.4. For every y > 0, D (y) iso (ba™, VKM) compact.

Finally, we state a version of the budget-constraint characterization of admis-
sible consumption processes, rewritten to achieve a closer match with our newly
introduced setup. It follows directly from Propositions 2.2 and 3.2.

PrRoOPOSITION3.5. For any y > 0, x € R and a nonnegative optional process
(c)iefo, 71, We have the equivalence

ceEAX,E) — Y, Q=xy+(e,Q  foralQeD(y),

where &, = fé e, dx,. Moreover, to check whether ¢ € A(x, §), it is enough to
show y(c, Q) < xy + (e, Q) for all Q € M, (y) only.

4. Thedual optimization problem and the main result.

4.1. The convex conjugate V and related functionals. We define a convex
functionalV :ba™ — (—o0, 0o] by

(4.1) V(@ = sup(U(©) — (¢, Q)

. M
ceVy

and call it the convex conjugate ¥f The functionaV plays the central role in the
convex-duality treatment of our utility-maximization problem.

By strict concavity and continuous differentiability of the mapping—
U(w,t,x), there exists a unique random figldQ2 x [0, T] x (0, co) that solves
the equation, (w, t, I (w, t, y)) = y. Using the random field, we introduce a
functionall, defined on and taking values in the set of strictly positive optional
process, by (Y);(w) = I (w, t, Y;). The functional is called the inverse marginal
utility functional. We note for the future use the well-known relationship

2 Ulw,t,I(w,t,y)=V(w,t,y)+yl(w,1,y),
' (@,1,y) €2 x [0, T] x (0, 00),

where V is the convex conjugate of the utility random field, defined by
V(w,t,y) £ sup..olU(w,t,x) —xy] for (w,t,y) € 2 x [0, T] x (0, 00).

For a function f : X — R with an arbitrary domainX, taking values in the
extended set of real numbeRs = [—oco, 0], we adopt the standard notation
Dom(f)={x € X: f(x) € (—o0, 00)}.

The following proposition represents the convex conjugate terms of the
regular part of its argument, relating the definition (4.1) to the corresponding
formulations in Cvitar, Schachermayer and Wang (2001) and Karatzas and
Zitkovi€ (2003).
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ProPOSITION4.1. The domain Dom(V) of the convex conjugate V of U
satisfies Dom(V) € ba}! and Dom(V) + ba € Dom(V). For Q € Dom(V), we
have V(Q) = V(Q"), where Q" e baf is the regular part of the finitely additive
measure Q. Moreover, there exists a nonnegative optional process Y@, such that

T
(4.3) V(@Q) =E fo Ve, v d,.

When Q is countably additive, the process (Y,Q)IE[O,T] coincides with the
synonymous martingale defined in Proposition 3.1.

PROOFE ForQ ¢ baf, there exists an optional sétsuch that; £ —Q[A] > 0.
For a constant > 0, we define a sequence”),cn Of optional processes by
c" £ &4+ nly,. Let G being the constant from part 1(b) of Definition 2.3. Then

T
V(Q)ZU(Cn)—@n,Q)ZE/ Uw,t,e)dk; —e+nqg>G —e+ng— 0
0

yields V(Q) = co and so DoniV) € ba}l. To show that DortV) + ba}t €
Dom(V), we need only to note that it follows directly from the monotonicity/of

For the second claim, &) baf and let SingQ) denote the family of all
optional setsA C [0, T] x €2 such thatQ®(A) = 0, whereQQ* denotes the singular
part of the finitely additive measur@. For A € Sing(Q), § > 0 and an arbitrary
c € V¥, we define an optional proceds= ¢4 by ¢ £ 14 + sclae. Excluding
the trivial cases whebl(c) = —o0 or U(c) = 400, we assumé&J(c) € R, so that
Assumption 2.4 implies thai(5¢), U(¢) € R, as well. Now

U(e) = (e, Q") —U(©) + (¢, Q)

(4.4) i

:E/O (U(t,cr) —U(t,8¢))Lacdry — (1= 8)(clac, Q") + 8(c, Q°).

According to Bhaskara Rao and Bhaskara Rao [(1983), Theorem 10.3.2, page 234],
Sing(Q,) contains sets with th®, probability arbitrarily close to 1, so we can
make the right-hand side of the expression in (4.4) arbitrarily small in absolute
value by a suitable choice af € Sing(Q) ands. It follows immediately that

V(Q") = sup[U(c) = (¢, Q")] < sup[U(c) — (c,Q)]=V(Q)
ceyM ceyM

and the equality/ (Q) = V(Q") follows from the monotonicity o¥.
Note further thatQ" is a countably additive measure on thealgebra of
optional sets, absolutely continuous with respect to the meadgurét follows

by the Radon—Nikodym theorem that the optional proccé!%,e[oﬂ defined by

r

dQ
Q —
(4.5) Y<(t, w) = 1P

K

T
satisfies (¢, Q") =E / c,Y,QdK,.
0
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Let us now combine the representation (4.5) with the fact¥@) = V(Q").
By the definition of the convex conjugate functidn

V(Q =V(@Q)= sup(U(c) — (., Q)

M
ceVy

T T
= supE | (U ct)—c®)Y2)dx, §E/O Vi, Y2 dk,.

. M
ceVy

The reverse inequality follows from the differentiability of the functidiy, -) by
taking a bounded sequenceWr, which converges tef—yV(r, y) monotonically,
in the supremum that definggQ"). O

REMARK 4.1. The action of the function&lcan be extended to the set of all
Q € ba’f that satisfyy ¥ > 0 P.-a.e. byl (Q); 2 1(¥Q),, obtaining immediately
Q) =1(@Q").

4.2. Thedual problem. The convex conjugafé serves as the main ingredient
in the convex-duality treatment of the primal problem. We start by introducing the
dual problem, with the value functian

2 inf V€
“s) v(y) Qelélr;,((y) (),
' y € [0, 00) whereVEé (Q) 2 V(Q) + (e, Q).

Fory < 0, we setv(y) = +oo and note that(0) < oo precisely when the utility
functionalU is bounded from above.

4.3. The main result. Finally we state our central result in the following
theorem. The proof is given through a number of auxiliary results in the
Appendix A.

THEOREM4.2. Let thefinancial market (S'),e0.77,i =1, ..., d, be arbitra-
ge-free as in Assumption 2.1 and let the random endowment process (&;)<[o,7]
admit a density (e;)rcjo.7) SO that & = [§ ey dicy, Where (k;)e0,71 € V4 is a
stochastic clock. Let U be a utility random field as defined in Definition 2.3 and
let U be the corresponding utility functional. If U satisfies Assumption 2.4 and the
value function u satisfies Assumption 2.9, then:

1. The concavevaluefunction u(-) isfinite and strictly increasing on (—.£ (&), o0)

and u(x) = —oo for x < —L£(8), where £(8) = infgeu EQ[E7] denotes the

lower hedging price of the contingent claim €.

We have lim ., (— ¢(g))+ 1’ (x) = +oo and limy_, o u’(x) = 0.

. The dual value function v(-) is finitely valued and continuously differentiable
on (0, c0) and v(y) = +oo for y < 0.

w N
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. Wehavelim,_o4 v/(y) = —oc and limy_, . v'(y) = —L(6).
. For any y > 0, there exists a solution to the dual problem (4.6), that is,
v(y) =V(Q) + (e, Q) for some Q¥ € Dy (y).
6. For x > —L(&), the primal problem has a solution (¢;);c[o,7] that is unique
dk-a.e.

7. The unique solution (¢;)c0,77 Of the primal problem is of the form ¢; =
I (Qy )¢, Where Qy is a solution of the dual problem that correspondsto y > 0
suchthat x = —v/(y).

[S20F

4.4. A closer look at the dual domain. Given that the solution of the
primal problem can be expressed as a function of the pro(:E,@s),E[o’T]
from Proposition 4.1, it is useful to have more information on its probabilistic
structure. Wher)) € M,., Proposition 3.1 implies that? is a nonnegative cadlag
martingale. In general, we can only establish the supermartingale property for a
(large enough) subclass dP(-a.s.) maximal processes {¥2:Q € D(1)}. In
the contrast with the case studied in Karatzas and Zitk¢2003), we cannot
establish any strong trajectory regularity properties such as right continuity and
have to satisfy ourselves with the weaker property of optional measurability.

PrROPOSITION4.3. For Q € D(1) thereexistsan optional process (F;):c[o.71,
taking valuesin [0, 1], and Q" € £ (1) such that the following statements hold:

1. Wehave Y2 =YY F,.

2. The process (YtQ )iefo,7] has a dk version which is an optional supermartin-
gale.

3. Thereexists a sequence of martingale measures {Q,, },cr such that Y@ — yQ
dk-a.e.

PROOF We start by observing tha[ [ ¥, 2c(1) di,] < (¢, Q) < 1 for all
¢ € A(1,0). In other wordsy @ is in theP, polar set of4(1, 0) in the terminology
of Brannath and Schachermayer (1999). By the characterization in Proposition 3.5,
A4(1, 0) can be written as the polar @1, and the bipolar theorem of Brannath and
Schachermayer (1999) states tlif& is an element of the smallest convex, solid
and closed (P, probability) set containingi(,.. Therefore, there exists a process
(Fy)iero, 1], taking values in0, 1], and an optional process;);co.7], (P«-a.s.)
maximal in the bipolar ofM,, such thalY,@ =Y, F,. Moreover, the same theorem

implies that there exists a sequer(@™},cy in M and a sequenceF ™}, cx
. . . (n)
of optional processes taking values|it 1], such thatY,Q F,(”) — Y; P, a.s.

The sequence of positive process’é%(") is bounded ifL1(P,); thus the theorem
of Komlos [see Schwartz (1986)] asserts the existence of a nonnegative optional
processY;);c[o0,71 and a sequence of finite convex combinations of the elements of

the sequenc@Q™},cx (still denoted by{Q"™},,cx) such thatY,@(") — Y, P.-a.s.
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Itis now a simple consequence of Fatou’s lemma thistan element of the bipolar
of M, dominatingY;. SinceY; is maximal, we conclude tha; = Y; P,-a.s. The
supermartingale property 0f);<o, 7] follows from Fatou’s lemma applied to the

Sequence(YtQ(n))te[O,T]}neN- ,
We are left now with the task of producin@’ € £ (1) such thaty, = YtQ.

To do that, takeQ’ to be any cluster point of the sequen@®™},cn in D (1)

in the o (ba™, V*) topology. The existence of such @ is guaranteed by

Proposition 3.4. Finally, it is a consequence of Cvitagichachermayer and Wang

,Lemma A.1, page 16] thit = ¥ P,-a.s.
[(2001), L Al 16] th U p O

5. An example. To illustrate the theory developed so far, in this section we
present an example of a utility-maximization problem with a random clock given
by the local time at 0 of an Ornstein—Uhlenbeck process.

5.1. Description of the market model. Let (B;, W;);c[0,00) b€ two correlated
Brownian motions defined on a probability spase, ¥, P) and let(¥;);c[0,0)
be the filtration they generate, augmented bylfheull sets to satisfy the usual
conditions. We assume that the correlation coefficieat(—1, 1) is fixed so that
d[B,W]; = pd:.

The financial market consists of one riskless asSet 1 and a risky asset
(S1):e[0,00) Which satisfies

dS; = S;(nudt +odBy), So = so,

whereu € R is the stock appreciation rate asd> 0 is the volatility.
Apart from the tradeable asse€$;);c[o,~), there is an Orstein—Uhlenbeck
processR;);c0,00) defined as the unique strong solution of

th:—atht+th, ROIO

We call (R;);c[0,0) theindex processand interpret it as the process that models a
certain state variable of the economy, possibly related to political stability or some
aspect of the government’s economic policy. The index process is nontradable and
its role is to impose constraints on the consumption: We are allowed to withdraw
money from the trading account only whéR;| < ¢. An agent with an initial
endowmentr and a utility random fieldJ (., -, -) then naturally tries to choose

a strategy so as to maximize the utility of consumption of the form

T
(5.1) E/O U(a),t,c(t))l{‘Rr|<8} dt

on some trading horizof®, ]. If we introduce the notatiorn’ = %fé LR, <) dt,
the expression in (5.1) becomes (up to a multiplicative constant)

(5.2) E/Or U(w,t,c())dk; .
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Assuming thats is a small constant, the proceg$ can be approximated by
the local timex, of the processk,. We define the time horizom = 71, where

7, 2inf{t > 0:k, > s} is the inverse local-time process. In this way our agent gets
exactly one unit of consumption time (as measured by the alddkom the start

to the end of the trading interval. It is, therefore, our goal to solve the following
problem, defined in terms of its value functiot):

2l
(5.3) u(x)= sup E Uw,t,c;)dxk;, x>0.
ceA(x,0) 0

5.2. Absence of arbitrage. The time horizonr defined above is clearly not
a bounded random variable, so the results in the main body of this paper do not
apply directly. However, to pass from an infinite to a finite horizon, it is enough
to apply a deterministic time change that m@soo) onto [0, 1) and to note that
no important part of the structure of the problem is lost in this way (we leave the
easy details of the argument to the reader). Of course, we need to show that all the
assumptions of Theorem 4.2 are satisfied. The validity of Assumption 2.9 has to
be checked on a case-by-case basis (see Remark 5.1 for the case of log utility).
Therefore, we are left with Assumption 2.1. To proceed, we need to exhibit a
countably additive probability measufg equivalent toP such that the asset-
price processs;);c[0,00) IS @aQ-local martingale on the stochastic intery@l 1].
The obvious candidate is the meas@gdefined in terms of its Radon—Nikodym
derivative with respect t& by
(5.4) i%? =79  wherez? £ exp(—0B,, — 36°11)
andd = /o is the market price of risk coefficient. Once we show mgﬂg] =1,
it follows directly from Girsanov's theorem [see Karatzas and Shreve (1991),
Theorem 3.5.1, page 191] théf);c[0,o0) iS aQ-local martingale or0, 71]. The
equivalence of the measur@g andP is a consequence of the fact that< oo
a.s, which follows from the following proposition which lists some distributional
properties of the procesR;);c[0,00) and its local time(k;);<[0,00)-

PROPOSITIONS.1. For £ <O and x > 0, let H:(x) denote the value of the
Hermite function

__1 % s—2u5 —E/2-1
(5.5) He(x) = ZF(—S)/O e s ds.

For the Ornstein—Uhlenbeck process (R;);c[0,00) and the inverse (y)se0,00) Of its
local time at O (k;);c[0,00), We have the explicit expressions

(5.6) E[exp(—Aty)|Ro = 0] = {exq—“ﬁ(k)), A> —a,
oo, A < —a«a,
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where the Laplace exponent v (1) is given by

2LHA/e (1/2 4 A /20)?
5.7 A) =
(5.7) v(A) =« JonT O
and, with Tp = inf{r > 0: R, = 0}, we have
(5.8) Elexp(—AT0)[Ro = r]=j (. Ir|),
where

o r)ézx/ar((lﬁ-k/a)/z)H_x/ < r )

r/2 v2)

PROOF See equation (2.0.1) of Borodin and Salminen [(2002), page 542]
for (5.6) and equation (4.0.1) of Borodin and Salminen [(2002), page 557]
for (5.8). Use the identity, (x) = 27¢/2exp(—x2/4)H; (x/+/2). O

To prove the equalitfE[Z2 ] = 1, it is be enough to show thB{exp(36211)] <
oo by the Novikov’s criterion [Karatzas and Shreve (1991), Proposition 3.5.12,
page 198]. Equation (5.6) of Proposition 5.1 implies thatdos 62/2, we have
E[exp(%@zrl)] < 00, which proves the following proposition.

PROPOSITION5.2. When « > 62/2, there is no arbitrage on the stochastic
interval [0, 71].

5.3. The optimal consumption and portfolio choice. It was shown in Karatzas
and Zitkovi (2003) that the maximal dual processes in the context of the financial
markets driven by It6 processes with bounded coefficients are in fact local
martingales and their structure was described. This result can be extended to our
case as follows.

THEOREMb5.3. Lettheutility randomfield U satisfy Assumptions2.4and 2.9.
Then, for x > 0, there exists a predictable process (v;);c0,00) SUch that the
P.-a.e. unique solution (¢})/c[0,00) Of the problem posed in (5.3) is given by
&) = I(w, t, Z)" (w)). The process (Z) )ejo.00) IS @ local martingale that
satisfies
(5.9) dzV =7 (vFdW, — O +pv")dB,),  Z§ =y,
where y > 0 is the unique solution of —v'(y) = x. The portfolio process
(7)) 1€[0,00) that finances (¢*);e(o,00) and the process (v;);c0,00) are given by

v’ L
oSz’ Loxz”

w
v

X
(5.10) 7 =104 pvF) +
O’St
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where (X;):c[0,00) IS the wealth process that corresponds to (7;);¢[0,00) and
(¢)1e[0,00), Qiven by

(511) dX[=7T;rdS[—é\;CdK[, Xo=x,

and (¥ 2),¢10.00) and (¥ W),[0.00) are predictable processes such that
71 T1 1 x
(5.12) xy+/ wfd3f+/ wﬁdwﬁ:f ZV di.
0 0 0

PROOF By Theorem 4.2, there existsPa-a.e. unique optimal consumption
density ¢* € A(x,0) given by ¢ = I(t,Y,Q) for some Q € D, (y). Since
(Y,Q),e[oyoo) solves the dual optimization problem and is, therefdfg;a.e.
maximal, Proposition 4.3 states that there exist a sequED¢d),,cr in M such
that Y@” — y@ P,-a.s. By taking a further sequence of convex combinations
which exist thanks to Komlos's theorem [see Komlés (1967) and Schwartz (1986)],

we can assume tha't;g(") — Y;@ P-a.s. andY,Q(") — Y,Q(") P x A-a.e. Without
going into tedious but straightforward details, we note that it is the consequence
of the continuity of local martingales on Brownian filtrations, the filtered bipolar
theorem [ZitkovE (2002), Theorem 2], and Lemma 2.5, Theorem 2.10 and
Proposition 4.1 in Karatzas and Zitkév{2003) that(YtQ),e[o,oo) possesses a

P, version of the forrrY,@ =yZ,/,whereZ" is alocal martingale of the form (5.9).

Knowing that¢c® € 4(x, 0), there exists a portfolio proce$s;");c(0,o0) such
that the wealth processX;):;cj0,o) given by (5.11) satisfiesX,, > 0. The
saturation of the budget constraint (see Lemma A.3.2) faXges= 0. Ité’s lemma
shows that the process

t
(5.13) %:x2+ﬁqqmu

is a nonnegative local martingale witf., = /g Z.éX dk,,. By Lemma A.3.2,
we haveE[M. | = x = Mg. Therefore M is a martingale o0, r1]. The second
equality in (5.10) follows by applying Ité’s formula to (5.13) and equating
coefficients with those in the expansion (5.120)]

5.4. The case of logarithmic utility. To get explicit results, we consider now
the agent whose utility function has the forth(w, z, x) = exp(—Bt) log(x),
where the impatience rafg is a positive constant. The expressions (5.10) prove
indispensable because it is possible to get an explicit expression for the processes
W )ie0.00) @Nd (W) 1ef0.00) from (5.12). The key feature of the logarithmic
utility that allows us to do this is the fact that the inverse marginal utility function
I is given byl (¢, y) = exp(—Bt)/y, so that the right-hand side of (5.12) becomes

(5.14) M é/‘q ZVct di =/Tle_’3td/c
. 71 0 t “t t 0 t-
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To progress with the explicit representation of the proce&$fs);c(0.) and
(W,B)te[o,oo) from (5.12), in the following lemma we prove a useful fact about the
conditional 8 potential of the local timéx;);c[0.~), that is, the random process
(G1)iel0,00) defined byG, £ E[fOTl exp(—pBu) dry|F].

LEMMA 5.4. Aversion of the process G is given by

exp(—B1) j (B. |Ri) = ex“‘\fjl( = VA | [ .

(5.15) G, = <1,
7
/ e P di,, Kk > 1,
0

where the functions  and j are defined in (5.7)and (5.8).

PROOF We start by defining a family of stopping tim&%(r) = inf{u >
t: R, = 0} and note that becaude, does not charge the complement of the zero
set ofR;, we have

71 t
(5.16) G; = E[/ e P dicy|o (k;, Rt)] +/ e P di,.
To(1) 0

Replacement of the-algebra¥; by o (x;, R;) is permitted by the Markov property
of the processk;, R;).

Whenk, > 1, the value ofG, is trivially given by (5.15), so we can restrict our
attention to the value of the functigsz, r, k) = E[ffg(,) e Pdi, |k, =k, Ry =r]
for k < 1, because then (5.16) implies th@t = g(z, Ry, ;) + fé exp(—Bu) dk,
on {x; < 1}. Using again the strong Markov property and time homogeneity of
(x¢, R;), we obtain

21
glt,r, k)= E[e_ﬁTO(’)/T e PU=T0O) gy \R, =r, k; = k]
(5.17) °

Tik
— e_ﬁtE[e—ﬁTO(o) |R0 = F]E[/ e_ﬁtthlRO =0,k0= Oi|
0

The second term in the above expression is given in (5.8). As for the third term, a
change of variables yields
1 o~y ®

v O

We have developed all the tools required to prove the following result

T1_ 1-k
(5.18) EU T epr dK,] = [ Ele P du=
0 0

PROPOSITIONS.5. Inthe setup of Theorem5.3,set U (w, ¢, x) = exp(—Bt) x
log(x). Then we have the following explicit representations of the processes
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() 1€10,00) (V) 1€[0,00) @NA () 1€[0,00)

v IR | a 2B H_p/a—1(2)
(5.19) v = sgr(R,)h( ﬁ) whereh(z) = > 7H_,3/a(z) )
o X IR|
(5.20) == s <0 + psgr(Rt)h< ﬁ))
1—exp—¥(p))

(5.21) & =X, .
(1—exp(—(1—x)¥(B)))

Finally, the process (v});cjo.7] iS bounded and so the optimal dual process
(Z")iefo.7) isamartingale.

PrRoOOF Use of the Itb—Tanaka formula and expression (5.15) yields

vP=0 and
(5.22)
1—exp—(1—-«)¥(B))

v(B)

Moreover, the martingale property of procég¢sfrom (5.13) implies thak, Z)”" =
G, — [{ e P* dk,, and so (5.8), (5.10) and (5.12) can be combined into the explicit
expression of the optimal dual process

(9/38)j (B, |R:])
JB RN

Representation (5.8) and the identg%yHg (x) =26 He_1(x) [see Lebedev (1972),
equation 10.5.2, page 289] complete the proof of (5.19).
Theorem 4.2 part 7 and identities (5.10) and (5.22) imply that

e X, W(B)
"y B RN —exp(—(L— k)W (B)))’

wherey satisfiest = —v/(y). To get a more explicit expression for we combine
(5.14) and (5.12) to gety = E[ fotl exp(—pBt) dk,]. After repeating the calculation
in (5.18) withk = 0, we need only to rearrange the terms and remembeRthat0
dk-a.e. to obtain (5.21).

We are left with the proof of the boundedness of the pro¢eSgkco ). The
asymptotic formula 10.6.3 in Lebedev [(1972), page 291] implies Hhdt) ~
ngf asx — oo for some positive constardlz depending orf < 0. Therefore,
there exists a constarf® > 0 such thati(x) ~ Dx~1 asx — oco. Because
of the existence of the limit lig o+ 2(x), we conclude that is a bounded
function on[0, co). Hence (v});¢[0.00) is @ bounded process, makig’ ):cio.7]
a martingale. [

d
¥ = exp(—p1) SGUR) — j (B, IR )

v =Sgn(R;)
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REMARK 5.1. In the generic setup of Theorem 5.3, we have explicitly
assumed that(x) < oo for at least one > 0. In the case of the logarithmic utility
random field treated above, the validity of such an assumption is implied by the
chain of inequalities in whickg andZ?l are asin (5.4), thatis

ux)—x= sup (U()—x)<V(@Qo)= E/tl(—l - Iog(Z?))d/q
ceA(x,0) 0

711 1 1
(5.23) 51@[/0 E(9193+1+92z)d;<,]:5/0 E[0(1+ B2) + 6°7,]ds

0 V2+1 1 0+ (02 + DE
0! +)/E[rs]ds§ +©*+ DE[n] _
2 2 0 2

The fact thatf[r1] < co [which can easily be deduced from (5.6)] implies both the
final inequality in (5.23) and the equaIiE/[Btzl] = E[r1] through Wald’s identity
[see Problem 2.12, page 141 in Karatzas and Shreve (1991)].

APPENDIX: A CONVEX-DUALITY PROOF OF THEOREM 4.2

We have divided the proof into several steps, each of which is stated as a separate
lemma. Throughout this section all the conditions of Theorem 4.2 are assumed to
be satisfied.

LEMMA A.1 (Global properties of the value functions)The value function
u(-) is convex, nondecreasing and [—oo, co) valued, while v is concave and
(—o0, 00] valued. Moreover, the primal and the dual value functions u(-) and v(-)
are convex conjugates of each other.

ProoOF 1. Concavity ofu(-) and convexity ofv(-) are inherited from the
properties of the objective functiond(-) and V(.) [see Ekeland and Témam
(1999), proof of Lemma 2.1, page 50, for the standard argument]. The increase
of u(-) follows from the inclusionA(x, &) C A(x’, &) for x < x’.

2. By the Assumption 2.9, there exists= R such thatu(x) < oco. It follows
immediately by concavity af () thatu(x) < oo for all x € R.

3. To establish the claim that(-) is the convex conjugate of(-), we define
the auxiliary domainA/(x, &) = A(x, &) \ U, -, A(x', ). Note that (a) the
monotonicity of the utility functional(-) implies that

sup U(c)= sup U(c)
ceA(x,8) ceA(x,8)

and (b) the Proposition 2.2 implies that gup, (,)(c —e, Q) = xy foranyy >0
andc € A/(x, €). Having established the wedkompactness of the dual domain
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D, (y) in 3.4, the minimax theorem [see Sion (1958)] implies that

sudu(x) — xy] = SU[{ sup U(c) — xy)

xeR xeR \ceA/(x,8)

=sup sup (U(c)— sup (C—e,@))
xeRceA (x,8) QeDy (y)

=Sup Su inf  (U(c) — (¢, Q) + (e,
xengcew(fg)@emw( ) — (¢, Q) + (e, Q)

= sup _inf (U(c) —(c, Q)+ (e, Q))

ce")l}ﬁi QeD, )

= inf  sup (U(c) — (c, Q) + (e, Q)

€D (y) CE’V’Ai
K

= inf V + (e, = .
QE;DK(”( (@ + (e, Q) =v(y) 0
__ LEmmA A.2 (Existence in the dual problem)For y € Dom(v) there exists
QY € D () such that

v(y) =VE@) =V @) + (e, Q).

PROOF For y € Dom(v), let (Q,),en be a minimizing sequence far(y),
that is, a sequence i, (y), such thaiVé(Q,)),en is real valued and decreasing
with limit v(y). SinceD, (y) is a closed and bounded subset of the c{[]af‘)*
of VM, by Proposition 3.4, the product spac®.(y) x [v(y),Vé(Q1)] is
compact. Therefore, the sequen@,, V€ (Q,)).en has a cluster poin(t@y, v™)
in D (y) x [v(y), VE(Q1)]. By the decrease of the sequer® (Q,,)),cn, We
havev* = lim, V& (Q,) = v(y). On the other hand, by the definition (4.1) of the
functional V(-), the epigraph of its restriction€(-): D, (y) — R is closed with
respect to the product of the weéland Euclidean topologies. Therefo(@, v*)

is in the epigraph o¥/¢ and thus(y) = v* > VE(@QY) = V(@) + (Q”,e). O

LEMMA A.3 (Consequences of reasonable elasticity).
1. We have Dom(v) = (0, o).
2. Wehave v(-) iscontinuously differentiable and, for y > 0, its derivative satisfies
W) =—(@),1@)) + (e, "),

Where@y € D, (y) isaminimizer in the dual problem[i.e., v(y) :Vg(@y)].
3. Theinequality

Yo' () = —(Q, 1@”)) + (e, Q)
holdsfor all Q € D, (y).



STOCHASTIC CLOCK 775

4. \We have lim,_ov'(y) = —oo and lim,v'(y) € [infgeu EC[ET],
SUFQGME(E[QT]] L o
5. Wehave [ (QY) € A(—v'(y), e) and (1(Q”), (Q@")") = (1(Q"), Q*).

PrRoOFE Thanks to the representatiany) = E[O Vi, Y )a'K,, and the
fact thatIE[OT Y,@d;c, <1 for all Q € D,(1), the proofs of parts 1-4 of this
lemma follow (almost verbatim) the proofs of the following statements in
Karatzas and Zitkogi (2003): 1. Lemma A.5, page 30; 2. Lemma A.6, page 31;
3. Proposition A.7, page 32. 4. Lemma A.8, page 33.

To prove claim 5, we observe that the combination of parts 3 and 4 implies that

(@), yQ) < —yv'(y) + (e, yQ)  forall Q € M.

From Proposition 3.5 it follows that(@) € A(—v'(y).e), so (1(@”). Q) <
—yV'(y) + (e, Q) for all Q € D(y). In particular, {1(Q*),QY) < —yv'(y) +
(e Qy) yielding immediately the inequalityi (Qy) Q) < {1 @), (Q@H"). The
second part of the claim follows by the trivial inequality(@”), @”) >
(1@, @»H"). O

LEMMA A.4 (Existence in the primal problem).For x > —Ilim,_, o v'(y),
the primal problem (2.5) has a solution, that is, there exists ¢* € 4 (x, &) such that
u(x) = U(¢"). Moreover, the optimal consumption density process ¢* is P.-a.s.
unique.

PrRoOOF Using the continuous differentiability of the dual value functiai)
and Lemma A.5, we conclude that for any- limy_, o v '(y) there exists a unique
y > 0 such that'(y) = —x. Let QY be the solution to the dual problem that
corresponds te and define the candidate solutiéhto the primal problem by

FEI@).

By Lemma A.3,¢* € A(x, §). The optimality of the consumption density process
¢* follows from the fact that

U@E) =Ud (@) =V@) + (1@, Q") =V@) + (1 @), @)
=v(y) — ' (y) = ux),

using Lemma A.3 and the conjugacy©of) andv(-). TheP,-a.s. uniqueness of
¢* is a direct consequence of the strict concavity of the mappirg U (w, ¢, x)
coupled with convexity of the feasible saix, ). O

LEMMA A.5. Wehavelim,_, o v'(y) = £L(§), where L(§) = ianeMEQ[BT].
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PROOF Letx'=lim,_ . v'(y). Part 4 of Lemma A.3 states that> .£(§),
so we need only to prove that < .£(&). Suppose, to the contrary, that there
existsxg > £L(&7) of the formxg = v'(yg) for someyg > 0 so thatx’ > xg. The
optimal consumption proces€’; "°),c[0,7] that corresponds to the initial capital
—xo exists by Lemma A.4 and satisfiB&[C;°] < —xo+ EQ[&7] for anyQ € M
by Propositim 2.2. Taking the infimum ove € M, we reach a contradiction:

0= inf EQ[C;™] < —xo + £L(&7) <O.
Thereforex’ < £(8). O
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