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RENEWAL THEORY AND COMPUTABLE CONVERGENCE RATES
FOR GEOMETRICALLY ERGODIC MARKOV CHAINS

BY PETER H. BAXENDALE

University of Sauthern California

We give computable bounds on the rate of convergence of the transition
probabilities to the stationary distribution for a certain class of geometrically
ergodic Markov chains. Our results are different from earlier estimates of
Meyn and Tweedie, and from estimates using coupling, although we start
from essentially the same assumptions of a drift condition toward a “small
set.” The estimates show a noticeable improvement on existing results if the
Markov chain is reversible with respect to its stationary distribution, and
especially so if the chain is also positive. The method of proof uses the first-
entrance–last-exit decomposition, together with new quantitative versions of
a result of Kendall from discrete renewal theory.

1. Introduction. Let {Xn :n ≥ 0} be a time homogeneous Markov chain on a
state space(S,B). LetP (x,A), x ∈ S,A ∈ B denote the transition probability and
let P denote the corresponding operator on measurable functionsS → R. There
has been much interest and activity recently in obtaining computable bounds for
the rate of convergence of the timen transition probabilityPn(x, ·) to a (unique)
invariant probability measureπ . These estimates are of importance for simulation
techniques such as Markov chain Monte Carlo (MCMC).

Throughout this paper we assume the following conditions are satisfied.

(A1) Minorization condition. There existC ∈ B, β̃ > 0 and a probability measure
ν on (S,B) such that

P (x,A) ≥ β̃ν(A)

for all x ∈ C andA ∈ B.
(A2) Drift condition. There exist a measurable functionV :S → [1,∞) and

constantsλ < 1 andK < ∞ satisfying

PV (x) ≤
{

λV (x), if x /∈ C,

K, if x ∈ C.

(A3) Strong aperiodicity condition. There existsβ > 0 such thatβ̃ν(C) ≥ β.
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The following result converts information about the one-step behavior of the
Markov chain into information about the long term behavior of the chain.

THEOREM 1.1. Assume (A1)–(A3).Then {Xn :n ≥ 0} has a unique stationary
probability measure π , say, and

∫
V dπ < ∞. Moreover, there exists ρ < 1

depending only (and explicitly) on β, β̃, λ and K such that whenever ρ < γ < 1
there exists M < ∞ depending only (and explicitly) on γ , β, β̃, λ and K such that

sup
|g|≤V

∣∣∣∣(P ng)(x) −
∫

g dπ

∣∣∣∣ ≤ MV (x)γ n(1)

for all x ∈ S and n ≥ 0, where the supremum is taken over all measurable
g :S → R satisfying |g(x)| ≤ V (x) for all x ∈ S. Formulas for ρ and M are given
in Section 2.1.In particular, P ng(x) and

∫
g dπ are both well defined whenever

‖g‖V ≡ sup{|g(x)|/V (x) :x ∈ S} < ∞.

The proof of Theorem 1.1 appears in Section 4. If we restrict to functionsg

on the left-hand side of (1) that satisfy|g(x)| ≤ 1, we obtain the total variation
norm‖Pn(x, ·) − π‖TV. So the inequality (1) is a strong version of the condition
of geometric ergodicity, which says that for eachx ∈ S there existsγ < 1 such that

γ −n‖Pn(x, ·) − π‖TV → 0 asn → ∞.

This concept was introduced in 1959 by Kendall [5] for countable state spaces.
Important advances were made by Vere-Jones [22] in the countable setting, and by
Nummelin and Tweedie [12] and Nummelin and Tuominen [11] for general state
spaces. The condition in (1) is that ofV -uniform ergodicity. Information about the
theories of geometric ergodicity andV -uniform ergodicity is given in Chapters
15 and 16 of [8]. Results that relate the different notions of geometric ergodicity
are also given in [13].

To date two basic methods have been used to obtain computable convergence
rates. One method, introduced by Meyn and Tweedie [9], is based onrenewal
theory. In fact Theorem 1.1 is a restatement of Theorems 2.1–2.3 in [9], except
that we give different formulas forρ andM . Our results in this paper use this
method. The renewal theory method is easiest to describe whenC is an atom,
that is, P (x,A) = ν(A) for all x ∈ C and A ∈ B. In this case, the Markov
process{Xn :n ≥ 0} has a regeneration, or renewal, time wheneverXn ∈ C. Precise
estimates are based on the regenerative decomposition, or first-entrance–last-exit
decomposition; see the proof of Proposition 4.2. This method requires information
about the regeneration time

τ = inf{n > 0 :Xn ∈ C}
which may be obtained using the drift condition (A2). It also requires information
on the rate of convergence of the renewal sequenceun = P (Xn ∈ C|X0 ∈ C)
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asn → ∞. It is at this point that the aperiodicity condition (A3) is used. More
generally, ifC is not an atom, then the renewal method may be applied to the split
chain associated with the minorization condition (A1); see Section 4.2 for details
of this construction.

The other main method, introduced by Rosenthal [18], is based oncoupling
theory, and relies on estimates of the coupling timeT̂ = inf{n > 0 :Xn = X′

n} for
some bivariate process{(Xn,X

′
n) :n ≥ 0} where each component is a copy of the

original Markov chain. The minorization condition (A1) implies that the bivariate
process can be constructed so that

P
(
Xn+1 = X′

n+1|(Xn,X
′
n) ∈ C × C

) ≥ β̃.

Therefore, coupling can be achieved with probabilityβ̃ whenever(Xn,X
′
n) ∈

C ×C. It remains to estimate the hitting time inf{n > 0 :(Xn,X
′
n) ∈ C ×C}. If the

Markov chain is stochastically monotone andC is a bottom or top set, then the
univariate drift condition (A2) is sufficient. See the results in [7] and [21] for
the case whenC is an atom, and in [16] for the general case. For stochastically
monotone chains, the coupling method appears to be close to optimal. In the
absence of stochastic monotonicity, a drift condition for the bivariate process is
needed. This can often be achieved using the same functionV that appears in the
(univariate) drift condition, but at the cost of enlarging the setC and increasing
the effective value ofλ. Further information about these two methods and their
relationship to our results appears in Section 7.

Our computations forρ andM in Theorem 1.1 are valid for a very large class of
Markov chains and, consequently, can be very far from sharp in particular cases.
They can be improved dramatically in the setting of reversible Markov chains.

THEOREM 1.2. Assume (A1)–(A3) and that the Markov chain is reversible
(or symmetric) with respect to π , that is,∫

S
Pf (x)g(x)π(dx) =

∫
S
f (x)Pg(x)π(dx)

for all f,g ∈ L2(π). Then the assertions of Theorem 1.1 hold with the formulas
for ρ and M in Section 2.2.

Reversibility is an intrinsic feature of many MCMC algorithms, such as the
Metropolis–Hastings algorithm and the random scan Gibbs sampler.

THEOREM 1.3. In the setting of Theorem 1.2 assume also that the Markov
chain is positive in the sense that∫

S
Pf (x)f (x)π(dx) ≥ 0

for all f ∈ L2(π). Then the assertions of Theorem 1.1 hold with the formulas for
ρ and M in Section 2.3.
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The proofs of Theorems 1.2 and 1.3 appear in Section 5, and some consequences
for the spectral gap ofP in L2(π) appear in Section 6. For reversible positive
Markov chains, our formulas forρ give the same values as the formulas given by
Lund and Tweedie [7] (atomic case) and Roberts and Tweedie [16] (nonatomic
case) under the assumption of stochastic monotonicity. The random scan Gibbs
sampler is reversible and positive (see [6], Lemma 3). If{Xn :n ≥ 0} is one
component in a two-component deterministic scan Gibbs sampler, then it is
reversible and positive. Moreover, if a transition kernelP is reversible with respect
to π , then both the kernelP 2 for the two-skeleton chain and also the kernel
(I + P )/2 for the binomial modification of the chain (see [20]) are reversible and
positive. In particular, any discrete time skeleton of a continuous time reversible
Markov process is positive.

In Section 8 we give numerical comparisons between our estimates and those
obtained using [9] and the coupling method. The four Markov chains considered
are “benchmark” examples used in earlier papers. Note that Theorem 1.1
outperforms the estimates given in [9]. For reversible chains, Theorem 1.2 is
sometimes comparable with the coupling method, and sometimes noticeably
better. For chains which are reversible and positive, Theorem 1.3 outperforms the
coupling method.

In this paper our assumptions (A1)–(A3) all involve just the time 1 transition
probabilities. In principle, our methods extend to a more general setting where one
or more of the conditions involvesm-step transitions for somem > 1. However,
the calculations are much more cumbersome; we omit the details. Note that our
method typically allows smallerC than does the coupling method (see Section 7.2)
and so there is less need to pass to minorization conditions involving timem > 1
(see the example in Section 8.4).

For the remainder of this introduction, we focus our attention on the formula
for ρ. DefineρV to be the infimum of allγ for which an inequality of the form (1)
holds true. ThusρV is the spectral radius of the operatorP − 1 ⊗ π acting on
the Banach space(BV ,‖ · ‖V ), say, of measurable functionsg :S → R such that
‖g‖V < ∞. We look for inequalitiesρV ≤ ρ, whereρ is computable from the
time 1 transition kernel.

At the heart of our calculations is an estimate on the rate of convergence of
Pν(Xn ∈ C) to π(C) asn → ∞. More precisely, define

ρC = lim sup
n→∞

|Pν(Xn ∈ C) − π(C)|1/n.

It is easy to verify [by takingg(x) = 1C(x) in (1), integrating with respect toν
and using

∫
V dν < ∞] that ρC ≤ ρV . In the case thatC is an atom, we show (as

a consequence of Propositions 4.1 and 4.2) that

ρV ≤ max(λ,ρC).(2)

Suppose instead thatC is not an atom, so that̃β < 1 in assumption (A1).
We consider the associated split chain (see Section 4.2) and apply the atomic
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techniques to the split chain. In this case we show (as a consequence of
Propositions 4.3 and 4.4) that

ρV ≤ max
(
λ, (1− β̃)1/α1, ρC

)
,(3)

whereα1 = 1+ (log K−β̃

1−β̃
)/(logλ−1). We remark that max(λ, (1− β̃)1/α1) = β−1

RT ,

whereβRT is the estimate obtained by Roberts and Tweedie ([15], Theorem 2.3)
for the radius of convergence of the generating function of the regeneration time
for the split chain. Therefore, (3) may be rewrittenρV ≤ max(β−1

RT , ρC).
It remains to get a good upper bound onρC . We do this using renewal theory.

Suppose first thatC is an atom and consider the renewal sequenceu0 = 1 andun =
P(Xn ∈ C|X0 ∈ C) = Pν(Xn−1 ∈ C) for n ≥ 1. TheV -uniform ergodicity implies
that π(C) = limn→∞ Pν(Xn−1 ∈ C) = limn→∞ un = u∞, say. Thusρ−1

C is the
radius of convergence of the series

∑∞
n=1(un − u∞)zn. The renewal sequenceun,

n ≥ 0, is related to its corresponding increment sequencebn = Pa(τ = n), n ≥ 1,
by the renewal equation

u(z) = 1/
(
1− b(z)

)
for |z| < 1, whereu(z) = ∑∞

n=0 unz
n and b(z) = ∑∞

n=1 bnz
n. The drift condi-

tion (A2) implies that

∞∑
n=1

bnλ
−n = Ea(λ−τ ) ≤ λ−1K

(see Proposition 4.1) and the aperiodicity condition (A3) implies thatb1 =
P (a,C) = ν(C) ≥ β. In these circumstances a result of Kendall [5] shows that
ρC < 1. In Section 3 we sharpen Kendall’s result, using the lower bound onb1
and the upper bound on

∑∞
n=1 bnλ

−n to get an upper bound onρC , depending
only onλ, K andβ, which is strictly less than 1. In fact we give three different
upper bounds onρC . The first formula (in Theorem 3.2) is valid with no further
restrictions on the Markov chain. The second formula (in Theorem 3.3) is valid
for reversible Markov chains and the third formula (in Corollary 3.1) is valid for
Markov chains which are reversible and positive.

The idea in the nonatomic case is similar. For the split chain the renewal
sequence is given bȳun = β̃Pν(Xn−1 ∈ C) for n ≥ 1, so that ūn → ū∞
has geometric convergence rate given byρC . For the corresponding increment
sequencēbn, the estimate on

∑∞
n=1 b̄nr

n is more complicated, see (26) and (22),
but the way in which results from Section 3 are applied is exactly the same.

2. Formulas for ρ and M . Here we complete the statement of Theorems 1.1,
1.2 and 1.3 by giving formulas for the constantsρ andM . We say that the setC
is anatom if P (x, ·) = P (y, ·) for all x, y ∈ C. In this case we assume thatβ̃ = 1
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andν = P (x, ·) for anyx ∈ C. If C is not an atom, so that̃β < 1, we define

α1 = 1+
(

log
K − β̃

1− β̃

)/
(logλ−1)

and

α2 = 1+
(

log
K

β̃

)/
(logλ−1).

In the special case whenν(C) = 1, we can takeα2 = 1. More generally, if
we have the extra information thatν(C) + ∫

S\C V dν ≤ K̃ , we can takeα2 =
1+ (logK̃)/(logλ−1). Then define

R0 = min
(
λ−1, (1− β̃)−1/α1

)
and, for 1< R ≤ R0, define

L(R) = β̃Rα2

1− (1− β̃)Rα1
.

2.1. Formulas for Theorem 1.1. For β > 0, R > 1 andL > 1, defineR1 =
R1(β,R,L) to be the unique solutionr ∈ (1,R) of the equation

(r − 1)

r(logR/r)2
= e2β(R − 1)

8(L − 1)
.(4)

Since the left-hand side of (4) increases monotonically from 0 to∞ asr increases
from 1 toR, the valueR1 is well defined and is easy to compute numerically. For
1 < r < R1, define

K1(r, β,R,L) = 2β + 2(logN)(logR/r)−1 − 8Ne−2(r − 1)r−1(logR/r)−2

(r − 1)[β − 8Ne−2(r − 1)r−1(logR/r)−2] ,

whereN = (L − 1)/(R − 1).

Atomic case. We haveρ = 1/R1(β,λ−1, λ−1K) and, forρ < γ < 1,

M = max(λ,K − λ/γ )

γ − λ
+ K(K − λ/γ )

γ (γ − λ)
K1(γ

−1, β,λ−1, λ−1K)

(5)

+ (K − λ/γ )max(λ,K − λ)

(γ − λ)(1− λ)
+ λ(K − 1)

(γ − λ)(1− λ)
.

Nonatomic case. Let

R̃ = argmax
1<R≤R0

R1
(
β,R,L(R)

)
.
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Thenρ = 1/R1(β, R̃,L(R̃)), and forρ < γ < 1,

M = max(λ,K − λ/γ )

γ − λ
+ K[Kγ − λ − β̃(γ − λ)]

γ 2(γ − λ)[1− (1− β̃)γ −α1]

+ β̃γ −α2−2K(Kγ − λ)

(γ − λ)[1− (1− β̃)γ −α1]2K1
(
γ −1, β, R̃,L(R̃)

)
+ γ −α2−1(Kγ − λ)

(γ − λ)[1− (1− β̃)γ −α1]2
(6)

×
(

β̃ max(λ,K − λ)

1− λ
+ (1− β̃)(γ −α1 − 1)

γ −1 − 1

)

+ γ −α2λ(K − 1)

(1− λ)(γ − λ)[1− (1− β̃)γ −α1]

+ [K − λ − β̃(1− λ)]
(1− λ)(1− γ )

(
(γ −α2 − 1) + (1− β̃)(γ −α1 − 1)

β̃

)
.

Notice that the result remains true with̃R replaced by anyR ∈ (1,R0), but it does
not give such a smallρ. We do not claim that̃R gives the smallestK1.

2.2. Formulas for Theorem 1.2. Here we assume that the Markov chain is
reversible.

Atomic case. Define

R2 =
{

sup
{
r < λ−1 : 1+ 2βr > r1+(logK)/(logλ−1)

}
, if K > λ + 2β,

λ−1, if K ≤ λ + 2β.

Then ρ = R−1
2 and, for ρ < γ < 1, replaceK1(γ

−1, β,λ−1, λ−1K) by K2 =
1+ 1/(γ − ρ) in (5) for M in Section 2.1. We remark that, using the convexity of
r1+(logK)/(logλ−1), we can replaceρ by the larger, but more easily computable,ρ̃

given by

ρ̃ =
{

1− 2β(1− λ)/(K − λ), if K > λ + 2β,

λ, if K ≤ λ + 2β.

Nonatomic case. Define

R2 =
{

sup{r < R0 : 1+ 2βr > L(r)}, if L(R0) > 1+ 2βR0,

R0, if L(R0) ≤ 1+ 2βR0.

Thenρ = R−1
2 and, forρ < γ < 1, replaceK1(γ

−1, β, R̃,L(R̃)) by K2 = 1 +√
β̃/(γ − ρ) in (6) for M given in Section 2.1.
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2.3. Formulas for Theorem 1.3. Here we assume that the Markov chain is
reversible and positive.

Atomic case. We haveρ = λ andM is calculated as in Section 2.2.

Nonatomic case. We haveρ = R−1
0 andM is calculated as in Section 2.2.

3. Kendall’s theorem. The setting for this section is discrete renewal theory.
Suppose thatV1,V2, . . . are independent identically distributed random variables
taking values in the set of positive integers and letbn = P(V1 = n) for n ≥ 1.
Define T0 = 0 and Tk = V1 + · · · + Vk for k ≥ 1. Let un = P (there exists
k ≥ 0 such thatTk = n) for n ≥ 0. Thusun is the (undelayed) renewal sequence
that corresponds to the increment sequencebn. The following result is due to
Kendall [5].

THEOREM 3.1. Assume that the sequence {bn} is aperiodic and that∑∞
n=1bnR

n < ∞ for some R > 1. Then u∞ = limn→∞ un exists and the series∑∞
n=0(un − u∞)zn has radius of convergence greater than 1.

In this section we obtain three different lower bounds on the radius of
convergence of

∑
(un − u∞)zn.

3.1. General case.

THEOREM 3.2. Suppose that
∑∞

n=1bnR
n ≤ L and b1 ≥ β for some constants

R > 1, L < ∞ and β > 0. Let N = (L − 1)/(R − 1) ≥ 1. Let R1 = R1(β,R,L)

be the unique solution r ∈ (1,R) of the equation

(r − 1)

r(logR/r)2
= e2β

8N
.

Then the series
∞∑

n=1

(un − u∞)zn

has radius of convergence at least R1. For any r ∈ (1,R1), define K1 =
K1(r, β,R,L) by

K1 = 1

r − 1

(
1+ β + 2(logN)(logR/r)−1

β − 8Ne−2(r − 1)r−1(logR/r)−2

)
.

Then ∣∣∣∣∣
∞∑

n=0

(un − u∞)zn

∣∣∣∣∣ ≤ K1 for all |z| ≤ r.(7)



708 P. H. BAXENDALE

PROOF. Define the sequencecn = ∑∞
k=n+1bk for n ≥ 0 and define generating

functionsb(z) = ∑∞
n=1bnz

n, c(z) = ∑∞
n=0 cnz

n andu(z) = ∑∞
n=0 unz

n for |z| < 1.
The renewal equation gives

c(z) = 1− b(z)

1− z
= 1

(1− z)u(z)
= 1

1− ∑∞
n=1(un−1 − un)zn

(8)

for |z| < 1. Since the power series forc(z) has nonnegative coefficients, for|z| ≤ R

we have

|c(z)| ≤ c(R) = b(R) − 1

R − 1
≤ L − 1

R − 1
= N

so thatc(z) is holomorphic on|z| < R. Now


(
(1− z)c(z)

) = 
(
1− b(z)

)
=

∞∑
n=1

bn
(1− zn)

≥ β
(1− z)

for |z| ≤ 1. It follows that

|c(reiθ )| ≥ β

(1− reiθ )

|1− reiθ | ≥ β

∣∣∣∣sin
(

θ

2

)∣∣∣∣
for all r ≤ 1. In particular, sincec(r) > 0 for all r ≥ 0, we see thatc(z) �= 0
whenever|z| ≤ 1. For 1≤ r < R,

|c(reiθ )| ≥ β|sin(θ/2)| − |c(reiθ ) − c(eiθ )|
≥ β|sin(θ/2)| − (

c(r) − c(1)
)
.

Moreover, for 1≤ r < R,

|c(reiθ )| ≥ c(r) − |reiθ − r|sup{|c′(z)| : z ∈ [r, reiθ ]}
≥ c(r) − |reiθ − r|c′(r)
= c(r) − 2r|sin(θ/2)|c′(r).

Combining these two estimates we obtain

|c(reiθ)| ≥ β − A(r)

β/c(r) + B(r)
,

whereA(r) = 2rc′(r)[c(r)−c(1)]/c(r) andB(r) = 2rc′(r)/c(r). Since the power
series forc has nonnegative coefficients, we may apply Hölder’s inequality to
obtain

c(s) ≤ c(r)

(
s

r

)(logc(R)/c(r))/(logR/r)
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for 0 < r < s < R. Lettings ↘ r gives

c′(r) ≤ c(r)

r

logc(R)/c(r)

logR/r

and, consequently,

c(r) − c(1) ≤ (r − 1)c(r)

r

logc(R)/c(r)

logR/r

for 1 ≤ r < R. Thus we obtain the estimates

A(r) ≤ 2(r − 1)

r
c(r)

[
log

N

c(r)

]2[
log

R

r

]−2

and

B(r) ≤ 2
[
log

N

c(r)

][
log

R

r

]−1

.

Using the inequality

x

[
log

N

x

]2

≤ 4Ne−2

for 0 < x < N in A(r) and the inequalityc(r) ≥ 1 in B(r) we get

A(r) ≤ 8Ne−2(r − 1)

r

[
log

R

r

]−2

and

B(r) ≤ 2 logN

[
log

R

r

]−1

.

Thus for 1< r < R1 we have

|c(reiθ )| ≥ β − 8Ne−2(r − 1)r−1(logR/r)−2

β + 2(logN)(logR/r)−1 > 0.(9)

Thereforec(z) �= 0 for all |z| < R1. Recalling (8), we see that
∑∞

n=1(un−1 −un)z
n

is holomorphic on|z| < R1 and, therefore,rn|un−1 − un| → 0 asn → ∞ for each
r < R1. It follows directly thatu∞ = limn→∞ un exists andrn|un − u∞| → 0 as
n → ∞ for all r < R1. Furthermore, using the factun − u∞ = ∑∞

m=n+1(um−1 −
um), we get

∞∑
n=0

(un − u∞)zn = 1

z − 1

( ∞∑
m=1

(um−1 − um)zm − (1− u∞)

)
whenever 1< |z| < R1. Therefore, using (8) again, for 1< r < R1 we have

sup
|z|≤r

∣∣∣∣∣
∞∑

n=0

(un − u∞)zn

∣∣∣∣∣ = sup
|z|=r

∣∣∣∣∣
∞∑

n=0

(un − u∞)zn

∣∣∣∣∣ ≤ 1

r − 1

(
1+ sup

|z|=r

1

|c(z)|
)
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and now (7) follows from (9). �

The estimates in Theorem 3.2 apply to a very general class of renewal sequences
and as a result they are very far from the best possible in certain more restricted
settings. We see in Theorem 3.3 and Corollary 3.1 that the estimates can be
dramatically improved when we have extra information about the origin of the
renewal sequence. Meanwhile, the following discussion shows that the estimate on
the radius of convergence in Theorem 3.2 can be of the correct order of magnitude.

Suppose thatβ andL are fixed. Then asR ↘ 1 we have

R1 − 1 ∼ e2β

8(L − 1)
(R − 1)3.(10)

The effect of the(R−1)3 term is that, typically,R1 is very much closer to 1 thanR
is. This is a major contributing factor to the disappointing estimates obtained using
Theorem 1.1 in the examples in Sections 8.1 and 8.2. However, in the absence
of any further information beyond that given by the constantsβ, R andL, the
following calculations show that the term(R − 1)3 in (10) is optimal.

Consider the family of examplesb(z) = βz+ (1−β)zk for fixedβ andk → ∞.
For eachk there is a solutionzk of the equationβz + (1 − β)zk = 1 neare2πi/k.
Calculating the asymptotic expansion forzke

−2πi/k in powers of 1/k we obtain

zk = e2πi/k

[
1−

(
2πβi

1− β

)
k−2 +

(
2π2β

(1− β)2 + 2πβ2i

(1− β)2

)
k−3 + O(k−4)

]
and thus

|zk| = 1+
(

2π2β

(1− β)2

)
k−3 + O(k−4).

For fixedβ andL this example satisfies the conditions of Theorem 3.2 as long as
βR + (1 − β)Rk = L. As k → ∞ we haveR − 1 ∼ logR ∼ (1/k) log(

L−β
1−β

) and
thus

|zk| − 1∼
(

2π2β

(1− β)2

)[
log

(
L − β

1− β

)]−3

(R − 1)3.

It is clear from the proof of Theorem 3.2 that anyr satisfying (7) must satisfy
r < |zk|. Thus the factor(R − 1)3 in (10) is optimal, although clearly the factor
e2β/8(L − 1) is not.

3.2. Reversible case. In this section we assume that the renewal sequence
un is generated by a Markov chain{Xn :n ≥ 0} which is reversible with respect
to its invariant probability measureπ . Thus

π(dx)P (x, dy) = π(dy)P (y, dx)

in the sense that the measures onS ×S given by the left-hand and right-hand sides
agree.
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THEOREM 3.3. Let {Xn :n ≥ 0} be a Markov chain which is reversible with
respect to a probability measure π and satisfies P (x, dy) ≥ β̃1C(x)ν(dy) for some
set C and probability measure ν. Let {un :n ≥ 0} be the renewal sequence given by
u0 = 1 and un = β̃P ν(Xn−1 ∈ C) for n ≥ 1, and suppose that the corresponding
increment sequence {bn :n ≥ 1} satisfies

∑∞
n=1 bnR

n ≤ L and b1 ≥ β for some
constants R > 1, L < ∞ and β > 0. If L > 1 + 2βR, define R2 = R2(β,R,L) to
be the unique solution r ∈ (1,R) of the equation

1+ 2βr = r(logL)/(logR)

and let R2 = R otherwise. Then the series
∞∑

n=0

(un − u∞)zn

has radius of convergence at least R2. Moreover, if

lim
n→∞

∣∣∣∣ ∫
C

P n1C(x)π(dx) − (π(C))2
∣∣∣∣rn < ∞ for all r < R2,(11)

then, for 1 < r < R2, we have

∞∑
n=1

|un − u∞|rn ≤
√

β̃r

1− r/R2
.(12)

PROOF. Notice first that the discussion of split chains in Section 4.2 implies
that {un :n ≥ 0} is indeed a renewal sequence. The reversibility implies that the
transition operatorP for the original chain{Xn :n ≥ 0} acts as a self-adjoint
contraction on the Hilbert spaceL2(π). We use〈·, ·〉 for the inner product inL2(π)

and‖ · ‖ for the corresponding norm. For anyA ⊂ S we have

π(A) =
∫

P (x,A)π(dx) ≥ β̃ν(A)π(C),

so thatν is absolutely continuous with respect toπ and has Radon–Nikodym
derivative dν/dπ ≤ 1/(β̃π(C)). Throughout this proof we writef = 1C and
g = dν/dπ . Thenf,g ∈ L2(π) with ‖f ‖2 = π(C) and‖g‖2 ≤ 1/(β̃π(C)). Now
for |z| < 1,

(1− z)u(z) = (1− z) + β̃(1− z)

∞∑
n=1

〈P n−1f,g〉zn

= (1− z) + β̃z(1− z)〈(I − zP )−1f,g〉.
SinceP is a self-adjoint contraction onL2(π), its spectrum is a subset of[−1,1]
and we have a spectral resolution

P =
∫

λdE(λ)
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(see, e.g., [23], Section XI.6), whereE(1) = I and limλ↗−1 E(λ) = 0. Write
F(λ) = 〈E(λ)f,g〉. The function F is of bounded variation and the corre-
sponding signed measureµf,g , say, is supported on[−1,1] and has total mass
|µf,g |([−1,1]) ≤ ‖f ‖ · ‖g‖ ≤ β̃−1/2. We obtain for|z| < 1,

(1− z)u(z) = (1− z) + β̃z(1− z)

∫
[−1,1]

(1− zλ)−1µf,g(dλ)

and so the function(1 − z)u(z) has a holomorphic extension at least to{z ∈
C : z−1 /∈ [−1,1]} = C \ ((−∞,−1] ∪ [1,∞)). The renewal equation gives

(1− z)u(z) = 1− z

1− b(z)

for |z| < 1, and the functionb is holomorphic inB(0,R). It follows that the only
solutions inB(0,R) of the equationb(z) = 1 lie on one or the other of the intervals
(−R,−1] and[1,R). Sinceb′(1) > 0, the zero ofb(z)−1 atz = 1 is a simple zero.
For 1< r ≤ R we haveb(r) > b(1) = 1. For 1< r < R we also haveb(−r) ≤
−2b1r + b(r). Using the estimateb(r) ≤ [b(R)](logr)/(logR) = r(logL)/(logR), it
follows that for 1< r < R2 we haveb(−r) < 1, whereR2 is given in the statement
of the theorem. Thus(1− z)u(z) has a holomorphic extension toB(0,R2) and the
first statement of the theorem follows as in the proof of Theorem 3.2.

Now we assume (11). Givenr < R2 we have

|〈P nf,f 〉 − (π(C))2| ≤ Mr−n(13)

for someM (depending onr). Recalling the spectral resolution, we have

〈P nf,f 〉 =
∫
[−1,1]

λn d〈E(λ)f,f 〉.
Letting n → ∞ we get

lim
n→∞〈P nf,f 〉 =

∫
{1}

d〈E(λ)f,f 〉

and so (13) may be rewritten as∣∣∣∣ ∫[−1,1)
λnd〈E(λ)f,f 〉

∣∣∣∣ ≤ Mr−n.(14)

Nowλ → 〈E(λ)f,f 〉 is an increasing function and hence corresponds to a positive
measureµf , say, on[−1,1]. Letting n → ∞ in (14) through the even integers,
we see thatµf ([−1,−1/r)) = µf ((1/r,1)) = 0. This is true for allr < R2
and so〈E(λ)f,f 〉 is constant on[−1,−1/R2) and on(1/R2,1). It follows that
F(λ) = 〈E(λ)f,g〉 is constant on these same intervals and so the support of|µf,g|
is contained in[−1/R2,1/R2] ∪ {1}. Noting that

u∞ = β̃ lim
n→∞〈P n−1f,g〉 = β̃ lim

n→∞

∫
λn−1µf,g(dλ) = β̃µf,g({1})
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we get, forn ≥ 1,

|un − u∞| = β̃

∣∣∣∣ ∫[−1/R2,1/R2]
λn−1µf,g(dλ)

∣∣∣∣
≤ β̃

(
1

R2

)n−1

|µf,g |
([−1

R2
,

1

R2

])

≤
√

β̃

(
1

R2

)n−1

.

So forr < R2, we get

∞∑
n=1

|un − u∞|rn ≤
√

β̃r

1− r/R2

as required. �

REMARK 3.1. The estimate (12) is true without the extra assumption (11) if
P is a compact operator onL2(π). The first assertion in Theorem 3.3 implies that

rn
∫
[−1,1)

λnµf,g(dλ) → 0 asn → ∞

for all r < R2 and the compactness implies that the restriction ofµf,g to [−1,1] \
[−1/R2,1/R2] is a finite sum of atoms. It then follows directly that the support of
|µf,g| is contained in[−1/R2,1/R2] ∪ {1}.

COROLLARY 3.1. In the setting of Theorem 3.3,assume also that∫
Pf (x)f (x)π(dx) ≥ 0 for all f ∈ L2(π).

Then in the assertions of Theorem 3.3we can take R2 = R.

PROOF. The additional assumption implies that the spectrum ofP is con-
tained in[0,1]. Arguing as in the proof of Theorem 3.3, we obtain, for|z| < 1,

(1− z)u(z) = (1− z) + β̃z(1− z)

∫
[0,1]

(1− zλ)−1µf,g(dλ)

and so the function(1 − z)u(z) has a holomorphic extension at least to{z ∈
C : z−1 /∈ [0,1]} = C \ [1,∞). It follows that the equationb(z) = 1 cannot have
a solution in (−R,−1] and so(1 − z)u(z) is holomorphic onB(0,R). The
remainder of the proof goes as in Theorem 3.3.�

The following lemma enables us to apply Corollary 3.1 and Theorem 1.3 to a
large class of Metropolis–Hastings chains, including the example in Section 8.2.



714 P. H. BAXENDALE

LEMMA 3.1. The Metropolis–Hastings chain generated by a candidate
transition density q(x, y) of the form

q(x, y) =
∫

r(z, x)r(z, y) dz

is reversible and positive.

PROOF. Since a Metropolis–Hastings chain is automatically reversible, it
suffices to check positivity. For notational convenience, we identify the measureπ

with its densityπ(x) with respect to the reference measuredx. Notice first that for
anyg ∈ L2(π) we have∫ ∫

g(x)g(y)min
(
π(x),π(y)

)
dx dy

=
∫ ∫

g(x)g(y)

(∫ ∞
0

1[0,π(x)](t)1[0,π(y)](t)
)

dt

)
dx dy

=
∫ ∞

0

(∫ ∫
g(x)1[0,π(x)](t)g(y)1[0,π(y)](t) dx dy

)
dt(15)

=
∫ ∞

0

(∫
g(x)1[0,π(x)](t) dx

)2

dt

≥ 0.

The assumption onq implies thatq(x, y) = q(y, x), and so the kernelP for the
Metropolis–Hastings chain is given by

Pf (x) =
∫

f (y)min
(
π(y)/π(x),1

)
q(x, y) dy + α(x)f (x)

for someα(x) ≥ 0. Then, forf ∈ L2(π), we have∫
Pf (x)f (x)π(x) dx =

∫ ∫
f (x)f (y)min

(
π(x),π(y)

)
q(x, y) dx dy

+
∫

α(x)f (x)2π(x) dx.

Clearly the second term on the right-hand side is nonnegative, and the first term on
the right-hand side is∫ ∫

f (x)f (y)min
(
π(x),π(y)

)(∫
r(z, x)r(z, y) dz

)
dx dy

=
∫ (∫ ∫

f (x)r(z, x)f (y)r(z, y)min
(
π(x),π(y)

)
dx dy

)
dz

≥ 0,

where we use (15) withg(x) = f (x)r(z, x) and then integrate with respect toz.
�
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REMARK 3.2. The condition onq is satisfied ifr is a symmetric Markov
kernel andq corresponds to two steps ofr .

4. Proof of Theorem 1.1. In this section we describe the methods used to
obtain the formulas in Section 2.1 forρ andM . From the results of Meyn and
Tweedie [8, 9] we know that{Xn :n ≥ 0} is V -uniformly ergodic, with invariant
probability measureπ , say. We concentrate on the calculation ofρ andM . We do
not make any assumption of reversibility in this section. At the appropriate point
in the argument we appeal to Theorem 3.2. Proofs of Propositions 4.1–4.4 appear
in the Appendix.

4.1. Atomic case. Suppose thatC is an atom for the Markov chain. Then in
the minorization condition (A1) we can takẽβ = 1 andν = P (a, ·) for some fixed
pointa ∈ C. Let τ be the stopping time

τ = inf{n ≥ 1 :Xn ∈ C}
and defineun = Pa(Xn ∈ C) for n ≥ 0. Thenun is the renewal sequence that
corresponds to the increment sequencebn = Pa(τ = n) for n ≥ 1. Define functions
G(r, x) andH(r, x) by

G(r, x) = Ex(rτ ),

H(r, x) = Ex

(
τ∑

n=1

rnV (Xn)

)
for all x ∈ S and allr > 0 for which the right-hand sides are defined. Most of the
following result is well known (see, e.g., [7], Lemma 2.2 and Theorem 3.1). The
estimate in (iv) appears to be new, and helps to reduce our estimate forM .

PROPOSITION4.1. Assume only the drift condition (A2).

(i) For all x ∈ S, Px(τ < ∞) = 1.
(ii) For 1 ≤ r ≤ λ−1,

G(r, x) ≤
{

V (x), if x /∈ C,

rK, if x ∈ C.

(iii) For 0 < r < λ−1,

H(r, x) ≤


rλV (x)

1− rλ
, if x /∈ C,

r(K − rλ)

1− rλ
, if x ∈ C.

(iv) For 1 < r < λ−1 and x ∈ C,

H(r, x) − rH(1, x)

r − 1
≤ λr(K − 1)

(1− λ)(1− rλ)
.
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The following result is a minor variation of results in [8].

PROPOSITION 4.2. Assume only that the Markov chain is geometrically
ergodic with (unique) invariant probability measure π , that C is an atom and that
V is a nonnegative function. Suppose g :S → R satisfies ‖g‖V ≤ 1. Then

sup
|z|≤r

∣∣∣∣∣
∞∑

n=1

(
P ng(x) −

∫
g dπ

)
zn

∣∣∣∣∣
≤ H(r, x) + G(r, x)H(r, a) sup

|z|≤r

∣∣∣∣∣
∞∑

n=0

(un − u∞)zn

∣∣∣∣∣
+ H(r, a)

G(r, x) − 1

r − 1
+ H(r, a) − rH(1, a)

r − 1

for all r > 1 for which the right-hand side is finite.

It is an immediate consequence of Propositions 4.1 and 4.2 thatρV ≤
max(λ,ρC) whenC is an atom.

PROOF OF ESTIMATES FOR THE ATOMIC CASE. We apply Theorem 3.2
to the sequenceun. For the increment sequencebn = P a(τ = n) we have∑∞

n=1 bnλ
−n = Ea(λ−τ ) = G(λ−1, a) ≤ λ−1K . Moreover the aperiodicity con-

dition (A3) givesb1 = P (a,C) ≥ β. For 1< r < R1(β,λ−1, λ−1K) andK1 =
K1(r, β,λ−1, λ−1K), Theorem 3.2 gives

sup
|z|≤r

∣∣∣∣∣
∞∑

n=0

(un − u∞)zn

∣∣∣∣∣ ≤ K1.

By substituting this and the estimatesfrom Proposition 4.1 into Proposition 4.2
together with the inequality

G(r, x) − 1

r − 1
≤ G(λ−1, x) − 1

λ−1 − 1
≤ max(λ,K − λ)

1− λ
V (x),

we get

sup
|z|≤r

∣∣∣∣∣
∞∑

n=1

(
P ng(x) −

∫
g dπ

)
zn

∣∣∣∣∣ ≤ MV (x)

and so ∣∣∣∣P ng(x) −
∫

g dπ

∣∣∣∣ ≤ MV (x)r−n,
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where

M = r max(λ,K − rλ)

1− rλ
+ r2K(K − rλ)

(1− rλ)
K1(r, β,λ−1, λ−1K)

(16)

+ r(K − rλ)max(λ,K − λ)

(1− rλ)(1− λ)
+ λr(K − 1)

(1− rλ)(1− λ)
.

Therefore, we can takeρ = 1/R1(β,λ−1, λ−1K) and the formula forM is
obtained by puttingr = 1/γ in (16). �

4.2. Nonatomic case. If C is not an atom, then in the minorization condi-
tion (A1) we must havẽβ < 1. Following Nummelin ([10], Section 4.4), we con-
sider the split chain{(Xn,Yn) :n ≥ 0} with state spaceS × {0,1} and transition
probabilities given by

P {Yn = 1|F X
n ∨ F Y

n−1} = β̃1C(Xn),

P {Xn+1 ∈ A|F X
n ∨ F Y

n } =


ν(A), if Yn = 1,

P (Xn,A) − β̃1C(Xn)ν(A)

1− β̃1C(Xn)
, if Yn = 0.

HereF X
n = σ {Xr : 0 ≤ r ≤ n} andF Y

n = σ {Yr : 0 ≤ r ≤ n}. Thus the split chain
evolves as follows. GivenXn, chooseYn so thatP(Yn = 1) = β̃1C(Xn). If Yn = 1
then Xn+1 has distributionν, whereas ifYn = 0 then Xn+1 has distribution
(P (Xn, ·) − β̃1C(Xn)ν)/(1 − β̃1C(Xn)). The split chain{(Xn,Yn) :n ≥ 0} is
designed so that it has an atomS × {1} and so that its first component{Xn :n ≥ 0}
is a copy of the original Markov chain.

We apply the ideas of Section 4.1 to the split chain(Xn,Yn) with atomS × {1}
and stopping time

T = min{n ≥ 1 :Yn = 1}.(17)

Let �Px,i and�Ex,i denote probability and expectation for the split chain started
with X0 = x andY0 = i. To emphasize the similarities with the calculations in the
previous section, we fix a pointa ∈ C, and write�Px,1 = �Pa,1 and�Ex,1 = �Ea,1.
Define the renewal sequenceūn = �Pa,1(Yn = 1) for n ≥ 0 and the corresponding
increment sequencēbn = �Pa,1(T = n) for n ≥ 1. Notice thatūn = β̃�Pa,1(Xn ∈
C) = β̃Pν(Xn−1 ∈ C) for n ≥ 1, so thatρC controls the rate of convergence of
ūn → ū∞ in the nonatomic case also. Following the methods used in the atomic
case, we define

�G(r, x, i) = �Ex,i(rT ),

�H(r, x, i) = �Ex,i

(
T∑

n=1

rnV (Xn)

)
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for all x ∈ S, i = 0,1 and allr > 0 for which the right-hand sides are defined. If
we define

�Ex = [1− β̃1C(x)]�Ex,0 + β̃1C(x)�Ex,1,

then�Ex agrees withEx onF X = σ {Xn :n ≥ 0}. Define

�G(r, x) = �Ex(rT ),

�H(r, x) = �Ex

(
T∑

n=1

rnV (Xn)

)
.

Applying the techniques used in Proposition 4.2 to the split chain, we obtain the
following result.

PROPOSITION4.3. Assume only that the original Markov chain is geometri-
cally ergodic with (unique) invariant probability measure π and that V is a non-
negative function. Suppose g :S → R satisfies ‖g‖V ≤ 1. Then

sup
|z|≤r

∣∣∣∣∣
∞∑

n=1

(
P ng(x) −

∫
g dπ

)
zn

∣∣∣∣∣
≤ �H(r, x) + �G(r, x) �H(r, a,1) sup

|z|≤r

∣∣∣∣∣
∞∑

n=0

(ūn − ū∞)zn

∣∣∣∣∣
+ �H(r, a,1)

�G(r, x) − 1

r − 1
+ �H(r, a,1) − r �H(1, a,1)

r − 1

for all r > 1 for which the right-hand side is finite.

We need to extend the estimates onG(r, x) andH(r, x) from Section 4.1 to
estimates on the corresponding functions�G(r, x, i) and �H(r, x, i) defined in terms
of the split chain and the stopping timeT . Define

G̃(r) = sup{�Ex,0(rτ ) :x ∈ C}.
Notice that the initial condition(x,0) for x ∈ C represents a failed opportunity for
the split chain to renew. Thus̃G(r) represents the extra contribution to�G(r, x, i)

and �H(r, x, i) which occurs every time the split chain hasXn ∈ C but fails to
haveYn = 1. GivenXn ∈ C, this failure occurs with probability(1 − β̃). Thus
to get finite estimates for�G(r, x, i) and �H(r, x, i), we insist on the condition
(1− β̃)G̃(r) < 1. This idea is formalized in Lemmas A.1 and A.2 in the Appendix.
For our purposes here the important estimates are given in the following result.
The estimate (19) and an estimate closely related to (21) appear in [15], where
they denoteR0 = βRT.
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PROPOSITION4.4. Assume conditions (A1) and (A2) with β̃ < 1. Define

α1 = 1+
(

log
K − β̃

1− β̃

)/
(logλ−1).(18)

Then, for 1≤ r ≤ λ−1,

G̃(r) ≤ rα1.(19)

Furthermore, define

α2 = 1+
(

log
K

β̃

)/
(logλ−1)(20)

and R0 = min(λ−1, (1− β̃)−1/α1). Then

�G(r, x) ≤ β̃G(r, x)

1− (1− β̃)rα1
,(21)

�G(r, a,1) ≤ β̃rα2

1− (1− β̃)rα1
≡ L(r),(22)

�H(r, x) ≤ H(r, x) + r[K − rλ − β̃(1− rλ)]
(1− rλ)[1− (1− β̃)rα1]G(r, x),(23)

�H(r, a,1) ≤ rα2+1(K − rλ)

(1− rλ)[1− (1− β̃)rα1] ,(24)

�H(r, a,1) − r �H(1, a,1)

r − 1

≤ rα2+1λ(K − 1)

(1− λ)(1− rλ)[1− (1− β̃)rα1](25)

+ r[K − λ − β̃(1− λ)]
(1− λ)[1− (1− β̃)rα1]

(
rα2 − 1

r − 1
+ (1− β̃)(rα1 − 1)

β̃(r − 1)

)
whenever 1 < r < R0.

REMARK 4.1. If ν(C) = 1, thenG(r, a,1) = r and so we can takeα2 = 1 in
Proposition 4.4. More generally if we know thatν(C) + ∫

S\C V dν ≤ K̃, then we

can takeα2 = 1+ (logK̃)/(logλ−1).

It is an immediate consequence of Propositions 4.3 and 4.4 that

ρV ≤ max
(
λ,ρC, (1− β̃)1/α1

)
whenC is not an atom.
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PROOF OF ESTIMATES FOR THE NONATOMIC CASE. We apply Theorem 3.2
to the sequencēun. For the increment sequenceb̄n =�Pa,1(T = n) we have

∞∑
n=1

b̄nR
n = �Ea,1(RT ) = �G(R,a,1) ≤ L(R)(26)

for 1 < R < R0, where the constantR0 and the functionL(R) are defined in
Proposition 4.4. The aperiodicity condition (A3) impliesb̄1 = β̃P (a,C) ≥ β. For
the moment fix a value ofR in the range 1< R < R0. By Theorem 3.2, for
1 < r < R1(β,R,L(R)), we have

sup
|z|≤r

∣∣∣∣∣
∞∑

n=0

(ūn − ū∞)zn

∣∣∣∣∣ ≤ K1
(
r, β,R,L(R)

)
.

Notice that (21) implies

�G(r, x) − 1

r − 1
≤ 1

1− (1− β̃)rα1

[
β̃

(
G(r, x) − 1

r − 1

)
+ (1− β̃)

(
rα1 − 1

r − 1

)]
.

Then using the estimates from Propositions 4.1 and 4.4 in Proposition 4.3 we get,
for 1 < r < R1(β,R,L(R)),

sup
|z|≤r

∣∣∣∣∣
∞∑

n=1

(
P ng(x) −

∫
g dπ

)
zn

∣∣∣∣∣ ≤ MV (x),

where

M = r max(λ,K − rλ)

1− rλ
+ r2K[K − rλ − β̃(1− rλ)]

(1− rλ)[1− (1− β̃)rα1]

+ β̃rα2+2K(K − rλ)

(1− rλ)[1− (1− β̃)rα1]2K1
(
r, β,R,L(R)

)
+ rα2+1(K − rλ)

(1− rλ)[1− (1− β̃)rα1]2
(27)

×
(

β̃ max(λ,K − λ)

1− λ
+ (1− β̃)(rα1 − 1)

r − 1

)

+ rα2+1λ(K − 1)

(1− λ)(1− rλ)[1− (1− β̃)rα1]

+ r[K − λ − β̃(1− λ)]
(1− λ)[1− (1− β̃)rα1]

(
rα2 − 1

r − 1
+ (1− β̃)(rα1 − 1)

β̃(r − 1)

)
.

To obtain the smallest possibleρ, we chooseR̃ ∈ (1,R0] so as to maximize
R1(β,R,L(R)). Then we takeρ = 1/R1(β, R̃,L(R̃)) and substituter = γ −1 in
formula (27) forM and we are done.�
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5. Proof of Theorems 1.2 and 1.3 In this section we assume that the Markov
chain{Xn :n ≥ 0} is reversible with respect to its invariant probability measureπ .
We first obtain the estimates of Section 2.2.

Atomic case. The proof in Section 4.1 goes through up to the point where
we apply Theorem 3.2. Since the Markov chain is reversible, we can replace
R1(β,λ−1, λ−1K) of Theorem 3.2 byR2 = R2(β,λ−1, λ−1K) of Theorem 3.3.
Then by the first part of Theorem 3.3, for 1< r < R2 we, have

sup
|z|≤r

∣∣∣∣∣
∞∑

n=0

(un − u∞)zn

∣∣∣∣∣ ≤ K2

for someK2 < ∞. At this point we do not have an estimate forK2. Continuing as
in Section 4.1, we obtain, for 1< r < R2,

sup
|z|≤r

∣∣∣∣∣
∞∑

n=1

(
P ng(x) −

∫
g dπ

)
zn

∣∣∣∣∣ ≤ MV (x)(28)

for some constantM . At this point we do not have an estimate forM . However,
now in (28) we can takeg = 1C and integrate thex variable with respect
to π over C to obtain the estimate (11). We can now apply the second part of
Theorem 3.3 to obtainK2 = 1 + r/(1 − r/R2). The rest of the proof goes as in
Section 4.1. We haveρ = 1/R2(β,λ−1, λ−1K) and in (16) forM we replaceK1
by K2.

Nonatomic case. We have the estimate
∑∞

n=1 b̄nR
n = �G(R,a,1) ≤ L(R)

valid for all 1 ≤ R < R0, and we can choose theR for which we apply
Theorem 3.3. If 1+ 2βR0 ≥ L(R0), then L(R0) < ∞ and

∑∞
n=1 b̄nR

n
0 =

�G(R0, a,1) ≤ L(R0). We can apply Theorem 3.3 withR = R0 and obtain
R2 = R0. This case can occur only whenR0 = λ−1 < (1 − β̃)−1/α1. Otherwise
we take R̃ to be the unique solution in the interval(1,R0) of the equation
1 + 2βR = L(R) and apply Theorem 3.3 withR = R̃ to obtainR2 = R̃. Then
by the first part of Theorem 3.3, for 1< r < R2, we have

sup
|z|≤r

∣∣∣∣∣
∞∑

n=0

(ūn − ū∞)zn

∣∣∣∣∣ ≤ K2

for someK2 < ∞. Initially we do not have an estimate forK2, but the same
method as above allows us to use the second part of Theorem 3.3 and assert
thatK2 = 1 +

√
β̃r/(1 − r/R2). The rest of the proof goes as in Section 4.2. We

haveρ = 1/R2, whereR2 = sup{r < R0 : 1 + 2βr ≥ L(r)}, and in (27) forM we
replaceK1 by K2.

The estimates of Section 2.3 are obtained in a similar manner, using Corol-
lary 3.1 in place of Theorem 3.3.
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6. L2-geometric ergodicity for reversible chains. When the Markov chain
is reversible with respect to the probability measureπ , the Markov operatorP acts
as a self-adjoint operator onL2(π). The equivalence of (pointwise) geometric
ergodicity and the existence of a spectral gap forP acting onL2(π) was proved
in [13]. Also see [17] for the equivalence ofL2- andL1-geometric ergodicity for
reversible Markov chains.

THEOREM 6.1. Assume that the Markov chain {Xn :n ≥ 0} is V -uniformly
ergodic with invariant probability π (so that

∫
V dπ < ∞) and let ρV be the

spectral radius of P − 1 ⊗ π on BV . Suppose also that {Xn :n ≥ 0} is reversible
with respect to π . Then, for all f ∈ L2(π), we have∥∥∥∥P nf −

∫
f dπ

∥∥∥∥
L2

≤ (ρV )n
∥∥∥∥f −

∫
f dπ

∥∥∥∥
L2

.

In particular, the spectral radius of P − 1⊗ π on L2(π) is at most ρV .

PROOF. For ease of notation write
∫

f dπ = f̄ . Suppose first thatf is a
bounded function, so that‖f ‖V < ∞ and

∫ |f (x)|V (x) dπ(x) < ∞. For any
γ > ρV there isM < ∞ so that

|P nf (x) − f̄ | ≤ M‖f ‖V V (x)γ n.

Multiplying by f (x) and integrating with respect toπ we get

|〈P nf,f 〉 − f̄ 2| ≤ M‖f ‖V

(∫
|f (x)|V (x) dπ(x)

)
γ n.

Arguing as in the proof of Theorem 3.3 we see that for anyg ∈ L2(π) the function
λ �→ 〈E(λ)f,g〉 is constant on[−1,−ρV ) and on(ρV ,1). The corresponding
signed measureµf,g has|µf,g|([−1,1]) ≤ ‖f ‖L2‖g‖L2. Therefore

|〈P nf − f̄ , g〉| =
∣∣∣∣ ∫[−ρV ,ρV ]

λn dµf,g(λ)

∣∣∣∣ ≤ ρn
V ‖f ‖L2‖g‖L2.

This is true for allg ∈ L2(π) so we obtain‖P nf − f̄ ‖L2 ≤ ρn
V ‖f ‖L2. Replacing

f by f − f̄ we obtain‖P nf − f̄ ‖L2 ≤ ρn
V ‖f − f̄ ‖L2. Finally for arbitrary

f ∈ L2(π) there exist boundedfk so that‖f − fk‖L2 → 0. Then, for eachn ≥ 0,

‖P nf − f̄ ‖L2 = lim
k→∞‖P nfk − f̄k‖L2

≤ ρn
V lim

k→∞‖fk − f̄k‖L2 = ρn
V ‖f − f̄ ‖L2

and we are done.�
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COROLLARY 6.1. Assume that the Markov chain {Xn :n ≥ 0} satisfies
(A1)–(A3) and is reversible with respect to its invariant probability measure π .
Then, for all f ∈ L2(π), we have∥∥∥∥P nf −

∫
f dπ

∥∥∥∥
L2

≤ ρn

∥∥∥∥f −
∫

f dπ

∥∥∥∥
L2

,

where ρ is given by the formulas in Section 2.2.If additionally, the Markov chain
is positive, then the formulas in Section 2.3may be used.

7. Relationship to existing results.

7.1. Method of Meyn and Tweedie. For convenience we restrict this discussion
to the case whenC is an atom. The essence of these comments extends to the
nonatomic case. SinceC is an atom, we can assume thatV (x) = 1 for x ∈ C and
so (A2) is equivalent to

PV (x) ≤ λV (x) + b1C(x),

whereb = K − λ. Also we can takeβ = P (x,C) for x ∈ C. Meyn and Tweedie [9]
used an operator theory argument to reduce the problem to estimating the left-hand
side in Proposition 4.2 atr = 1. If

sup
|z|≤1

∣∣∣∣∣
∞∑

n=1

(
P ng(x) −

∫
g dπ

)
zn

∣∣∣∣∣ ≤ M1V (x)

whenever‖g‖V ≤ 1, then they can takeρ = 1−(M1+1)−1. Using the regenerative
decomposition, they obtainedM1 ≤ M2 + ζCM3, where M2 and M3 can be
calculated efficiently in terms ofλ andb, and

ζC = sup
|z|≤1

∣∣∣∣∣1+
∞∑

n=1

(un − un−1)z
n

∣∣∣∣∣ = sup
|z|≤1

|(1− z)u(z)|,

whereu(z) is the generating function for the renewal sequenceun = P (Xn ∈
C|X0 ∈ C). With no further information about the Markov chain, they applied
a splitting technique to the forward recurrence time chain associated with the
renewal sequenceun to obtain

ζC ≤ 32− 8β2

β3

(
K − λ

1− λ

)2

.(29)

We can sharpen the method of Meyn and Tweedie by puttingr = 1 in the
estimate (9) from the proof of Theorem 1.3 to get the new estimate

ζC = sup
|z|=1

|(1− z)u(z)| =
[

inf|z|=1
|c(z)|

]−1

(30)

≤ 1+
(

2 log
(

L − 1

R − 1

))/
(β logR) = 1+

(
2 log

(
K − λ

1− λ

))/
(β logλ−1).
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With more information about the Markov chain, Meyn and Tweedie obtained
better estimates forζC . However, as they observed in [9], their method of using
estimates at the valuer = 1 to obtain estimates forr > 1 is very far from sharp.
In particular, it cannot yield the estimate (2). By contrast, we use a version of
Kendall’s theorem to estimate sup|z|≤r |(1− z)u(z)| and use this together with the
regenerative decomposition to estimate the left-hand side of Proposition 4.2 for
r > 1 directly.

7.2. Coupling method. Our method uses (A1) and (A2) to obtain estimates
on the generating function for the regeneration timeT for the split chain defined
in (17). The estimates are based on the fact that the split chain regenerates with
probabilityβ̃ wheneverXn ∈ C. The estimate onE(rT |X1 ∼ ν), which is valid for
r < R0, is used with (A3) in Theorem 3.2 or 3.3 or Corollary 3.1 to obtainρC , and
then we takeρ = min(R−1

0 , ρC). The estimates on the generating function forT

appear also in [15], whereR0 is denotedβRT.
The coupling method, introduced by Rosenthal [18], builds a bivariate process

{(Xn,X
′
n) :n ≥ 0}, where each component is a copy of the original Markov

chain. The stopping time of interest is the coupling timêT = inf{n ≥ 0 :
Xn = X′

n}. The minorization condition (A1) implies that the bivariate process can
be constructed so that

P
(
Xn+1 = X′

n+1|(Xn,X
′
n) ∈ C × C

) ≥ β̃.

Therefore, coupling can be achieved with probabilityβ̃ whenever(Xn,X
′
n) ∈

C × C. To obtain estimates on the distribution of̂T , a drift condition for the
bivariate process is needed. If the Markov chain is stochastically monotone and
C is a bottom or top set, then the univariate drift condition (A2) is sufficient.
The bivariate process can be constructed so the estimates for the (univariate)
regeneration timeT apply equally to the (bivariate) coupling timêT . Thus we
getρ = R−1

0 . In particular, ifC is an atom, we getρ = λ. See [7] and [21] for the
case whenC is an atom, and [16] for the general case.

In the absence of stochastic monotonicity, a drift condition for the bivariate
process can be constructed using the functionV which appears in (A2), but at the
cost of possibly enlarging the setC and also enlarging the effective value ofλ. Let
b = supx∈C PV (x) − λV (x), so thatPV (x) ≤ λV (x) + b1C(x) for all x ∈ S. If
h(x, y) = [V (x) + V (y)]/2, then

(P × P )h(x, y) ≤ λ1h(x, y) if (x, y) /∈ C × C,

where

λ1 = λ + b

1+ min{V (x) :x /∈ C} .
Whereas (A2) assertsλ < 1, the coupling method requires the stronger con-
dition λ1 < 1. This can be achieved by enlarging the setC so as to make
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min{V (x) :x /∈ C} sufficiently large. Note that the conditionPV (x) ≤ λV (x) +
b1C(x) for all x ∈ S remains true with the same values ofλ andb whenC is
enlarged. However, the value ofK = supx∈C PV (x) may have increased, and the
value ofβ̃ in the minorization condition (A1) may have decreased. The coupling
method now givesρ = R̂−1

0 , whereR̂0 is calculated similarly toR0 except that
λ1 is used in place ofλ.

Here we have followed the “simple account” of the coupling method described
in [19]. The assertionρ = R̂−1

0 is a direct consequence of [19], Theorem 1. For
various developments and extensions of this method, see also [2, 4, 15].

Compared with the coupling method, our method has the advantage of allowing
the use of a smaller setC and a smaller numerical value ofλ. It has the
disadvantage of having to apply a version of Kendall’s theorem to calculateρC .
In the general setting this is a major disadvantage, but for reversible chains it is a
minor disadvantage and for positive reversible chains it is no disadvantage at all.

8. Numerical examples.

8.1. Reflecting random walk. Meyn and Tweedie ([9], Section 8) considered
the Bernoulli random walk onZ+ with transition probabilitiesP (i, i − 1) = p >

1/2, P (i, i + 1) = q = 1 − p for i ≥ 1 and boundary conditionsP (0,0) = p,
P (0,1) = q. Taking C = {0} and V (i) = (p/q)i/2, we getλ = 2

√
pq, K =

p + √
pq andβ = p.

For each of the valuesp = 2/3 andp = 0.9 considered in [9] we calculateρ in
six different ways (see Table 1). Method MT is the original calculation in [9],
using their formula (29) forζC . Method MTB is the same as MT but with
our formula (30) in place of (29). Method 1.1 uses Theorem 1.1. So far these
calculations have used only the values ofλ, K andβ. The next three methods
all use some extra information about the Markov chain. Method MT* uses [9]
with a sharper estimate forζC using the extra information thatP (τ = 1) = p,
P (τ = 2) = pq andπ(0) = 1− q/p. Method 1.2 uses Theorem 1.2 with the extra
information that the Markov chain is reversible. Finally Method LT uses the fact

TABLE 1

p = 2/3 p = 0.9

ρ ζC ρ ζC

MT 0.99994 1119 0.9967 78.77
MTB 0.9991 63.55 0.9470 2.764
1.1 0.9994 0.9060

MT∗ 0.9965 13 0.9722 7.313
1.2 0.9428 0.6
LT 0.9428 0.6
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that the chain is stochastically monotone and gives the optimal resultρ = λ, due
to Lund and Tweedie [7].

8.2. Metropolis–Hastings algorithm for the normal distribution. Here we
consider the Markov chain that arises when the Metropolis–Hastings algorithm
with candidate transition probabilityq(x, ·) = N(x,1) is used to simulate the
standard normal distributionπ = N(0,1). This example was studied by Meyn
and Tweedie [9]. It also appeared in [15] and [14], where the emphasis was
on convergence of the ergodic average(1/n)

∑n
k=1Pk(x, ·). We compare the

calculation of Meyn and Tweedie with estimates obtained by the coupling method
and by our analysis. Since the Hastings–Metropolis algorithm is by construction
reversible, we can use Theorem 1.2. Moreover, by Lemma 3.1 we can also apply
Theorem 1.3. The continuous part of the transition probabilityP (x, ·) has density

p(x, y) =


1√
2π

exp
(
−(y − x)2

2

)
, if |x| ≥ |y|,

1√
2π

exp
(
−(y − x)2 + y2 − x2

2

)
, if |x| ≤ |y|.

We use the same family of functionsV (x) = es|x| and setsC = [−d, d] as used
in [9]. Following [9] we get, forx, s ≥ 0,

λ(x, s) := PV (x)

V (x)

= exp
(

s2

2

)
[�(−s) − �(−x − s)]

+ exp
(

s2

2
− 2sx

)
[�(−x + s) − �(−2x + s)]

+ 1√
2

exp
(

(x − s)2

4

)
�

(
s − x√

2

)

+ 1√
2

exp
(

x2 − 6xs + s2

4

)
�

(
s − 3x√

2

)

+ �(0) + �(−2x) − 1√
2

exp
(

x2

4

)[
�

(−x√
2

)
+ �

(−3x√
2

)]
,

where� denotes the standard normal distribution function. Then

λ = min|x|≥d
λ(x, s) = λ(d, s), K = max|x|≤d

PV (x) = PV (d) = esdλ(d, s)

and

b = max|x|≤d
PV (x) − λV (x) = PV (0) − λV (0) = λ(0, s) − λ.
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TABLE 2

d s 1 − ρ

MT 1.4 4× 10−5 1.6× 10−8

Theorem 1.1 1 0.13 6.3× 10−7

Coupling 1.8 1.1 0.00068
Theorem 1.2 1 0.07 0.0091
Theorem 1.3 1.1 0.16 0.0253

The computed value forρ depends on the choices ofd and s. In Table 2 we
give optimal values ford and s, and the corresponding value for 1− ρ for five
different methods of calculation. The first line is the calculation reported by Meyn
and Tweedie, using a minorization condition with the measureν given by

ν(dx) = c · exp(−x2)1C(x) dx

for a suitable normalizing constantc. In this case,ν(C) = 1 and we haveβ = β̃ =√
2 exp(−d2)[�(

√
2d) − 1/2]. For the purposes of comparison, the other four

lines were calculated using the same measure.
In Table 3, we used the measureν given by

β̃ν(dx) = inf
y∈C

p(y, x) dx =


1√
2π

exp
(−(|x| + d)2

2

)
dx, if |x| ≤ d,

1√
2π

e−d|x|−|x|2 dx, if |x| ≥ d.

Now β = 2[�(2d) − �(d)] and β̃ = β + √
2 exp(d2/4)[1 − �(3d/

√
2)]. In the

calculations for Theorems 1.1 and 1.2 we also used the extra information that

K̃ = ν(C) +
∫
S\C

V (x) dν(x) = β

β̃
+

√
2

β̃
exp

(
(d − s)2

4

)[
1− �

(
3d − s√

2

)]
in the formula forα2.

REMARK 8.1. For this particular example, it can be verified that the process
{|Xn| :n ≥ 0} is a stochastically monotone Markov chain. The coupling result of
Roberts and Tweedie ([16], Theorem 2.2) can be adapted to this situation. The
calculation forρ given by [16] is identical with the calculation for Theorem 1.3.

TABLE 3

d s 1 − ρ

Theorem 1.1 1 0.16 1.7× 10−6

Coupling 1.9 1.1 0.00187
Theorem 1.2 1 0.11 0.0135
Theorem 1.3 1.1 0.22 0.0333
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8.3. Contracting normals. Here we consider the family of Markov chains with
transition probabilityP (x, ·) = N(θx,1 − θ2) for some parameterθ ∈ (−1,1).
This family of examples occurs in [18] as one component of a two-component
Gibbs sampler. The convergence of ergodic averages for this family was studied
in [14] and [15]. Since the Markov chain is reversible with respect to its invariant
probabilityN(0,1), we can apply Theorem 1.2. We compare these results with the
estimates obtained using the coupling method.

We takeV (x) = 1 + x2 andC = [−c, c]. Then (A2) is satisfied withλ = θ2 +
2(1− θ2)/(1+ c2) andK = 2+ θ2(c2 − 1). Also b = supx∈C PV (x) − λV (x) =
2(1 − θ2)c2/(1 + c2). To ensureλ < 1, we requirec > 1. For the minorization
condition, we look for a measureν concentrated onC, so thatβ = β̃. We choose
β̃ andν so that

β̃ν(dy) = min
x∈C

1√
2π(1− θ2)

exp
(
−(θx − y)2

2(1− θ2)

)
dy

for y ∈ C. Integrating with respect toy gives

β̃ =
∫ c

−c
min
x∈C

1√
2π(1− θ2)

exp
(
−(θx − y)2

2(1− θ2)

)
dy

= 2
[
�

(
(1+ |θ |)c√

1− θ2

)
− �

( |θ |c√
1− θ2

)]
,

where� denotes the standard normal distribution function.
For the coupling method, we haveλ1 = θ2 + 4(1 − θ2)/(2 + c2). To ensure

λ1 < 1, we requirec >
√

2. For the minorization condition in the coupling method
there is no reason to restrictν to be supported onC, so we can adapt the calculation
above by integratingy from −∞ to ∞ to get

β̃ = 2
[
1− �

( |θ |c√
1− θ2

)]
.

So far, the calculations have depended on|θ | but not on the sign ofθ . If θ > 0,
thenP = Q2, whereQ has parameter

√
θ , so we can apply the improved estimates

of Theorem 1.3. However, ifθ < 0, and especially ifθ is close to−1, we can
handle the almost periodicity of the chain by considering its binomial modification
with transition kernel̃P = (I +P )/2; see [20]. Regardless of the sign ofθ , we can
always apply Theorem 1.3 to the binomial modification. ReplacingP by (1+P )/2
with the sameV , C andν means replacingλ by (1+ λ)/2, K by (1+ c2 + K)/2
and β̃ by β̃/2. We let ρ̃ denote the estimate obtained by applying Theorem 1.3
to P̃ . Since 2n steps of the binomial modificatioñP correspond on average ton
steps of the original chainP (see [20], Section 4), for purposes of comparison (see
Table 4) we give the value of̃ρ 2.
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TABLE 4

Theorem 1.3
Coupling Theorem 1.2 θ positive Binomial mod.

θ c ρ c ρ c ρ c ρ̃2

0.5 2.1 0.946 1.5 0.950 1.5 0.897 1.5 0.952
0.75 1.7 0.9963 1.2 0.9958 1.2 0.9847 1.2 0.9924
0.9 1.5 0.99998 1.1 0.99998 1.1 0.99948 1.1 0.99974

8.4. Reflecting random walk, continued. Here we consider the same random
walk as in Section 8.1 except that theboundary transition probabilities are
changed. We redefineP (0, {0}) = ε and P (0, {1}) = 1 − ε for someε > 0. If
ε ≥ p, the Markov chain is stochastically monotone and the results of Lund and
Tweedie [7] apply. Here we concentrate on the caseε < p, which was studied by
Roberts and Tweedie [15] and Fort [4].

To apply Theorem 1.2, we takeV (i) = (p/q)i/2 andC = {0} as earlier. Then
λ = 2

√
pq, K = ε + (1 − ε)

√
p/q and β = ε. If K ≤ λ + 2ε [equivalently

ε ≥ (p − q)/(1+ √
q/p )], we getρ = λ = 2

√
pq . If ε < (p − q)/(1+ √

q/p ),

then we takeρ = R−1, whereR solves 1+ 2εR = R1+(logK)/(logλ−1).
For the coupling method, the size of the setC depends on the values ofp andε.

For the setC = {0, . . . , k}, the conditionλ1 < 1 will be satisfied if and only if
ε > 1 − (p/q)k/2(p − √

pq ). In particular, if ε ≤ 1 − (p/q)(p − √
pq ), then

C ⊇ {0,1,2} and there is no minorization condition for the time 1 transition
probabilities onC. Instead, as pointed out in [15], it is necessary to use a
minorization condition for them-step kernel. This program was recently carried
out by Fort. In Table 5 we denote Fort’s estimates (taken from [4]) byρF and our
estimates using Theorem 1.2 byρ.

TABLE 5

ε ε ε

0.05 0.25 0.5 0.05 0.25 0.5 0.05 0.25 0.5

p = 0.6 p = 0.7 p = 0.8
ρF 0.9997 0.9995 0.9994 0.9964 0.9830 0.9757 0.9793 0.9333 0.9333
ρ 0.9909 0.9798 0.9798 0.9830 0.9165 0.9165 0.9759 0.8796 0.8000

ρV 0.9864 0.9798 0.9798 0.9731 0.9165 0.9165 0.9633 0.8409 0.8000

p = 0.9 p = 0.95
ρF 0.9696 0.8539 0.7500 0.9564 0.7853 0.5814
ρ 0.9687 0.8470 0.6817 0.9645 0.8289 0.6667
ρV 0.9559 0.7885 0.6250 0.9528 0.7679 0.5556
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TABLE 6

p 0.6 0.7 0.8 0.9 0.95

ρ̃2 0.9799 0.9186 0.8100 0.6400 0.5154

In this example, we can also calculate the exact value forρV . We have

b(z) = G(z,0) = εz + (1− ε)zG(z,1)

= εz + (1− ε)

2q
[1− (1− 4pqz2)1/2]

for |z| < 1/
√

4pq, where the formula forG(z,1) is taken from [3], Section XIV.4.
The equationb(z) = 1 can now be solved explicitly for|z| < 1/

√
4pq. One solu-

tion is z = 1. The only other possible solution is in the interval(−1/
√

4pq,−1)

and exists as long asb(−1/
√

4pq ) > 1 [equivalently as long asε < (p − q)/(1+√
q/p )]. If this condition is satisfied, the second solution is atr = −(p−ε)/[pq +

(p − ε)2]. By the argument in Kendall’s theorem, we deduce

ρC =


pq + (p − ε)2

p − ε
, if ε <

p − q

1+ √
q/p

,

2
√

pq, otherwise.

By inspection of this formula we seeρC ≥ λ. Since ρC ≤ ρV ≤ max(λ,ρC)

from (2), we deduce thatρV = ρC in this example.
As ε → 0, the chain becomes closer and closer to a period 2 chain. This is

the setting where the binomial modification with kernelP̃ = (I + P )/2 should
converge significantly faster than the original chain: see [20]. Keeping the same
functionV (x) andC = {0}, and applying Theorem 1.3, we get the optimal result
ρ̃ = λ̃ = (1 + λ)/2 = 1/2 + √

pq for all ε ≥ 0. For the purposes of comparison
(see Table 6), we give the values ofρ̃2 for the values ofp which appeared in
Table 5.

APPENDIX

PROOF OFPROPOSITION4.1. We writeFn = σ {Xr : 0 ≤ r ≤ n}. Form ≥ 0,
we have

λ−1Ex(
V (Xm+1)1Xm+1/∈C |Fm

) + λ−1Ex(
V (Xm+1)1Xm+1∈C |Fm

) ≤ V (Xm)

on the set{Xm /∈ C}. Multiply by λ−m1τ>m, take expectation and sum overm = 0
to n − 1 to obtain

λ−nEx
(
V (Xn)1τ>n

) + Ex
(
λ−τV (Xτ )1τ≤n

) ≤ V (x) for all x /∈ C(31)
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or, equivalently,

λ−nEx
(
V (Xn)1τ≥n

) + Ex
(
λ−τ V (Xτ )1τ<n

) ≤ V (x) for all x /∈ C.(32)

This implies thatPx(τ ≥ n) ≤ λnV (x) for x /∈ C, which implies (i).
The first assertion in (ii) is obtained by lettingn → ∞ in (31) and the second

assertion follows from the first via the identity

G(r, x) = rP (x,C) + r

∫
S\C

P (x, dy)G(r, y).

For the calculations to prove (iii) and (iv) it is convenient to define the function

J (r, x) = Ex
(
rτV (Xτ )

)
.

The functionsH andJ satisfy the identities

H(r, x) = rPV (x) + r

∫
S\C

P (x, dy)H(r, y)(33)

and

J (r, x) = r

∫
C

P (x, dy)V (y) + r

∫
S\C

P (x, dy)J (r, y).(34)

For 0< r < λ−1, multiply (32) byλnrn and sum overn = 1 to∞. We obtain

H(r, x) + λr

1− λr
J (r, x) ≤ λr

1− λr
V (x) for all x /∈ C,(35)

which gives the first part of (iii). Forx ∈ C, we use the inequality (35) in the
right-hand side of the identity (33) along with the identity (34) to obtain

H(r, x) ≤ rPV (x) + λr2

1− λr

∫
S\C

P (x, dy)[V (y) − J (r, y)]

= r

1− λr
PV (x) − λr

1− λr
J (r, x)

≤ r(K − λr)

1− λr
.

This completes (iii). If we replaceλnrn by λn(rn − 1) in the derivation of (35) we
obtain instead

H(r, x) − H(1, x) + λr

1− λr
J (r, x) − λ

1− λ
J (1, x)

(36)

≤ λ(r − 1)

(1− λ)(1− rλ)
V (x)
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for x /∈ C and 1< r < λ−1. Using (33), (36) and (34), we get

H(r, x) − H(1, x)

= r

∫
S\C

P (x, dy)[H(r, y) − H(1, y)]

≤ λr(r − 1)

(1− λ)(1− λr)

∫
S\C

P (x, dy)V (y)

− r

∫
S\C

P (x, dy)

[
λr

1− λr
J (r, y) + λ

1− λ
J (1, y)

]

= λr(r − 1)

(1− λ)(1− rλ)
PV (x) − λr

[
1

1− λr
J (r, x) − 1

1− λ
J (1, x)

]
and (iv) follows easily. �

PROOF OFPROPOSITION4.2. Forz ∈ C, write

G(z, x) = Ex(zτ ), H(z, x) = Ex

(
τ∑

n=1

znV (Xn)

)
and

Hg(z, x) = Ex

(
τ∑

n=1

zng(Xn)

)
.

Let u(z) = ∑∞
n=0 unz

n be the generating function for the sequenceun. Suppose
|z| < 1. The first-entrance–last-exit decomposition ([8], equation (13.46)) yields

∞∑
n=1

P ng(x)zn = Hg(z, x) + G(z, x)u(z)Hg(z, a).

Furthermore, [8], equation (13.50), gives∫
g dπ = π(C)Hg(1, a).

Together, for|z| < 1 we have
∞∑

n=1

(
P ng(x) −

∫
g dπ

)
zn

= Hg(z, x) + G(z, x)u(z)Hg(z, a) − zπ(C)

1− z
Hg(1, a)

(37)

= Hg(z, x) + G(z, x)

[
u(z) − π(C)

1− z

]
Hg(z, a)

− π(C)Hg(z, a)
G(z, x) − 1

z − 1
− π(C)

Hg(z, a) − zHg(1, a)

z − 1
.
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Now ∣∣∣∣Hg(z, a) − zHg(1, a)

z − 1

∣∣∣∣
=

∣∣∣∣∣Ea

(
τ∑

n=1

g(Xn)(z + · · · + zn−1)

)∣∣∣∣∣
≤ Ea

(
τ∑

n=1

V (Xn)(|z| + · · · + |z|n−1)

)

≤ H(r, a) − rH(1, a)

r − 1

if |z| ≤ r andr > 1, and a similar estimate holds for|(G(z, x) − 1)/(z − 1)|. Also
π(C) = limn→∞ Pa(Xn ∈ C) = limn→∞ un = u∞, so

u(z) − π(C)

1− z
=

∞∑
n=0

(un − u∞)zn

and the result now follows easily from (37).�

PROOF OFPROPOSITION 4.3. Notice that the invariant probability measure
π for {Xn :n ≥ 0} is theS marginal of the stationary probabilitȳπ , say, for the split
chain, so that

∫
g dπ̄ = ∫

g dπ . The argument used in the proof of Proposition 4.2
gives expressions similar to (37) for

∑∞
n=1(

�Ex,i(g(Xn)) − ∫
g dπ)zn for i = 0,1.

Multiplying the i = 0 expression by(1 − β̃)1C(x) and thei = 1 expression
by β̃1C(x) and adding gives an expression for

∑∞
n=1(P

ng(x) − ∫
g dπ)zn.

The remainder of the proof is exactly as in the proof of Proposition 4.2.
�

To prove Proposition 4.4 we need some intermediate results. Define

G(r, x, i) = �Ex,i(rτ ),

H(r, x, i) = �Ex,i

(
τ∑

n=1

rnV (Xn)

)
.

In addition toG̃(r) defined in Section 4.2, we define

H̃ (r) = sup{H(r, x,0) :x ∈ C},
H̃ (r,1) = sup{H(r, x,0) − rH(1, x,0) :x ∈ C}.

We need to consider the following functions which are defined in terms of the split
chain and the original stopping timeτ = inf{n ≥ 1 :Xn ∈ C}.
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LEMMA A.1. Assume conditions (A1) and (A2). Then

�G(r, x, i) ≤ β̃G(r, x, i)

1− (1− β̃)G̃(r)
,(38)

�H(r, x, i) ≤ H(r, x, i) + (1− β̃)H̃ (r)G(r, x, i)

1− (1− β̃)G̃(r)
(39)

and

�H(r, x, i) − r �H(1, x, i)

≤ H(r, x, i) − rH(1, x, i) + (1− β̃)H̃ (r,1)G(r, x, i)

1− (1− β̃)G̃(r)
(40)

+ (1− β̃)rH̃ (1)

1− (1− β̃)G̃(r)

(
[G(r, x, i) − 1] + (1− β̃)

β̃
[G̃(r) − 1]

)
for all r > 1 such that (1− β̃)G̃(r) < 1 and r < λ−1.

PROOF. Define the sequence of stopping timesτ0 = 0 andτk = τk−1 + τ ◦
θ(τk−1) for k ≥ 1 [whereθ(n) denotes the natural timen shift]. Define the random
variableK = inf{k ≥ 1 :Yτk

= 1}, so thatT = τK . Then

�Ex,i

(
T∑

n=1

rnV (Xn)

)

= �Ex,i

(
K∑

k=1

τk∑
n=τk−1+1

rnV (Xn)

)

=
∞∑

k=1

�Ex,i

(
τk∑

n=τk−1+1

rnV (Xn),K ≥ k

)

= Hr(x, i) +
∞∑

k=2

�Ex,i

(
τk∑

n=τk−1+1

rnV (Xn),K ≥ k

)
.

By conditioning onG(τk−1), whereG(n) = F X
n ∨ F Y

n−1, we get

�Ex,i

(
τk∑

n=τk−1+1

rnV (Xn),K ≥ k

)
≤ (1− β̃)H̃ (r)�Ex,i(rτk−1,K ≥ k − 1)

and

�Ex,i(rτk ,K ≥ k) ≤ (1− β̃)G̃(r)�Ex,i(rτk−1,K ≥ k − 1)
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for k ≥ 2. Together we obtain by induction

�Ex,i

(
T∑

n=1

rnV (Xn)

)

≤ Hr(x, i) + (1− β̃)H̃ (r)

∞∑
k=1

�Ex,i(rτk ,K ≥ k)

≤ Hr(x, i) + H̃ (r)

∞∑
k=1

(1− β̃)kG̃(r)k−1G(r, x, i),

giving (39). To prove (38), note first that

�Ex,i(rT ) =
∞∑

k=1

�Ex,i(rτk ,K = k) = β̃

∞∑
k=1

�Ex,i(rτk ,K ≥ k),

and the remainder of the proof is the special case of the proof above withV

replaced by1C . To prove (40), we note that fork ≥ 2,

�Ex,i

(
τk∑

n=τk−1+1

(rn − r)V (Xn),K ≥ k

)

≤ (1− β̃)H̃ (r,1)�Ex,i(rτk−1,K ≥ k − 1)

+ (1− β̃)H̃ (1)r�Ex,i(rτk−1 − 1,K ≥ k − 1)

and�Px,i(K ≥ k − 1) = (1 − β̃)k−2. Then the rest of the proof is essentially the
same as for (39). �

LEMMA A.2. Assume conditions (A1) and (A2), and let α1 and α2 be given
by (18) and (20) of Proposition 4.4.Then for 1< r ≤ λ−1,

G̃(r) ≤ rα1,

G(r, a,1) ≤ rα2.

PROOF. Forx ∈ C we have

(1− β̃)G(λ−1, x,0)

= λ−1
[
P (x,C) − β̃ν(C) +

∫
S\C

G(λ−1, y)[P (x, dy) − β̃ν(dy)]
]

≤ λ−1
[
P (x,C) − β̃ν(C) +

∫
S\C

V (y)[P (x, dy) − β̃ν(dy)]
]

≤ λ−1
[
PV (x) − β̃

∫
S
V dν

]
≤ λ−1(K − β̃).
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Therefore, for 1< r ≤ λ−1,

G̃(r) = sup
x∈C

G(r, x,0) ≤ sup
x∈C

(
G(λ−1, x,0)

)(logr)/(logλ−1)

≤
(

λ−1(K − β̃)

1− β̃

)(logr)/(logλ−1)

= rα1.

(This estimate onG̃(r) appears as Theorem 2.2 in [15].) The minorization
condition impliesβ̃

∫
S V dν ≤ PV (x) ≤ K for x ∈ C and so

∫
S V dν ≤ K/β̃. We

have

G(λ−1, a,1) = λ−1ν(C) + λ−1
∫
S\C

G(λ−1, y)ν(dy)

≤ λ−1
∫
S
V (y)ν(dy)

≤ K

λβ̃

and so, for 1< r ≤ λ−1,

G(r, a,1) ≤
(

K

λβ̃

)(logr)/(logλ−1)

= rα2

and the proof is complete.�

PROOF OFPROPOSITION 4.4 AND REMARK 4.1. It is clear from the proof
of Lemma A.2 that its assertions remain valid whenα2 is chosen according to
Remark 4.1. The inequality (19) is part of the statement of Lemma A.2, and
inequalities (21) and (22) are immediate consequences of Lemmas A.1 and A.2.
The result (23) uses the estimate

(1− β̃)H̃ (r) ≤ sup
x∈C

H(r, x) − β̃r ≤ r[K − rλ − β̃(1− rλ)]
1− rλ

from Lemma A.1. To obtain (24), notice first that

H(r, a,1) + (1− β̃)H̃ (r)G(r, a,1)

1− (1− β̃)G̃(r)

= 1

1− (1− β̃)G̃(r)

[
G(r, a,1) sup

x∈C

H(r, x) + H(r, a,1)

[
1− sup

x∈C

G(r, x)

]]

≤ 1

1− (1− β̃)G̃(r)
G(r, a,1) sup

x∈C

H(r, x).
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The proof of (25) is similar, using the inequality

H(r, a,1) − rH(1, a,1) + (1− β̃)H̃ (r,1)G(r, a,1)

1− (1− β̃)G̃(r)

≤ 1

1− (1− β̃)G̃(r)
G(r, a,1) sup

x∈C

[H(r, y) − rH(1, y)]. �
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