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RENEWAL THEORY AND COMPUTABLE CONVERGENCE RATES
FOR GEOMETRICALLY ERGODIC MARKOQOV CHAINS

By PETERH. BAXENDALE
University of Sauthern California

We give computable bounds on the rafeonvergence of the transition
probabilities to the stationary distribution for a certain class of geometrically
ergodic Markov chains. Our results are different from earlier estimates of
Meyn and Tweedie, and from estimates using coupling, although we start
from essentially the same assumptions of a drift condition toward a “small
set.” The estimates show a noticeable improvement on existing results if the
Markov chain is reversible with respect to its stationary distribution, and
especially so if the chain is also positive. The method of proof uses the first-
entrance—last-exit decomposition, together with new quantitative versions of
a result of Kendall from discrete renewal theory.

1. Introduction. Let{X, :n > 0} be a time homogeneous Markov chain on a
state spaces, B). Let P(x, A), x € S, A € B denote the transition probability and
let P denote the corresponding operator on measurable funcfiensR. There
has been much interest and activity recently in obtaining computable bounds for
the rate of convergence of the timeransition probabilityP, (x, -) to a (unique)
invariant probability measure. These estimates are of importance for simulation
techniques such as Markov chain Monte Carlo (MCMC).

Throughout this paper we assume the following conditions are satisfied.

(A1) Minorization condition. There exist € 8, 8 > 0 and a probability measure
v on (S, B) such that

P(x, A) > Bv(A)

forall x e C andA € B.
(A2) Drift condition. There exist a measurable function:S — [1,00) and
constants. < 1 andK < oo satisfying

{kV(x), if x ¢ C,

PV(x) =< .
K, if xeC.

(A3) Strong aperiodicity condition. There exist$$ > 0 such thaBv(C) > 8.
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CONVERGENCE RATES FOR MARKOV CHAINS 701

The following result converts information about the one-step behavior of the
Markov chain into information about the long term behavior of the chain.

THEOREM1.1. Assume(Al)—(A3).Then{X, :n > 0} hasauniquestationary
probability measure r, say, and [V dn < oo. Moreover, there exists p < 1
depending only (and explicitly) on 8, B, » and K such that whenever p <y <1
thereexists M < oo depending only (and explicitly) on y, B, 8, » and K such that

1) sup
lgl<V

P - | gdn‘ <MV

for all x € S and n > 0, where the supremum is taken over all measurable
g:S — Rsatisfying |g(x)| < V(x) for all x € §. Formulasfor p and M are given
in Section 2.1.1n particular, P"g(x) and [ g dm are both well defined whenever

lglly =sup|g(x)[/V(x):x € §} < oo.

The proof of Theorem 1.1 appears in Section 4. If we restrict to functgons
on the left-hand side of (1) that satisfy(x)| < 1, we obtain the total variation
norm| P,(x,-) — 7 |Tv. So the inequality (1) is a strong version of the condition
of geometric ergodicity, which says that for eache S there existy < 1 such that

Yy "IPu(x,) —mlltv—0  asn— oo.

This concept was introduced in 1959 by Kendall [5] for countable state spaces.
Important advances were made by Vere-Jones [22] in the countable setting, and by
Nummelin and Tweedie [12] and Nummelin and Tuominen [11] for general state
spaces. Theandition in (1) is that ofV-uniform ergodicity. Information about the
theories of geometric ergodicity arid-uniform ergodicity is given in Chapters
15 and 16 of [8]. Results that relate the different notions of geometric ergodicity
are also givenin [13].

To date two basic methods have been used to obtain computable convergence
rates. One method, introduced by Meyn and Tweedie [9], is base@rawal
theory. In fact Theorem 1.1 is a restatement of Theorems 2.1-2.3 in [9], except
that we give different formulas fop and M. Our results in this paper use this
method. The renewal theory method is easiest to describe Wwhisnan atom,
that is, P(x, A) = v(A) for all x € C and A € 8. In this case, the Markov
procesg X, :n > 0} has aregeneration, or renewal, time wheneggee C. Precise
estimates are based on the regenerative decomposition, or first-entrance—last-exit
decomposition; see the proof of Proposition 4.2. This method requires information
about the regeneration time

t=inf{n >0:X, € C}

which may be obtained using the drift condition (A2). It also requires information
on the rate of convergence of the renewal sequence P(X, € C|Xg € C)
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asn — oo. It is at this point that the aperiodicity condition (A3) is used. More
generally, ifC is not an atom, then the renewal method may be applied to the split
chain associated with the minorization condition (Al); see Section 4.2 for details
of this construction.

The other main method, introduced by Rosenthal [18], is basecbapling
theory, and relies on estimates of the coupling tifhe= inf{n > 0:X, = X/} for
some bivariate proceg¢X,, X;) :n > 0} where each component is a copy of the
original Markov chain. The minorization condition (Al) implies that the bivariate
process can be constructed so that

P(Xp11= X, 11(Xn. X;) €C x C) = B.

Therefore, coupling can be achieved with probabiftywhenever(X,,, X)) €
C x C. Itremains to estimate the hitting time {nf> 0:(X,, X)) € C x C}. If the
Markov chain is stochastically monotone afids a bottom or top set, then the
univariate drift condition (A2) is sufficient. See the results in [7] and [21] for
the case wheit is an atom, and in [16] for the general case. For stochastically
monotone chains, the coupling method appears to be close to optimal. In the
absence of stochastic monotonicity, a drift condition for the bivariate process is
needed. This can often be achieved using the same funktidwat appears in the
(univariate) drift condition, but at the cost of enlarging the Getind increasing
the effective value oh. Further information about these two methods and their
relationship to our results appears in Section 7.

Our computations fop andM in Theorem 1.1 are valid for a very large class of
Markov chains and, consequently, can be very far from sharp in particular cases.
They can be improved dramatically in the setting of reversible Markov chains.

THEOREM 1.2. Assume (Al1)—(A3) and that the Markov chain is reversible
(or symmetric) with respect to =, that is,

f P (x)g () (dx) = f £ Pg () (dx)
S S

for all f, g € L?(x). Then the assertions of Theorem 1.1 hold with the formulas
for p and M in Section 2.2.

Reversibility is an intrinsic feature of many MCMC algorithms, such as the
Metropolis—Hastings algorithm and the random scan Gibbs sampler.

THEOREM 1.3. In the setting of Theorem 1.2 assume also that the Markov
chain is positive in the sense that

/S Pf() f(0)m(dx) = 0

for all f € L2(xr). Then the assertions of Theorem 1.1 hold with the formulas for
p and M in Section 2.3.
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The proofs of Theorems 1.2 and 1.3 appear in Section 5, and some consequences
for the spectral gap of in L?() appear in Section 6. For reversible positive
Markov chains, our formulas fgs give the same values as the formulas given by
Lund and Tweedie [7] (atomic case) and Roberts and Tweedie [16] (honatomic
case) under the assumption of stochastic monotonicity. The random scan Gibbs
sampler is reversible and positive (see [6], Lemma 3){Xf,:n > 0} is one
component in a two-component deterministic scan Gibbs sampler, then it is
reversible and positive. Moreover, if a transition kerRak reversible with respect
to 7, then both the kerneP? for the two-skeleton chain and also the kernel
(I + P)/2 for the binomial modification of the chain (see [20]) are reversible and
positive. In particular, any discrete time skeleton of a continuous time reversible
Markov process is positive.

In Section 8 we give numerical comparisons between our estimates and those
obtained using [9] and the coupling method. The four Markov chains considered
are “benchmark” examples used in earlier papers. Note that Theorem 1.1
outperforms the estimates given in [9]. For reversible chains, Theorem 1.2 is
sometimes comparable with the coupling method, and sometimes noticeably
better. For chains which are reversible and positive, Theorem 1.3 outperforms the
coupling method.

In this paper our assumptions (A1)—(A3) all involve just the time 1 transition
probabilities. In principle, our methods extend to a more general setting where one
or more of the conditions involves-step transitions for soma > 1. However,
the calculations are much more cumbersome; we omit the details. Note that our
method typically allows smallar than does the coupling method (see Section 7.2)
and so there is less need to pass to minorization conditions involvingrimel
(see the example in Section 8.4).

For the remainder of this introduction, we focus our attention on the formula
for p. Definepy to be the infimum of aly for which an inequality of the form (1)
holds true. Thusoy is the spectral radius of the operatBr— 1 ® & acting on
the Banach spac@y, || - ||lv), say, of measurable functiogs S — R such that
llglly < oo. We look for inequalitiesoy < p, wherep is computable from the
time 1 transition kernel.

At the heart of our calculations is an estimate on the rate of convergence of
PY(X, € C) to 7 (C) asn — oco. More precisely, define

pc =limsup|P’(X, € C) — 7 (C)|Y".
n—0o0
It is easy to verify [by takingg(x) = 1¢(x) in (1), integrating with respect to
and using/ V dv < oc] that pc < py. In the case thaf is an atom, we show (as
a consequence of Propositions 4.1 and 4.2) that

() py <max, pc).

Suppose instead thaf is not an atom, so tha < 1 in assumption (AL).
We consider the associated split chain (see Section 4.2) and apply the atomic
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techniques to the split chain. In this case we show (as a consequence of
Propositions 4.3 and 4.4) that

®3) py <max(x, (1— B)Y*, pc),

wherea; = 1+ (log %_g)/(logx—l). We remark that mai , (1— §)Y%1) = g+,
where gt is the estimate obtained by Roberts and Tweedie ([15], Theorem 2.3)
for the radius of convergence of the generating function of the regeneration time
for the split chain. Therefore, (3) may be rewrittepn < max(ﬁ,;Tl, 0C).

It remains to get a good upper bound gn. We do this using renewal theory.
Suppose first that is an atom and consider the renewal sequegee 1 andu,, =
P(X, € C|Xoe C) =P"(X,_1 € C) for n > 1. TheV-uniform ergodicity implies
that 7(C) = lim,— 0o P’ (X,—1 € C) = lim, 0o, = oo, SAy. Thusp? is the
radius of convergence of the serlg$? ; (1, — us)z". The renewal sequenasg,
n > 0, is related to its corresponding increment sequénce P*(t =n), n > 1,
by the renewal equation

u(z) =1/(1-b(2))

for |z] < 1, whereu(z) = Y 2 qu,z" andb(z) = Y ;21 b,z". The drift condi-
tion (A2) implies that

o0
Y b ATt =E'0T) <ATIK
n=1

(see Proposition 4.1) and the aperiodicity condition (A3) implies that
P(a,C) = v(C) = B. In these circumstances a result of Kendall [5] shows that
pc < 1. In Section 3 we sharpen Kendall's result, using the lower boundhon
and the upper bound op ;2 b,A™" to get an upper bound opc, depending
only onx, K andg, which is strictly less than 1. In fact we give three different
upper bounds op¢. The first formula (in Theorem 3.2) is valid with no further
restrictions on the Markov chain. The second formula (in Theorem 3.3) is valid
for reversible Markov chains and the third formula (in Corollary 3.1) is valid for
Markov chains which are reversible and positive.

The idea in the nonatomic case is similar. For the split chain the renewal
sequence is given byi, = BP"(X,_1 € C) for n > 1, so thatii, — i
has geometric convergence rate givendy. For the corresponding increment
sequencé,, the estimate o>, b,r" is more complicated, see (26) and (22),
but the way in which results from Section 3 are applied is exactly the same.

2. Formulasfor p and M. Here we complete the statement of Theorems 1.1,
1.2 and 1.3 by giving formulas for the constaptand M. We say that the sef
is anatomif P(x,-) = P(y,-) forall x, y € C. In this case we assume that 1
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andv = P(x, ) foranyx € C. If C is not an atom, so tha‘i < 1, we define

ar=1+ <Iog Ii__g)/(log)ﬁl)

and
K
ar=1+ <Iog —~) (logr™1).
2 ; /

In the special case when(C) = 1, we can takex, = 1. More generally, if
we have the extra information thatC) + f[s,c V dv < K, we can takexp =

1+ (logK)/(logx~1). Then define
Ro=min(x7L, (1— g)~Y=)
and, for 1< R < Ry, define
PR

L(R)=———F—7.
W= 1m0 pre

2.1. Formulas for Theorem 1.1 Forg8 >0, R > 1 andL > 1, defineR, =
R1(B, R, L) to be the unique solutione (1, R) of the equation

(r—1)  e?B(R—1)
r(logR/r)2 8L —-1) '
Since the left-hand side of (4) increases monotonically fromd&tasr increases
from 1 to R, the valueR1 is well defined and is easy to compute numerically. For
1 <r < Ry, define
28+ 2(logN)(logR/r)~1 —8Ne 2(r — 1)rL(logR/r)—2

(r —D[B—8Ne 2(r —1)r-1(logR/r)=2] ’

whereN = (L —1)/(R —1).

(4)

Ki(r,B,R,L) =

Atomic case. We havep = 1/R1(8, 21, A~ 1K) and, forp <y <1,
max(x, K —A/y)  K(K —A/y)

M= Kiy LBtk
o — o =) 1y . B )
(K —2/y)ymaxh, K —2)  A(K—1)
(¥ =21 —=2) (y—nA-1

Nonatomic case. Let

R =argmaxRy(B, R, L(R)).
1<R<Rg
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Thenp =1/R1(B, R, L(R)), and forp < y < 1,
_ MK —2/y) KKy =2—Bly =]
y — A Y2y —M[L— A - py ]
By 22K (Ky — 1)
(y =M —1— By ]2
y 2 Ky —2)
(y —M[1—A-py )2
y (Bmam, K=» A== - 1))
11— y1-1
N Yy 20K — 1)
L= —M[1- 1A -y ]
[K —x—B(1—W)]
1-0nA-y)

Notice that the result remains true Wiﬁwreplgced by any € (1, Ro), but it does
not give such a small. We do not claim thar gives the smallesk;.

M

Ki(y ™% B, R, L(R))

(6)

<(y_a2_1)+ A-Aw- 1—1))

2.2. Formulas for Theorem 1.2 Here we assume that the Markov chain is
reversible.

Atomic case. Define

Ry SUﬂr < A_1:l+ 28r > r1+(logK)/(IogA‘l)}’ if K> x4+ 28,
AL if K <A+ 28.
Thenp = Ry* and, forp < y < 1, replacek1(y %, 8,271, A71K) by K =
1+1/(y —p) in (5) for M in Section 2.1. We remark that, using the convexity of
r1+(0gK)/(092™Y e can replace by the larger, but more easily computabfe,
given by
. { 1-28(1—0)/(K —%), if K>xr+28,
L=, if K <1+ 28.

Nonatomic case. Define
R _{sup{r<Ro:1+2ﬁr>L(r)}, if L(Rg) > 1+ 28Ry,
27\ Ro. if L(Rg) <1+ 2BRo.

Thenp = R,* and, forp <y < 1, replaceK1(y %, B, R, L(R)) by K2 =1+
\/E/(y — p) in (6) for M given in Section 2.1.
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2.3. Formulas for Theorem 1.3, Here we assume that the Markov chain is
reversible and positive.

Atomic case. We haveo = A andM is calculated as in Section 2.2.
Nonatomic case. We havep = Ry ' andM is calculated as in Section 2.2,

3. Kendall’stheorem. The setting for this section is discrete renewal theory.
Suppose thaVi, Vo, ... are independent identically distributed random variables
taking values in the set of positive integers andigt= P(V; = n) for n > 1.
DefineTo =0 and T, = Vi + --- + V; for k > 1. Let u, = P (there exists
k > 0 such thatTy = n) for n > 0. Thusu, is the (undelayed) renewal sequence
that corresponds to the increment sequebceThe following result is due to
Kendall [5].

THEOREM 3.1. Assume that the sequence {b,} is aperiodic and that
Yol 1byR" < oo for some R > 1. Then uy, = lim,, . o u,, exists and the series
Yo o(un — uso)z" hasradius of convergence greater than 1.

In this section we obtain three different lower bounds on the radius of
convergence O} (u, — Uoo)z".

3.1. General case.

THEOREM3.2. Supposethat ", b, R" < L and b1 > B for some constants
R>1,L<ooandf>0.Let N=(L—-1)/(R—1)>1.Let R =R1(8,R,L)
be the unique solution r € (1, R) of the equation

r—1 B
r(logR/r)2 8N’
Then the series

[e.e]
D (= uos)?"
n=1

has radius of convergence at least R1. For any r € (1, R1), define K1 =
Ka(r, B, R, L) by

K=

1 1 B+ 2(logN)(logR/r)~1
r— l( + B —8Ne2(r — 1)r—1(logR/r)—2>'
Then

(7)

<K for all |z] <.

[e.e]
D — uoe)?"
n=0
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PrROOF Define the sequeneg = Y72, . 1 by for n > 0 and define generating
functionsb(z) = >"02 1 bpz", c(z) = Y 2 gcn2” andu(z) = Yoo qu,z" for |z < 1.
The renewal equation gives

1-b(2) 1 1
(8) c(z) = = = s

1-z A—2u(z) 1->.21(up—1—up)z"
for |z| < 1. Since the power series fofz) has nonnegative coefficients, faf < R
we have

bR)-1 _L-1_
R—1 ~R-1
so thatc(z) is holomorphic orjz| < R. Now

R((L—2)c2) =R(1—-b(2))

N

le(@)| = c(R) =

o0
= byR(1—2")
n=1

> fR(1—-2)
for |z| < 1. It follows that
erei®y) = p A=) > p|sin(5)
clre —_— —
T |1—re?| — 2

for all » < 1. In particular, since:(r) > 0 for all » > 0, we see that(z) # 0
whenevelz| < 1. Forl<r <R,

le(re'®)| = BIsinB/2)| — |c(re'?) — c(e)]
> BIsin@/2)] — (c(r) — c(D)).
Moreover, for 1< r < R,
le(re'®)| > c¢(r) — |re'® — r|suf|c’(2)|:z € [r, re'?]}
> c(r) = |re® —ric'(r)
=c(r) — 2r|sin(@/2)|c'(r).
Combining these two estimates we obtain

: —A
19)| > M,

B/c(r)+ B(r)
whereA(r) = 2rc'(r)[e(r) —c(1)]/c(r) andB(r) = 2rc’(r) /c(r). Since the power
series forc has nonnegative coefficients, we may apply Hoélder’'s inequality to
obtain

lc(re

s (logc(R)/c(r))/(logR/r)
o(s) < c(r)(—)
-
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forO<r <s < R. Lettings \  r gives

c(r) logc(R)/e(r)
logR/r

c(r) <

and, consequently,

(r = De(r) loge(R)/c(r)
r logR/r

c(r)—c(d) =<

for 1 <r < R. Thus we obtain the estimates

=2 enfos g5 ] oo ]
(r) < c(r)|log log —
(r) r

and
-1
B(r) < Z[Iog i} [Iog E] )
c(r) r

Using the inequality

N2
x[log—] < 4Ne 2
X

for0<x < N in A(r) and the inequality(r) > 1 in B(r) we get

8Ne 2(r —1) R172
A(r) < —[Iog —}
r r

and

R1-1
B(r)<?2 IogN[Iog —} .
r
Thus for 1< r < R1 we have
B —8Ne 2(r — r~Y(logR/r)~?
B+ 2(I0gN)(IogR/r)—1

Thereforec(z) # 0 for all |z| < R1. Recalling (8), we see that > ; (up—1 —u,)z"

is holomorphic orjz| < Ry and, therefore;” |u,,_1 — u,,| - 0 asn — oo for each
r < Rq. It follows directly thatus, = lim,,_, o u,, exists and"|u,, — us| — 0 as
n — oo for all r < Ry. Furthermore, using the fagf, — ueo = > o, 1 (-1 —

um), we get

Z(”n - uoo)Z ( Z (m—-1— um)Z -(1- uoo))

m=1

©) le(re?)| > > 0.

Whenever 1< |z| < R1. Therefore, using (8) again, ford r < Ry we have

R I B

n=0 n=0

sup

lz|<r

= sup
|z|=r
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and now (7) follows from (9). [

The estimates in Theorem 3.2 apply to a very general class of renewal sequences
and as a result they are very far from the best possible in certain more restricted
settings. We see in Theorem 3.3 and Corollary 3.1 that the estimates can be
dramatically improved when we have extra information about the origin of the
renewal sequence. Meanwhile, the following discussion shows that the estimate on
the radius of convergence in Theorem 3.2 can be of the correct order of magnitude.

Suppose thas andL are fixed. Then a® \, 1 we have

ezﬂ 3
(10) R1—1 BT (R —1)°.
The effect of the& R — 1)2 term is that, typicallyR1 is very much closer to 1 thaR
is. This is a major contributing factor to the disappointing estimates obtained using
Theorem 1.1 in the examples in Sections 8.1 and 8.2. However, in the absence
of any further information beyond that given by the constght® and L, the
following calculations show that the ter® — 1) in (10) is optimal.

Consider the family of examplégz) = Bz + (1 — B)z* for fixed g andk — oc.

For eachk there is a solution; of the equation8z + (1 — g)zX = 1 neare?*i/,
Calculating the asymptotic expansion fge—27'/ in powers of ¥ k we obtain

Zkzez”i/k[l—<2nﬂl)k_ < 2n°p + 2 p%i )k_3+0(k_4)}

1-8 1-B)? (1A-p)?
and thus

lzel =1 ( np )k—3+ ok

T \a—p)2 '

For fixed 8 and L this example satisfies the conditions of Theorem 3. 2 as long as
BR+ (1— B)R* = L. Ask — oo we haveR — 1~ log R ~ (1/k) log(1=2 ) and

thus
-1 (g s 53] -

It is clear from the proof of Theorem 3.2 that anysatisfying (7) must satisfy
r < |zx|. Thus the facto(R — 1)2 in (10) is optimal, although clearly the factor
e?B/8(L — 1) is not.

3.2. Reversible case. In this section we assume that the renewal sequence
u, is generated by a Markov cha{X,, :n > 0} which is reversible with respect
to its invariant probability measure. Thus
n(dx)P(x,dy) =n(dy)P(y,dx)

in the sense that the measuresSox S given by the left-hand and right-hand sides
agree.
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THEOREM 3.3. Let {X,,:n > 0} be a Markov chain which is reversible with
respect to a probability measurer and satisfies P (x, dy) > B1¢(x)v(dy) for some
set C and probability measure v. Let {u,, : n > 0} be the renewal sequence given by
ug=1and u, = BP"(X,_1 € C) for n > 1, and suppose that the corresponding
increment sequence {b, :n > 1} satisfies > °° 1 b,R" < L and b1 > B for some
constantsR > 1, L <ocand 8 > 0.If L > 1+ 28R, define Ro = R2(8, R, L) to
be the unique solution » € (1, R) of the equation

14 28r = r(logL)/(logR)

and let R> = R otherwise. Then the series
o0
Z(”n - uoo)zn
n=0

has radius of convergenceat least R,>. Moreover, if

(11) r" < oo for all r < Ry,

/C P"le(x)m(dx) — (1(C))2

then, for 1 < r < Ry, we have

lim ‘
n—oo

00 ; \/E”
12) nX::an —Uso|r” = m

PrROOFE Notice first that the discussion of split chains in Section 4.2 implies
that {u,, :n > 0} is indeed a renewal sequence. The reversibility implies that the
transition operatorP for the original chain{X, :n > 0} acts as a self-adjoint
contraction on the Hilbert spade& (). We use(-, -) for the inner product irL2(r)
and|| - || for the corresponding norm. For adyC S we have

n(A) = / P(x, A (dx) = Bv(A)m(C),

so thatv is absolutely continuous with respect toand has Radon—Nikodym
derivativedv/dr < 1/(Bx(C)). Throughout this proof we writef = 1, and
g =dv/dw. Thenf, g € L3() with || f|2 = 7 (C) and|g||? < 1/(B7(C)). Now
for |z] <1,

Q-u@=A-2+pL—2) Y (P f g)"
n=1
=1—-2)+BzA—2){UI —zP) 1. g).

SinceP is a self-adjoint contraction ODZ(JT), its spectrum is a subset pf1, 1]
and we have a spectral resolution

P :/AdE(k)
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(see, e.g., [23], Section XI.6), whet€(1l) = I and lim, ~_; E(A) = 0. Write
F() = (E)f,g). The function F is of bounded variation and the corre-
sponding signed measurey ,, say, is supported op-1, 1] and has total mass

.ol (I=1,2D) < £l - llgll < B/, We obtain for|z| < 1,
(1—wu@r:a—a>+541—m/' (1= 22) " p o (dR)
[-1,1]

and so the functionl — z)u(z) has a holomorphic extension at least{toe
C:z71¢[-1,1]}=C\ ((—o0, —1]1 U[1, 00)). The renewal equation gives
-z
1-b(2)
for |z] < 1, and the functio is holomorphic inB(0, R). It follows that the only
solutions inB(0, R) of the equatiob(z) = 1 lie on one or the other of the intervals
(=R, —1]and[1, R). Sinceb’(1) > 0, the zero ob(z) — 1 atz = 1 is a simple zero.
For 1<r < R we haveb(r) > b(1) =1. For 1<r < R we also haveh(—r) <
—2b1r + b(r). Using the estimaté(r) < [b(R)](1097)/(0gR) — ,.(ogL)/(ogR) it
follows that for 1< r < Ro we haveb(—r) < 1, whereR; is given in the statement
of the theorem. Thuél — z)u(z) has a holomorphic extension B0, R») and the
first statement of the theorem follows as in the proof of Theorem 3.2.
Now we assume (11). Given< R2 we have

(13) (P f, f) — (m(C))?| < Mr™"

for someM (depending om). Recalling the spectral resolution, we have

<Wﬂﬂ=/luﬂﬂﬂMﬁﬂ-

A—-2u(z) =

Lettingn — oo we get

n—oo

lim (P" f, f) =f{l}d<E(k)f, )

and so (13) may be rewritten as

(24) ‘/ AMA(E(M) f, f)‘ <Mr .
[-1D

NowA — (E(A) f, f) isanincreasing function and hence corresponds to a positive
measureu ¢, say, on[—1, 1]. Lettingn — oo in (14) through the even integers,
we see thatur([-1,—1/r)) = nr((1/r,1)) = 0. This is true for allr < R>

and so{E()) f, f) is constant ori—1, —1/R») and on(1/R>, 1). It follows that
F(X) = (E(M) f, g) is constant on these same intervals and so the suppiit:Qf

is contained if—1/R2, 1/ R2] U {1}. Noting that

um=:5Im1uw—ﬁﬁg>=5n@gkfxm4uﬁgdx>=ﬁuﬁgqu>

n—oo
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we get, forn > 1,

litn — ool =5’/ x"—luf,g(dx)‘
[—1/R2,1/R2]
=h(z) (7 %)
~\R2 F8\L'R2" Ry
/1 n—1
<V(z)

So forr < R2, we get

B

0
Up — U < ————
;u S
as required. O

REMARK 3.1. The estimate (12) is true without the extra assumption (11) if
P is a compact operator ak?(rr). The first assertion in Theorem 3.3 implies that

r"/[ " Mg e(dr)—0 asn — 0o

for all » < R and the compactness implies that the restriction pf to [—1, 1]\
[—1/R2, 1/R>] is a finite sum of atoms. It then follows directly that the support of
|1 £.¢| is contained if—1/R>, 1/R2] U {1}.

COROLLARY 3.1. Inthe setting of Theorem 3.3, assume also that

/Pf(x)f(x)n(dx)zo for all £ € L2(r).

Then in the assertions of Theorem 3.3 we can take R, = R.

PrRooOE The additional assumption implies that the spectrunPois con-
tained in[0, 1]. Arguing as in the proof of Theorem 3.3, we obtain, figr< 1,

- 2u@) =1—2)+fzl—2) /[ RN

and so the functionl — z)u(z) has a holomorphic extension at least{toc
C:z1 ¢ [0,1]} = C\ [1, 0c0). It follows that the equatioi(z) = 1 cannot have
a solution in(—R, —1] and so(1 — z)u(z) is holomorphic onB(0, R). The
remainder of the proof goes as in Theorem 3.3l

The following lemma enables us to apply Corollary 3.1 and Theorem 1.3 to a
large class of Metropolis—Hastings chains, including the example in Section 8.2.
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LEMMA 3.1. The Metropolis-Hastings chain generated by a candidate
transition density ¢ (x, y) of the form

gt ) = [ 10y dz
isreversible and positive.

PROOF Since a Metropolis—Hastings chain is automatically reversible, it
suffices to check positivity. For notational convenience, we identify the measure
with its densitys (x) with respect to the reference measdike Notice first that for
anyg € L?() we have

f / 2(0)g(y) min( (x), 7(y)) dx dy

=//g(x)g(y)</0 ]l[o,n(x)](f)]l[o,n(y)](f)) dl) dxdy

(15) =/0 </ g(x)]l[o,n(x)](l)g(y)]l[o,n(y)](f)dxdy)dl

00 2
:/0 (/g(x)]l[o’n(x)](l)dx) dt

> 0.

The assumption on implies thatg (x, y) = g(y, x), and so the kerneP for the
Metropolis—Hastings chain is given by

Pf(x)= / Sy min(z (y)/m(x), Dg(x, y) dy + a(x) f(x)
for somex(x) > 0. Then, forf € L?(r), we have

[ Preoseomds= [ [ £ £oymineeo, x()atx, v dxdy

+ /oe(x)f(x)zrr(x)dx.

Clearly the second term on the right-hand side is nonnegative, and the first term on
the right-hand side is

/] f(x)f(y)min(N(X),N(y))< [reore y)dz) dxdy

= [([[ reor o sy miner. x() dxdy ) dz

207

where we use (15) witlg(x) = f(x)r(z, x) and then integrate with respect4o
a
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REMARK 3.2. The condition ory is satisfied ifr is a symmetric Markov
kernel andy corresponds to two steps of

4. Proof of Theorem 1.1. In this section we describe the methods used to
obtain the formulas in Section 2.1 fer and M. From the results of Meyn and
Tweedie [8, 9] we know thatX,, :n > 0} is V-uniformly ergodic, with invariant
probability measure, say. We concentrate on the calculatiorpaind M. We do
not make any assumption of reversibility in this section. At the appropriate point
in the argument we appeal to Theorem 3.2. Proofs of Propositions 4.1-4.4 appear
in the Appendix.

4.1. Atomic case. Suppose tha€ is an atom for the Markov chain. Then in
the minorization condition (A1) we can talfe= 1 andv = P(a, -) for some fixed
pointa € C. Lett be the stopping time

t=infln>1:X, €C}

and definex,, = P4(X,, € C) for n > 0. Thenu, is the renewal sequence that
corresponds to the increment sequece P*(t = n) for n > 1. Define functions
G(r,x) andH (r, x) by

G, x)=E*@"),

H(r,x)= Ex<Zr”V(Xn)>

n=1
for all x € § and allr > 0 for which the right-hand sides are defined. Most of the
following result is well known (see, e.g., [7], Lemma 2.2 and Theorem 3.1). The
estimate in (iv) appears to be new, and helps to reduce our estimale for

PrRoOPOSITION4.1. Assume only the drift condition (A2).

() Forall xes§, P (t <o0)=1.
(i) Forl<r<a~1

V(x), if C,
G(F,X)S{ = !x¢
rk, ifxeC.
(i) For0<r <A1,

AV
T irec
—-r

H(r.x) = r(K —rk) ,
_ ifxecC.
1—ri

(iv) Forl<r<alandxecC,
H@r,x)—rH(, x) - Ar(K —1)
r—1 T A-MNA-=-rr)’
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The following result is a minor variation of results in [8].

PROPOSITION 4.2. Assume only that the Markov chain is geometrically
ergodic with (unique) invariant probability measure iz, that C is an atom and that
V isanonnegative function. Suppose ¢ : § — R satisfies ||g||y < 1. Then

o0
sup Z(P"g(x)—/gdn)z"

lzl=r | =1

[e.e]

<H(r,x)+G(r,x)H(r,a) sup| Y (un — tis)z"
lzl=r | =0
CHG a)G(r,x) -1 . H@r,a)—rH(,a)
r—1 r—1

for all » > 1 for which the right-hand side is finite.

It is an immediate consequence of Propositions 4.1 and 4.2 ghak
max(X, pc) whenC is an atom.

PROOF OF ESTIMATES FOR THE ATOMIC CASE We apply Theorem 3.2
to the sequence,. For the increment sequendg = P%(t = n) we have
Y0 by AT = EY(A7T) = G(A 7L, a) < A71K. Moreover the aperiodicity con-
dition (A3) givesbhy = P(a,C) > B. For 1<r < R1(8,2»~1, A71K) and K1 =
Ki(r, B, A~ 1, A71K), Theorem 3.2 gives

sup

lz|<r

o0
Y (un —uoe)"| < K1

n=0

By substituting this and the estimatigem Proposition 4.1 into Proposition 4.2
together with the inequality

— -1 = —
G(r,x) 1<G(k ,X) 1<ma>(A,K A)

V(x),
1 - i1 - 1-x2 W
we get
[e.e]
sup Z(P"g(x)—/gdn)z" <MV (x)
lzl<r{,=1
and so

‘P”g(X) —/gdn‘ <MVx)r ",
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where
rmax(h, K —r))  r2K(K —rk)
- 1—rx 1—rr)
r(K —rix)ymax, K — i) Ar(K —1)
L—ran)@A—21) + L—ra)(@A—2)

Therefore, we can take = 1/R1(8, 21, A~1K) and the formula forM is
obtained by putting =1/y in (16). O

Ki(r, 8,271 271K)

(16)

4.2. Nonatomic case. If C is not an atom, then in the minorization condi-
tion (A1) we must have8 < 1. Following Nummelin ([10], Section 4.4), we con-
sider the split chaif(X,, ;) :n > 0} with state space x {0, 1} and transition
probabilities given by

P{Y,=1F v £} = Ble(Xn),
V(A), if Y, =1,
PXna € AIFSV EN) = 1 PG A) = Flev(d)
1- Blc(Xn)

Here #X = o{X,:0<r <n} and¥,} = o{Y,:0 < r <n}. Thus the split chain
evolves as follows. Givel,,, chooseY, so thatP(Y, =1) = B1c(X,). If ¥, =1
then X, 1 has distributionv, whereas ifY,, = 0 then X, .1 has distribution
(P(Xpn,) — BLle(Xn)v)/(1 — Ble(Xy)). The split chain{(X,, ¥,):n > 0} is
designed so that it has an atghx {1} and so that its first componefX,, :n > 0}
is a copy of the original Markov chain.

We apply the ideas of Section 4.1 to the split ch@m, ¥,,) with atomS x {1}
and stopping time

a7) T=min{n>1:Y,=1}.

Let P* andE*/ denote probability and expectation for the split chain started
with X =x andYp = i. To emphasize the similarities with the calculations in the
previous section, we fix a point € C, and writeP*-! = P41 andE*! = E+-L.
Define the renewal sequenzg = pa 1(Yn =1) for n > 0 and the correspondlng
increment sequende, = P“1(T = n) for n > 1. Notice thati,, = SP*1(X, €

C) = BP"(X,_1 € C) for n > 1, so thatpc controls the rate of convergence of
it, — o IN the nonatomic case also. Following the methods used in the atomic
case, we define

G(r,x,i) =E*'(rT),

T
H(r,x,i)=E%! ( Zr”V(Xn))

n=1
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forall x € §,i =0,1 and allr > 0 for which the right-hand sides are defined. If
we define

=[1- BLcWIE"? + fLc(0)E™,
thenE* agrees wittE* on X = o {X,, :n > 0}. Define

G(r,x)=E*@"),

T
H(r,x)=E”* ( Z r"V(X,,)).

n=1

Applying the techniques used in Proposition 4.2 to the split chain, we obtain the
following result.

PROPOSITION4.3. Assume only that the original Markov chain is geometri-
cally ergodic with (unique) invariant probability measure = and that V is a non-
negative function. Suppose g : § — R satisfies ||g]ly < 1. Then

o0

Z(P"g(x) —/gdn)z"

n=1

sup

lz|<r

> iy — iioo)Z"

n=0

< ﬁ(r,x) + 6(;», x)ﬁ(r, a,l) sup

lz|<r

Gir,x)—1 H(@r,a,1)—rHQ,a,1)
+
r—1 r—1
for all » > 1 for which the right-hand side isfinite.

+ H(r,a,1)

We need to extend the estimates Giv, x) and H (r, x) from Section 4.1 to
estimates on the corresponding functi@h@, x, i) andH (r, x, i) defined in terms
of the split chain and the stopping tinie Define

G(r) =supE*°(¢%):x € C).

Notice that the initial conditiox, 0) for x € C represents a failed opportunity for

the split chain to renew. Thus(r) represents the extra contribution@r, x, i)

and H (r, x, i) which occurs every time the split chain h&s € C but fails to
haveY, = 1. GivenX,, € C, this failure occurs with probabilityl — 8). Thus

to get finite estimates fo6G(r,x,i) and H(r, x,i), we insist on the condition
(1—pB)G(r) < 1. This idea is formalized in Lemmas A.1 and A.2 in the Appendix.
For our purposes here the important estimates are given in the following result.
The estimate (19) and an estimate closely related to (21) appear in [15], where
they denoteRg = BRrr.
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PROPOSITION4.4. Assume conditions (A1) and (A2) with 8 < 1. Define

(18) =1+ (Iog Ii__g)/(logk‘l).
Then, for 1 <r <A1,
(29) é(r) <ro1,
Furthermore, define
(20) ar=1+ (Iog %)/(Iog)fl)
and Rg = min(A~1, (1 — B)~1/*1). Then

- BG(r, x)
21 _—,
(21) G(r,x)sl_(l_ﬂ)ra1

_ 'értxz

22 1 —— =L(r),
(22) G(r,a,l) < 11 fyra (r)

_ rlK —rx—B(L—ri)]

23 H H(r, = G(r,x),
(23) (r,x) < H(r x)+(1—rx)[1—(1—ﬁ)r“1] (r, x)
arx+1

(24) Hera, )< —" 7K —rd)

(L—rM[L— Q- Byra]’

ﬁ(r,a,l)—rﬁ(l,a,l)
r—1
- reeth(k — 1)
T A=-MNA-rM- Q- p)ra]
r[K —x—BA -] (ra2—1+(1—5)(r°f1—1))
1-M[1-A-praj\ r—1 Br—1)
whenever 1 < r < Rp.

(25)

REMARK 4.1. Ifv(C) =1, thenG(r,a, 1) =r and so we can take; =1 in
Proposition 4.4. More generally if we know thatC) + fS\c Vdv < K, then we

can takaxy = 1+ (log K)/(loga~1).

It is an immediate consequence of Propositions 4.3 and 4.4 that

py <max(x, pc, (1 — f)Y*)
whencC is not an atom.
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PROOF OF ESTIMATES FOR THE NONATOMIC CASE We apply Theorem 3.2
to the sequence,. For the increment sequenkg= P“1(T = n) we have

(26) Y b, R" =E“*(R")=G(R,a,1) < L(R)

for 1 < R < Rg, where the constanky and the functionL(R) are defined in
Proposition 4.4. The aperiodicity condition (A3) implies= S P (a, C) > . For

the moment fix a value oR in the range 1< R < Ro. By Theorem 3.2, for
1<r <Ri(B,R,L(R)), we have

o

Z (n — Uoo)Z"
n=0
Notice that (21) implies

G(r,x)—1 1 ~(G@r,x)—1 L (re1—1
r—1 S1—(1—;§)r‘>fl[ﬁ< r—1 )+(1_ﬁ)(r—l)]

Then using the estimates from Propositions 4.1 and 4.4 in Proposition 4.3 we get,
for 1 <r < R1(B, R, L(R)),

sup

lz|<r

< Ki(r, B, R, L(R)).

o0

sup Z(P”g(X) —/ngT)z" <MV (x),
lzl<r | =1
where
o’ maxA, K —rd)  r2K[K —ri —B(1—ri)]
- 1-ra 1—ra)[l— (- pyre]
Brozt2K (K —ri)
_ Ki(r, B, R, L(R
A== A= pyreapp 1P R L)
. r"‘2+1(K —rl)
@7) (L—rV[1— 1= pyro]?

(5 maxi, K —1) (1—B)r* — 1))
X +
1—A r—1
012+1)\(K 1)
(1 MNA=r)[1-1-pru]
rlK —2—Bl—] (r“z —1 A=prm- 1))
(1-M1-QA-preaj\ r-1 pr-v /)
To obtain the smallest possibje we chooseR € (1, Ro] so as to maximize

R1(B, R, L(R)). Then we takeo = 1/R1(8, R, L(R)) and substitute = y 1 in
formula (27) forM and we are done.[d
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5. Proof of Theorems1.2and 1.3 In this section we assume that the Markov
chain{X, :n > 0} is reversible with respect to its invariant probability meastire
We first obtain the estimates of Section 2.2.

Atomic case. The proof in Section 4.1 goes through up to the point where
we apply Theorem 3.2. Since the Markov chain is reversible, we can replace
R1(B, 271, 271K) of Theorem 3.2 byR, = R>(8, 21, A~1K) of Theorem 3.3.
Then by the first part of Theorem 3.3, fo<lr < R» we, have

Dy — uo0)Z"

n=0

sup

lz|<r

<K

for somekK, < oco. At this point we do not have an estimate %$. Continuing as
in Section 4.1, we obtain, for& r < R,

o0

§:<P”gﬁ)—z/gdn)f

n=1

(28) sup

lz|<r

<MV(x)

for some constan¥. At this point we do not have an estimate far. However,
now in (28) we can take = 1. and integrate ther variable with respect

to 7 over C to obtain the estimate (11). We can now apply the second part of
Theorem 3.3 to obtaik, = 1+ /(1 — r/R2). The rest of the proof goes as in
Section 4.1. We have = 1/R»(8, A~%, A71K) and in (16) forM we replacek;

by K>.

Nonatomic case. We have the estimat®& ">, 5,R" = G(R,a,1) < L(R)
valid for all 1 < R < Rp, and we can choose th& for which we apply
Theorem 3.3. If 1+ 28Ro > L(Ro), then L(Rg) < oo and Y321 b, RS =
G(Ro,a,1) < L(Rg). We can apply Theorem 3.3 witR = Ry and obtain
R, = Ro. This case can occur only whety = A~1 < (1 — g)~Y/1. Otherwise
we take R to be the unique solution in the interval, Rg) of the equation
1+ 28R = L(R) and apply Theorem 3.3 wit® = R to obtainR, = R. Then
by the first part of Theorem 3.3, fordr < Ro, we have

> ity — o) 2"

n=0

sup

lz|<r

<K

for some K2 < oo. Initially we do not have an estimate fd¢,, but the same
method as above allows us to use the second part of Theorem 3.3 and assert
thatKo =1+ \/Er/(l — r/R2). The rest of the proof goes as in Section 4.2. We
havep = 1/R», whereRo = sufr < Ro:1 + 28r > L(r)}, and in (27) forM we
replacek; by Ko.

The estimates of Section 2.3 are obtained in a similar manner, using Corol-
lary 3.1 in place of Theorem 3.3.
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6. L2-geometric ergodicity for reversible chains. When the Markov chain
is reversible with respect to the probability measur¢éhe Markov operatoP acts
as a self-adjoint operator oh?(r). The equivalence of (pointwise) geometric
ergodicity and the existence of a spectral gapHoacting onL2(rr) was proved
in [13]. Also see [17] for the equivalence #f- and L1-geometric ergodicity for
reversible Markov chains.

THEOREM 6.1. Assume that the Markov chain {X,, :n > 0} is V-uniformly
ergodic with invariant probability = (so that [V dr < oo) and let py be the
spectral radius of P — 1 ® 7 on By. Suppose also that {X,, :n > 0} isreversible
with respect to . Then, for all f € L2(xr), we have

|- [ x| =z o0t

£ [ rax

LZ'

In particular, the spectral radiusof P — 1® 7 on L2(r) isat most py .

PROOF For ease of notation writ¢ f dm = f. Suppose first thayf is a
bounded function, so thatf|ly < oo and [ |f(x)|V(x)dr(x) < oco. For any
y > py there isM < oo so that

I[P f(x) = fI<MIfllvV(x)y".

Multiplying by f(x) and integrating with respect to we get
(P"f. f)— f? < Mllfllv(/ If(X)IV(X)dn(x))V”~

Arguing as in the proof of Theorem 3.3 we see that for amyL2(xr) the function
A= (E(\)f, g) is constant of—1, —py) and on(py, 1). The corresponding
signed measurg 7, has|ur,|([—1, 1) < || fll;2llgll;2. Therefore

Py =l =| [ )| < sl

ov.ov]

This is true for allg € L2(r) so we obtain|P" f — f||Lz < oyl fl 2. Replacing
f by f— f we obtain||P"f — fll;2 < plbIlf — fll 2. Finally for arbitrary
f € L?(x) there exist boundeg so that|| f — fi|;2 — 0. Then, for each >0,

IP"f = fllgz= lim [P fi — fill2
k— 00
<oy im Il fi = fill .z =py Il f = fllp2

and we are done.[d
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COROLLARY 6.1. Assume that the Markov chain {X,:n > 0} satisfies
(A1)-(A3) and is reversible with respect to its invariant probability measure .
Then, for all f € L?(xr), we have

—/fa’rr ,

|- [ rax] =0 .

where p is given by the formulasin Section 2.2. If additionally, the Markov chain
is positive, then the formulasin Section 2.3 may be used.

7. Relationship to existing results.

7.1. Method of Meyn and Tweedie. For convenience we restrict this discussion
to the case whelw is an atom. The essence of these comments extends to the
nonatomic case. Sind@ is an atom, we can assume thatry) = 1 for x € C and
so (A2) is equivalent to

PV (x) =AV(x) +blc(x),

whereb = K — 1. Also we cantak@g = P(x, C) for x € C. Meyn and Tweedie [9]
used an operator theory argument to reduce the problem to estimating the left-hand
side in Proposition 4.2 at= 1. If

g(P”g(x)—/gdn)zn

whenevel|g||y < 1,thenthey cantake= 1—(M1+1)~1. Using the regenerative
decomposition, they obtainedl; < M»> + ¢¢Ms3, where M, and M3 can be
calculated efficiently in terms of andb, and

sup
lz]<1

<M1V (x)

= sup|(1—2)u(z)l,

lz|<1

{c = sup
lz]<1

1+ Z(un —uy_1)7"
n=1

whereu(z) is the generating function for the renewal sequenge= P(X, €

C|Xo € C). With no further information about the Markov chain, they applied

a splitting technique to the forward recurrence time chain associated with the

renewal sequenag, to obtain

32—-8B2 /K —1\?
(29) e == (7))

We can sharpen the method of Meyn and Tweedie by puttirg 1 in the
estimate (9) from the proof of Theorem 1.3 to get the new estimate

1
tc = supld— ()| = inf )]

lz|=1

<1+ (2I0g< ))/(,8 logR) =1+ (2 Iog( ))/(,3 logr™1).

(30)
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With more information about the Markov chain, Meyn and Tweedie obtained
better estimates fogc. However, as they observed in [9], their method of using
estimates at the value= 1 to obtain estimates for > 1 is very far from sharp.

In particular, it cannot yield the estimate (2). By contrast, we use a version of
Kendall's theorem to estimate syp, [(1 — z)u(z)| and use this together with the
regenerative decomposition to estimate the left-hand side of Proposition 4.2 for
r > 1 directly.

7.2. Coupling method. Our method uses (Al) and (A2) to obtain estimates
on the generating function for the regeneration tifhéor the split chain defined
in (17). The estimates are based on the fact that the split chain regenerates with
probability 3 wheneverX,, € C. The estimate o&(r”| X1 ~ v), which is valid for
r < Rp, is used with (A3) in Theorem 3.2 or 3.3 or Corollary 3.1 to objain and
then we takep = min(Ro‘l, poc). The estimates on the generating function Tor
appear also in [15], wherRg is denote®Rrr.

The coupling method, introduced by Rosenthal [18], builds a bivariate process
{(X», X,):n > 0}, where each component is a copy of the original Markov
chain. The stopping time of interest is the coupling tifie= inf{n > 0:

X, = X,,}. The minorization condition (A1) implies that the bivariate process can
be constructed so that

P(Xp1= X, 111X, X)) €C x C) > B.

Therefore, coupling can be achieved with probabiltywhenever(X,,, X)) €

C x C. To obtain estimates on the distribution Bf a drift condition for the
bivariate process is needed. If the Markov chain is stochastically monotone and
C is a bottom or top set, then the univariate drift condition (A2) is sufficient.
The bivariate process can be constructed so the estimates for the (univariate)
regeneration tim&” apply equally to the (bivariate) coupling tin#e. Thus we

getp = Ro‘l. In particular, ifC is an atom, we get = 1. See [7] and [21] for the

case wherC is an atom, and [16] for the general case.

In the absence of stochastic monotonicity, a drift condition for the bivariate
process can be constructed using the funcomwhich appears in (A2), but at the
cost of possibly enlarging the s€tand also enlarging the effective valuejoflLet
b=sup.cc PV(x) —AV(x), sothatPV(x) <AV (x) + blc(x) forall x € S. If
h(x,y) =[V(x)+V(y]/2,then

(P x P)h(x,y) < Aih(x,y) if (x,y)¢C xC,
where
b
+ - .
1+minfV(x):x ¢ C}

Whereas (A2) asserts < 1, the coupling method requires the stronger con-
dition A1 < 1. This can be achieved by enlarging the gktso as to make

A=A
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min{V (x) : x ¢ C} sufficiently large. Note that the conditioRV (x) < AV (x) +
blc(x) for all x € § remains true with the same valuesofandb whenC is
enlarged. However, the value &f = sup..- PV (x) may have increased, and the
value of 8 in the mlnorlzatlon condition (A1) may have decreased. The coupling
method now givep = Ro , whereRy is calculated similarly taRy except that

A1 is used in place of.

Here we have followed the ‘simple account” of the coupling method described
in [19]. The assertiop = Ro is a direct consequence of [19], Theorem 1. For
various developments and extensions of this method, see also [2, 4, 15].

Compared with the coupling method, our method has the advantage of allowing
the use of a smaller sef and a smaller numerical value af. It has the
disadvantage of having to apply a version of Kendall's theorem to calcutate
In the general setting this is a major disadvantage, but for reversible chains it is a
minor disadvantage and for positive reversible chains it is no disadvantage at all.

8. Numerical examples.

8.1. Reflecting randomwalk. Meyn and Tweedie ([9], Section 8) considered
the Bernoulli random walk o™ with transition probabilitiesP(i,i — 1) = p >
1/2, P(i,i +1) =qg =1— p for i > 1 and boundary condition®(0,0) = p
P(0,1) = q. Taking C = {0} and V(i) = (p/q)"/?, we getr = 2,/pq, K =
p+./pg andg = p.

For each of the values = 2/3 andp = 0.9 considered in [9] we calculajein
six different ways (see Table 1). Method MT is the original calculation in [9],
using their formula (29) forzc. Method MTB is the same as MT but with
our formula (30) in place of (29). Method 1.1 uses Theorem 1.1. So far these
calculations have used only the valuesiofK and 8. The next three methods
all use some extra information about the Markov chain. Method MT* uses [9]
with a sharper estimate fayc using the extra information thak(zr = 1) =
P(t =2) = pg andx(0) =1— ¢/p. Method 1.2 uses Theorem 1.2 with the extra
information that the Markov chain is reversible. Finally Method LT uses the fact

TABLE 1
p=2/3 p=0.9
o Sc o ¢c
MT 0.99994 1119 ®967 7877
MTB 0.9991 6355 09470 2764
1.1 09994 09060
MT* 0.9965 13 09722 7313
1.2 09428 06

LT 0.9428 06
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that the chain is stochastically monotone and gives the optimal restlt, due
to Lund and Tweedie [7].

8.2. Metropolis—Hastings algorithm for the normal distribution. Here we
consider the Markov chain that arises when the Metropolis—Hastings algorithm
with candidate transition probability(x, ) = N(x, 1) is used to simulate the
standard normal distribution = N (0, 1). This example was studied by Meyn
and Tweedie [9]. It also appeared in [15] and [14], where the emphasis was
on convergence of the ergodic avera@en) ) ;_; Pr(x,-). We compare the
calculation of Meyn and Tweedie with estimates obtained by the coupling method
and by our analysis. Since the Hastings—Metropolis algorithm is by construction
reversible, we can use Theorem 1.2. Moreover, by Lemma 3.1 we can also apply
Theorem 1.3. The continuous part of the transition probab#lity, -) has density

1 (y—x)z) .
——exp| — , if > |y,
N p( > xl = Il
p(x,y) = 1 s 2
—eXp<—(y_x) Ty ) if x| <[yl
N 27 2

We use the same family of functiod&(x) = ¢**l and set€ = [—d, d] as used
in [9]. Following [9] we get, forx,s > 0,

S2
= eXp(E)[CD(—s) —P(—x — )]
S2

+ exp(— - 2sx)[d>(—x +5)— O(—2x + )]
s o))

72 4 72
+iexp<x2—6xs+s2)q)(s—3x)

72 4 72

+c1>(0)+<1><—2x)‘_exp( )[( ) (D(jg)]

where® denotes the standard normal distribution function. Then
A= mm A(x,s) =M, s), K = mazi(PV(x) =PV(d) =2, s)
x|<

x>

and
b= maL)i(PV(x) —AV(x)=PV(0) —AV(0) =A(0,s) —
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TABLE 2
d s 1-p
MT 14 4x10° 16x10°8
Theorem 1.1 1 a3 63x 1077
Coupling 18 11 0.00068
Theorem1.2 1 o7 0.0091
Theorem1.3 1L 0.16 0.0253

The computed value fop depends on the choices dfands. In Table 2 we
give optimal values foe ands, and the corresponding value for-1p for five
different methods of calculation. The first line is the calculation reported by Meyn
and Tweedie, using a minorization condition with the measuy&en by

v(dx) =c - exp(—x?)Lc(x) dx

for a suitable normalizing constantIn this casey(C) = 1 and we have$ = g =
V2 exp—d?)[®(v/2d) — 1/2]. For the purposes of comparison, the other four
lines were calculated using the same measure.

In Table 3, we used the measwrgiven by

p( (|x|+d) ) X, if |x] <d,

e—dIxl= ‘xlzdx if x| > d.

Bv(dx) = inf p(y,x)dx =
yeC

E

Now B8 = 2[®(2d) — ®(d)] and = B + V2 expd?/4)[1 — ®(3d/~/2)]. In the
calculations for Theorems 1.1 and 1.2 we also used the extra information that

_U(c>+/ v<x>dv<x>—é fz P((d_s))[l d’(sdfzs)]

in the formula foras.

REMARK 8.1. For this particular example, it can be verified that the process
{IX,|:n > 0} is a stochastically monotone Markov chain. The coupling result of
Roberts and Tweedie ([16], Theorem 2.2) can be adapted to this situation. The
calculation forp given by [16] is identical with the calculation for Theorem 1.3.

TABLE 3

d s 1-»p

Theorem1.1 1 (A6 17x10°°
Coupling 19 11 0.00187
Theorem1.2 1 a1 00135
Theorem1.3 1 022 00333
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8.3. Contractingnormals. Here we consider the family of Markov chains with
transition probabilityP (x, ) = N(6x, 1 — 62) for some parametet € (—1, 1).
This family of examples occurs in [18] as one component of a two-component
Gibbs sampler. The convergence of ergodic averages for this family was studied
in [14] and [15]. Since the Markov chain is reversible with respect to its invariant
probability N (0, 1), we can apply Theorem 1.2. We compare these results with the
estimates obtained using the coupling method.

We takeV (x) = 1+ x2 andC = [—c, c]. Then (A2) is satisfied with. = 62 +
2(1—6%)/(1+c? andK =2+ 6%(c? — 1). AlsSob =sup,.c PV (x) — AV (x) =
2(1 — 6%)c?/(1 + ¢?). To ensurex < 1, we requirec > 1. For the minorization
condition, we look for a measuneconcentrated of’, so thats = 8. We choose
B andv so that

Y
Bu(dy) = min (Ox ”) y

1
———exp 5 |d
xeC /27 (1 62) 2(1-62)

for y € C. Integrating with respect tp gives

5_/cmin;ex _M)d
-~ JexeC J2n(1-62) 21-0%) %

. 2[¢<(1+ |9I)C> B d>< 10]c )}
V1-62 v1i-62/1
where® denotes the standard normal distribution function.

For the coupling method, we havwg = 62 + 4(1 — 62)/(2 + ¢?). To ensure
11 < 1, we require: > +/2. For the minorization condition in the coupling method
there is no reason to restricto be supported 0@, so we can adapt the calculation
above by integrating from —oo to oo to get

5:2[1— q><\/%)}

So far, the calculations have dependeddrbut not on the sign of. If 6 > 0,
thenP = 02, whereQ has parametey/d, so we can apply the improved estimates
of Theorem 1.3. However, # < 0, and especially if is close to—1, we can
handle the almost periodicity of the chain by considering its binomial modification
with transition kernelP = (I + P)/2; see [20]. Regardless of the signiofve can
always apply Theorem 1.3 to the binomial modification. Replaéixy (1+ P)/2
with the same/, C andv means replacing by (14 1)/2, K by (1+ 2+ K)/2
and g by B/2. We letg denote the estimate obtained by applying Theorem 1.3
to P. Since 2 steps of the binomial modificatioR correspond on average to
steps of the original chaiR (see [20], Section 4), for purposes of comparison (see
Table 4) we give the value Gf2.
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TABLE 4
Theorem 1.3
Coupling Theorem 1.2 0 positive Binomial mod.
0 c o c o c P c 72

0.5 2.1 Q946 1.5 0950 15 0897 15 0952
0.75 1.7 09963 1.2 (09958 1.2 (09847 1.2 00924
0.9 15 099998 1.1 (M9998 1.1 (M9948 1.1 (M9974

8.4. Reflecting random walk, continued. Here we consider the same random
walk as in Section 8.1 except that thmundary transion probabilities are
changed. We redefin® (0, {0}) = ¢ and P(0, {1}) = 1 — ¢ for somee > 0. If
e > p, the Markov chain is stochastically monotone and the results of Lund and
Tweedie [7] apply. Here we concentrate on the cgasep, which was studied by
Roberts and Tweedie [15] and Fort [4].

To apply Theorem 1.2, we také(i) = (p/q)"/? andC = {0} as earlier. Then
r=2/pq, K =¢+ (1 —¢)/p/q and B =¢. If K <1 + 2¢ [equivalently
e=(p—q)/Q+q/p)lwegetp=1=2/pq .Ife <(p—q)/(1+q/p),
then we take» = R—1, whereR solves 1+ 2¢ R = R1*(09K)/(ogi™")

For the coupling method, the size of the €atlepends on the values pfande.

For the setC = {0, ..., k}, the conditioni1 < 1 will be satisfied if and only if
e>1— (p/9)"?(p — y/pq). In particular, ife <1 — (p/q)(p — /Pq), then

C 2 {0,1, 2} and there is no minorization condition for the time 1 transition
probabilities onC. Instead, as pointed out in [15], it iS necessary to use a
minorization condition for then-step kernel. This program was recently carried
out by Fort. In Table 5 we denote Fort’s estimates (taken from [4]p byand our
estimates using Theorem 1.2 py

TABLE 5

&€ & &€

0.05 0.25 0.5 0.05 0.25 0.5 0.05 0.25 05

p=0.6 p=07 p=038
porp 09997 0.9995 0.9994 0.9964 0.9830 0.9757 0.9793 0.9333 0.9333
o 0.9909 0.9798 0.9798 0.9830 0.9165 0.9165 0.9759 0.8796  0.8000
py 09864 0.9798 0.9798 0.9731 0.9165 0.9165 0.9633 0.8409 0.8000
p=09 p=0.95
por 09696 0.8539 0.7500 0.9564 0.7853 0.5814
o 0.9687 0.8470 0.6817 0.9645 0.8289 0.6667
pv 09559 0.7885 0.6250 0.9528 0.7679 0.5556
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TABLE 6

)4 0.6 0.7 0.8 0.9 0.95

52 09799 09186 0.8100 0.6400 0.5154

In this example, we can also calculate the exact valugfoie have

b(z)=G(z,0)=ez+ (1 —¢)zG(z,1)
1-e)

—ez+ [1— (1—4pgzH)/?]

for |z| < 1/4/4pq, where the formula foG (z, 1) is taken from [3], Section XIV.4.
The equatiorb(z) = 1 can now be solved explicitly fde| < 1//4pq. One solu-
tion is z = 1. The only other possible solution is in the intergall//4pq, —1)
and exists as long d8—1/./4pq ) > 1 [equivalently as longas< (p —¢q)/(1 +
/q/p)]. If this condition is satisfied, the second solutionis at —(p —¢) /[ pg +
(p — ¢)?]. By the argument in Kendall's theorem, we deduce

pq+(p —¢€)? P
pc = p—e 1+q/p’
2./rq, otherwise.

By inspection of this formula we seec > A. Since pc < py < max(i, p¢)
from (2), we deduce thaty = p¢ in this example.

As ¢ — 0, the chain becomes closer and closer to a period 2 chain. This is
the setting where the binomial modification with kerrel= (I + P)/2 should
converge significantly faster than the original chain: see [20]. Keeping the same
function V(x) andC = {0}, and applying Theorem 1.3, we get the optimal result
p=r=0+1/2=1/2 + J/pq forall e > 0. For the purposes of comparison
(see Table 6), we give the values g% for the values ofp which appeared in
Table 5.

APPENDIX

PrOOF OFPrROPOSITION4.1. We writeF, =o{X,:0<r <n}. Form >0,
we have

A_lEx(V(Xm—i—l)]le_,_1¢C|me) + )V_lEx(V(Xm—i—l)]le_,_leC|\(Fm) = V(Xm)

on the se{X,, ¢ C}. Multiply by A="1,-,,, take expectation and sum over= 0
ton — 1 to obtain

(31) ATTEN (VX)) Lesn) +EX(ATTV (X 1r<p) < V(X) forall x ¢ C
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or, equivalently,
(B2) ATEY(V(Xp)lisp) +ET(ATTV (X)) < V(X) forall x ¢ C.

This implies thaP* (r > n) < A"V (x) for x ¢ C, which implies (i).
The first assertion in (ii) is obtained by lettimg— oo in (31) and the second
assertion follows from the first via the identity

Gr,x)=rPx,C) +r—/S\C P(x,dy)G(r,y).

For the calculations to prove (iii) and (iv) it is convenient to define the function
J(r,x) =E*(r'V(Xy)).

The functionsH andJ satisfy the identities

(33) H(r, x):rPV(x)+r/ P(x,dy)H(r,y)
S\C
and
(34) J(r.x) =rf P(x.dy)V(y) +rf P(x.dy)J(r, ).
c S\C

For 0< r < A~L, multiply (32) byA"r" and sum oven = 1 to co. We obtain
Ar AY
(35) H(r, x)+ J(r x)_—V(x) forallx ¢ C,

which gives the first part of (iii). Fox € C, we use the inequality (35) in the
right-hand side of the identity (33) along with the identity (34) to obtain

—J(}",y)]
PV (x) K—J(
1 P (x—l r,X)
<r(K—kr)
- 1—a

This completes (iii). If we replac&’r" by A" (+" — 1) in the derivation of (35) we
obtain instead

H(r,x)— LJ(l x)

(36) Alr — 1)

S A nd—m’®
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for x ¢ C and 1< r < A1, Using (33), (36) and (34), we get
H@r,x)— H(,x)
=r [ PGApIHG.) ~ HL )]
S\C

ar(r—1)

= m P(x,dy)V(y)

A
—r/ PG, dy)[ I3+ T, y)}

_ Aar(r—1) PV N
= A-ma—m V- r[1
and (iv) follows easily. O

1
—J(l x)i|

PROOF OFPROPOSITION4.2. Forz € C, write

GGx)=E'G).  H@x)=E ( 3 z"v<xn>)

n=1
and
T
Hg(z’ X) =E" ( Z an(Xn)) .
n=1
Let u(z) = Y., 2 gunz" be the generating function for the sequenge Suppose

|z| < 1. The first-entrance—last-exit decomposition ([8], equation (13.46)) yields

> P"g(x)Z" = Hy(z,x) + G(z, x)u(2) Hy(z, a).
n=1

Furthermore, [8], equation (13.50), gives

/ga’rr = 7(C)H, (1, a).

Together, foriz| < 1 we have

o0

Z(P"g(x)—/gdn)z"
n=1
zm (C)
= Hg(z,x) + G(z,x)u(z)Hg(z,a) — 1—H 1,a)
(37) c
= Hy(z,x) + G(z, x)[u(z)— M}H (z,a)
G(z,x) — Hy(z,a) —zHg(1, a)

—n(C)Hg(z,a)ﬁ —n(C) 1
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Now
Hgy(z,a) — zHy(1, a)

z—1
- Ea<2g(Xn)(Z+...+Zn—1)>’
n=1
<E‘I(ZV(X")(lZl+---+|Z|"—1))
n=1
_HG.a)-rH1a)
< —

if |z] <r andr > 1, and a similar estimate holds f@iG(z, x) — 1)/(z — 1)|. Also
7(C) =Ilim, o PX, € C) =liMm, 00 Uy =Ulso, SO

u(z) — @ = Z(un —Uoo)Z"

and the result now follows easily from (37)0

PROOF OFPROPOSITION4.3. Notice that the invariant probability measure

w for {X,, :n > 0} is theS marginal of the stationary probabilify, say, for the split

chain, so thaf gdw = [ gdx. The argument used in the proof of Proposition 4.2

gives expressions similar to (37) for; 2 1(E" "(g(Xy) — [gdm)7" fori =0, 1.

Multiplying the i = 0 expression by(1 — 8)1¢(x) and thei = 1 expression

by Bic(x) and adding gives an expression 3% (P"g(x) — [gdm)7".

The remainder of the proof is exactly as in the proof of Proposition 4.2.
O

To prove Proposition 4.4 we need some intermediate results. Define
G(r,x,i) =E* (r"),
H(r,x,i)=E"' ( XT: r"V(X,,)).
n=1
In addition to(N}(r) defined in Section 4.2, we define
H(r) =supH(r,x,0):x € C},
H(r,1) =sudH(r,x,0)—rH(1,x,0):x € C}.

We need to consider the following functions which are defined in terms of the split
chain and the original stopping time=inf{n > 1:X,, € C}.
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LEMMA A.1l. Assume conditions (Al) and (A2). Then

(38) Grox,iy< PO TD
1-A-p5Gr)
(39) H(r,x,i)<H(@r,x,i)+ (1_5)H(F)F£r,x,i)
1-1-8Gw)
and

ﬁ(r, x,0)— rﬁ(l,x, i)
A —B)H(r, )G, x, i)
1-1-BG)

([G(r, wiy—1+ & ; P& - 1])

(40) <H(r,x,i)—rHQ, x,i)+

(1-pra )
1-1-pGr)
for all r > 1suchthat (1— 8)G(r) <landr <A~ 1.

ProoF Define the sequence of stopping times=0 andt; = t,_1 + Tt o
0(tx—1) for k > 1 [wheref (n) denotes the natural timeshift]. Define the random
variableK = inf{k > 1:Y;, =1}, sothatl' = tx. Then

T
E* ( > r”V(Xn))

n=1
K Tk
:E”(Z > r"V(Xn))
k=1ln=1_1+1

Tk

= ZE”( Yo V(X)) K = k)
k=1

n=t_1+1
oo . Tk
:H,(x,i)+ZE"”< > r"V(Xn),sz>.
k=2 n=tp_1+1

By conditioning ong.(tx—1), whereg(n) = F,X v £ |, we get

Tk
E"’i< 2 rnv<xn>,1<z")s<1—B>F1<r>E“<r’k—l,Kzk—l)

n=ty_1+1

and

EXG™ K>k <(1-BGrE" (™1, K>k—1)
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for k > 2. Together we obtain by induction

T
EX! ( > r"V(Xn))

n=1

<H (x,i)+(A1=PHF) Y EY (™ K >k)
k=1

o
<H(x,)+Hr) Y 1-PH* G G x, ),
k=1
giving (39). To prove (38), note first that
o0 o0
EY T =) EYG¢™* K=k=B)Y EY (™ K =k),
k=1 k=1

and the remainder of the proof is the special case of the proof aboveWvith
replaced byl . To prove (40), we note that fér> 2,

Tk
E”( Yo " =nV(Xy), K> k)
n=tp_1+1
<@A-PHEDEY (™1, K=k-1)
+ Q- PHHDEY (1 -1 K >k—1)
andP*(K > k — 1) = (1 — f)*2. Then the rest of the proof is essentially the
same as for (39). 0
LEMMA A.2. Assume conditions (A1) and (A2), and let «; and a2 be given
by (18) and (20) of Proposition 4.4.Thenfor 1 < r < 171,
G(r) <r™,

G(r,a,1) <r®2.

PRoOOFE Forx € C we have
1-pHGH 1 x,0

= PO = O+ [ GO WPy - Bv(dy)]]
| S\C

<@ O = A0 + [ VOIPGdy) - Bv(dy)]]
| S\C

< A‘l-PV(x) — B’/S Va’v]

<2 YK - B).
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Therefore, for 1< r < 271,

&(r) = SUPG(r, x, 0) < sup(G (3.2, x, 0)) 1097/ 10+

xeC xeC
—1/% _ 3\~ (logr)/(logr—1)
< (?» (K N /3))
1-8
C(l.

=r

(This estimate o~nG~(r) appears as Theorem 2.2 in [15].) The minorization
condition impliesp [ Vdv < PV(x) < K forx e C and sofg Vdv < K/B. We
have

G Ya, ) =10 +,\—1/ GO.L y)vdy)
S\C

<t /S V()u(dy)

=

Sk

and so, for < r <A1,

a2

K )(Iogr)/(lowl)
=r

(; V, a’ I < (—

PROOF OFPROPOSITION4.4 AND REMARK 4.1. It is clear from the proof
of Lemma A.2 that its assertions remain valid whenis chosen according to
Remark 4.1. The inequality (19) is part of the statement of Lemma A.2, and
inequalities (21) and (22) are immediate consequences of Lemmas A.1 and A.2.
The result (23) uses the estimate

(1— B)H (r) <SupH(r,x) — pr < r[K —ri—B(l—ri)]
xeC 1—rr

from Lemma A.1. To obtain (24), notice first that

1-BH)G(r,a,1)

H(r,a,l)+ ——
1-a-AGw)
“1—a _15)5(” G DSUpH (7, ) + H (1, 1)[l—féjch(r,x)]]
1

—G(r,a,1 H(r, x).
ST a-pop e bsere
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The proof of (25) is similar, using the inequality
1-PHEDG(ra,1)
1-1-AGK)

H(raavl)_rH(laavl)"’_

1
—G(r,a,1 H(r,y)—rH(, y)].
S T a5 0 @ DSUH ) —rH(L ) -
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