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HOW LIKELY IS AN I.I.D. DEGREE SEQUENCE
TO BE GRAPHICAL?

BY RICHARD ARRATIA AND THOMAS M. LIGGETT!
University of Southern California and University of California, Los Angeles

Given i.i.d. positive integer valued random variablgs, . .., Dy, one
can ask whether there is a simple graphovertices so that the degrees of
the vertices ard®y, .. ., D;. We give sufficient conditions on the distribution
of D; for the probability that this be the case to be asymptoticall% @r

strictly between O ané. These conditions roughly correspond to whether the
limit of n P(D; > n) is infinite, zero or strictly positive and finite. This paper
is motivated by the problem of modeling large communications networks by
random graphs.

1. Introduction and statement of results. The growth of the Internet and
other large communications systems over the past few decades has led to a
significant amount of interest in modeling such systems as random graphs with
a large number of vertices. Many books and papers in both mathematics and
applied areas such as computer science have resulted from this interest.

Classical mathematical work on random graphs concentrated on the so-called
Erd6s—Rényi graphs. In these graphs, one takegsrtices and connects pairs of
vertices by edges independently with probabilityfor each pair. While these
random graphs have a rich mathematical theory [see Bollobas (2001) or Janson,
Luczak and Rucinski (2000), e.g.], it turns out that they are not good choices
for modeling many complex networks. To illustrate their limitations, consider
the distribution of the degree of a fixed vertex, which in @&dRényi graphs is
Binomial with parametera — 1 andp. If one takes: large andp small in the
usual way, this distribution is approximately Poisson. The Poisson distribution has
very rapidly decreasing tails. Networks that appear in practice, on the other hand,
tend to have degree distributions with very large tails, often lacking a third, or
even second, moment. This paper is a contribution to the problem of constructing
random graph models in which the distribution of degrees can be prescribed by the
modeler.

Many authors have observed that in graphs of complex networks such as the
Internet, the degree sequence appears to fit a power law of the form

P(D > k)~ ck=P.
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One way to mimic the randomness of Be-Rényi graphs, while maintaining
a power law degree distribution, is to fix a law, sampléimes from this law
to get a (potential) degree sequence, and then, if there are graphs with this
degree sequence, choose a graph uniformly from all graphs with the given degree
sequence. Albert and Barabasi (2002) provided a good survey of such complex
networks and models such as that above. To avoid the uncertainty of sampling,
Aiello, Chung and Lu (2001) took a power law and formed a degree sequence
by takingd; (for 1 <i < n) to be the (ceiling of the)i/n)th quantile of that
law. A survey of rigorous results on graphs with power law degree distributions
appeared in Bollobas and Riordan (2003).

To implement the procedure described in the preceding paragraph, two
problems must be solved:

1. Determine which degree distributions have the property that if the degrees are
chosen by sampling from that distribution, then there is substantial probability
that there exists a simple graph with those degreessflarge.

2. Given that there is such a graph, find efficient algorithms that will make a
uniform choice from among these graphs.

This paper is devoted to the first problem. The second problem was treated in
several papers: Jerrum and Sinclair (1990), Jerrum, McKay and Sinclair (1992)
and Steger and Wormald (1999). Note that while the titles of these papers often
suggest that they treat the problem only for regular graphs (in which the degrees
are all the same), the algorithms proposed usually apply to nonregular graphs as
well, provided that the degrees do not vary too much. In fact, conditions on the
degree sequence are given which imply that the algorithm works well, and then it
is observed that these conditions are satisfied by regular graphs.

We now turn to the mathematical formulation of our problem and to the state-
ment of our main result. Consider a sequence of positive intefjers. , d,. The
decreasing rearrangement of this sequeneeiis. ., m,, where{m1, ..., m,} =
{d1,...,d,} as multisets andny > m» > --- > m,. Erdds and Gallai (1960)
showed that there exists a simple graph (i.e., one with no loops or multiple edges)
with n vertices whose respective degreesdte. ., d, ifand only if }_; d; is even
and their decreasing rearrangement satisfies

J n
(1.1) domi<j(G—D+ Y min(,m), 1<j=n
i=1 i=j+1

Sequences with these properties are called graphical. Some equivalent conditions
for a sequence to be graphical can be found in Sierksma and Hoogeveen (1991).

The necessity of (1.1) is quite easy to check. The left-hand side of (1.1) is the
total degree of the firsj vertices. The first term on the right-hand side is the
maximum total degree of these vertices coming from edges that connect vertices
in {1, ..., j} to other vertices in this set. The second term is a bound on the total
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degree of the vertices ifl, ..., j} coming from edges that connect to vertices in
{j+1,...,n}. The proof of the sufficiency of (1.1) is more difficult. Proofs can be
found in several papers, including Sierksma and Hoogeveen (1991) and Choudum
(1986). The latter paper provides a simple inductive construction of the required
graph. Briefly, suppose

my=---=mj;>mj1>--->2m,>1
satisfies (1.1). While not obvious, it can be checked that the sequence of degrees
my,...,mj_1,m;—1mjia,...,my_1,m, —1

also satisfies (1.1) (and has smaller total degree). A graph with the original degree
sequence can be constructed from one with the modified degree sequence either
by adding one edge or by deleting two edges and adding three edges, according to
whether the edgéj, n) is already in the graph with smaller total degree.

To state our main result, l€? be a positive integer valued random variable and
let D1, ..., D, beani.i.d. sequence of random variables with the distributian.of
Let A be the set of limit points of the sequence of probabilities

P((Ds, ..., Dy) is graphical.

If 0 < P(Dis even) < 1, then the parity restriction forces C [0, %], as we see
below. We are interested in finding sufficient conditions foe= {0}, A = {%}, or

A C (0, %). Our main result is given below. To simplify its statement, we consider
only the case in whictD takes both even and odd values with positive probability.

THEOREM. Suppose that 0 < P(D iseven) < 1. Then the following state-
ments hold:

(@) Iflim,_snP(D >n)=o00,then A ={0}.
(b) Iflim,, soonP (D >n)=c,where0 < ¢ < o0, and

C
1.2 ——P(D = 00,
(12) Z[n ( zm} 0
then A = {0}.
(c) Iflim,oonP(D >n)=c,where0 < ¢ < 00,
(1.3) 0<nm@pﬂpa»=mgnmswm%xp=ny<m

n— n— 00

and

C
14 - —P(D ’
(1.4) Zn (D>n)| <o0

n

then A C (0, 3).
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(d) If ED < oo or if

(1.5) supn(logn) P(D > n) < oo,
then A = {3}.

Note that it follows from parts (b) and (c) of the Theorem thas not monotone
in the distribution ofD. The main interest in part (d) is the case in which < oco.
We include the result when (1.5) holds primarily because this show&that oo
is not necessary and sufficient far= {%}.
Another version of this problem was considered earlier. To describe it, recall that
a partition of a positive intege¥ is a sequence of integeyg > 1> >--- >, >0
so that

n
N = Z Yi-
i=1
In 1982, Wilf conjectured that if"y is chosen at random uniformly from all

partitions of N, then

lim P(Ty is graphical =0.
N—o0
This conjecture was proved by Pittel (1999).

2. Proof of theTheorem. This section is devoted to the proof of the Theorem.
The order in which the four parts are stated and proved is according to the size of
the tails of the distribution oD—from long tails to short. However, the proof of
part (c) is much longer than the proofs of the other parts, so you might want to read
the proofs in the order (a), (b), (d) and (c).

Before entering into the main part of the proof, we deal with the easy parity
issue. If P(D is even = 1, then clearlyP(D1 + --- + D, iseven = 1 as well.
Similarly, if P(Disodd =1, thenP(D1+ ---+ D, is even =0 or 1 according
to whethem is odd or even.

PropPOSITION If0< P(Diseven) < 1,then

lim P(Dy+---+ D, iseven) = 3.
n—oo

PROOF The result follows immediately from
2P(D1+---+ D, iseven — 1= E((—1)P1TPn) = [E(-1)P]"
and the fact thate (-1)?| <1. O
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We turn now to the proof of the Theorem, for which it is useful to restate (1.1)
in a more convenient form. Le¥,, (1) > M, (2) > --- > M, (n) be the decreasing
rearrangement ab, ..., D,,. Then the inequality in (1.1) becomes

J n
(2.1) S M) <j(G—D+ Y. min(j, My (@),

i=1 i=j+1

which can be written as

j
(2.2) MO ZjG-D+ > Loz

i=1 1<i<j<i<n

wherel 4 denotes the indicator of the sét

PrROOF OF PART(a). Considering only the cage=1in (2.2), we see that
P((Dy, ..., Dy)is graphical < P(M,(1) <n—1)=[1— P(D >n)]",

which tends to 0 as — oo by assumption. [J

The proofs of parts (b)—(d) of the Theorem are based on a useful representation
of M, (1), ..., M,(n). To describe it, leX1, X», ... be independent unit exponen-
tials, and letg:[0, 00) — {1,2,...} be a right continuous, increasing function.
TakeD; = g(1/X;), so that

(2.3) P(D>n)=1- exp(—%),
g (n)

whereg—1(n) is defined byg(x) > n iff u > g~1(n). Note that the distribution
of D; uniquely determines the valugs(n), and hence uniquely determines the
functiong, sinceg is taken to be increasing and right continuous. This construction
of the D;’s is a variant of the familiar quantile construction of an arbitrary random
variable X as X = F~L(U) in terms of a random variabl& that is uniform
on|0, 1].

For fixedn, let Xy, ..., X, be the increasing rearrangement@of, ..., X,,.
Then

1
M =¢(5) 1=i=n
" X
Elementary properties of the exponential distribution imply that
d (X1 X1 X2 X1 X2 X,,)
X1, .. X)) =—, — e, — N
(X ) (n n+n—1 n+n—l+ +1

where £ denotes equality in distribution. [This useful representation was first
observed and exploited by Epstein and Sobel (1953) and Rényi (1953).] It follows
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from this that
(M, (1), My (2), ..., My(n))

en () el () )
(2 2 %))

As usual, we lefS,, = X1 + - - - + X,, denote the partial sums of thg’s.

PROOF OF PART(b). SincenP (D > n) — ¢, (2.3) implies thag ~1(n) ~n/c
and hence that

(2.5) xli_)m()()? =c.
By (2.4) and (2.5),

M, (1) M,(j)\ a4 (¢ c
(26) ( » yaeay » )—)(S—l,,S—/)

for j > 1, where % denotes convergence in distribution. Statements of this
type are well known, of course; see, for example, Section 2.3 of Leadbetter,
Lindgren and Rootzén (1983). However, especially in the proof of part (c) of the
Theorem, we need much more detailed information about the asymptotic behavior
of (M, (1), ..., M,(n)) than such results provide.

By the strong law of large numbers,

n—o0
i1

1y 1y
lim =~ > 1{Mn(i)zl}=n|Lmoo;;1{Mn(i)zl}
N
= Jim = ;1{&2,} =P(D=>1) as.

for each;. Dividing (2.2) byn and passing to the limit as— oo, it follows that

n—oo

J J
limsupP((D1, ..., Dy) is graphical < P(X:Si <> P(D>i)forall j> 1).
=1t =1

So, it suffices to show that
[e.e]

Z(Si —P(D> i)) —  as.

i=1
This follows from (1.2), since
X i

i<si _S) =<2y

i=1 ! i=1

’
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which converges absolutely a.s. by the law of the iterated logarithm applied to the
sequencesy, So,.... O

PROOF OF PART(C). We begin by observing that (1.3) implies that there is a
constantC so that

(2.7) lg(u) —g()| <Clu —v|+1

for all u, v > 0. To see this, use (1.3) and (2.3) to conclude that there is-af
and anN so that

g+ —gtm) >

for all n > N. Now take O< u < v and letm = g(u),n = g(v). Without loss
of generality, we may assumé < m < n since (2.7) is automatic it = m and
once we know (2.7) holds for large v, it can be made to hold for othat v by
increasing the value af'. In this case,

gimy<u<gtm+1 and glm)<v<glm+D),
so that
v—u>g tm) —g tm+D>etmn—m-—1).

This gives (2.7) withC = ¢~
In what follows, we use (1) in distributional statements to represent possibly
random quantities that are bounded by a universaktant. In limiting statements

of the formy,, Ly + 0O(1), the meaning is that the sequence of distributions of
Y1, Yo, ... is tight and that all weak limits of the distribution &, lie between the
distribution of Y + a universal constant.

Since the proof of part (c) is quite long, we break it up into several lemmas. The
first determines the asymptotics of the distribution of the left-hand side of (2.1),
when centered appropriately. The second lemma carries out the additional analysis
that is needed to deal with the right-hand side of (2.1). The final lemma provides
bounds for the nonrandom quantities that arise in the centering in the first two
lemmas. O

LEMMA 1. Forevery N > 1,
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PrROOF Inthe proof, we need to treat the summands above separately in three
regimesi <%,% <i <n—n% andn —n’ <i <n. We begin with some estimates
that are needed in all three cases. Define

, -1
. M,@i) 1 ! 1
Zn(i) = n _;g<<zn—l+l> )

=1

for 1 <i <n.Thenjointly ini,

(&) ) A(B==) )

d ‘ X -1 i X i 1
§<C Zn—l+1‘)/<zn—l+1§n—l+l>+0(1)

=1 =1
by (2.4) and (2.7). To bound the right-hand side of (2.8), sum by parts to get

n|Zy (i) <

i X -1 _Xi:(Sz—l)—(Sz—l—lJrl)
1:1”_l+1 = n—I[1+1
s —i =t S —1

=n—i+1_,§(n—l)(n—l+1)’

where agairs; = X1 + - -- + X. Therefore, letting
Sk —k
S = SupL’
i=1 /kTog(k + 1)
which is finite a.s. by the law of the iterated logarithm, we see that fon,

5 X —1 ‘SZS./T; 0g(z+1)'

2.9
(2:9) n—I[1+1 n—i+1

=1
Combining (2.8) and (2.9) gives

n1Z()] < 2CS/iTogG + 1)
(2.10)

. . -1
n—i+1 l 1
—— —25+/ilog(i + 1 _ 0,

X(<l§n—z+1 Hlog(i + )>,§n—1+1> + 00
provided that the denominator is positive. Here again, the distributional inequality
holds jointly for 1<i < n.

For 1<i < 75, we may replace the —/ + 1 byn and then —i + 1 by 5 on the
right-hand side of (2.10) and divide layto get

d A4CSilog(i +1) 1
(2.11) | Zn ()] < ( —4sJiogi I D) +;0(1),
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again provided that the denominator on the right-hand side is positive.
By (2.5) and (2.6),
Z,(0) d <1 1)
— _ — =
(1 c S, ;

jointly for any finite number of’s. Therefore,

J 1 1
NN Z Z0= czvsr/nsef‘vﬁm(;(& i >)
for everyN, m > 1. We wish to have a version of this statement that corresponds
to m = oo; for this, we need some domination. This is provided by (2.11) as we
now argue.

Note first that the denominator of the first term on the right-hand side of (2.11)
is positive for sufficiently large (depending on the value &f). Therefore, since

i Jilog(i + 1)

<
.2 ’
i=1 !

it follows that there is a functionf(s) so that i > f(s) implies
i —4s./ilog(i +1) > 0and
Z 4s./ilog(i + 1) - -
6 (i—4s/ilog +1))i — -

Combining this with (2.11), it follows that there is a const&nfthat can be taken
to be the sum of the constant in tiig1) term in (2.11) and”] so that

P(N +m=> f(5)) 5P< > 1Za)] §K>.

N+m<i<n/2
The final ingredient is the inequality

max ZZ (z)< max ZZ (@)

N<j<N+m j<n /2

<  max ZZ(:)+ Yo 1Za)

<j<
N=j= N+m N+m<i<n/2

for N + m < 5. Combining these observations, the conclusion is that for any
N >1,

J
(2.12) nax ZZ ()4 ¢ sup(ij(s1 — %)) + 0(1).

<n/ />N i=1
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Next, we consider terms that correspond:te n? <i<n,where 0O< 9 < 1.
For such ar, the right-hand side of (2.8) is at most

0 0
"X+ 1 bdox i)
(2.13) (c(zin_“rl))/( > it > 1) tow.

=1 =1 =1

where| -] is the greatest integer function. Since

n
X
Zn—l-i—l

=1
has mean that is asymptotic to legnd variance that is boundedsin
1 X

1
IOgngn—l—i-l—)

in probability. Similiarly,

1 Uy
)R gy
logn = n—1I1+1
in probability. Therefore (2.13) is asymptotic to
2C
(1-6)2logn’

, -1
M,(i) 1 ! 1
n _;g(<zn—l+l> )

=1

It follows that

(2.14) >

n—nf<i<n

4 o).

Finally, we consider the intermediate ter@\g i <n—n?. Inthis case,

Xi: 1 - o n+1 ~ o 2n+2
1:1”_l+1_ gn—i—i—l_ gn+2

andn —i + 1> n?, so that the right-hand side of (2.10) is at most

(2CSv/nlogn + 1)) /((ne 0g 212

n+2
(2.15) 2 4+ 2
— 25/nlogn + 1)) log ”iz ) 0,
n
provided that
g, 2n+2
(2.16) n” log > 2Svnlog(n +1).

n+2
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If % <6 <1, (2.16) holds eventually a.s. and then (2.15) tends to zetc-asxo.

It follows that
- -1
M,i) 1 ! 1
() )

(2.17) Z
in probability. Combining (2.12), (2.14) and (2.17), we see that for eixery 1,

n/2<i<n—n?
iMGy 1 ([~ 1\
max LA S
oo (40 o((Samiea) )

=1

11
—d>csup<z<———>>+0(1)
JZN\ ;=1 Si !
To prepare for the second lemma, define
so((rty)
y(J,n) = g(( 7))
i=1 mn—itl
J i 1 -1
+ min| /, —nEmin(j, D).
La(mel (=) ) -emeo

=1

< o@

(2.18)

as required. O

LEMMA 2. Forevery N >1,

n

1 .
max —[ZM O—jGi-D— Y m'”(J’MnU))—VU’")}

<j<
N<j<nn i=j+1

/(1 1
L sup(Z(— - —)) +0().
JZN\ ;=1 S !
PrROOFE Write the right-hand side of (2.1) as

n J
(2.19) JG =D+ min(j, D) =Y min(j, M, (i)).
i=1 i=1
The last term is easy to deal with. Sinp@in(j, u) — min(j, v)| < |u — v|, the

estimates in (2.8), (2.11), (2.14) and (2.17) apply just as well whgy) is
replaced by migj, M, (i)) and

(Bmts) ) ooty ol () )
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Now, however, (2.6) is replaced by

(min(j, My (1) min(j, Mx(2)) min(/, Mn(j)))_d>(0 0.....0

, .
n n n

Therefore, (2.18) is replaced by

: -1
mln(]M(l)) 1( (. (< 1
e A breeil)

To handle the first two terms in (2.19), we need the asymptotics for moments of
min(j, D) that follow fromn P (D > n) — c:

l<]<n

J
Emin(j,D)=)_P(D>1)~clogj,
=1
j
E[min(j, D)?=Y (2 = 1)P(D =) ~ 2cj,
=1

J
E[min(j, D)1 =" (31> =3+ HP(D = 1) ~ 3cj?,
=1

E[min(j, D)1* 2(413 61°+4 —1)P(D=1) ~ 3cj.
=1
It follows that there is & so that for 1< j <n,

n 4 .2
E|:% ;[min(j, Di) — Emin(j, D)]i| < c#.

Now take} < 6 < 3. Then

4
1 2
E max [— > [min(j, D;) — E min(j, D)]} <C ]—2 — 0,
L=j=nlM s 1<j=n® "
so that
(2.21) max Z[mln(J, D;) — Emin(j, D)]’
1</<n9 n
On the other hand,

min — |:J (j =D+ > _[min(j, D;) — E min(j, D)]}

f<i<nn :
n=yEn i=1

n?@n? —1)

n

— Emin(n, D),
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which tends to oco. Combining this with (2.6), (2.11), (2.14), (2.17),
(2.20) and (2.21), we conclude that fr> 1,

n

1 .
max —[ZM OENIESEEY m'”(f’Mn@)—V(f’")}

N<j<nn i=j+1

4 ‘1 1
—_= 1
Sep(B( 7))o

as required. [

(2.22)

Finally, we need to bound the(;, n)’s below.

LEMMA 3. Thereexists

1
(2.23) inf — min y(j,n) > —ooc.
n>1ln 1<j<n

PrROOF Since we need only a lower bound apds nonnegative, we may
neglect the middle term in the definition p{ j, n). So, using (1.4), it sufficient to

show that
; - -1
S [1 ! 1 c
sel(Zer) )]
is bounded below.

To do so, note that

Xl: - <lo
; 1n—l+1_ gn—

: -1
1 ! 1 1
Eg<<l§n —1+1> ) _“Og(H ?)
(i+1)/n 1 c
Z/ [g<|log(1—x)|>_§]dx‘

Hence, it suffices to prove that

| le(mga =)~
o ¥\Tlog@—n)1/) ~ x

The only place where this integrability is an issue is at 0. Making a change of
variables, we see that it suffices to check

/OO lg(y) —cyl
—————dy
1

dy < 00.
y2

so that

dx < oo.
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So, itis enough to check that

“1n+1) |n — cyl
ZE:t/a dy < o0

L(n)

or that
max(|n —cg "), [n —cg tn + D (gt + 1) — g~ L(n))
Z T2 <00
~ (g 1))

This follows from (1.3), (1.4) and (2.3).0

We are now in a position to complete the proof of part (c) of the theorem using
the three lemmas. Combining (2.22) and (2.23), we see that there is a cdkistant
so that

IlnrglpofP< max }[ZM ) —jG—=D— > min(j, Mn(i))i| 50)

<1<
N<j<nn i=j+1

Jr1 1
> P(esu (———,)5—1(.
<j>1\e<; Si i )

Note that the distribution of
has support

ThereforeN can be chosen large enough that the probability on the right-hand side
above is strictly positive. By (2.6), for eagh

J
[ZM (i) - Z min(j, Mna))}iZ[%—P(Dzi)],
i=1-"t

i=j+1

which has positive probability of being negative. Since all these statements hold
jointly in j, it follows that liminf, P(A,) > 0, where

J n
A, = {ZMn(i)gj(j—1)+ > min(j, M, (i)) for all 1§j§n}.
i=1 i=j+1
On the other hand,

P(Ap) <PM,1)<n—-1)—e ‘<1l
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It follows that all limit points of P(A,,) lie in (0, 1).
To complete the proof of part (c), we need to show thatand the event

{D1+---+ D, is even

are asymptotically independent. To do so, #fixand letg be theo-algebra
generated by{ Dy, k > m}, let A be any event, leB be any event depending on
{D1, ..., Dy} and letC be any event irg,. Then

P(ANBNC)—3P(ANC)
= E[la — E(A|§), BNC] — 3E[14 — E(A]§), C]
+P(ANO)[P(B) - 3].
Therefore,
[P(ANBNC)—3P(ANC)| <2E|14 — E(AI§)|+|P(B) — 3.

Applying this inequality toB = {D1 + --- + Dy iseven, C = {Dy+1 +
...+ D, is even and their complements, we have the inequality

|P(A, D1+ -+ D, is even — 1 P(A)|
=|P(ANBNC)+P(ANB°NC) - 3P(ANC) — 3P(ANCY)|
<A4E|14 — E(A|)|+ |2P(D1+ - + D,, is even — 1.

Applying this to theA,’s above and using the Proposition, we see that to prove
A C (0, 3), it suffices to prove

lim E|14, — P(An|$)| =0.
n—oo

To do this, letDx, ..., D,, be independent, independent{@f;, D>, ...} and have
the same distribution aB;. Quantities defined in terms of the sequence

{D1,...,Dp, Dpya, ...}
are denoted by the earlier notation with a tilde. Then it suffices to prove that
lim P(A,AA,) =0,
n—0o0

whereA denotes the symmetric difference. To check that this is enough, note that
sinceA, andA, are conditionally independent givén we have

[E|La, — P(AL9)]] < E[14, — P(Asl$)]?
= 1E[1a, — P(Al§) — 15 + P(A,19)]?

< E[14, — 135 ]° <2P(A,AR,).
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Unfortunately, it is not too easy to see that the right-hand side above tends to
zero as required. However, we can apply these same considerations to certain
events that are larger (resp. smaller) than théss to complete the proof. For
the larger ones, simply usé, = {M, (1) <n — 1}. With this choice, it is clear
that P(A,AA,) — 0. For the smaller ones, ugg, = {W, < —¢} for ¢ small and
positive, where

1 S
W, = max—|:ZM OENTESVESSY mln(j,M,,(i))i|.

1<j<nn i=j+1

ThenW, — W,, — 0 in probability, since
n — m -
D My () — Ma () <Y |D; — Dil.
i=1 i=1

Therefore, passing to subsequences so that the distributional liriit, givhich
might have some mass abo but has none at-oco by (2.22) and (2.23)], we see
thatP(A,AA,) — 0 provided that this distributional limit has no masg aNow
choose such an

PrROOF OF PART(d). By (2.1) and the Proposition, it suffices to show that

(2.24) max |:22M Q) —JjG —1)—me(J,D )} — —00

i=1

in probability. We consider various ranges jo§ separately. Také <f# <land
consider first the range < j < n. Using

J n
Y M,(i) <) Di
i=1 i=1
we see that

(2.25) max ZM (i)—0 as.

nf<j<n;_

20
by the law of large numbers £ D < oco. If we assume: D = oo and (1.5) instead,
then (2.25) follows from Theorem 8.9 on page 68 of Durrett (1996), since

> P(D=n?) <c0.

Using the fact thaj (j — 1) > n? (n? — 1) for n in this range, it follows under either
assumption that

(2.26) max [ZZM (i)—j(j— 1)} — —00.

n<]<n i=1
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To handle the other values ¢f use (2.4) to write

(2.27) iMnm e Zg(g) e ig(%)

where

Note thatS > 0 a.s. by the law of large numbers.
Assume now thak D < oco. By the monotonicity of,

1 /n i/n 1
weis) = e (Gs) e
n-\iS (i-1/n \xS

nf—1

(2.28) Z M, (i) </ g(%) dx.

1<z <nf

Therefore, by (2.27),

The right-hand side of this expression tends to @ as oo provided that

/Og(l/x) dx < 00,

or, equivalently, that

/@d<oo

X

Sinceg(x) =n for g~1(n) <x < g~1(n + 1), this is equivalent to

g Hn+D) n 1 1
Z/ X2 Z”[g—lon T ln+ 1>} =

Yn) n

This follows by summation by parts froliD < oo and (2.3). So, the left-hand
side of (2.28) tends to zero and hence

max [ZZM (l)—n:| — —00.

1=j= <n’ i=1

Combining this with (2.26) gives (2.24) whéfD < co.
Assume now thattD = oo and (1.5) holds. By (1.5) and (2.3), there is a
constantC so that
g(x) S L? X Z
log(x + 1)
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Therefore, by (2.27),
1

=Y MmpEc ¥ [iSIog(%+1)]_1—>0.

1<i<logn 1<i<logn

It follows that

j
(2.29) max [ZZM,,(i) — n:| — —00.
i=1

1<j<logn

The same argument shows that

1-6 -1
' x ot )]

1<i<n? 1<i<n?

which remains bounded as— oo. However, sincéE D = oo,

1 n
=Y “min(logn, D;) — oo a.s.
i=1

by the law of large numbers. Therefore

J n
max [22 M, (i) =) min(j, D,-)} — —00.
i—1

i<nf
logn=<j<n i1

Combining this with (2.26) and (2.29) gives (2.24) as required.
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