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BRIDGES AND NETWORKS: EXACT ASYMPTOTICS

BY ROBERTD. FOLEY! AND DAVID R. MCDONALD?
Georgia Institute of Technology and University of Ottawa

We extend the Markov additive methodology developedAnn[ Appl.
Probab. 9 (1999) 110-145Ann. Appl. Probab. 11 (2001) 596—607] to obtain
the sharp asymptotics of the steady state probability of a queueing network
when one of the nodes gets large. We focus on a new phenomenon we call
a bridge. The bridge cases occur when the Markovian part ofvttsted
Markov additive process is one null recurrent or one transient, while the jitter
cases treated iAhn. Appl. Probab. 9 (1999) 110-145Ann. Appl. Probab. 11
(2001) 596-607] occur when the Markovian part is (one) positive recurrent.
The asymptotics of the steady state is an exponential times a polynomial term
in the bridge case, but is puyeéxponential inte jitter case.

We apply this theory to a modified, stable, two node Jackson network
where server two helps server one when server two is idle. We derive the
sharp asymptotics of the steady state distribution of the number of customers
gueued at each node as the number of customers queued at the server one
grows large. In so doing we get an intuitive understanding of the companion
paper Ann. Appl. Probab. 15 (2005) 519-541] which gives a large deviation
analysis of this problem using the flat boundary theory in the book by Shwartz
and Weiss. Unlike the (unscaled) large deviation path of a Jackson network
which jitters along theboundary, the unscaled large deviation path of the
modified network tries to avoid the boundary where server two helps server
one (and forms a bridge). In the fluid limit this bridge does collapse to a
straight line, but the proportion of time spent on the flat boundary tends to
zero.

This bridge phenomenon is ubiquitous. We also treated the bathroom
problem described in the Shwartz and Weiss book and found the bridge case
is present. Here we derive the sharp asymptotics of the steady state of the
bridge case and we obtain the results consistent with those obtairéédm [

J. Appl. Math. (1984)44 1041-1053] using complex variable methods.

1. Introduction. In Section 2 we analyze the spectral radius of the Feynman—
Kac transform of a Markov additive process. In Section 5 we develop a ratio
limit theorem for Markov additive processes. In Section 6 we use these results
to extend the method in [8, 14] to a general theory for the sharp asymptotics of the
steady state probability of queueing networks when the queue at one node gets
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large. Finally, in Section 7 we apply these general results to obtain the asymptotics
of (¢, y), the steady state of a two node modified Jackson network;asc.

A two node Jackson queueing network is described in the companion paper [9]
which we refer to as Part I. The servers at node two, when idle, can assist the
server at node one. Allowing one of the servers to help can completely change
the behavior of the network. Clearly, a large deviation where the first node gets
large tends to avoid emptying the second node because the idle node will help the
overloaded node and make the large deviation less likely. The large deviation path
to a point where the queue at node one is of gizend the queue at node two is
empty or of fixed size will tend to be a bridge. Asymptotically the large deviation
path spends no time at states where the second queue is idle, as was seen in Part I.

This paper explains the dichotomy between the positive recurrent (jitter case)
when the idle node does not help much and the large deviation path jitters along
the axis where the second queue is idle and the transient or null recurrent (bridge
case) when the idle node helps a lot giving rise to the bridge behavior. The former
gives an exponential decay of¢, y) as¢ — oo, while the latter has an additional
polynomial factor.

The bridge phenomenon is ubiquitous. In Section 8 we use this theory to revisit
the bathroom problem discussed in [6, 14, 22]. Depending on the parameters, we
obtain the jitter case discussed in [14] or a bridge case. In Section 8 we work out
the asymptotics of the bridge case and we find exactly the same asymptotics of the
steady state probability as was obtained in [6] using complex variable methods.

There are several approaches to obtaining the sharp asymptotics of the steady
state probability of a queueing networkhd oldest is the exact solution in product
form when the network is quasi-reversible. The book by Serfozo [21] gives the
state of the art. These product form solutions are a minor miracle, but they are very
fragile as the slightest change in network dynamics can destroy the product form.
The compensation method developed by Adan [1] is a generalization where one
represents the steady state probability as an infinite linear combination of product
measures. This method does allow one to attack nonproduct form steady states,
but it is essentially a two-dimensional theory. It is hard to derive the asymptotics
of the steady state and this is generally the most useful quantity. It is also hard to
see how this theory couldamdle bridges where theestdy state prolimlity decays
like a polynomial times an exponential.

The complex variable method used in [6] reduces the functional equation
satisfied by the two-dimensionattransform of the steady state probability to
a Riemann Hilbert boundary value problem. One obtains a representation for
the z-transform, which, in principle, determines the steady state, but again it is
essentially a two-dimensional theory and it can be hard to derive useful quantities
like the asymptotic behavior of the steady state probabilities. We were unable to
derive the asymptotics of the solution of the coupled processors model (a special
case of our modified Jackson network) obtained by complex variable methods
in [4]. Fortunately for us, [6] does provide asymptotics and they agree with ours!
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Finally, the matrix geometric method [16] has been recently extended in [23] to
obtain the asymptotics of quasi birth and death QBD processes with infinite phase.
In fact, these processes are Markov additive and closer inspection reveals a close
parallel with the results in [8] and [14]. We discuss this parallel in Section 8.

In future work we will investigate the sharp asymptotics of the mean time until
the queue at one node of the modified Jackson network overloads, as well as the
Yaglom limit of the distribution of the queue at the second node.

2. Markov additive processes and the Feynman—Kac transform. In this
section we define the Feynmac—Kac transfafgnof the transition kernel/ of

a Markov additive process. The Markovian part bf will be denoted byfy.
Lemma 1 gives a representation of the spectral radiué,ctind a condition for
determining Whethe:fy is R-recurrent orR-transient, where AR is the spectral

radius of.J, .

Let (V,Z) = (V[n], Z[n]),n = 0,1,2,..., be a Markov additive process
(see [17]) on a countable state spdce S, whereZ ={...,—1,0,1,...}. Given
any statex, we denote the first component hy and the second component
by % € S. The processgV, Z) is a Markov chain with the following additional
structure:

P{(VIn +1], Z[n + 1] = x|(VIn], Z[n]) = z}
=J(z,x)
= J((z1,2), (x1, X))
=J((0,2), (x1 — 71, X)),

whereJ denotes the transition kernel 6¥, Z). Note that the marginal proceZs
forms a Markov chain with state spaseWe assume tha is irreducible, and we
let J denote the transition kernel &f.

As in [17], let J, denote the~eynman—Kac transform ofJ/. That is, for any
realy,

(1) Jy (1. %), (1, 9)) = " OV (01, 2. (01 )
Let J, be the Markovian part of,, that is,
@) Iy @.9) =3 4 ((0.0), . )).

SinceJ is irreducible, we know that,, is irreducible. We assumé, (%, ) < oo
forall &, § € S. Letr(J,) be the spectral radius df, and letR(J,) = 1/r(J,) be
the associated convergence parameter. By Lemma 2 in fAX@]) = Iog(r(fy)) is

a closed convex proper function [and so(i,)]. As an aside, the next paragraph
gives a short proof thak (y) is a convex function of .
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First, for everyy, A, (y) := (f;‘(ﬁ, Nt — r(fy). Next, for anyn, we verify
the function logA, (y)) is convex iny by checking that the second derivative is
nonnegative. The second derivativeti$/ A, — (A/)2/A2. By calculation,

2
(4% _ 1 "
= (;vﬂ TR AL y)))
and
Al 1 , 1 o
_n:_ VUV —< .~ A Jn (O’y),(v’)’)
An ”(Xv: I3, 9) 4 )
2
1 1
—(1-= —J(O, y), (v, y .
( J(?ﬁ;@,&) (090 ”)))
Hence,
d? 1 > 1 i
d—yZIOQ(A"(y)):;(XU:U G, y)J 7 (0, 9), (v, 9))

2

1
(Tt 5. w5 ).
(Z FGop @7 y)>>

The quantity in brackets above is equal to the variance of the med$ui@ ),
(s y))/f;’ (¥, ¥), which must be nonnegative. Since a limit of convex functions is

convey, it follows thatA (y) is a convex function of [and so iS’(jy)].
Let

16,9 = 3 J, (3. 1D T, G4, 52D x ---
JL#Y,....3[n—=11#£9 .3 [n]=)

x J, $n — 21, $[n — 1) J, Gln — 11, $[n)

and define the transform(y,u) = %, £,/ (3, $)u". Note that W (y,e %) =
¥(y,¢), defined at (3.2) in [17]. In [17], it is shown that if the s&f =
{((v,0);¥(y,0) < oo} is open and if there exists A(y) < such that
¥(y, A(y)) = 1, theni(y) = A is an eigenvalue off, and J, is e=2()-
recurrent. We will need a little more since we are also mterested i the -
transient case.

LEMMA 1. We have R(J,) = sufu:¥(y,u) < 1}. Also, J, is R(J,)-
recurrentif and only if W(y, R(J,)) =1
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PrROOF Note that¥(y, u) is strictly increasing in:. Both results follow from

1
m N N yxX, m __ m A N m __
©) XE’mJ (0, 9). (x, $))e" u —XE’mJy (0, 9). (x, 9)u =1 90w O

3. Asymptotics of §0((0, 0); (£, 0)) when J is a nearest neighbour walk.
In Theorem 4, we give the asymptotics@as> oo of the steady state (¢, y) of
a Markov chain in terms of the asymptotics $f(0, 5), (¢, 5)), where§ is the
potential of the associated twistdasbundary-freeMarkov additive chain ané is
some fixed state. In general, it may be impossible to obtain these asymptotics,
but in this section, we determine exact asymptotics of the potential for a Markov
additive chain with a particular structure. We denote the transition kernel of
this particular Markov chain byl and its potential matrix bygo := >> o 4".
Throughout, we use the subscript 0 to engiha that this process may be killed
when the Markovian part hits the fixed state= 0.

Let (Vo, Zp) be a Markov additive process with transition kerdelWe will
assume that is the transition kernel of a two-dimensional random walk when the
Markovian component is positive and that the Markovian component is a nearest
neighbor random walk of = {0, 1, 2,...} with a killing probability x > 0 when
the Markovian part is zero.

More precisely, we assume fdr

2((0, ), (x,y +2)) = £((0, 1), (x, 1+ 2)) fory>0

and forJ,

R P, fory > 0,

1(y, 1) =
¢ y+d) Po, fory =0,
f( - s, fory > 0,
¥ )= S0, fory =0,
A q, fory > 0,

J(y,y—1) =
.y =1 0, fory=0

with p>0,9>0,p+¢g+s=1, po>0andk =1— pg—so >0, wherex is the
probability that the process is killed when the Markovian part is zero.

To complete the specification df, assume that we are given the following
transforms:

P(z)=Y_4(0,y), (x,y + D)z,
S()=Y_4((0, ), (x,y)z",

(4) 0(2)=>_4((0,y), (x,y — ))z* fory >0,
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Po(z) =>_4((0,0), (x, 1))z",
So(z) =) _1((0,0), (x,0))z*  fory=0,

which are assumed to be finite in some neighborhood of 1. The first three
transforms describe the behavior above, and the last two on the axis. Note that
P =p, SQ =s, Q) =g, Po(1) = po, So(1) = so and that the horizontal

drift above thex-axis is given by

() dy=(P'D)+0'MH+5(Q).

Also note that the five functionB(z), Q(z), S(z), Po(z) andSp(z) are analytic in
some annulu®”®, whereD" R = {z € C|r < |z| < R}, C is the complex plane,

r < 1 < R, and the right-hand sides form the Laurent series representations of the
functions on the annulud” k.

We will be particularly interested whed is either 1-transient and 1-null
recurrent, which corresponds to the bridge case. Under these conditions, Propo-
sition 1 gives the exact asymptotics $§((0, 0); (¢, 0)), which is simply the ex-
pected number of visits to some distant pdifit0) given that(Vg, Zo) started at
the origin.

Recall that a discrete (substochastic) denkibn the integers has peried> 1
if r =gcd{u:h(u) > 0}, wheregcd denotes the greatest common divisor of the
set. Equivalentlyy is the largest integer such that the support @ contained in
the set{kr, wherek € Z}. We will say thatH (z) = 3, <z h(x)z* has period- if
h has period-. If H has period-, thenH (exp(2kni/r)) = H (1) for all integersk,
but |H ()| is strictly less tharH (1) on the rest of the unit circle.

PROPOSITION1. If p =g, then the spectral radius of § is one. In addition,
suppose that d > 0 and that the following aperiodicity condition holds. If s > 0,
the period ry4p of the transform P(z)Q(z)/(pg) and the period rg of the
transform S(z)/s must be relatively prime; otherwise, if s = 0, then ry+p must
be one. Under these three conditions,

$0((0,0); (£,0)) := > 4"((0, 0); (¢, 0)) ~

n=0

Po dy 1-5
C+ K2\ 2w (1—) and Co \ 27nd.

Before proving Proposition 1, we derive some expressions that will be used in
the proof (and hold without the proposition’s hypotheses). Roughly, our approach

C e=32  fork >0,
Cot™ /2, for k =0,

where
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IS to derive the generating functicggo(z) = Y_,,~0%0((0, 0); (rn, 0))z" and then
extract the coefficients asymptotically. The generating funcfierz) can be
written as ¥(1 — F(z)), where F(z) = E(o,g[z*°l*]] andz > 0 is the number
of steps until the Markov chai#g returns to zero. Note that(1) = 1 — «. Rather
than derivingF (z) directly, we derive fp o [u?z*0l*]], which slightly generalizes
results in Section 6 of [20].

Temporarily, assume > 0 andsg > 0. Let U be the number of upward steps
taken by timer, and letf,, = P(U =n). Hence, fo = sg and

(6) E0.0[u" 2" |U = 0] = uSo(z) /s0.

To calculatef, whenn > 0, note that the first step must be up, which has
probability pg. If we ignore all steps whergg stays put, then the probability of an
upward step i®/(p + ¢q), while the probability of a downward stepds(p + ¢).
The total number of paths 5,1, the (n — 1)st Catalan number; that is, is the
number of paths of/2 steps on the positivg-axis that start and end at the origin
and contain only nearest neighbor steps. Hence,

p n—1 q n
=cC;— — .
fn=cu 1Po<p+q) <p+q>

—:(?") and that the serie§ 22 c,—1u" = (1 —
1 —4u)/2 with a radius of convergené The square root is defined using a
branch cut along the negative real axis.

GivenU =n > 0, the first step must be up, but after that there are-21

different places wher&g can stay put for a geometric number of transitions.
2n—1

It is well known thatc, =

Hence,r = 2n + Y ;7" Ex, where E; are independent geometric random
variables with lawP(E; = m) = s™(1—s), m =0,1,.... Each E; represents

the number of time& stays put between jumps. The transform of the associated
displacement wherZg stays put isS(z)/s. If we let X[k] be the additive
displacement during thih transition wherg stays put,

m_ 1-—s

Ek SPRING (c)
Bt EE W) = 3 s (S7) = 17 e

m=0

provided|uS(z)| < 1. Hence,

Eo.o[uz""U =n > 0]

B Py(2) <@)n—l<%>nuzn< 1—s )Zn—l
"~ po \ p q 1-uS@)

assuminduS(z)| < 1.

()




BRIDGES AND NETWORKS 549

It follows that if |uS(z)| < 1,

Eq.0)[u"z"l"]

S (00 )

=uSo(z) + i Cn—lPO(pf_q)n_]-( q )n

=1 P+q

XPo(z)<P(Z)>"_1<Q(Z))"M2n< 1—s )2"—1
Po p q 1—uS(z)
1-uS@)p+q p

1—s p P

> P Q@ \" 5( 1l—s \*
X,;CH( )” (1—uS<z>>

=uSo(z) +

Po(z)

p+qp+tq

1-uS(x)p+g

=us P
uSo(@) + —— P 0(2)

(8)

« 3(1—J1—4 P@) 0@ uz( 1=s )2)
2 p+qp+gq 1—-uS(z)
where the last summation required the term inside the square root be positive. Note
that the last three expressions also hold whenO or so = 0 so we can resume
assuming that > 0 andsg > 0.
Before using (8) to computé (z), we will use it to compute the radius of

convergence of fg g)[u*], which will be used in the proof of Proposition 1. Let
z=11n(8), and notice that fg,0)[u*] exists iff

9) lus| <1
and
(10) ‘ b__4 u2<1_s)2‘§}’
pt+qp+gq 1—us 4
in which case
(l—us)p_—i—q

Ew.0)[u" 1= sou +
©9 1-s) p

_ 2
Nl I PR uz(l S) .
2 p+qp+gqg 1—us

(11)
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It is easy to see there exists positivez 1/s such that (10) is not satisfied. Since
E.0[«"] is an increasing function af, there is a unique, positive < 1/s such
that

1-s\2 1
(12) p__4 R2< S ) _1
p+qp+gqg 1—Rs 4

and R must be the radius of convergence of the power serieg given by
Eo.olx"].
To obtain F(z), lei = 1 in (8), which gives

1-S@) p+q Poz)

F@)=50+ 1=~ 505

(13)
x(1_ 1_4P(z) Q(z)( 1—5 )2>
p+qp+q\1-5@)
(14) — A(z) — B(x)VC)VI—2z,
where

A(z) = So(z) + B(2),
_ 1-8@@) p+q Po(z)

BO =70 2
1 P() 0@ [ 1-s5 \?
— 1—4 )
e 1—z< p+qp+q<1—5(z)>)
For future reference, note that
1-S@)p+ql
Voltl] — <
Bonle™ ]_[ 1-s5 P22
s 2\
(15) x(l— 1—4P&)Q&)<]'s ))}
p+qp+qg\1—S()

fory=12,...,

which can be obtained by using (13,(z) = So(z) + Po(z)E0.1)[z"°l*!] and
E0.) [Vl = E(o,1[ol1].
We will use the following lemma in the proof of Proposition 1.

LEMMA 2. If p =¢q, dy > 0, and the aperiodicity condition given in
Proposition 1 holds, then /C (z) isanalytic in an annulus DR wherer <1< R.
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PROOF. ~ First, we show that/C(z) is analytic forz € D" \ {1}. On the
contrary, suppos¢/C(z) has a singularity on the unit circle af # 1. This means

4P 0 Q(zo)< 1-s )2:1
p+qp+g\1-S(zo)

Since| P(z0)| < p, |Q(z0) < ¢ and|1 — S(z0)|* > (1 - [S(z0))? = (1 - s)?, the
only way that (16) can hold is {fP (zg)| = p, |Q(z0)| = ¢ and|1— S(zg)| =1—s.
The last equality holds only i§ (zg) = s. Moreover,P (z0) Q(z0)/(pg) = 1, which
means thaP (z) Q(z)/(pq) must be periodic with a periog;, p > 1 sincezg # 1.
Similarly, if s > 0, thenS(z)/s must be periodic with a periog; > 1.
Suppose that > 0. B)]/( the periodicity ofS(z) /s, there exists a positive integer
S

ks < rg so thatg = Znﬁ and zg = exp(0i). Similarly, there exists a positive

kuy+p <ry4p SO thatt = ZJTI;Z—LL;. Thus,

(16)

k k
0~ Xs _Ku+p

rs ru+D

As a consequence of Euclid’s algorithm, there are integgrsmyp such that
ms -rs +myyp - rysp = ged{rs, ry+p} = 1, where the last equality follows
from rg andry 4 p being relatively prime. However, this means - ks +my+p X
ky+p = f, which is a contradiction since the left-hand side is an integer, but
0< f < 1. If s =0, then we come to the same conclusion becaysg, has
period one by hypothesis. Hencg( (z) is free of singularities on € DR\ {1};
to complete the proof, we need only show tRAE (z) is also analytic at = 1.

By I'Hopital’s rule,

P/ /
D ¢ 4P Q(l)+ P q 25/(1)< 1 ))
p+taqp+q pt+tqgqp+q ptqgp+tgq 1-s)
=2<P(1)+Q(1)Jr S(1)>
p+tq ptqg Q-3

(17) =2d,/(1—5s).

=f<1l

o=

sincep =gq

By hypothesisd,; > 0 so the limit exists ag — 1 and is in the domain of the
square root. Hence, it follows thgfC (z) is analytic in some annulug”k. O

PROOF OFPROPOSITION1. Sincep =g¢q, R =1 satisfies (12) and obviously
R < 1/s. So the radius of convergence abl)(«*) is 1, as desired. Note also that
by (11), Bo,0/(1") =Pr{r < oo} =so+ po=1—«,

1

§o@) = 3 §0((0.0): (. 0)z" = 7=

n=0

=(1-A@) +B@VC(i)V1- Z)_l
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_ 1-AQ@-B@)VCRV1-z
- (1-A@)? - B2R)C()A-2)

=@+ 23 /COVITE,

where

ro(@) = (1 A@@)* - BA2)C ()1 - 2).
r1(z)
ro(z)
So(2), Po(2), S(z), P(z), Q(z) are analytic in some annulu3”® as isy/C(z)
by Lemma 2. Furthermore,

P) Q@) [ 1—s \2
=(1-S - B 2_BZ 1-4
ro(z) = ( 0(z) (2)) (Z)< P+qp—+gq (1 — S(z)) )

r1(z) =1- A(z), r2(z2) = —B(2), r(z) =

i @ 0@ [ 1-s \?
= (1 S0()* = 2B()(1 - So(2)) + 4B2(2) +qp+q<1—S(Z)>

B 1-S@) p+gq
= (1—So(2))* — s PG Po(z)(1— So(2))
11-S@p+gq )2 P(2) Q(z)( 1—s )2

+4<2 15 P ) pigpra\1-s0

a2 1-S@p+g ~ 20()

= (1 - So(2)) 15 PO Po(2)(1 = So(2)) + Po(2) P)

_ D@

TP’

whereD(z) = P(2)(1— So(2))? — 1129 (p + ¢) Po(z) (1 — So(2)) + Po(2)?Q(2).

Since
P@) 1/1-S@\p+q
ro= D()( _S"(Z)_E( 1—s )P(z) PW))’

it follows thatr (z) = r3(z)/D(z), whererz(z) is analytic onD”-X. Similarly,

r2(z)  P@( 1/1-8(@)\p+gq
- 5o 2= ) 5 1)
ro(z) D(z) 2\ 1-—v P(2)

S0ra(z)/ro(z) = ra(z)/D(z), wherers(z) is analytic onD" K,

Casel. Assumec > 0. Note thatD(z) has no zeroes ifr < |z| < 1}, where
r < 1. Suppose it did! It would follow from the above that(1— F (z)) would have
a pole inside{r < |z] < 1}. This is impossible becauge(l) <1 [s0|F(z)| < 1
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if |z] < 1] when the Kkilling probability« is greater than zero. Sind@(z) only
has a finite number of zeroes in a compact set, it follows that there exists an
annulusD™R> with Rp > 1> r, where ¥ D(z) is analytic. Hence,

30(0.0::2.0) = [ 253 az

where y is any positively oriented circle that encloses zero inside the domain
of convergence ofo(z). Sincer(z) is analytic on the punctured disk of radius
RD > 1,

r(z) r(z) .
/y ] dz = fy+ pr dz—0 exponentially fast,
wherey* is a circle of radius greater than one. Consequently, the coefficieht of
in the Laurent expansion @f(z) decays exponentially fast #s— oo and can be
neglected.

Moreover,

%mm: —CV(1-2+0(1-z)

asz — 1in Dys, whereD, s ={z € C:|z]| <1+, |argz — 1)| > o}, where
8>0,14+8 <R,0<a<m/2and where

2d 2d
C=—/CDra(1)/ro(D) = e s p_gE

1-po—s02\1-5 «

If1+68 < Rp, thenféEg«/C(z) = ;3‘8 V/C(z) is analytic inD,_s. By Theorem 16.8
in [24], '

§0((0,0); (£,0)) ~ —C (f —63/2>

— —CT[¢+1—3/2]/(T[¢ + 1]T[1 - 3/2])
~ —CT[l —1/2]/(T[£ + 1T [~1/2]).

Recall /7 = I'[1/2] = (—1/2)T'[—1/2] and the fact thaF[¢ — 1/2]/ T[£ + 1] ~
¢=3/?2 ast — oo (see (5.02) in [19]). This gives

C 32 Do dy  _3p
0,0); (£,0)) ~ —=¢ /22 | Tt p=3/2
§0((0,0); ¢, ) 27 2\ 27 (1—ys)

CAsE 2. Assumex = 0. Note that in this null recurrent cas®,(1) = 0.
Calculation showd'(1) = p§d+ which is positive by hypothesis 39(z)/ro(z)
has a simple pole at= 1. Consequently, the expansionetz) /ro(z) around 1 to
first order is

p ( 1<1—S(1))p+61
pédi(z—D\ 2\ 1-s / p

1-—s
2pod(z—1)

Po<1>) _
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To show thatr(z) is again negligible, note tha{ (1) = 0, which cancels the zero
of order one inD(z) atz = 1. Hencey(z) is analytic at 1 so this term may be
neglected as in the previous case. Therefore, in the neighborhood of 1,

1/2
Go(z) ~ 72 e VC(@)(1-2)

> SO —7) Y= (1— )22

2d+

wherec = (1 —5)/(po/2d+).
Again by Theorem 16.8 in [24],

90((0,0); (£,0)) ~ ¢ (5 _51/2)

~ cT'[€ +1/2]/(T[€ + 1T [1/2]).

Recall /7 = I'[1/2] and the fact thal'[¢ + 1/2]/T'[¢ + 1] ~ £~ Y? ast — oo
(see (5.02) in [19]). This gives

c 1—5
g’O((Oa 0)7 (E, O)) ~ ﬁﬁ_l/z = mg_l/? -

The next proposition gives conditions féi(z) to be aperiodic. Note that the
aperiodicity condition given in Proposition 1 is more stringent than the condition
given in the following proposition.

PrRoPOSITION 2. If the periods of Sp(z) (if so > 0), S(z) (if s > 0),
Po(2)0(z)/(pog) and P(z)Q(z)/(pq) arerelatively prime, then F(z) has period
one.

PrRoOF Consider the case whem > 0 and s > 0. Define G(z,n) =
Ew.0lzY°l*|U = n]. Let |z0| = 1. To have F(zo) = F(1), we must have
G (zo,n) = G(1, n) for all choices ofz. Forn =0, settings = 1 in (6) implies that
So(zo)/so = 1. Forn = 1, setting: = 1 in (7) implies thatPy(z0) Q(z0)/ (pog) =
andS(zo)/s = 1. Similarly, forn = 2, we needPy(zo) P (z0) Q(z0)%/(popq?) =1
and S(zp) = 1. Thus, we must hav&y(zo)/so = 1, S(zo)/s = 1, Po(z0) Q(z0)/
(pog) = 1 and P(z0)Q(z0)/(pq) = 1. By an argument similar to the proof of
Lemma 2, we must havg = 1. ConsequentlyF (z) is aperiodic. [

4. Spectral radius of], for a nearest neighbor random walk. As in the
beginning of Section 2, Ief), be the Feynman—Kac transform associated with
a Markov additive process with transition kernkl Under certain assumptions
on J, Proposition 3 below gives the spectral radius f;f. Proposition 3 is
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Proposition 10 in [10]. Instead of the proof in [10], which appealed to the theory
of large deviations, we give an algebraic proof using the results in Section 3 and
the generalized Ney—Nummelin representatiorr(cf@) in Lemma 1.

The assumptions needed dnare identical to the assumptions dnin the
beginning of Section 3, except that there is no killing; that is; 0. In the proof of
Proposition 3, we crudely twist the kernglobtaining a kernel denoted llythat
may have a killing ontie boundary. After giving therpof of Proposition 3, we
will show how the crude twist can be refined to give a harmonic functior fimr
the nearest neighbor case. This approach will be generalized in the next section.

As in [10], define

RY (. By = J((x,y); (&, y)e? P09y 50 and

x',y

Ry, B) =D J((x,00; (x', y))er &0 PV,

I\
X5,y

(18)

Note thatR™ — 1 andR~ — 1 are identical to the function® ™ and M~ used in
our companion paper [9] and thAt" is strictly convex.

ProPOsSITION3 (Ignatiouk-Robert). For each real y, let 8o = Bo(y) be the
unique value of B that minimizes R™ (y, B).

1. If the bridge condition R~ (y, Bo) < R™ (¥, Bo) holds, then r(jy) = R (y, Bo).
2. If the jitter condition R~ (y, Bo) > R™(y, Bo) holds, then there is a unique
B1(y) < Po(y) suchthat R~ (y, B1) = R*(y, B) and r(J,) = R* (v, B1).

PROOF  Foranyy >0, letu =u(y) = J,(y,y+1),d =d(y) = J,(y,y - 1)
ands = s(y) = J, (y, y). Hence,R* (y, B) = uef +s +deP, expfo) = /d/u

andR™(y, Bo) = s + 2/ ud.
Assume the bridge condition holds. Define

J (0, )5 (¥, y))er 0ol =)
= 7 ,
wheref = R (y, Bo) = s + 2/ud is chosen so that v vy L((x, ¥); (¢, ) =1
for all y > 0. Note that is the probability transition kernel of a Markov additive
procesy Vo, Zo) with a possible killing aty = 0 as described in the last section
[sinceR~(y, Bo) < B+(y, Bo)]. Also note that the choice ¢dg forcesp =g.

By Lemma1l,R(J,) =supu:W(y,u) <1}. NextnoteW (y, u) = Eq,0)[(uf)*]
(wherert is the first timeZg returns to zero) since all the factors involving €8
cancel out over trajectories which start and returnyte- 0. Therefore, for a
giveny,

I((x, )5 (', 9))

R(Jy) =supu:Eqolf)*1<1}.



556 R. D. FOLEY AND D. R. McDONALD

However withp = ¢, using (12), we se@(fy) = 1/f; that is, the spectral radius
of J, is R*(y, Bo).-

Now assume the jitter condition holdsy Bhe argument following Proposition 9
in [10], we see there must exist a unigdg(y) < Bo(y) such thatR~(y, 1) =
R™(y, B1). Moreover, R™(y, B) is strictly decreasing fo8 < Bo(y) so the
derivative of R™ (y, B) is negative ap;.

Define

J((x, y); (7, y/))ey(x/—x)eﬁl(y’—y)
f

and f = R™(y, B1); thus, 4 is the probability transition kernel of a Markov
additive procesgVy, Zo) without a killing aty = 0 as described in the last section.
Again the spectral radius Qty is f times the spectral radius of. However,
the mean drift ofZg is obtained by taking the derivative with respectgoof
RY(y,B)/f = u(y)eP + s(y) +d(y)e ?)/f and evaluating aB1. We already
know the derivative oR* (y, B) is negative ap3; so we concludezg is positive
recurrent and has spectral radius one. We conclude that the spectral raﬁjtjs of

f=R*(y.pn. O

L, y); (¢, yN) =

We have already remarked that the spectral radiui‘,,dis a convex function
and since the spectral radiusfzfz Jis one, it follows that there is at most one
choice ofy > 0 such thatr(fy) = 1. We will call this pointe. Now, we show how
to refine the crude twist to find a harmonic function forFirst, we consider the
jitter case.

Thejitter case R~ («, Bo) > R+(a Bo). Inthis case the function expi(«)y)
is a right eigenfunction forJ, with eigenvalueR*(«, B1). Hence,h(x,y) =
explax) exp(B1(a)y) is harmonic forJ. We can now perform thg transform of
J to get the kernefl and we denote the-transformed Markov chain bV, Z).
The Markovian component has kerrglwhere

p=40.y+1=uexp(fr(a)),
q=4g(y,y—D=dexp—pu@) and s=4(y,y),
po=9(0,1) =upexp(f1(e)) and so=g(0,0).
Note thatpg +so =1 andp < g¢; otherwisegi would not have spectral radius one.
The bridge case R~ («, Bo) < R"(«, Bo). With the parameters and Bo(«)
we construct the kernel which has spectral radius one. Now remark that

the functionag(y) = (1 + xy/po) is harmonic ford so, in fact, the function
h(x,y) = explax) exp(Bo(a)y)ao(y) is harmonic forJ. We can now perform the
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h transform ofJ to get the kerneff and we denote thé-transformed Markov
chain by(V, Z). The Markovian component has kerrgelwhere

L0 +D  1+eG+D/po

PN =94, y+1)=

ao(y) 1+«ky/po
5 ao(y — 1) 1+x(y—21)/po
= , —l = =
g =¢0,y—D=u 200) u 150/ p0
s =G0 y) =s,
for y > 0 and
40,1 = 0%—p0(1+l€/1?0) 4(0,0) = so.

If the bridge condition holds with an inequality (ard> 0), then the kerneﬁ is
transient. To see this we remark that there is some probability of drifting to plus
infinity without ever hitting zero because the criterion for transience is that

Z 1—[ q)---q(k)
<0
ke PD - pk)
By telescoping, the above sum is

o0

Z po(po +«) < o0
= (po+kn)(po+«(n+1))

If the bridge condition holds with equality (ard= 0), thengo(«) = B1(«) and
the functionz(x, y) = explax) exp(B1(«)y) is harmonic forJ. Theh-transformed
Markov chain('V, Z) has a Markovian component with kern(élwith p=q,
which is null recurrent.

5. The h-transform approach and a ratio limit theorem. The last section
gave the exact asymptotics for Markov additive processes whose Markovian part
is a random walk with a boundary. In this section we allow the Markovian part
to be a general Markov chain on a countable state space. We assuniehtesmt
positive harmonic function; that is,2 > 0 andJh = h. Furthermore, we assume
thath has the fornk (z) = ¢*?1i(3), wherex > 0. We usé: to construct the twisted
processV[n], Z[n]) having transition kernef (z, x) = J (z, x)h(x)/ h(z). We use
caligraphic letters for the twisted process. The probabilities of the two processes
for a sequence of state$0], x[1],...,x[rn] in Z x S are related via the following
change of measure:

P{(VInl, Z[n]) =x[n], ..., (V[1], Z[1]) = x[1]|(V[O], Z[Q]) = x[Ql}
=Pr{(VInl, Z[n]) = x[n], ..., (V[1], Z[1]) = x[1]|(VIO], Z[0]) = x[O]}
x h(x[0])/ h(x[n]).
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Our goal is to investigate the asymptotics®fz, (¢, X)) as¢ — oo, whereG is
the Green function of ,

G(z,x)= Z J"(z, x),
n=0

which gives the expected number of visits to any stagtarting from any state.
Unfortunately, we cannot obtain sharp asymptotics as in Section 3. Our main result
is a ratio limit theorem folG (z, (£ +r, X))/ G(w, (£, y)) ast — oo.

Define the Green’s function

G(z,x)=>Y_9"(z,x)
n=0

of g. The Green'’s functio; of J are related bys (z, x) = 4(z, x)h(z)/ h(x). We
find it easier to investigate the asymptotics@fby studying$ since V[n] will
be assumed to drift te-oo. As a consequence of the drifty, Z) is transient and
g andG are finite.

Note that the marginal processgés= Z[0], Z[1],... and Z = Z[0], Z[1], ...
are Markov chains, and we denote their transition kernels Agd$, respectively.
We are interested in the case whghas spectral radius 1 and is either 1-transient
or null recurrent since this will be needed in analyzing the “bridges” of the
modified Jackson network, which fall outside of the scope of [8, 14].

The papers [8, 14] consider the case wtﬁeis positive recurrent; in this case,
under reasonable assumptions,lim, 4(z, (¢, X)) converges to a positive limit,
which is a function of the invariant probability measuregi)fand the speed at
whichV drifts to positive infinity. However, whef is 1-transient or null recurrent,
it does not have an invariant probability measure and-lim ¢(z, (¢, x)) = 0.
Instead, we consider the ratio

9(z, (£, X))
g(w, (£, )

ast goes to infinity.
The assumptions we need on the Markov additive procg$se5) and(V, Z)
for our main result are the following:

AO0. The transition kerneJ has a positive harmonic functionz) = ¥ 1 (3),
wherea > 0.

Al. There exists a> « andM such that Eexp(zV[1])|Z[0], Z[1]) < M for all
Z[0] andZ[1].

A2. J isirreducible.

A2.5. DefineT; to be number of steps fdf to return to some stai € S. We

assume that the distribution &g 5)(V[75] = -) is not concentrated on a
subgroup of the integers. (This is Condition (P(1)) in [14]).
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A3. V[n] — oo almost surely ag — oc.

A4. 9 has spectral radius 1.

Ab5. j has an invariant measuge which is unique up to constant multiples.

A5.5. We assume that constant functions are the unique harmonic functighs for

(This is the strong Liouville property; see [24]. Note that A5.5 automatically
holds whend is null recurrent.)

A6. ¢ is irreducible in the sense that the probability(0, x), (0, y)) of going
from (0, £) to (0, $) is positive for anyt, 3 € S. Also, there exists an integer
N andp > 0 fixed such that for any, there exists an integer = m(y) such
that 1<m < N and 72" ((0, §), (1, §)) > p. (Assumption A6 implies A2;
however, we keep both since we believe A2 is necessary, but A6 may be too
strong.)

A7. There is some state and a functionf such that uniformly iry,

4((0,%), (5,6))/4((0,6), (s,6)) < f (&),
where

Y GEHFR) < oo

S

=
(%)

for all statesz. [A sufficient condition for A7 is thatV, Z) has bounded
jumps. To see this, lep((0, ), (0,5)) be the probability of ever going
from (0, x) to (¢, 6). Clearly,

p((0,6), (s,6)) = p((0,5), (0, £)) p((0, %), (5, 6)).

Hence,

§((0, X), (s,5)) _ p((0,%), (s,0)) - 1

$((0,6),(s,6)) p((0,6),(s,6)) ~ p((0,6),(0,%)
For A7 to hold it, therefore, suffices that the rangef¢f0, 2), (-, -)) is finite
for all 2.]

A7*. Condition A7 holds for the Green'’s function @fV*[n], Z*[n]), where

(V*[nl], Z*[n]) is the time reversal ot V*[n], Z*[n]) with respect togp.
(The purpose of the minus sign (r-V*[n], Z*[n]) is simply to have the
process drift to the right; that is, to also satisfy condition A3.)

We also use the following convention throughout. For real valued functions
f andg, let f(£) ~ g(£) mean that lim_, f(£)/g) = 1.
THEOREM 1. Under assumptions AO—A7 and A7* with w, x, y and z fixed,

6. (6.5) ()
G(w, (&.5) ()’
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which implies

GG (6,8)  h®)e®) h(h)
Gw, (&) h(Pe() hE)

The proof of Theorem 1 is broken up into proving each of the following over
the next few sections:

(19) 5((0. ). (¢, )Y ~ 1,

(20) 6((t,2), (¢, $) ~ §((0,2), (£, ),
(21) (. 2), (¢,6)) ~ 4((0,6), (¢,6)),
(22) 6((t.2), (€. $)) ~ §((0. §). (£, ).

§((0, 9, (£, %) ¢(X)
§(0, 3, €. 3) @)

for all s, z, y, X buto satisfying A7 and A7*.

Equations (22) and (23) combine to give the first result in Theorem 1, and the
second result immediately follows from a change of measure. Equation (19) im-
plies that terms of the forme ¢ make an asymptotically negligible contribution
to 4((0, y), (£, ¥)). Using this, we derive (20), which shows that asymptotics are
unaffected by changin@[0]. To show that the asymptotics are also unaffected by
changingz|0], we show it for the target?, 6), wheres satisfies A7. Once there
existsg such that (21) holds (whether A7 holds or not), the result is extended
to all § € S, giving (22), which implies that the asymptotics are not affected by
the starting state. To obtain (23), the same arguments are repeated on the process
(=V*[n], Z*[n]), where* denotes the time reversal with respect to the invariant
measurep.

Since (20) is equivalent t&((0,2), (¢, y)) ~ ¢((0,2), (¢ + 1,9)), the re-
sult might initially appear to follow directly from renewal theory using A2.5.
However, consider the following: Chung ([2], page 50) gives an example of
an irreducible, aperiodic Markov chain with transition matri such that
limsup,_, P"t1(0,0)/P"(0,0) = oo. Let Z[t] be that Markov chain, and
consider the Markov additive proces¥[¢], Z[t]) = (¢, Z[t]). Since ((0, 0),
(¢,0) = PY%0,0), we have limsup,. 4((0,0),(¢ + 1,0))/4((0,0),
(¢,0)) = co. Now modify the transition kernel of the Markov additive process
(z, Z[t]) to allow the process to either remain in the same state with probabil-
ity 1/2 or to jump as before with probability/2. Since this simply doubles the
expected number of visits to any state, we still have limsup§((0, 0), (¢ +
1,0))/4((0, 0, (¢, 0)) = oo, which violates (20). Note that A6 fails for this exam-

ple.

(23)
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Kesten in [11] studies ratio limit theorems for a transition kerRehaving
spectral radiug. In Theorem 1 of [11], (1.4u) implies that there is a unique (up
to constant multiples) positive harmonic functibnthat is, a uniqué: such that
Ph =rh,while (1.4d) implies there is a unique invariant measaifep to constant
multiples); that isp P = r¢ (though only for the the state space specified in [11]).
In this case Theorem 2 in [11] becomes

Ltk s A A
(24) im PG _ k h@e@)
t—oco PY(W, X) h(D)p(X)

His ratio limit theorems withr = 1 are closely related to our study of the
asymptotics of Markov additive process€g, Z) satisfying AO—-A7. The level
crossing procesg, U[t]) associated with a nearest neighbor Markov additive
procesgV, Z) is a Markov chain with kerneP and spectral radius 1. Clearly,

5 POE.9)-§((0.9), (0.9) _ §((0.2), (¢, $)
X5 PE@. ) - §((0.0). (0.%) — §.((0.). (€. 8))’

so the ratio of the Green’s functions will converge if the ratio limit theorem for the
level crossing process holds.

Our Lemma 5 implies Lemma 4 in [11], and our assumption A6 is equivalent
to (1.5) in [11] (and basically the proofs are the same). Theorem 2 in [11]
requires (1.4u) and (1.4d), which essentially mean that the range of transitions are
bounded—an assumption that we need to avoid becRirss unbounded jumps if
the underlying Markov additive process has negative increments. Instead of (1.4u)
and (1.4d), we simply assumed in A5 that the invariant measure is unique up to
multiplication by a constant and in A5.5 that the only positive harmonic functions
are the constants. However, in order to push through the argument giving (21)
and its analog for the reversed process without the bounded jump assumption, we
added the uniform integrability assumptions A7 and A7*. These assumptions may
be too strong. However, some additional assumption is needed since Section 5.5
contains an example satisfying AO-A®b, yet (21) falls.

(25)

5.1. Proof of (19). By the convexity ofr(fy), it follows that there can be
at most one poiny > 0 such thatr(f,,) =1, that is, wheny = «. Note that
Jo((x1,), 1, ) = F((x1, ), (v1,y)), wherea was given in assumption AO.
Consequently/($, ) = §"($, §). Thus, they have the same radius of conver-
gence, thatisR(J,) = R(g). By A4, the spectral radius ¢f = 1 so

r(Jo)=r(§)=1;  henceR(J,)=R(J).

and both kernels are either 1-recurrent, 1-null recurrent or 1-transient.
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Note that
Yy, u) =) £/ Hu"
n

_ 3 u"Jy (3, 311D J, (FI11, $[2]) x - -

n
JIU#S, ..., Jn—11#3,9[n]=3

x J, ($[n — 21, $[n — 1) J, Gln — 11, $[n])

= > u" Jy ((0, 9), (x1, F11D)Jy ((x1, PILD, (x2, FI2D) x - -

n
X1,.eesXp

JILEP, ... PIn—11#P
X J}/ ((xn—l’ )A’[n - 1])7 (xn’ 5\)))

- > W I((0,9), (x1, S[LD)

n
X1yeeesX

SIS S —119
x J((x1, I[2D), (x2, [2])) x - -~

X J((xn—17 5\)[” - 1])7 (-xna 5}))
=Eq ) (eVV[Tﬁ]uT-Gx{TyA, < 00}).

We introduce the random wafld given byV whenZ returns toy, wherey is
any fixed point inS. AssumeU starts with initial state 0. The (defective) density
of the increment of this walk is given by

fu) =Pr(V[T;]=v, T; < oo|(V[O], Z[0]) = (0, §)),

where’fy is the first timeZ returns to zero.
Define the transforn®q (z) =Y, fu(v)z’ of fy. Let

o (x) = Pr(the first weak descending ladder pointldfis atx),
[e.e]

w(x) = Z PrU, =x andU,, > 0for1<m <n).
n=0

By duality (duality lemma, [5], page 395)(x) is equal to the probability that
is a strictly ascending ladder point of. Let W,(z) =3, gz"p(x) andW¥,(z) =
> »>02 n(x) be the transforms gf andu, respectively.

LEMMA 3. Theradiusof convergenceof W, (z) issupu : Wy (1) < 1}.
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PrRoOOF We cite the following facts from [5]o + u = 8,0+ 1 * fy. Taking
transforms, we obtain

(26) U, (z)=(1-¥,(2)/(1—Yyu).

SinceV[n] — oo asn — oo, it follows that the return distribution is defective
soV,(z) < 1 for z > 0. Therefore, the radius of convergencedof is equal to
supu: Wy (1) < 1} [since Wy (z) has radius of convergence at least one sitice
is a (defective) random variable] ]

Note that
Y(x + B,1) =Eq g (expl(a + B VIT;){T; < oo})
(27) = (0.5 (EXp(BVIT;D{T; < o0})
=Y fs(v)exp(Bv) = Ws(eXp(p)).

LEMMA 4. Theradius of convergence of Wy, (z) and ¥, (z) is 1.

PROOF  r(Jo) = r(J) < 1 andr(Jy) = r(§) = 1. Sincer(J,) is convex,
we concluder(Jy4p) > 1 for > 0 SOR(Jg4p) < 1 for g > 0. By the above,
Yy (exp(B)) = Y(a + B, 1). Also, by Lemma 1, for any > 0,

supu:W(a+B,u) <1 =R(Jgip) <1  soW(a+pB,1)>1
By Lemma 3, the radius of convergencedf is given by
supu Wy (u) <1}
=supexpB) : s (exp(B)) <1}
=supexpB) V(e +p,1) <1} =exp0) =1.
Hence, the radius of convergencewf is one, and by Lemma 3, the radius of

convergence o, is one as well. [

Consider the Markov chaid (¢) having kernelA, which represents the age of
the ladder height process at timieThe probabilityw (€) is the probability that the
age at time is zero; that isp.(¢) = P(A(£) = 0) = A o. Next (4§ o) ¥/* — r(A),
the spectral radius oft, so we conclude.(¢)Y/¢ — 1. Letm() be the expected
number of visits ta0, y) by (V, Z) starting from the point0, y). Clearly,

m() = §((0, 3), (¢, 3)) = u@m().
Sinceu (€)Yt — 1, this means limL, o (4((0, $), (¢, H)HY ¢ =1.
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5.2. Proof of (20).

LEMMA 5. Under assumptions AO—AB,

$(0,2), (€ +1.9))/6((0,2), (¢, 9)) — 1.

For modified Jackson networks the asymptotic%.0f0, 0), (¢, 0)) are calcu-
lated explicitly in Proposition 1 and can be directly shown to satisfy the conclusion
of Lemma 5.

PROOF Let Xy = V[k] — V[k — 1]. By A1,

P(VI[n] > ¢|Z[0] =z, V[0] = 0)

< e—"E(exp(t > xk) ‘Z[O] =2, V[0] = o)

k=1

< e‘“E(E(exp(t 3 xk> ‘Z[k], k=1,2,...,n:Z[0]=2, V[0] = 0)‘

k=1

Z[0] =2z, V[0] = 0)
<e tMm".

Next, for anyx > 0,

/44
> P(Z[n]=3,VI[nl=t+1V[0] =0, Z[0] =2)
n=0

[x£]

<Y P(VInl=0)

n=0
[«l]

S Z e—l‘gMn S e—ZZMKg/(M _ 1)’
n=0

where [x] is the integer part ofc. We pick ¢ sufficiently small so that =
exp(—t)M* < 1. Hence, we can decompose

n=0

into a main part

(29) > P(Z[nl=3, Vinl =€+ 1|2[0] = 2, V[0] = 0)

n=«{
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and a negligible part. We take negligible to mean that a term liké-exf) is
negligible compared t&((0, ), (¢, y)) as ¢ — oo. Such a term is negligible
because lim_.»(4((0, $), (¢, $)))Y¢ = 1; that is, the potential does not die out
exponentially fast. By assumption AZ™((0, 2), (0, y)) > 0 for somem. It
follows that

(30) $((0,2), (¢, ) = " ((0,2), (0, $))§((0, 9), (¢, )

modulo the negligible probability thal exceeds! in m steps. Consequently,
if a term is negligible compared t@((0, ), (¢, y)), it is negligible compared
t0 §.((0, 2), (¢, ).

Without loss of generality, we can assume there is a minimum probability
the Markov additive proces€V[n], Z[n]) stays put during any transition. By
assumption A6, there is a fixed minimum probability that the Markov additive
procesgV[n], Z[n]) makes a transition fron, z) to (1, z) after N steps. Hence,

min{g" ((0,2), (0,2)), #"((0,2). (1.2)} =8  uniformly in z.

We can use the Bernoulli part decomposition developed in [3] and [13] to represent

Ny
V[n]=Unl+ > Lk,

k=1
whereL1, Lo, ... arei.i.d. Bernoullirandom variables independen(@i[»], N,);
n=12,...} such thatP(L1 = 0) = P(L1 = 1) = 1/2 and whereN,, is a
Bernoulli random variable with mearb and varianceb(1 — b), whereb =§/N.
N, and U[n] are dependent. In effect, we have a probabiitgf picking up a
Bernoulli step every transitions.

We can represent (29) as

0 Nn
> P(Z[n]:y,u[n]+ZLk=e+1)
n=«t k=1

n m

(31) =Y > > PZnl=3Ulnl=L—x,N,=m)

n=«k{ m=1 x=1
m
x P(ZLk=x+1).
k=1

Pick ¢ to be small and such that®e < b. For anyn, we can bound the large
deviation probability

P(|N,, — nb| > en) < exp(—A1n) whereA1 > 0,
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as in [22], Example 1.15. Therefore, we can decompose (31) into a main part

Y Y Y P@Inl=5Ulnl=€—x, N, =m)

n=«l m:|n—bn|<en x=1

i

k=1

(32)

and a negligible part

) ZP(Z[n]:fz,U[n]=£—x,Nn=m)P<ZLk=x+1)

n=«k{ m:|n—bn|>en x=1 k=1

<> Y PWNu=m)

n=«k{ m:|n—bn|>¢en

< Z exp(—A1n)

n=«{
= exp(—kLA1)/(1— exp(—A1)).
We can now expand (32) into a main part
o0
P Y PZnl=3.Unl=t—x,Ny,=m)

n=kl m:|m—bn|<en x:|x—m/2|<em

i

k=1

(33)

and a negligible part

> X S P(ZInl=3,Ulnl=£—x, N, =m)P

n=«k{ m:|m—bn|<en x:|x—m/2|>em

x(iLFHl)

k=1

<Y Y P@Inl=3.Ny=m)exp(—Aam)

n=«x{ m:|m—bn|<en

si > exp(—Azm)

n=kf m>(b—e)n

< Y exp(—A2b —e)n)/(1— exp(—A2))

n=«t

<exp(—A2b —e)xl) /(1 —exp(—A2(b — ¢))) (1 — exp(—A2))),
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where the constant, > 0 is given in [22], Example 1.15.
We can now focus on (33),

" m 1 " m—x
P(];Lk=x+1> =(x+1)ﬁ=P<k§:lLk=x>x+1.
Forx such thaix — m/2| < em, we have
1/2—¢ <m—x<1/2+8
1/24+e+1/m~ x+1~1/2—¢
If, in addition, |m — bn| < en, we can simplify the left-hand side of the above:
1/2—¢ _m=x
1/24+e+1/(n(b+¢) ~ x+1
Finally, whenn > « ¢, we get
1/2—¢ m—x 1/24¢
h= 1/2+£+/1/((b+£)/c£) Siric 1?2—5 = /2

We can therefore bound (33) @e and below by multiplyingf, and f1,
respectively, by

Z Z Z P(Z[n]Zf’,U[n]ZE—x,Nn:m>

n=«k{l m:|m—bn|<en x:|x—m/2|<em

(34) .
x P ( Z L, = x).
k=1

If we now add the negligible terms back into (34), we get that (31) is
bounded (modulo negligible terms) above and below by multiplyfagnd f1,
respectively, by

00 Ny
3 P(Z[n] =9, Unl+ > Ly = e) =4((0,2), (¢, 9)).
n=0

k=1
Hence,
1/2—¢ liminf 4.((0, z),A(Z + 1 ) < lim Sup%((O, z);(ﬁ + 1 ) - 1/2+¢
1/2+e 7 t—o00  G((0,2), (£, y)) t—oo  $(0,2), (£, y)) 1/2—¢
and sinces can be taken arbitrarily small, the result follows.]

5.3. Proof of (21)—uniformintegrability.

PrROPOSITION4. Under assumptions AO—A7
6(t,2), (€,6)) ~4(0,6), (£,6)) ast — oo.
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ProoFr Define

By, (s, %) :=G((s, %), (€4, 6))/4((0,6), (£, 6)).
Take a subsequendg such thatB,, (s, X) converges taB(s, x) for all (s, x) as
£, — oo. By Lemma 5,B(s, x) = B(x).
We can write

(85) By, (1.2) =) §((t.2), (s, %)) By, (s. %) +

(s,%)

By assumption A.14((t, ), (¢, 6)) above decays exponentially fast@as> co so
the second term on the right-hand side of (35) tends to zefe-aso. Moreover,

9((1,2), (5,2)) = G2, D) G 2.5, (s — 1),

wherej(m) (s —1) is the probability the additive transition equals ¢ given there
has been a transition frofto x,

_ §(6. %), (6n, 6)) _ §((s, %), (b, 6)) §((5,6), by, )
§((0,6), €y, 6))  §((s,6), (£n,6)) §((0,6), (£y,5))
and the first fraction is bounded b(x) by A7. Moreover,

Y GG D) <o

By, (s, %)

for all z.
If p((0, ), (¢, 5)) is the probability of ever going fronD, &) to (¢, ), then
p((07 6.)7 (Zna &)) Z p((o’ &)7 (S, 8))p((sa 8)7 (Em 6'))
Hence,

§((s,6),(n,0)) _ p((s,6), (£n,5)) - 1
$((0,6), (s, 6))  p((0,6), (£n,6)) ~ p((0,6),(s,6))
1/p((0, ), (s, 6)) increases at a subexponential rate and, hence, is integrable
in s with respect tog .z ;) (s — #) sincegz 3 (s — t) decays exponentially fast in
uniformly in z, x by Al.
We conclude thatBy, (s, x) is bounded uniformly in¢, by f(x)/p((0,5),
(s,0)) and

> 3.2, (s, 9) f@)/p((0,6), (5.6)) < 0.

(s,%)

SinceB;y, (s, X) converges pointwise tB8(x), dominated convergence implies that
By, (s, %) converges irL.! relative to the measurg((z, 2), (s, £)) and that

B(t,2)=)_ $((t,2),(s,%)B(s, %)

(s.%)
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or

BZ) =) 4G 3)B®)

by Lemma 5. This means(z) is harmonic forgz. By hypothesis, the constant
functions are the only harmonic functions fgprand B(6) =1 soB(s, o) = 1 for
all (s, 2). Since this limit is independent of the subsequehgét follows that

Zimoog((t, 2),(¢,6))/4((0,6), (¢,6)) = L. O
5.4. Proof of (22).

PROPOSITIONS.

Gz (6.9)  _ 1 6z, (£,6))

36 .
(39) §((0,), (¢, ) ~ p((0,3),(0,6))2p((0,6), (0, 3)) $((0,6), (¢, 6))

PROOE The number of visits td¢, 6) is greater than the number of visits
to (¢, y) followed by a visit to(¢, 6),

9(z, (¢,0)) = 4(z, (¢, ) p((0, ), (0,6)),

and the number of visits t¢Z, ¥) is greater than the number of visitsf y) that
must first go througli0, 6) and then must go throud®, 6) before going td¢, y),

(00, 3). (£, ) = p((0, ), (0,6))4((0,5), (¢,6)) p((0,5), (0, )).

The inequality follows by dividing the above two inequalitieS]

PROPOSITIONG. Under assumptions AO—-A7,

8((s,2), (£, ) ~4((0, 9), (£, ) as{ — oo.

ProoE Define

Cr, (5, %) :=§((s. %), (€n. ) /$((0. $). (Ln. $))-

Take a subsequendg such thatCy, (s, X) converges toC(s, x) for all (s, x)
as{, — oco. By Lemma 5,(s, x) = C(x). By Proposition 5,

1 6((s,X), (£n,0))
p((0,9),(0,6))?p((0,6), (0, $)) $((0,5), (€4,6))"
The sequence of functions (@, x) indexed by¢,, on the right-hand side above is

uniformly integrable with respect to the measyi€z, z), (s, x)), soCy, (s, X) is
uniformly integrable as well.

C, (s, %) <
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Since

A A A A g((tvz)’ (En’j\)))
C b - b b b C b ~ A b
66D =2 30D, 6 D)Co, s + 70 5

(S"x’\)

we can take the limit ag, — oo to get
CH =D G HCAE).
&

Again, we conclud€ (x) = 1 and this proves the result[]

Define the time reversed kernel by

F*(w,2) = @) F(z, w)/e).

g* is the kernel of the time reversed procé8s = (V*, Z*). Define the Green’s
function, §* by

6%z, w) = §((z1, ), (w1, W) = Y (9" (z, w),
k=0

Z* has kernelf*(x,2) = ¢(3) (3, %) /¢(%) and g* has unique (up to constants)
invariant measure and harmonic function 1.

PROPOSITION7. Under assumptions AO—A6 and A7*,
@(X)
o(¥)

PROOF It is easy to see-W*[n] satisfies assumptions AO—A6. Moreover,
A7 holds for—W*[n] because A7* holds fow. Consequently,

g’*((ov)e)’(_ev 5}))/9»*((0, 5)),(—6,5})) -1 ast{ — oo

by Propositiom 4 since the constant functioase the unique hanonic functions
for g*. By time reversal, this means

9(3) A ¢() A
((p@)gg((o, 9, (e,x)))/((p@)g((o, ), (¢, y))) —1  ast— oo.

This gives the result. [

astl — oo.

3((0, 3, (¢, %))/4((0, ), (¢, ) —

Putting Propositions 4 and 7 together we get the following:

THEOREM 2. Under assumptions AO—A7 and A7*
P(X)
@)

astl — oo

3((s,2), (€, 0)/4((, ), (€, 9)) —

for fixed s, u, W, x, y and Z.



BRIDGES AND NETWORKS 571

Using Theorem 2, plus the change of measure fyoim ¢, we get the following:

THEOREM 3. Under assumptions AO—A7 and A7*,
h(®)e() h()

T A A ox as{ — oo
h(M)e(y) h(z)

G((s,2), (£,%))/G((u, w), (£, ) —
for fixed s, u, w, x, y and Z.

5.5. Assumptions AO—-A6 are insufficient for (21). This section gives an
example satisfying all of the assumptions except for the uniform integrability
assumptions A7 and A7*, but (21) does not hold. From the discussion near (25), it
suffices to give a transition kernglsuch that (24) does not hold. Consider a chain
onS={...,—2 -1,0,1,2, ...} with kernelg defined as follows:

A A

Idn,n+1)=9mn,n—-1)=1/2 forn>1
Jn,n+1)=1/3 and d(n,n—1=2/3 forn<-1

940,n)= f(n)  forn>—1andf(-1) >0,
where f is the probability mass function such thaf> ynf (n) = co. We could

modify the kernel scﬁ(n,n) > ¢ for all n and this will not alter the following
conclusions.

This chain is clearly irreducible and transient to minus infinity. Nevertheless,
it has spectral radius one. Starting from 0, the chain can go to 1 and then return
to 0 after Z — 1 steps without hitting 0 again. Waw this has probability of order
1/(2¢)%/2 in the preceding section. Hence,

Jlim (7% (0. 0)Y¥* =1.

This chain only has constant positive harmonic functions because fod, a
harmonic functior: must satisfy(n) = 3k (n + 1) + 3h(n — 1). This means the
harmonic function must be positive and linear [@oc). On the other hand, we
must haven(0) = Y72 o h(n) f (n) and this is infinity unles# is constant by the
construction off. Hence, no harmonic functions other than constants can exist.
In spite of all this, Proposition 4 fails with = 0. Pick a starting point = —n
with n even. Once the chain hits O the first time aftérs?eps, the probability of
hitting 0 again in 2 — 2k steps is asymptotically the same as returning to &¢in 2
steps since this later probability is of ordef(2¢)%/2. It therefore follows that

g% (=n,0)
42(0,0)
We bound the probability of hitting O fromn by considering 0 to be absorbing
and we see the return distribution falls off geometrically faskirHence, the
probability of a return to 0 can be picked arbitrarily small by pickmdarge.

Hence, P (hit O starting from—n) is strictly less than one. Hence, the ratio limit
theorem fails. This is not unexpected since jumps are unbounded and A7 fails.

— P (hit O starting from—n).
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6. Asymptotics of queueing networks. As in [8, 14], we consider a Markov
additive proces3vV°° with transition kernelK*° on $*° and a boundara with
an edge denoted by = S N A such that the probability transition kerngl of the
chain W agrees withK*° within S\ A; thatis,K(x,C) = K®x,C)if x € §
andC C S\ A.

We assuméV is stable and we are interested in the asymptotics of the steady
state probabilityr of W as the additive component gets large. We have assumed
the existence of a positive harmonic functidtw) = h(w) = exp(ozwl)ﬁ(zb)
for K°° on §°°. We have constructed thetransform.K*°(z, w) := K*°(z, w) x
h(w)/h(z). Let K denote the Markovian part of the transition kert€t°. We
assumewye, W) = (V, Z) satisfies AO-A7, A7* and B1-B4 given below:

Bla. Define Green's function,

9z y) =§((z1.2). (1. 9)) = D (K" (2. y).

k=0
We assume that for some fixed state

§((0,w), (¢,6))
((0,0), (¢,6))

Blb. We also assume

§(w, (¢, 6))
$((0,0), (¢,6))

In fact, the uniform boundedness need only be checked on that suhset of
which can be reached in a transitionWwf° from $°° \ A into A.

B2. There exists a subsétC A such thatr (C) > 0 and such that, for € C,
P,(T° =00) > 0, where7* is the first return time ta by W*.

B3. For eachy, there is an associated intege(¢y) such that(¢, y) N A= &
if > L().

B4. L(x) =7 (x)h(x)x{x €A} is afinite measure.

is bounded uniformly inb for ¢ sufficiently large.

is bounded uniformly inv € A for ¢ sufficiently large.

LEMMA 6. If assumption B1 holds, then for any state y and for ¢ sufficiently

large,
M is bounded uniformly in z € A for ¢ sufficiently large
40, y), (£, 9)

and

§((0,2), (¢, )

77 jshounded uniformly in z for ¢ sufficiently large.
5.((0, 3). (€, ) Y yiars
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PROOF By Proposition 5,

§@ (6.9 _ . §@¢6)
30,9, ¢, 3)) ~  §((0,0), (¢, 06))
The right-hand side is uniformly bounded ine A for ¢ sufficiently large by
condition B1b.
The same argument works to prove the second inequality, except condition Bla
is used. OJ

whereC is a constant.

THEOREM4. Under assumptionsAO0—-A7, B1-B4 for any states y and & such

that ¢ (6) > 0,
~ N O’ 6 ) 67 o
(e, §) ~ FhiHp) LG ET)
@(0)

where f = Y., m(2)h () P.(T° = 00).

’

Note f is positive by assumption B2 and can be obtained by fast simulation.
Also note that if X*° is positive recurrent, theteady state theorem in [8, 14]
implies

A A 1 ~
$((0,0), (¢,0)) S whereji is the mean drift ofwy*.

@(5) n

PROOF OFTHEOREM 4. As in the steady state theorem in [8], for L(y),
the steady state probability of, ) is given by

T9—1
m(L, ) = Zm)Ez( > X{W"O[n]:(ﬁ,ﬁ)})

ZEA n=0
=Y 7 @E(N$(©)),
ZEN

where N} (¢) denotes the number of visits By to (¢, y) before7g°; that is,
before W returns toa. Also let N(¢, y) denote the number of visits by

to (¢, y).
By the change of measure induced by the twist, we get
(37) a7, ) =h ) Y T@QhRE(NA(, $)),

ZEA
where N4 (¢, §) is the number of visits by the twisted processMi{Z, y) is the
number of visits to(¢, §) by W, then N4 (¢, y) agrees withv (¢, ) if W™
never hitsa.
Letm(¢, ) =4((0, y), (£, ¥)). We now investigate

(38) Y 7(@h()

ZEA

1
E.(NA(, 3
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ast — oo. 3
Let 7,°° =min{n > 0: W;°[n] > b},

Y A@PAT < T < 00)

ZEA

=Y "7(2) Y PTy° < T < o0, W(TX) = w)h(w)

ZEA wWEA
=Y mhw) Y Py(Ty < TS < oo, W(T]) =2)
wWEeA ZEA

where *%” indicates time reversal with respect#o
< Y m)h(w) Py(Ty < TS < 00)

weAh

-0

since A(z) = m(2)h(z) x{z €A} is a finite measure by hypothesis andW; >
b) — 0 asb — oo. Pickb sufficiently big so that

D AR P(TYS < T < 00) <&

ZEA

Moreover, by Lemma 6, we can also piglsufficiently large that

1
> 7@h(@)————E.(N*(L, )
Z€N,71>b m(t, y)
(39) 1
< > 7@h@)—— @3 E.( N, D) <e

Z€N,Z1>b

for ¢ sufficiently large.
For ¢ > b, we first remark that

1
h —E, (N4, )
Z€§<bn<z> (Z)m(z,w (NA (L, D)
(40) - 1
_ A 5
_zeA,Zzl<bn(Z)h(Z)m(f’?>EM ) x{T° < T
sinceb < ¢.
Next, we compare (40) and
1
(41) Y m@h(R)——— e E- (N D) x{T° < T).

Z€N,Z71<b
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The difference is less than

> w(2)h(2)

ZEA

1
———E (N (£, ) o T x{T,° < T,°
m(t, ) AN, D) o TXx T < T° < 00})
= Z 7(2)h(2) Z PTy° < T° < 00, WRIT Ll = w)
ZEN,71<b WEA
1

X A
m(t,y)

Euw (N (£, )

<C > #a@h@ Y. PAT° < T2 < oo, WO[T°] = w)

ZEN,Z1<b weA
using Lemma 6
<C Y m@h@PT < T < o0)

z€0,71<b
<Ce by (39).

_We therefore investigate the asymptotics of (41). Condition on the point when
‘Wre first hits or exceeda. (41) is equal to

Yo m@h@). Y. PAWPIT,C1=b+s,

ZEN,71<b O0<sv:vi=b+s
(42) WO =10, T,° < T°
s N (€= (b +5), ).
e gy o 0. 5)
However,
! g N(—(b+5),73)
I - _(b+s).
m(g’ )’\)) (0,7) y

_9(00,9), (L — (b+5),9))

T §30,9), (4, 9)

_ §0,0), € —(b+5),3) $10,9), ¢ = (b+5),))

(0,9, (L= (b+5). ) 40, 9), (£, )
by Theorem 1. The first ratio on the right-hand side above is uniformly bounded
in v as¢ — oo by Lemma 6. Moreover,

§(0.3), k= (b+5),9) _ 1
3((0, 9), (£, ) ~ p((0,9), (b+s,))

and this is integrable ins relative to PZ(WfO[’J‘b"O] = b + s5), since from

assumption Al, the jump sizes and, hence, the excess beéyare bounded in
distribution by an exponential.

—1
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Consequently, (42) converges to
Y. m@h@)PATY < T°)
Z€A,Z21=b
by dominated convergence. Moreover,
Y T@h@P(T° < T

Z€N,21<b
(43) - Y T@h@P(TFC =00)=f  asb— cc.
ZEA
Equation (38) is withire + Ce of (41) as¢ tends to infinity. Next, (41) tends to

f ast andb tend tooco. Sincee is arbitrarily small, we conclude the right-hand
side of (37) tends ta—1(9) f, that is,

lim e e, ) =h G

t=oo m(l, ) '
Finally, we use Theorem 1 to replagg&(0, y), (¢, y)) by ¢(3)$((0,6), (¢,5))/
¢(0)) asymptotically. This gives the resultC

6.1. Asymptotics of two node networks. Theorem 4 gives the asymptotics of
the steady state probability of a discrete time queueing network when the queue
at the first node gets big. Below we specialize Theorem 4, using Proposition 1, to
prove Theorem 5 for networks with two nodes. We can consider jump processes
because, without loss of generality, we can assume the event rate is one, so
we can regard the jump rates as transition probabilities of a Markov divain
with kernel K on § = {(x, y)|x,y > 0, wherex, y € Z } (whereZ denotes the
integers). Consequently, is also the stationary distribution .

Now extend S to S = {(x,y)|y = O, wherex, y € Z} and definea =
{(x,y)]x <0,y >0} NS> The kernelK agrees with a Markov additive kernel
K° defined onS* for transitions between points i§i* \ A. W is thefree
chain with kernelk > on $°°. The free proces¥ > is a Markov additive process.

The additive componen‘ﬁ/Oo is the number of customers at the first node, and
the Markovian componeri¥®® is the number of customers at the second node.
Markov additive kernels are defined in detail in Section 2, but we can just extend
the definition ofK ((x, y); (x + u, y + h)), which is constant fox > 0, tox € Z.

We assume& * is nearest neighbor in the Markovian component. We also assume
K*° is homogeneous, which meai#&™ is a homogeneous random walk off the
boundaryr={(0, y): y =0}.

Fory > 0, define

RT(01.02) = Y K™((x,y); (x/, y))elt =020

X,y
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and fory =0,
R™(01,60) = > K®((x,0); (x', y))e™ 9PV,

X,y

THEOREM5. The bridge casé:et #” be the solution to

(44) 67 > 0,
(45) w =0

002 ’
(46) RT (") =1.

(a) Suppose R~ (62, 605) < RT (62, 65).

(b) We assume that the distributions P(V[1] € -|W*°[0] = (0, 1), Z[1] = 1),
P(V[1]1 € |W*[0]=(0,1), Z[1]=2)and P(V[1] € -|W*>°[0] = (0, 1),Z[1] = 0)
[having z-transforms S(z)/s, P(z)/p and Q(z)/q resp.] satisfy the aperiodicity
condition given in Proposition 1.

(c) We assume cascade paths up the y axis can be neglected by requiring
Y50 %Y72(0, y) < 0o s0 B4 holds, We also assume B1.

(d) We suppose the mean drift of V above the x-axis is positive; that is,
dy+ >0, where d is given at (5) and where the constants «k and u = p = ¢
are defined as in Section 3, where we define { as the hg-transform of K°° with
ho(x, y) = expéyx) exp(65y). Denote the associated Markov additive process by
Wé’o = (Vo, Zo).

Then the least action path is the bridge path. If R=(62,65) < RT (62, 65) (or,
equivalently, « > 0), then
(47) 7 (€, y) ~ [P exp(—670)C ™2 exp(—03y)e (1),

where f? is a constant obtainable by fast ssmulation, ¢(y) = % (1+«y/po)? and
C. isgivenin Proposition 1.
If R=(62,05) = RT (62, 65) (or, equivalently, x = 0), then

(48) w(l,y) ~ fPCot™ Y2 exp(—0b 0) exp(—65y),

where Co isgivenin Proposition 1. o _
The jitter caseSuppose we can find 6/ = (67 , 63) satisfying 6 > 0 and

(49) R*©))=R"(6))=1.

(a) Suppose R=(62,65) > R*(62,65).

(b) We assume the aperiodicity of the distribution P(V[Tp] € -|[W*[0] =
(0, 0)) of the additive part V of W at the time Tp when the Markovian part
Z of W returnsto 0. A sufficient condition is given in Lemma 2.
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(c) Weassume p < g.
(d) We assume cascade paths up the y axis can be neglected by requiring
Zyzoe%’yn(o, y) < 00.
(e) We supposethe mean drift of V given at C7in [8] is positive; that is,
d’ =9 (0)(Sp(D) + P{(D) + (1 - 9(0)(Q'() + (1) + P(1)) > O,
where ¢ is a probability measure given at C6in [8],
(0 =Tp/po and ¢(y)=T(p/q)’
(50) B
whereT" = (p/po+p/(q —p)) "
The above constants are defined as follows. Define the harmonic function

h(x,y) = exp®; x) exp®3 y) and construct W, the & transform of K> having
kernel KX °°. Define P, Q, S, Py and So, aswell as p, g, s, po and sg, using K °
instead of £ aswas done near (4).

Then we have a jitter case and

: 1 .
7 (L)~ [ eXp(—010) = eXpH—02 )¢ (7)
and f/ isa constant obtainable by fast simulation.

PROOF  In the bridge case, take = 62. We have to check that conditions
AO0-A7 and B1-B4 in Section 6 hold. These follow almost immediately from our
assumptions. Thé-transformed kernelK{°(z, w) := K*°(z, w)ho(w)/ ho(z)
satisfies the following properties:

(@) ho is harmonic for the free process off theaxis SOK°((x, y); (x', )
is a probability transition kernel when> 0.
(b) Off thex-axis, the mean vertical drift is O; that is,

D OKS((x,y): (¢, ¥))y' =0 wheny > 0.
w

(c) We have assumeH{°((x, 0), -) is substochastic with killing probability.

Let X§° denote the Markovian part of the transition keref°. Since the
kernel is nearest neighbor, define

p=KCO.y+D, q=KFO.y-1D, s=KFO.y)
(51) fory >0,
po=Xg°(©,1), so=K§°(0,0), k=1~ po—so.
Assumption A5 is automatic sinc&€> has nearest neighbor transitions and it
is easy to check that
0

90 =1 and qo(y>=p7a8(y> fory >0
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is the unique (up to multiples)-finite stationary distribution fotk >. Moreover,
the constants are the only harmonic functions f6f° sinceaq is the unique
harmonic function (up to constant multiples) &{;°.

By Section 4, the spectral radius m?fg@ is 1. The spectral radius ok is the

same as?%@o and this is 1, so A4 holds. By Proposition 1 4if> 0 andd > 0,
then

0
90((0,0); (€,0)) := Y (K§)"((0,0); (0, 0)) ~ C.L~ %2,
n=0
whereC is defined in Proposition 1.
Instead, ifc« = 0 andd,. > 0, then

40((0, 0); (¢,0)) ~ Cot Y2,

where Cy is defined in Proposition 1. Moreover, if = 0, thenhg is harmonic
for K, soag(y) = 1 andg’/ = 6P,

In the jitter case, take = 91’. We need to check hypotheses C1-C11 in [8].
These follow immediately from our assumptiopss as given since the Markovian
part is nearest neighbor[]

7. Modified Jackson networks. In this section we first give conditions for
the stability of a modified Jackson network. We then specialized Theorem 5 to a
modified Jackson network with two nodes.

7.1. Definitions. Consider a Jackson (1957) network with two nodes. The
arrival rate of exogenous customers at Nodes 1 and 2 form Poisson processes with
ratesii and Ao, respectively. The service times are independent, exponentially
distributed random variables with mear/y and /o, respectively. Each
customer’s route through the network forms a Markov chain. A customer
completing service at Node 1 is routed to Node 2 with probability or leaves
the system with probability1 0 := 1 — r1.2. Routing from Node 2 is defined
analogously. So without loss of generality, we are assuming=r2 2> = 0. The
routing process, service processes and arrival processes are independent.

To ensure that the network is open, we assume ithato 1 < 1. Since the
network is open, the traffic equations

(52) A=A+ A3_ir3ii fori=1,2,

have a unique solutiofk1, 12) = (A1 + Azr2,1)/(1—r12r21), (A2 +A1r1,2)/(1—
r1,2r2,1)). To eliminate degenerate situations, we assumeithatO andi, > 0.

The joint queue length process of this Jackson network forms a Markov process
with state space = {0, 1,...}2. Definep; = A;/u; for i = 1, 2. From Jackson
(1957), it follows that the stationary distribution for the joint queue length process
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being in the statéx, y) € S is (1 — p1)p7 (1 — pz)pév, provided that the stability
conditionsp; < 1 andp> < 1 hold.

The network that we analyze is a small change from the above network. Suppose
that Server 2 has been cross-trained and helps Server 1 whenever Queue 2 is empty.
Let u] > 1 be the combined service effort of the two servers at Node 1 when
Server 2 is empty. In the section entitled Stability in [9], we proved the modified
network will be stable ifp, < 1 andul > (A1 — pn102)/(1 — p2).

We are interested in the rare event of a large deviation in the number of
customers at Node 1; that is, more thtanustomers at Node 1 whefeis large.

We will consider choices of the parameters which eliminate the possibility of a
large deviation first up the-axis followed by a drift over taF,. This means the
large deviation paths are along theaxis as was described in Part I. However, if
the most likely approach for the Jackson network “jitters” alongxttexis, asi]
increases this approach may eventually become sulfficiently difficult so that some
other approach becomes most likely. Instead the process travels alongitie

but instead of jittering along the-axis, the process skims above and only rarely
touches ther-axis. We refer to this path adoaidge path.

The event rate of the modified Jackson network.is A1 + A + o + wi
(sinceu] > u1). Without loss of generality, we assume= 1 so we can regard
the jump rates as transition probabilities of a Markov chigirwith kernel K on
S ={(x, y)|lx,y >0, wherex, y € Z}. The modified Jackson network is precisely
the homogenization of this chaiW. is a nearest neighbor random walkSinJumps
outside ofS are suppressed.

7.2. Asymptoticsin the 1-positive recurrent case.  In this section we apply the
results in [8] and [14]. Define the harmonic functibx, y) = exp(6; x) exp6; y),
whered/ satisfies (49). We assume < exp(—63) and p < 1. The associated

Markovian part of the twisted kernét > is positive recurrent ip < 1 (o is given
by Theorem 5). The associated stationary probahglity given in Theorem 5. The
only thing to check is

Y h(y)m(0, y) < oo.
y=0

This follows because this sum is bounded Ej(‘;oexp(egy)péV by the a priori

bound given in Lemma 1 in Part 1. This is finiteof < exp(—eé).
In summary:

COROLLARY 1. If pp < exp(—9£) and if p < 1 where p = p/q and where
p, g are defined after (50), then the least action path jitters along the x-axis and
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¢ becomes

-1
<1+ —) rp¥1, if y >0,
1-p

@y 1
(53) <1+ d ) : ify=0,
1-p

. ind j J i
wherer = (Aze2 + pir12e 7102 [ (1uorp.0e%2 + puor 1e%17%2).

7.3. Asymptoticsin the 1-transient case.  In this section we apply the results in
Section 6. We assum® < exp(—eé’), butp > 1. In this case Proposition 1 gives
a solutiond” and we takex in AO to be#?. A2 holds since the network is nearest
neighbor in the additive component, as well as the vertical component. A2 is true
by our assumptions on the Jackson network.

ui > pn1 >0 anduy > 0 (or else the network cannot be stable). Moreover,
at least one ofiy > 0 or > > 0 or the network is empty:0 >0 o0rr0>0
by hypothesis. Finallyp1 > 0 andA> > 0, which means.q + /\zrz 1> 0 or
A2+ A1r12 > 0. A2 follows immediately.

Next we check hypothesis A2.5. Suppase> 0. Next suppose; o > 0. In the
first case whemy o > 0, then from a pointx, 0), the chainW® returns to the
x-axis either at(x, 0) by going up and down or ai — 1, 0) by going left one.
Since we can return to both— 1 and tox, A2.5 is satisfied. In the other case
whenry 2 > 0, then from a pointx, 0) the chainW returns to thex-axis either
at (x, 0) by going up and down or gt — 1, 0) by going northwest one and then
down. Again A2.5 is satisfied.

Suppose, on the other hand, that> 0 butrp o= 0 sorz 1 > 0 andryo > 0.
From a point(x, 0) the chainW® returns to thec-axis either a{x — 1, 0) taking
a step left or tax, 0) by taking a step left, going up one and then going southeast.
A2.5 is satisfied. The case whep= 0 follows in the same way.

Conditions A3—-A5 hold automatically and A6 holds since either> 0 or
A2+ porz1 > 0.

Assumptions B2—-B3 hold automatically. As for assumption B4, we remark that

Z h(y)7(0,y) < Z "V ag(y)p3.

y=0

so assumption B4 holds if’? p2 < 1. Note that this is precisely the condition that
appears in Theorem 1 in Part I, ensuring that the least action path is the bridge
path or the path jittering along theaxis. Note also that we have appealed to the
special structure of the Jackson network, but in a more general case we could use
Lyapunov functions.

This leaves assumption B1. It suffices to show that the 1@ati@, y), (¢, 0))/
4.((0,0), (¢,0)) is bounded uniformly iny as¢ — oo (i.e., we takes = 0). For
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pathse’ of W starting from(0, 0), defineN;,g) (') to be the number of visits
by W to (¢, 0) following the trajectoryw’. Also defineB to be the set of trajecto-
ries where thec-coordinateWs® stays nonnegative, that i8,= {«’: W°[n] > 0,

n > 0}. Similarly, for pathsw of W starting from(0, y), defineN, o)(w) to be
the number of hits at¢, 0).

Now consider the product space of all pathef W, which start from(0, y)
times pathsw’ which start from(0, 0). On this product space we can define a
coupled path starting fron0, 0), which follows o’ until &’ hits the pathw and
then followsw. Given a pathw which hits (¢, 0), we note that all pathe’ € B
must hit the patlw because the path' is trapped between theaxis and the path
w and there are no northeast or southwest transitions for Jackson networks.

DefineN(,0)(w, ') to be the number of hits &, 0) by the coupled path. Then,
for " € B and any pattw, N o) (@) < N,0)(w, @). Hence,

E0.»)Nw.o)(@) - Po,o) (@' € B) =Eqy) ® E.0)/(Nw.0) (@) x5()
< Eq.y) ® E0,0/(N.0) (@, @) xp())
< Eq.y) ® E0.0)(N(.0) (@, @)
=E0,0/(Ne.0)(@).

We concludes ((0, y), (¢,0)/4(0,0), (¢,0) < Po,o) (e € B)~1: thatis, the ratio is
uniformly bounded ir¢ andy:

Remark that the special structure of the modified Jackson network was not really
needed to make the above argument work. Bounded jumps are enough.

We can now apply Theorem 5. Since the mean vertical increment is zero, we
can simply use the following values:

= p=q=>28XN03) + p1r1,2€xp(—67) eXp63),
po = A2@Xp(63) + uire 2 €xp(—67) exp63),
50 = A1 €XP(OY) + wirroexp(—62) exp6b),
k=1— po—s0
and
dy = —p1r1 2AT A2 + porp 1A1A; 4+ (M AL — parr oA Y
in the bridge case.
7.4. Asymptoticsinthe 1-null recurrentcase. There are practically no changes
from the 1-transient case.= 0 if and only ifo? also satisfie ~ (9?) = 0; that is,

if and only if 9 = 67 . In this casep = 1 andg(y) = 1 for all y. The application
of Theorem 5 is immediate.
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8. A comparison with existing results. A referee asked us to compare our
results with existing results in the literature in [4]. This paper describes two
processors with service rateg; at server one angko at server two, serving
independent streams of Poisson arrivals with rateandio, respectively. When
one server becomes idle it helps the other server and the rate at server one becomes
wi when server two is idle and the rate at server two becqnjaghen server one
becomes idle. This, nearly a modified Jackson network with= o1 = 0, except
that, for simplicity, we did not allow server one to help server two. It is clear that if
w7 is big enough, then the large deviation when the first queue gets big is a bridge.

Unfortunately, we have not been able to derive the asymptotics of the steady
state probability of this system from the results in [4]. In the special case where
p1x = 5 = 1 + 2 (Where pg = papp in the notation of [4]), formula (6.4)
in [4] should give the asymptotics, but it is not clear how. In the general case
when pg # uipe, (7.2) in [4] gives a formula foiG (z), which is essentially the
z-transform ofr (x, 0). Again, we could not invert this function.

We did not have better luck with [12], which is a special case of [4] with=
A2 =X, 1= p2=p/2 andu] = u3 = u. In this, the total number of customers
in the system is exactly aW /M /1 queue with loath = (A1 + A2)/ (1 + u2),
where the probability the total number of customeré decays likeo®.

Fortunately the analysis in [6] gives the asymptotics ¢f, y) for the bathroom
problem (as it was described in [22]) where couples arrive at a cinema according
to a Poisson process with rateand immediately visit the ladies’ and men’s room.
The service rate, at the men’s queuejsvhile the rate at the ladies’ queuefs
This model was extended in [14] by allowing separate arrival streams with rate
for single ladies and rate for single men. We are interested in a large deviation
of the men’s queue, so let this be the first queue and the ladies’ queue the second.
In the (unrealistic) case < B, the exact asymptotics af(¢, y) are given in [14].
Omitting the streams of singles (&6=n = 0),

TEN~y i v <£)Z<l_ %) <%)y’

where f is a constant. This is the positive recurrent case and the asymptotics are
the same as (7.19) in [6].

The theory in [14] could not handle the (more realistic) case g (note
y in [14] equalsa since A = n = 0). The only result given was that at the
stopping timer;, when the men’s queue reaches sizéhe ladies’ queue divided
by ¢ converges tda — 8)/(¢ — v). However, the results of this paper do solve
this problem becausg < a gives the l-transient case. Note that (44), (45),
(46) become

(54) 07 >0,

(55) vefle? — ﬂe_eg =0,

(56) Vel 2 + ﬂe_ﬁg + ae ™ = v+ B8+ a).
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Solving (55) gives

(57) expt3) = VB/vexp(—67/2),
substituting into (56), and letting= exp(@f), we get
(58) 46v2° = ((@ + B+ v)z — )’

We recognize this as equatidh (z) = 0 given at (3.2) in [6] (where =1).

To make the connection to [6] (since they only consider the eases), we
must exchange the labels of the first and second queues s@ bacomess
and vice versa in [6]. This converts the equatibi(z) = 0 into D2(z) = 0 and
according to [6], there is only one solutign= a5 with z > 1, soag = exp(@{’).
The asymptotics ofr(¢, y) are now given by those, , in (7.20) in [6]. We
immediately recognize the asymptoti¢s®/ Z(aé)“ for the additive component
as was predicted by expression (47).

Next by (57), exs) = /B/v(ay) ~/?,
u=po=p=vexphl)expos) = pexp—63), s = aexp(—6?),
s0=aexp(—07) + B sok =1 — po—so= Bexp(—b5) — B > 0.
Hence, the asymptotic distribution of the second queue is given by expression (47):

exp-653) 22 (142 ) = <aé)y/2<1+ (1 - ﬁ(aé)—l/z)y),
u Po v

and this agrees with (7.20) in [6]. Of course, [6] is much more precise since the
constant term is given as well.

There is still the null recurrent case to consider. Nowt 0 whenve®i e +
ae~% + B = 1: that is, whenge=% = g. Hence,0% = 0, so exio?) = B/v,
and this impliese = 8 when one considers eéqtf) = aj solves Dy(z) =0
in [6]. Hence, Proposition 1 gives the asymptotics/2(8/v)~¢ for the additive
component, and this agrees with (7.3) in [6] (siace: 8). Sincep(y) =1 in the
null recurrent case and sinéé = 0, we conclude

K
exp(—eé’y)%(l-i- p—Z) _1

and this agrees with (7.3) in [6].

Of course, we still have to check the conditions AO—A7 and B1-B4, but these are
essentially the same as for the modified Jackson network. Even the proof that B1
holds is essentially the same because how we have jumps going northeast, but not
southeast or northwest. Condition B4 holds becatde y) < (1 —v/B8)(v/B)”,
so using (57),
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Finally, let us say a word about the matrix-geometric method. The level is
the additive component and the phase is the Markovian component of a Markov
additive process with kernet*>°. For a QBD process, the additive component
is nearest neighbor. Denote the transition probabilities from phaséevel’ to
phasej atlevel¢ — 1, respectively? and¢ + 1 by A, respectivelyB andC. Hence,
we can represent the Feynman—Kac kernel as

Ky, j)—ZeV’ ((,00; (j, ) = vV TA+ B+00);

if v=exp(y). Solving the Riccatti equation associated with the matrix-geometric
method is equivalent to finding a Perron—Frobenius eigenvector of the Feynman—
Kac kernel with eigenvalue one. That means soling!A + B +vC)y =y is
equivalent to findings andi =y so K h =h. Equwalently, the solution to the

Riccatti equation gives a harmonic functlbnx, i)= exp(yx)h(z) for K°°,
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