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LARGE DEVIATIONS OF A MODIFIED JACKSON NETWORK:
STABILITY AND ROUGH ASYMPTOTICS

BY ROBERT D. FOLEY1 AND DAVID R. MCDONALD2

Georgia Institute of Technology and University of Ottawa

Consider a modified, stable, two node Jackson network where server 2
helps server 1 when server 2 is idle. The probability of a large deviation
of the number of customers at node one can be calculated using the flat
boundary theory of Schwartz and Weiss [Large Deviations Performance
Analysis (1994), Chapman and Hall, New York]. Surprisingly, however, these
calculations show that the proportion of time spent on the boundary, where
server 2 is idle, may be zero. This is in sharp contrast to the unmodified
Jackson network which spends a nonzero proportion of time on this boundary.

1. Introduction. In this paper we derive the rough (logarithmic) asymptotics
for the steady state probabilityπ of a particular two node queueing network as
the queue at server 1 gets large. The analyzed queueing network is a variation
of a two node Jackson queueing network in which server 2 when idle can assist
server 1. Allowing one of the servers to help can completely change the behavior of
the network. This network clearly exhibits a large deviation phenomenon, which
we call a bridge. For certain parameters, as the queue length at node 1 grows,
the queue length at node 2 stays small, but generally positive so that server 2 is
prevented from helping server 1. Instead of jittering along thex-axis, the process
skims above thex-axis and only rarely touches the axis.

This bridge phenomenon seems to have been somewhat overlooked. In
particular, the theory in [8, 11] for analyzing exact asymptotics does not apply.
In a companion paper [9], we extend the theory and develop an approach to
obtaining the exact asymptotics of networks exhibiting the bridge phenomenon.

The bridge phenomenon in the modified Jackson network is not an isolated
case—the bridge phenomenon is ubiquitous. Since becoming aware of it, we are
encountering it frequently in a variety of contexts. In Section 5 we use this theory
to revisit thebathroom problem discussed by Shwartz and Weiss [15].

In Section 2 we describe the Jackson network and the modified network. We
then discuss the possible large deviation paths for overloading node 1. Section 3
determines the stability conditions ofthe modified Jackson network. Section 4
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analyzes the rough asymptotics of the modified Jackson network; the analysis of
the exact asymptotics appears in [9]. Section 5 briefly describes another model
where the bridge phenomenon occurs.

2. Notation and main results. Consider a Jackson (1957) network with two
nodes. The arrival rate of exogenous customers at nodes 1 and 2 form Poisson
processes with ratesλ̄1 andλ̄2, respectively. The service times are independent, ex-
ponentially distributed random variables with mean 1/µ1 and 1/µ2, respectively.
Each customer’s route through the network forms a Markov chain. A customer
completing service at node 1 is routed to node 2 with probabilityr1,2 or leaves
the system with probabilityr1,0 := 1− r1,2. Routing from node 2 is defined analo-
gously. So without loss of generality, we are assumingr1,1 = r2,2 = 0. The routing
process, service processes and arrival processes are independent.

To ensure that the network is open, we assume thatr1,2r2,1 < 1. Since the
network is open, the traffic equations

λi = λ̄i + λ3−ir3−i,i for i = 1,2,(2.1)

have a unique solution(λ1, λ2) = ((λ̄1 + λ̄2r2,1)/(1 − r1,2r2,1), (λ̄2 + λ̄1r1,2)/

(1 − r1,2r2,1)). To eliminate degenerate situations, we assume thatλ1 > 0 and
λ2 > 0.

The joint queue length process of this Jackson network forms a Markov process
with state spaceS = {0,1, . . .}2. Defineρi = λi/µi , for i = 1,2. From Jackson
(1957), it follows that the stationary distribution for the joint queue length process
being in the state(x, y) ∈ S is (1 − ρ1)ρ

x
1(1 − ρ2)ρ

y
2 , provided that the stability

conditionsρ1 < 1 andρ2 < 1 hold.
The network that we analyze is a small change from the above network. Suppose

that server 2 has been cross-trained and helps server 1 whenever queue 2 is empty.
Let µ∗

1 ≥ µ1 be the combined service effort of the two servers at node 1 when
server 2 is empty. The transition rates for the joint queue length process of the
modified network are shown in Figure 1. By comparing jump rates, the total
number of customers in this modified network is stochastically smaller than the
total number in the associated Jackson network. Hence, the modified network will
be stable if the associated Jackson network is. However, cross-training server 2
may allow the modified network to be stable even ifρ1 > 1. In particular, ifρ2 < 1
andµ∗

1 > (λ1 −µ1ρ2)/(1−ρ2), then the modified network is stable; see Section 3
for the argument.

We are interested in the rare event of a large deviation in the number of
customers at node 1; that is, more than� customers at node 1 where� is large.
The steady state probability of this rare event is proportional to the number
of visits to F� ≡ {(x, y) :x ≥ �, y ≥ 0} between returns to the origin. For the
Jackson network, we can determine the most likely path from the origin toF�

by looking at the reversed process starting from steady state inF� and look at
sample paths that leaveF� on the first step and never return. The reversed process
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FIG. 1. Jump rates for the modified network.

has external arrivals entering nodei with rate λiri,0. The service rates at the
nodes are unchanged, but the routing probabilities for the reversed process are
r∗
j,i = λiri,j /λj for i and j in {1,2}. Start the reversed process in state(�, y),

where� is large buty is small. As long as there are customers at node 1, customers
leave node 1 at rateµ1. Thus, customers enter node 2 at rateλ2r2,0 + µ1r

∗
1,2. If

this rate is less than the maximum rate at which customers can leave node 2, that
is,

λ2r2,0 + µ1r
∗
1,2 < µ2 or, equivalently, ρ−1

2 > r2,0 + r2,1ρ
−1
1 ,(2.2)

then the number of customers at node 2 remains small, and the reversed process
starting fromF� bounces along thex-axis to(0,0). If the inequality is reversed,

ρ−1
2 < r2,0 + r2,1ρ

−1
1 ,

then the process starting from(�,0) leaves thex-axis and heads roughly northwest
(with an easily determined slope) as the customers in node 2 grow until node 1
empties, that is, hits they-axis.

From there, the process bounces along they-axis south to the origin because
customers in the time reversed network enter node 1 at rateλ1r1,0 + µ2r

∗
2,1. This

rate is less than the maximum rate at which customers can leave node 1, that is,

λ1r1,0 + µ2r
∗
2,1 < µ1 or, equivalently, ρ−1

1 > r1,0 + r1,2ρ
−1
2 ,(2.3)

given (2.2) fails (otherwise just add the two inequalities together and derive a
contradiction).

If the inequality in (2.2) is changed to an equality, then the number in node 2 in
the reversed process behaves like a simple, symmetric random walk, which would
hit they-axis at a height proportional to

√
�. Thus, in the Jackson network, there

are three possibilities for the most likely approach from the origin toF�, though
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the approach corresponding toequality in (2.2) occurs only for a set of parameters
with Lebesgue measure zero.

Now consider the modified network withµ∗
1 = µ1. Of course, this is identical to

the Jackson network. Suppose the most likely path for a large deviation at node 1 of
this Jackson network bounces along thex-axis. Letµ∗

1 increase. Asµ∗
1 increases,

the approach going out thex-axis becomes more difficult and may eventually
become more difficult than some other approach. In addition to the obvious
possibility of going up they-axis, it turns out that there is a third possibility hinted
at by the case of equality in (2.2): the process travels along thex-axis, but instead
of jittering along thex-axis, the process skims above and only rarely touches the
x-axis. This third approach we refer to as abridge path, which is slightly optimistic
since we hope to prove properties in a later paper that would justify the word
“bridge.”

Section 4 contains our preliminary investigation of this modified Jackson
network by looking at the behavior under the fluid scaling. For the fluid scaling,
speed up the transition rates by� and measure customers in units of 1/�, which
results in a functional s.l.l.n. In particular, we apply the flat boundary theory of
Schwartz and Weiss [15] to obtain rough asymptotics, as well as the fluid scaled
large deviation path. In the fluid scaling, both the bridge path and the path that
jitters along thex-axis collapse to a constant speed line along thex-axis, which
suggests that the flat boundary theory might not be able to distinguish between
the two. However, the calculations also give the proportion of time spent on the
boundary. In some cases, the proportion of time spent on the boundary is zero,
proving the existence of this third possible approach toF�. In fact, we define a
bridge path to be such a large deviation path which follows a line, for example, an
axis though the proportion of time the process spends on the line is zero. Although
the term is defined with respect to the fluid scaling, the basis for the term is the
conjectured behavior of the unscaled process. Even though we suspect that it has a
bridge shape, there are other possibilities. For example, the most likely path when
equality holds in (2.2) jitters up they-axis proportional to

√
� before drifting toF�

also spends zero time on the boundary and collapses to thex-axis under the fluid
scaling. We intend to sort out these questions in a future paper.

A jitter path follows a line, for example, one of the axes, while spending a
nonzero proportion of time on the line. Though jitter path is defined with respect
to the fluid scaling, the term reflects the behavior of the unscaled process, which
jitters along the line as it travels toF�.

We will use the phrase “with large deviation rateθ ” to mean that

lim
�→∞

1

�
logP

(
W ∈ F�|W(0) = (0,0)

) = −θ,

whereF(�) is the set of cadlag paths inS starting at the origin and associated with
a large deviation ofW to F� before returning to the origin; that is, to describe the
rough asymptotics. NoteF(�) is a set of paths hitting the setF�.



LARGE DEVIATIONS OF NETWORKS 523

Basically, we will show that the rough asymptotics can be determined from three
points; see Figure 2. The coordinates of the easternmost point of the egg-shaped
curve is labelledθb. If the curveM− = 0 intersects the eggM+ = 0 betweenθb

and theθ1-axis, then the intersection is labelledθj ; otherwise,θj = θb. If the
horizontal line at height log(ρ−1

2 ) intersects the egg betweenθb and theθ1-axis
and (2.3) holds, then the intersection is labelledθc; otherwise,θc = θb.

The first coordinate ofθb, θj andθc gives the large deviation rate of the best
bridge path, jitter path and cascade paths, respectively. The minimum of the three
first coordinates is the rate associated with a large deviation at node 1. Theorem 4
summarizes these results.

FIG. 2. M+ = 0 is the egg-shaped curve; the other curve is M− = 0.
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3. A bound and stability. We will need the following bound in [9]. Since the
stability argument and the derivation of the bound use the same coupling, we have
included both in this section.

LEMMA 1. For the stable, modified network,∑
j≥y

π(0, j) ≤ cρ
y
2 .(3.1)

PROOF. The proof is divided into two parts. First, we use a coupling argument
to consider the caseλ1 < µ1. We associate a regionR(x, y) with each point
(x, y) ∈ S. The argument shows that there is a coupling of the queue length
processes of the Jackson and modified networks so that if the modified network is
in state(x, y), then the state of the Jackson network is inR(x, y). It immediately
follows that the stationary probability of the modified network being in state(x, y)

is bounded by the stationary probability that the Jackson network is inR(x, y).
Similarly, it follows that the stationary probability that the modified network is in
B ⊂ S is less than or equal to the stationary probability that the Jackson network
is in

⋃
(x,y)∈B R(x, y).

Now we describe the coupling. We can consider them to be a pair of
discrete time Markov chains,W [n] for the Jackson network andY [n] for
the modified network, subordinated to a common Poisson process with rate
λ1 + λ2 + µ∗

1 + µ2, which we assume without loss of generality to be one.
Basically, W [n] and Y [n] “attempt” to move in the same direction. More
precisely, generate an i.i.d. sequence of random variables (directions) tak-
ing values{E,N,W,NW,S,SE,W ∗,NW ∗} with probabilities{λ1, λ2,µ1(1 −
r1,2),µ1r1,2,µ2(1 − r2,1),µ2r2,1, (µ

∗
1 − µ1)(1 − r1,2), (µ

∗
1 − µ1)r1,2},

respectively. For thenth step, bothW [n] andY [n] “attempt” to take a single step
in the direction given by thenth random direction. The directionsW ∗ andNW ∗
indicate west and northwest, but only for the modified network when it is on the
x-axis; otherwise,W ∗ andNW ∗ indicate that the process stays put. By “attempt,”
we mean that the process moves to the neighboring state in that direction unless it
would result in the process leaving the state space; for example, if either process
were on they-axis and the attempted step were to be in the directionW . Note that
if both processes move, they move in the same direction. However, one process
may move while the other stays put.

For the regions, define

R(x, y) = {(i, j) ∈ S|i ≥ x, j ≥ (y − 1)+}
∪ {(i, j) ∈ S|(i, j) = (x − 1, y)}.(3.2)

Note that for(x, y) ≥ (1,1), both (x − 1, y) and (x, y − 1) are inR(x, y), but
(x − 1, y + 1) and(x − 1, y − 1) are not. We claim that ifW [n] ∈ R(Y [n]), then
W [n+1] ∈ R(Y [n+1]). This is clear when both processes are in the interior since
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they both move in the same direction. Consider the caseY [n] = (1, y) with y > 1
andW [n] = (0, y). Both processes move in the same direction unless the direction
is W or NW ; in all cases,W [n + 1] will still be in R(Y [n + 1]). Now consider
the case whenY [n] = (1,0) andW [n] = (1,0). Consider the movementsNW ∗,
thenW and thenSE. This makesW [n+3] = (0,0) andY [n+3] = 1 andW [n+k]
will still be in R(Y [n + k]) for k = 1,2,3. This trajectory explains whyR(x, y) is
defined as it is. We leave it to the reader to finish checking the claim.

Now startW [0] andY [0] off in the same state with distributionπ . Notice that∑
i≥0,j≥y

π(i, j) = P
(
Y [n] ∈ R(0, y + 1)

)

= P
(
W [n] ∈ R(Y [n]), Y [n] ∈ R(0, y + 1)

)

≤ P
(
W [n] ∈ R(0, y)

)
< ρ

(y−1)+
2

for sufficiently largen becauseW [n] converge to steady state. This completes the
argument under the conditionλ1 < µ1. [R(x, y) is the smallest set that will work
for this coupling. This can be seen by starting both chains at the origin and arguing
that there is a sequence of random directions such that(Y [n],W [n]) = (x, y, i, j)

for every(x, y) ∈ S and(i, j) ∈ R(x, y). Most points can be reached by having
both processes move sufficiently far east, then the modified network moves west
back to the origin, then the Jackson network moves sufficiently far northwest, and
finally both processes move north and east sufficiently far. The few remaining
points can be reached by getting the Jackson network to the origin while the
modified network is at(0,1).]

Now consider the case whenλ1 ≥ µ1. The number of customers at node 2 is
stochastically smaller than a birth–death process on the nonnegative integers with
birth rate λ̄2 + µ1r1,2 and death rateµ2 on the positive integers, and birth rate
λ̄2 + µ∗

1r1,2 in state 0. Thus, the probability of more thany customers at node 2
is smaller thanc[(λ̄2 + µ1r1,2)/µ2]y for a suitably chosen constantc. Using (2.1)
and thatλ1 ≥ µ1, it follows that[(λ̄2 + µ1r1,2)/µ2] ≤ ρ2. �

3.1. Stability of the modified network.

PROPOSITION 1. The joint queue length process of the modified network is
positive recurrent if λ2 < µ2 and λ1 < ρ2µ1 + (1 − ρ2)µ

∗
1. If either inequality is

reversed, then the process is transient.

PROOF. The result follows from comparing the modified and Jackson net-
works in the caseρ1 < 1; for the coupling, see the first part of the proof of
Lemma 1. Now consider the case whereλ1 ≥ µ1. The following definitions of
Tn andXn are only used in this proof. LetTn denote the time that thenth busy
period starts at node 2, and letXn be the number of customers in queue 1 just prior
to the start of thenth busy period at node 2. The processX0,X1, . . . is a Markov
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chain. To prove the result, it suffices to show that E[Tn+1 − Tn|Xn] < ∞ and that
X0,X1, . . . is positive recurrent.

The random variableTn+1−Tn represents thenth busy cycle at node 2, which is
the sum of thenth busy period and thenth idle period at node 2. Sinceλ2 > 0, the
expected length of thenth idle period is finite. The length of thenth busy period at
node 2 is stochastically increasing inXn; hence, it is stochastically smaller than the
busy period in anM/M/1 queue with service rateµ2 and arrival ratēλ2 + µ1r1,2.
Fortunately,̄λ2+µ1r1,2 < µ2 sinceλ̄2+µ1r1,2 < λ2 whenλ1 > µ1. The expected
length of this bounding busy period is 1/(µ2 − (λ̄2 + µ1r1,2)).

To show thatX0,X1, . . . is positive recurrent, we will show that for allXn

greater than some large constantM , E[Xn+1 − Xn|Xn] < −ε < 0, which is a
Foster–Lyapunov type condition guaranteeing stability. The constantM can be
chosen large enough so that the busy period at node 2 is arbitrarily close to the
busy period of anM/M/1 queue with service rateµ2 and arrival ratēλ2 + µ1r1,2

and that the departure process from node 1 during this busy period is arbitrarily
close to a Poisson process with rateµ1. The change in the queue length at node 1,
Xn+1 − Xn, can be decomposed into the sum of the change during the busy
period at 2, and the change during the idle period at 2. Hence, forXn > M ,
E[Xn+1 − Xn|Xn] is arbitrarily close to

(λ̄1 + µ2r2,1 − µ1)

(µ2 − (λ̄2 + µ1r1,2))
+ (λ̄1 − µ∗

1)

(λ̄2 + µ∗
1r1,2)

,(3.3)

which is strictly less than zero ifµ∗
1 > (λ1 − µ1ρ2)/(1 − ρ2) and is equivalent to

ρ2µ1 + (1− ρ2)µ
∗
1 > λ1.

To show transience, first assume thatλ2 < µ2, but λ1 > ρ2µ1 + (1 − ρ2)µ
∗
1.

From the argument above, forXn ≥ M sufficiently large, E[Xn+1 − Xn|Xn] >

ε > 0; hence, forM sufficiently large,Xn behaves arbitrarily closely to a random
walk with strictly positive drift and is transient.

Now consider the case whenλ2 > µ2. Note thatλi represents the long run
average arrival and departure rate from nodei assuming that the network, either
Jackson or modified, is recurrent. AssumeXn is recurrent; otherwise, we would
be done. SinceXn is recurrent, the departure rate from node 1 equals the arrival
rate. If this rate is less thanλ1, then the queue length at node 2 must be diverging.
However, if the departure rate from node 1 isλ1, then node 2 is also diverging
since the arrival rate would beλ2. In either case, the network is transient.�

4. Flat boundary approach. We are interested in describing how a modified
Jackson network overloads. In particular, we will be interested in the rare event
when the system starts out empty and node 1 reaches a level� before the system
empties again.
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If we speed up the jump rates by a factor�, but reduce the jumps by a factor 1/�,
then we get the scaled processW�. From the theory in [15],

lim
�→∞

1

�
logP

(
W ∈ F(�)|W(0) = (0,0)

)

= lim
�→∞

1

�
logP

(
W� ∈ F(1)|W�(0) = (0,0)

)

= − inf
p∈F

[I (p)],(4.1)

whereI (p) = ∫ T
0 �(

dp
ds

(s),p(s)) ds is the rate function associated with a pathp

in the set of absolutely continuous pathsF starting from(0,0) which hits the set
{(1, y) :y ≥ 0} at some timeT before returning to(0,0). Note that after timeT ,
the path follows the natural drift path back to the origin, and�(

dp
ds

(s),p(s)) = 0
along the drift path. We will use better, cheaper and smaller action, synonymously.

SinceW has constant (but different) jump rates on and off the flat boundary, the
local rate function�(�v,w) = �+(�v) if w is in the interior; that is, ifw = (x, y)

with y > 0 and�(�v,w) = �−(�v) if w = (x,0). It follows from the calculus of
variations that the cheapest path inF is a sequence of line segments of constant
speed which changes direction only on they-axis. [If a path changes direction
on thex-axis, either leaving the interior to travel along thex-axis or by leaving
thex-axis at some point other than the origin to travel through the interior, there
is a cheaper path from the origin to{(1, y) :y ≥ 0}; the cheaper path might hit
{(1, y) :y ≥ 0} at a different point like(1,0).] Consequently, the cheapest path
in F must lie in one of the following setsFi,Fx,Fc, where:

Fi is the set of all constant speed paths with positive slope across theinterior until
hitting (1, y) with y > 0,

Fx is a constant speed path jittering or forming a bridge along thex-axis until
hitting (1,0), and

Fc is a constant speed path jittering up they-axis, then changes direction and
heads for the point(1,0) at constant velocity. Thus, the customers first build
up in node 2, and thencascade into 1.

In each of these three cases, we will be able to reduce the problem to a
differentiable, constrained nonlinear optimization problem. We use the Karush–
Kuhn–Tucker conditions, which are given in a variety of texts including [3, 13],
to determine the minimal action in each of the three cases. These results are then
combined to determine (4.1).

4.1. A bridge is better than any path through the interior. In this section we
consider the interior pathsFi ⊂ F . That is, we consider paths that initially have
the formp(s) = (v1s, v2s) until hitting (1, v2/v1) at timeT = 1/v1, wherev1 > 0
andv2 > 0. After timeT , the path follows the natural drift path until reaching the



528 R. D. FOLEY AND D. R. MCDONALD

origin. We will find the infp∈Fi
[I (p)] and show that this inf is not attained inFi .

However, there will be a bridge path which attains the inf. Hence, there will always
be a bridge that is better than every interior path.

Define the log moment generating function of the compound Poisson process
associated with jumps in the interior

M+(θ1, θ2) = λ̄1(e
θ1 − 1) + µ1r1,0(e

−θ1 − 1) + µ1r1,2(e
θ2−θ1 − 1)

+ λ̄2(e
θ2 − 1) + µ2r2,0(e

−θ2 − 1) + µ2r2,1(e
θ1−θ2 − 1).

The Hessian ofM+ is positive definite; hence,M+ is strictly convex. We also
know thatM+(0,0) = 0. Now, we argue that there exists a point(θ̂1, θ̂2) > (0,0)

with M+(θ̂1, θ̂2) < 0. To see this, first consider the caseρ1 < 1. In this case,
∇M+(0,0) · (1,1) < 0. Hence,(1,1) is a decreasing direction. Now assume
ρ1 ≥ 1. In this case,(0,1) and(ε,1) are decreasing directions for a suitably small
ε > 0.

Next, the local rate function in the interior in direction�v = (v1, v2) is

�+(�v) = sup
θ1,θ2

(
θ1v1 + θ2v2 − M+(θ1, θ2)

)
,

which is clearly convex. For a pathp ∈ Fi with velocity �v, �(
dp
ds

(s),p(s)) =
�+(�v) for s > 0. Hence, I (p) = �+(�v)/v1 is a good rate function; see
Theorem 5.1 of [15]. The remainder of this section is devoted to finding
infp∈Fi

[I (p)] = infv1>0,v2>0�+(v1, v2)/v1. The argument consists of 3 steps.
First, we argue that infv1>0,v2>0�+(v1, v2)/v1 = minv1>0,v2≥0�+(v1, v2)/v1.
Second, we argue that every local minimum is a KKT (Karush–Kuhn–Tucker)
point, which will be defined shortly. Third, we argue that there is exactly one
KKT point (v1, v2) ∈ (0,∞) × [0,∞); hence, this KKT point must be the global
minimum of minv1>0,v2≥0�+(v1, v2)/v1.

For v1 ≥ 0 and v2 ≥ 0, clearly, �+(v1, v2) ≥ −M+(θ̂1, θ̂2) > 0. Hence,
�+(v1, v2)/v1 is bounded below by 0 and explodes asv1 decreases to zero.
Furthermore, by Proposition 3.1 in [4],�+(v1, v2)/v1 explodes as the norm of�v
becomes large. Also, for eachv1 > 0, we know that�+(v1, v2)/v1 is continuous
in v2 as v2 converges to 0. Hence, infv1>0,v2>0 �+(v1, v2)/v1 must be a local
minimum (withv1 > 0) of

min�+(v1, v2)/v1(4.2)

s.t. v2 ≥ 0.(4.3)

It is known that every locally optimal solution to a constrained, differentiable,
nonlinear optimization problem with linear constraints must be a KKT point;
see 14.37 of [13] or Section 3.5 of [3]. Now, we argue that our constrained,
nonlinear optimization problem is differentiable.
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The compound Poisson distribution has an infinite support over the integers;
hence, by Proposition 3.1 in [4], there are unique valuesθ+

1 (�v), θ+
2 (�v), such that

�+(�v) = θ+
1 (�v)v1 + θ+

2 (�v)v2 − M+(
θ+(�v)

)
.(4.4)

To explore the relationship between�v andθ+(�v), fix �v and findθ+ that maximizes
θ1v1 + θ2v2 −M+(θ1, θ2). Taking derivatives and setting them equal to zero yields

v1 = ∂M+(θ+)

∂θ1
= (

λ̄1e
θ+

1 − µ1r1,0e
−θ+

1 − µ1r1,2e
θ+

2 −θ+
1 + µ2r2,1e

θ+
1 −θ+

2
)
,(4.5)

v2 = ∂M+(θ+)

∂θ2
= (

λ̄2e
θ+

2 − µ2r2,0e
−θ+

2 + µ1r1,2e
θ+

2 −θ+
1 − µ2r2,1e

θ+
1 −θ+

2
)
.(4.6)

Thus,θ+
1 (v1, v2) andθ+

2 (v1, v2) determinev1 andv2. Furthermore, this mapping
from θ+ to �v is a smooth bijection. Since the Jacobian, which is positive definite
since it is also the Hessian of the strictly convexM+, has a nonzero determinant,
it follows from the inversion theorem (see [2]), thatθ+

1 (v1, v2) and θ+
2 (v1, v2)

are smooth functions of(v1, v2). Hence, our nonlinear programming problem is
differentiable.

For our problem,(v1, v2) is a KKT point if there exists a Lagrange multiplieru

with

uv2 = 0 (complementary slackness),(4.7)

u ≥ 0 (sign restriction),(4.8) (
0
u

)
= ∇(�+(v1, v2)/v1) (gradient equation),(4.9)

v2 ≥ 0 (constraint).(4.10)

Among other things, the proof of our next result shows that any KKT point
(v1, v2) ∈ (0,∞) × [0,∞) must haveu > 0; hence, complementary slackness
implies thatv2 = 0. Consequently, there is no “best” path inFi ; that is, the
infp∈Fi

I (p) is not attained inFi .

THEOREM 1. For the paths in the interior, we have

inf
p∈Fi

[I (p)] = inf
v1>0,v2>0

�+(v1, v2)/v1 = θb
1 ,

where θb = θ+(�vb) and �vb ≡ (vb
1, vb

2) is the unique KKT point in (0,∞) × [0,∞)

point for (4.2)and (4.3).The point �vb is the unique solution to

vb
1 > 0,(4.11)

vb
2 = 0,(4.12)

M+(
θ+(�vb)

) = 0.(4.13)
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Equivalently, but more usefully, θb is the unique solution to

θb
1 > 0,(4.14)

∂[M+(θb
1 , θb

2 )]
∂θ2

= 0,(4.15)

M+(θb) = 0,(4.16)

PROOF. First,

∂[�+(v1, v2)]
∂vi

= θ+
i (v1, v2),(4.17)

which can be seen by starting with (4.4) and using the left most equation in
(4.5) and (4.6). It follows that

∂[�+(v1, v2)/v1]
∂v1

= [v1θ
+
1 (v1, v2) − �+(v1, v2)]/v2

1(4.18)

and

∂[�+(v1, v2)/v1]
∂v2

= θ+
2 (v1, v2).(4.19)

In the remainder of this proof assume that(v1, v2) is a KKT point, and we know
that there exists at least one such point. Thus, using (4.19), the Lagrange multiplier
is u = θ+

2 (v1, v2), and using complementary slackness, (4.18) becomes

∂[�+(v1, v2)/v1]
∂v1

= M+(
θ+(�v)

)
/v2

1.

Now, we argue thatu > 0. Assume the contrary, that is, thatu = 0. Thus, the
gradient of�+(v1, v2)/v1 at (v1, v2) is zero, which means thatM+(θ+(�v)) = 0
andθ+

2 (v1, v2) = 0. SolvingM+(θ+
1 ,0) = 0 yields exp(θ+

1 ) = µ1/(λ̄1 + µ2r2,1).

Substituting into (4.5) and (4.6) yields

v1(θ
+
1 ,0) = µ1 − (λ̄1 + µ2r2,1)

and

v2(θ
+
1 ,0) = λ̄2 − µ2r2,0 + µ1r1,2

(λ̄1 + µ2r2,1)

µ1
− µ2r2,1

µ1

(λ̄1 + µ2r2,1)

= λ̄2 − µ2r2,0 + r1,2λ̄1 + µ2r2,1r1,2 − µ2r2,1
µ1

(λ̄1 + µ2r2,1)

= (λ̄2 + λ̄1r1,2) − µ2(1− r2,1) + µ2r2,1r1,2 − µ2r2,1
µ1

(λ̄1 + µ2r2,1)

= λ2(1− r1,2r2,1) − µ2(1− r1,2r2,1) + µ2r2,1

(
1− µ1

(λ̄1 + µ2r2,1)

)
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= (λ2 − µ2)(1− r1,2r2,1) + µ2r2,1

(
1− µ1

(λ̄1 + µ2r2,1)

)

= (λ2 − µ2)(1− r1,2r2,1) − µ2r2,1
v1(θ

+
1 ,0)

(λ̄1 + µ2r2,1)

< 0 sinceλ2 < µ2, v1 > 0,

which is a contradiction. Hence,u > 0, and from complementary slackness, we
havev2 = 0.

Equations (4.12) and (4.13) follow from the gradient equation, and are
rephrased in terms ofθb in (4.15) and (4.16). Equation (4.14) follows from (4.11)
since (4.18) must equal 0. Thus, the two sets of equations are equivalent. To
show uniqueness, consider the second set of equations and recall thatM+ is
a strictly convex function withM+(0,0) = 0. The set of all(θ1, θ2) such that
M+(θ1, θ2) = 0 is the boundary of a strictly convex set, the egg shaped region
in Figure 2, containing(0,0) and(θ̂1, θ̂2) > (0,0). There are exactly two points
on the boundary of this convex set that are tangent to vertical lines, that is,
satisfy (4.15), but only one of the two, the eastern most point on the boundary,
satisfies (4.14). �

4.2. The jitter path on the x-axis In this section we consider paths that bounce
along thex-axis; that is, we consider paths inF that initally have the form
p(s) = (v1s,0) until hitting (1,0) at time T = 1/v1, wherev1 > 0 and after
timeT , the path follows the natural drift path until reaching the origin. LetFx ⊂ F

denote the set of all such paths, which will be the jitter paths and the bridge path.
To analyze these paths, we view thex-axis as a flat boundary as in Definition 8.7
in [15] andW as a flat boundary process.

Define the log moment generating functions of the compound Poisson process
associated with jumps on thex-axis,

M−(θ1, θ2) = λ̄1(e
θ1 − 1) + λ̄2(e

θ2 − 1) + µ∗
1r1,0(e

−θ1 − 1) + µ∗
1r1,2(e

θ2−θ1 − 1).

The associated local rate function is

�−(v1, v2) = sup
θ1,θ2

(
θ1v1 + θ2v2 − M−(θ1, θ2)

)
.

Using the same arguments as in the previous section, there exists a unique pair
θ−(�v) such that

�−(v1, v2) = θ−
1 (v1, v2)v1 + θ−

2 (v1, v2)v2 − M−(
θ−(�v)

)
.

The local rate function for the path with velocityv = (v1,0) is given by

�∗(v1,0) = inf
0≤β≤1,β �v++(1−β)�v−=(v1,0)

(
β�+(�v+) + (1− β)�−(�v−)

)
,



532 R. D. FOLEY AND D. R. MCDONALD

which is a good rate function; see (v) of Lemma 8.20 of [15]. Intuitively, the path
is a mixture withβ representing the proportion of time above thex-axis, while
1 − β is the proportion of time on thex-axis. The bridge path hasβ = 1; jitter
paths haveβ < 1. Finally, we must calculate infp∈Fx [I (p)]; that is,

inf
v1>0,0≤β≤1,β �v++(1−β)�v−=(v1,0)

f (β, v1, v
+
1 , v+

2 , v−
1 , v−

2 ),(4.20)

wheref (β, v1, v
+
1 , v+

2 , v−
1 , v−

2 ) = (β�+(�v+) + (1 − β)�−(�v−))/v1. Our argu-
ment will be similar to the last section. First, we argue that (4.20) equals

min
v1>0,0<β≤1,β �v++(1−β)�v−=(v1,0)

f (β, v1, v
+
1 , v+

2 , v−
1 , v−

2 ).(4.21)

Just as for�+, �−(�v−) goes to infinity as|�v−| diverges. Furthermore,�−(�v−)

goes to infinity asv−
2 ↓ 0 and is infinite ifv−

2 ≤ 0. Hence,f goes to infinity as
β ↓ 0. If β > 0,f goes to infinity asv1 ↓ 0. Hence, (4.20) must be a local minimum
of

minf (β, v1, v
+
1 , v+

2 , v−
1 , v−

2 )(4.22)

s.t. g1(β, v1, v
+
1 , v+

2 , v−
1 , v−

2 ) ≡ β ≤ 1,(4.23)

g2(β, v1, v
+
1 , v+

2 , v−
1 , v−

2 ) ≡ −v1 + βv+
1 + (1− β)v−

1 = 0,(4.24)

g3(β, v1, v
+
1 , v+

2 , v−
1 , v−

2 ) ≡ βv+
2 + (1− β)v−

2 = 0.(4.25)

To show that this constrained, nonlinear optimization problem is differentiable is
almost identical to the argument in the previous section including the argument
that θ−

i (v1, v2) is smooth. The constraints are no longer linear since there are
terms like βv+

1 . However, the gradients of the three constraint equations are
linearly independent; hence, from 14.37 of [13] or Section 3.5 of [3], all points
are regular and every local minimum must be a KKT point. The remainder of
the argument is to determine the KKT points(β, v1, v

+
1 , v+

2 , v−
1 , v−

2 ) ∈ (0,1] ×
(0,∞)× (−∞,∞)× (−∞,0]× (−∞,∞)×[0,∞). Note that we did not include
v+

2 > 0 and v−
2 < 0; these will be suboptimal since�−(v−

1 , v−
2 ) = ∞ when

v−
2 ≤ 0.

For our problem,(β, v1, v
+
1 , v+

2 , v−
1 , v−

2 ) is a KKT point if there exists Lagrange
multipliersu1, u2 andu3 satisfying

u1(1− β) = 0 (complementary slackness),

u1 ≤ 0 (sign restriction),

3∑
i=1

ui∇gi = ∇f (gradient equation),

β ≤ 1 (constraint 1),

−v1 + βv+
1 + (1− β)v−

1 = 0 (constraint 2),

βv+
2 + (1− β)v−

2 = 0 (constraint 3).
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Now assume that(β, v1, v
+
1 , v+

2 , v−
1 , v−

2 ) is a KKT point. The bottom four
components of the gradient equation imply thatv1u2 = θ+

1 (v+) = θ−
1 (v−) and

v1u3 = θ+
2 (v+) = θ−

2 (v−). Using these in the second component of the gradient
equation implies thatβM+(θ+(�v+))+(1−β)M−(θ+(�v+)) = 0. Sincev1 > 0, the
second component of the gradient equation also implies thatu2 > 0, which means
thatv1u2 = θ+

1 (v+) > 0. The first component of the gradient equation reduces to
u1 = −[M+(θ+(�v+)) − M−(θ+(�v+))]/v1.

First, consider the case whenβ < 1. By complementary slackness,u1 = 0
implying that

M+(
θ+(�v+)

) = M−(
θ+(�v+)

) = 0.(4.26)

These level sets enclose convex regions which intersect at(0,0) and possibly other
points(θ+

1 , θ+
2 ). However, sincev+

2 = ∂M+(θ+)
∂θ2

must be (strictly) negative, we are
only interested in solutions to (4.26) in the lower portion of the egg in Figure 2;
that is, going clockwise from (but not including)θb alongM+ = 0 to the other
solution of (4.15), which is the western most point of the egg shaped region defined
by M+ = 0. Sinceθ+

1 (v+) > 0, we can further restrict the region to the arc going
clockwise from theθb to the origin.

By calculation the points [besides(0,0)] whereM+(θ) = 0 andM−(θ) = 0
cut theθ1-axis are(log(µ1/(λ̄1 + µ2r2,1)),0) and (log(µ∗

1/λ̄1),0), respectively.
Since the first coordinate of the latter is positive and greater than the first coordinate
of the former, it follows thatθ+

2 > 0 if θ+
1 > 0; thus, we can restrict attention to the

arc going clockwise fromθb to theθ1-axis at(max(log(µ1/(λ̄1 + µ2r2,1)),0),0).

There can be at most one such point since∂M−(·)
∂θ2

> 0. If there is such a point, label

this point asθj = (θ
j
1 , θ

j
2 ); otherwise, defineθj = θb. Note that there can be no

other KKT points withβ < 1. To see thatθj determines a KKT point, recall that

v+
i = ∂M+(θj )

∂θi
andv−

i = ∂M−(θj )
∂θi

for i = 1,2 with v+
1 > 0, v+

2 < 0 andv−
2 > 0.

Since(1,0) lies in the convex hull ofv+ andv−, there exists a uniqueβ andv1

with 0 < β < 1 such thatβ �v+ + (1 − β)�v− = (v1,0). Let u1 = 0, u2 = θ
j
1/v1

andu3 = θ
j
2/v1. It is straightforward to show that these values satisfy the KKT

conditions.
To complete the first case withβ < 1, we need to argue that there cannot be

another KKT point withβ = 1. If there were another such KKT point withβ = 1,
then our optimization problem is a special case of the one in the previous section;
hence, the solution must correspond toθb, in which case the first component of the
gradient equation would imply thatu1 = M−(θb)/v1. However, this would violate
the sign restriction onu1 sinceM−(θb) would be strictly positive whenθj �= θb.
Consequently, whenθj �= θb, we have a unique KKT point, which must be the
global minimum.

Suppose there is no solutionθ+ to (4.26) on the clockwise arc following
M+ = 0 from θb to theθ1-axis. Then there cannot be a KKT point withβ < 1.
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However, we know that there is a global minimum, which must be a KKT point.
Hence, any KKT points must haveβ = 1. If β = 1, the optimization problem in
this section becomes a special case of the optimization problem in the previous
section, and it follows that there is a unique KKT point corresponding toθb.

THEOREM 2. Among the jitter and bridge paths, we have

inf
p∈Fx

[I (p)] = θ
j
1 .(4.27)

Furthermore, the following conditions are equivalent:

1. θj < θb,
2. a jitter path is optimal in Fx ,
3. β < 1,
4. M−(θb) > 0 and
5. ρ < 1, where

ρ ≡ λ̄2e
θ

j
2 + µ1r1,2e

−θ
j
1+θ

j
2

µ2r2,0e
−θ

j
2 + µ2r2,1e

θ
j
1−θ

j
2

.

PROOF. To show (4.27), note thatθj determines the global optimum, so we
need only evaluate the objective function at the point determined byθj . If θj = θb,
the objective function becomes identical to that of the previous section, which we
know evaluates toθj

1 = θb
1 . If θj < θb, the objective function simplifies toθj

1 .
The first three conditions are clearly equivalent from the discussion prior to

the statement of the theorem. For the fourth condition, it suffices to show that
the directional derivative ofM− at the origin tangent to the level curveM+ = 0
and going counterclockwise is strictly negative; that is,M− = 0 pierces the egg
M+ = 0. SinceM−(0,0) = 0, it would follow from continuity that the level curves
for M+ = 0 andM− = 0 would have to intersect along the segmentM+ = 0
somewhere betweenθb and the origin going clockwise fromθb. (From the proof
of the previous theorem, we could further restrict attention to the segment lying in
the first quadrant.)

If (x+, y+) denotes the gradient ofM+ at the origin, then(−y+, x+) is
tangent toM+ = 0 at the origin and points in a counterclockwise direction.
If (x−, y−) denotes the gradient ofM− at the origin, then the directional
derivative of M− at the origin tangent to the level curveM+ = 0 and going
counterclockwise is−y+x− + x+y− = µ2λ̄1 − µ1λ̄1r1,2 + µ∗

1λ̄2 − µ∗
1µ2 −

µ1λ̄2 + µ2λ̄2r2,1 + r1,2µ
∗
1λ̄1 + r1,2µ

∗
1µ2r2,1. This directional derivative is a

strictly decreasing function ofµ∗
1 since the derivative with respect toµ∗

1 is
µ2(1− r1,2r2,1)(ρ2 − 1) < 0. If µ∗

1 = (λ1 − ρ2µ1)/(1 − ρ2), then the directional
derivative is zero andM+ = 0 andM− = 0 are tangent at the origin. However,
from Proposition 1, stability requires thatµ∗

1 > (λ1 − ρ2µ1)/(1 − ρ2), which
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ensures thatM− is decreasing in the direction(−y+, x+) and pierces the egg
M+ = 0.

To complete the proof, using (4.6), it is straightforward to show that the fifth
condition is equivalent tov+

2 (θj ) < 0; recall thatv+
2 (θb) = 0 and see Figure 2.

�

COROLLARY 1. For the Jackson network with µ∗
1 = µ1, a jitter path is better

than the bridge if (2.2)holds.

PROOF. In the Jackson case exp(θ
j
1 ) = ρ−1

1 and exp(θj
2 ) = (r2,0 + r2,1ρ

−1
1 ).

Using this,ρ < 1 by substitution and Theorem 2 gives the result.�

Now, we will try to derive an explicit expression forθj by locating the points
θ �= (0,0), whereM+(θ) = M−(θ) = 0. SolvingM−(θ) = 0 yields

exp(θ2) = λ̄1 + λ̄2 + µ∗
1 − λ̄1e

θ1 − µ∗
1r1,0e

−θ1

λ̄2 + µ∗
1r1,2e−θ1

.(4.28)

After substituting this intoM+(θ) = 0 and simplifying, we see thatx = exp(θj
1 )

must be a positive solution to the quadratic equation

ax2 + bx + c = 0,(4.29)

where

a = (µ∗
1 − µ1)(λ̄2 + λ̄1r1,2)λ̄1 − λ̄2µ2(λ̄2r2,1 + λ̄1),

b = −(µ∗
1 − µ1)(λ̄2µ

∗
1 + µ∗

1λ̄1r1,2 + λ̄2
2 + λ̄2

1r1,2 + 2λ̄1λ̄2r1,2 + λ̄1λ̄2r1,0)

+ µ∗
1λ̄2µ2(1− 2r1,2r2,1) − µ∗

1λ̄1µ2r1,2,

c = (µ∗
1 − µ1)µ

∗
1r1,0(λ̄2 + λ̄1r1,2) + (µ∗

1)
2µ2r1,2(r1,0 + r1,2r2,0).

Given such a solutionx, thenθ1 = log(x) andθ2 is determined from (4.28). Now
that we have a pointθ where the level curves intersect, we need to determine if
it lies on the arcM+ = 0 going clockwise fromθb to theθ1-axis. Sinceθ1 > 0,
we are only interested inx > 1. If, in addition,v+

2 (θ) < 0, thenθ = θj . Note that
there can be at most onex giving a solution that satisfies these conditions. If there
is no such solutionx, thenθj = θb.

REMARK. The paper [10] provides an alternative to the Schwartz–Weiss flat
boundary approach to determining the local rate function for the jitter and bridge
paths. Rather than mixing the two vectorsv+ andv− with the weightsβ and 1−β,
[10] simply expresses�∗(v,0) = supγ (γ · v − �(γ )), where�(θ) = log(r(Ĵγ )),

r(Ĵγ ) is the spectral radius of̂Jγ and Ĵγ is the Feynmann–Kac transform of the
kernel J of the Markov additive process associated with the modified Jackson
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network as defined in [9]. If we could show that the mapping fromγ to v is a
smooth bijection, then since�(γ ) is convex, we could represent

inf
v≥0

�∗(v,0)

v
= inf

γ

(
γ − �(γ )

/∂�(γ )

∂γ

)
.

Taking derivatives, the minimum occurs when

�(γ )
∂2�(γ )

∂γ 2

/(
∂�(γ )

∂γ

)2

= 0.

Since�(γ ) is convex by Lemma 2 in [10] and since∂�(γ )
∂γ

= v > 0, it follows
that the minimum occurs when�(γ ) = 0 and the large deviation rate is the
associatedγ . This just means that the large deviation rate is the choice ofγ which
setsr(Ĵγ ) = exp(�(γ )) = 1, which agrees with the results in [9].

The problem is the assumption that the mapping fromγ to v defined by
supγ (γ · v − �(γ )) is smooth. Lemma 3.3 in [12] shows that ifγ ∈ Ur , where

Ur = {γ :ϕ(γ,�) = 1 for some� = �(γ ) < ∞},
and if (γ,�(γ )) ∈ W , as defined in [12], then�(·) is differentiable atγ .
Unfortunately, we are particularly interested in cases whenγ may not belong
to Ur because these give rise to bridges. It appears that in the two-dimensional
case differentiability may follow from the explicit description of�(γ ) (private
communication with Ignatiouk-Robert), but inn dimensions this is far from clear.
Hence, at first blush, it appears that the optimization problem would be more
difficult to solve than the optimization problem arising from the Schwartz–Weiss
approach where�∗ is represented as a convex combination of smooth pieces.

Another advantage of the Schwartz–Weiss approach is that it distinguishes
between the bridge (β = 1) and the jitter (β < 1) paths. It is not clear that
the approach in [10] makes this distinction. On the other hand, the results
in [10] are much more general since they apply inn dimensions and apply to
permeable or impermeable boundaries. Note that the conditionM+(θb) > M−(θb)

in Proposition 10 in [10] inspired condition 4 in Theorem 2.

4.3. Cascade paths climbing the y-axis. Finally, we consider fluid paths that
go up they-axis to a height(0, h) and then go down and across(1,0). Forh > 0,
we will refer to these paths as cascade paths since the customers build up in the
second queue and then “cascade” into the first queue for the large deviation. The
path withh = 0 is none other than the bridge path. Note that a bridge path up the
y-axis followed by a cascade is not optimal because this would give a nonlinear
large deviation path in a domain with constant jump rates. Consequently, the least
action path jitters up they-axis and then cascades. LetFc ⊂ F be the set of cascade
paths and the bridge path.

We wish to find conditions for a jitter path along they-axis whenρ2 < 1, butρ1
but may be greater than one. The investigation of jitter paths in Section 4.2 can be
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used provided we interchange thex- andy-axes. Letθ̃ = (θ̃1, θ̃2) be the solution
analogous toθj in Theorem 2. Thus, equivalent to (4.26), we have

M+(θ̃1, θ̃2) = M̃(θ̃1, θ̃2) = 0,

where

M̃(θ̃1, θ̃2) := λ̄1
(
eθ̃1 − 1

) + λ̄2
(
eθ̃2 − 1

) + µ2r2,0
(
e−θ̃2 − 1

) + µ2r2,1
(
eθ̃1−θ̃2 − 1

)
.

SubtractingM̃ from M+ gives exp(θ̃1) = r1,0 + r1,2 exp(θ̃2). Substituting this
into M̃(θ̃) = 0 gives exp(θ̃2) equal to 1 orµ2/λ2, and the former solution can
be eliminated since it corresponds toθ̃1 = θ̃2 = 0. In order to have a jitter path,
condition 4 in Theorem 2 must hold; that is,

ρ̃ := λ̄1e
θ̃1 + µ2r2,1e

−θ̃2+θ̃1

µ1r1,0e−θ̃1 + µ1r1,2eθ̃2−θ̃1
< 1.

Substituting exp(θ̃2) = µ2/λ2 givesρ̃ = λ1 exp(θ̃1)/µ1 < 1; that is, (2.3) holds.
We conclude there is no cascade path unless (2.3) holds, but if it does, then

the large deviations rate of paths from(0,0) to (0, h) is h log(ρ−1
2 ), which can be

seen by simplifying (4.29) whenµ1 = µ∗
1 to obtainθ

j
1 = ρ−1

1 . Moreover, the large
deviation rate of paths from(0, h) to (1,0) is

inf
v>0

�+(v,−vh)

v
.

After (1,0), the process follows the natural drift path back to zero. Thus, if path
p ∈ Fc reaches heighth, we haveI (p) = h log(ρ−1

2 ) + infv>0
�+(v,−vh)

v
. We

wish to find infp∈Fc I (p) or, equivalently, infh≥0,v>0f (h, v), wheref (h, v) =
h log(ρ−1

2 ) + �+(v,−vh)
v

. Sincef is continuous, positive and diverges asv ↓ 0 or
asv → ∞ or ash ↓ 0, we know infh≥0,v>0f (h, v) must be a local minimum of

minf (h, v)(4.30)

s.t. h ≥ 0.(4.31)

This constrained nonlinear optimization problem is differentiable with a linear
constraint so every local minimum must be a KKT point. In order for(h, v) to
be a KKT point for this problem, there needs to be a corresponding Lagrange
multiplier u so thath, v andu satisfy the following:

uh = 0 (complementary slackness),(4.32)

u ≥ 0 (sign restriction),(4.33) (
u

0

)
= ∇f (h, v) =

(
log(ρ−1

2 ) − θ+
2 (v,−vh)

M+(
θ+(v,−vh)

)
)

(gradient equation),(4.34)

h ≥ 0 (constraint).(4.35)
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As in the previous sections, there will be a unique KKT point(h, v) ∈ [0,∞) ×
(0,∞).

THEOREM 3. Define θc = θ+(v,−vh), where (v,h) minimizes (4.30)subject
to (4.31).It follows that

inf
p∈Fc

[I (p)] = θc
1.(4.36)

If ρ−1
1 > r1,0 + r1,2ρ

−1
2 and log(ρ−1

2 ) < θb
2 , then the minimum action path in Fc is

a cascade of height h > 0 with θc = (log(ρ−1
1 ), log(ρ−1

2 )); otherwise, the minimum
action path in Fc is a bridge with θc = θb.

PROOF. We will argue thatθc corresponds to the unique KKT point in(h, v) ∈
[0,∞) × (0,∞); hence, this point must correspond to the global minimum.
Note that the second component of the gradient equation implies that we must
be looking for a solution corresponding to a pointθ+ with M+(θ+) = 0. This
point θ+ determinesv, h and u sincev = v+

1 (θ+), h = −v+
2 (θ+)/v, andu =

log(ρ−1
2 ) − θ+

2 .
In order to have a KKT pointθ+ with u > 0 we would have to haveh = 0,

which corresponds to a bridge path. Hence,θ+ = θb and by (4.34), this occurs if
and only if (2.3) is false or log(ρ−1

2 ) > θb
2 . (4.36) follows by substitution.

Alternatively, in order to have a solution withu = 0, we would have to have
h > 0, which corresponds to a cascade path. Hence,θ+ = θc and this occurs if and
only if (2.3) is true and log(ρ−1

2 ) ≤ θb
2 . Next, (4.34) requiresθ+

2 = log(ρ−1
2 ) ≤ θb

2
andM+(θ+(v,−vh)) = 0. Moreover,∇M+(θ+) = (v,−vh). The two solutions
to M+(θ+(v,−vh)) = 0 and θ+

2 = log(ρ−1
2 ) are (log(ρ−1

1 ), log(ρ−1
2 )) and

(log(r1,0 + r1,2ρ
−1
2 ), log(ρ−1

2 )).
Substituting the second solution into (4.5) and (4.6) gives

∇M+(θ+) = (
(λ̄1 + λ2r2,1)e

θ+
1 − µ1e

−θ+
1 (r1,0 + ρ−1

2 r1,2),

λ̄2ρ
−1
2 − λ2r2,0 + µ1r1,2ρ

−1
2 e−θ+

1 − λ2r2,1e
θ+

1
)
.

Notice that the first coordinate equalsλ1e
θ+

1 − µ1 = λ1((r1,0 + r1,2ρ
−1
2 ) − ρ−1

1 ).
This is negative if (2.3) is true and this is impossible since∇M+(θ+) = (v,−vh)

with v > 0.
Substituting the first solution into (4.5) and (4.6) gives

∇M+(θ+) = (µ1 − λ1r1,0 − λ1r1,2ρ
−1
2 ,µ2 − λ2r2,0 − λ2r2,1ρ

−1
1 ) = (v,−vh).

The first component isλ1(ρ
−1
1 − (r1,0 + r1,2ρ

−1
2 )) and this is positive since (2.3)

is true. The second component of∇M+(θ+) is negative sinceθ+ is on the level
curveM+(θ) = 0 andθ+

2 < θb
2 . (2.2) fails. Equation (4.36) follows by substitution.

�
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4.4. Summary of flat boundary approach. Combining yields the following
result.

THEOREM 4. For the modified Jackson network,

lim
�→∞

1

�
logP

(
W ∈ F(�)|W(0) = (0,0)

)

= lim
�→∞

1

�
logP

(
W� ∈ F(1)|W�(0) = (0,0)

)

= − inf
p∈F

[I (p)] = − inf
p∈Fi∪Fx∪Fc

[I (p)].

If θ
j
2 < min{log(ρ−1

2 ), θb
2 }, then minimum action is θ

j
1 and the minimal action path

is a jitter path along the x-axis. If log(ρ−1
2 ) < min{θj

2 , θb
2 }, then the minimal action

is θc
1 and the minimal action path is a cascade path that initially climbs the y-axis.

Otherwise, θb
1 = θ

j
1 = θc

1, the minimal action is θb
1 , and the minimal action path is

a bridge.

PROOF. The only part of the proof that is not straightforward is showing that

if log(ρ−1
2 ) < min{θj

2 , θb
2 }, then the conditionρ−1

1 > r1,0 + r1,2ρ
−1
2 of Theorem 3

holds automatically. To prove this, we will show that ifρ−1
1 ≤ r1,0 + r1,2ρ

−1
2

and log(ρ−1
2 ) < θb

2 , thenθ
j
2 < log(ρ−1

2 ). In other words, a jitter path will be the
minimal action path—not a cascade.

The (convex) functiong− defined byM−(θ1, g
−(θ1)) = 0 is given at (4.28).

Simplifying,

g−(θ1) = 1+ µ∗
1(1− e−θ1) + λ̄1(1− eθ1)

λ̄2 + µ∗
1r1,2e

−θ1
.

Differentiating g− with respect toµ∗
1 gives (1 − exp(−θ1))/(λ̄2 + µ∗

1r1,2 ×
exp(−θ1))

2 and this is strictly positive forθ1 ∈ [0, log(µ∗
1/λ̄1)], where the end-

points are the zeros ofg−. Thus,g− is strictly increasing inµ∗
1 on[0, log(µ∗

1/λ̄1)].
Furthermore, limµ∗

1→∞ g−(log(r1,0 + r1,2ρ
−1
2 )) = log(ρ−1

2 ), which is a point on

M+ = 0. If ρ−1
1 ≤ r1,0 + r1,2ρ

−1
2 , then the easternmost solutionθ to M+(θ) = 0

with θ2 = log(ρ−1
2 ) is (log(r1,0 + r1,2ρ

−1
2 ), log(ρ−1

2 )). It follows that M+ = 0
andM− = 0 intersect at a point in the positive quadrant going clockwise from
(log(r1,0 + r1,2ρ

−1
2 ), log(ρ−1

2 )) alongM+ = 0 before hitting the axis. If, in addi-
tion, log(ρ−1

2 ) < θb
2 , then the point of intersection definesθj , which must be the

minimal action path.
There is one boundary case which also must be eliminated. We must show

it is impossible thatθj = θc < θb. If this did happen, thenθj = θc =
(log(ρ−1

1 ), log(ρ−1
2 )). Since θj lies on M+ and M−, it follows that
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g−(log(ρ−1
1 )) = ρ−1

2 . Sinceθj < θb, it follows that ρ < 1 and this reduces to
ρ−1

2 < r2,0 + r2,1ρ
−1
1 . Now notice that whenµ∗

1 = µ1, that is, in the Jackson
case, we haveg−(log(ρ−1

1 )) = r2,0 + r2,1ρ
−1
1 and this is strictly greater thanρ−1

2
as we just showed. This eliminates this case ifµ∗

1 = µ1. Moreover, we showed
above thatg−(θ1) is increasing inµ∗

1, so it will never be possible to solve
g−(log(ρ−1

1 )) = ρ−1
2 . �

COROLLARY 2. For the Jackson network with µ∗
1 = µ1, if (2.2) fails and

(r2,0 + r2,1ρ
−1
1 ) > ρ−1

2 , then a cascade path is optimal, whereas if (2.2) fails and
(r2,0 + r2,1ρ

−1
1 ) = ρ−1

2 , then a bridge path is optimal. In both cases the minimal
action is log(ρ−1

1 ). (This is no surprise since the steady state π is of product form
even in the cascade or bridge cases.)

PROOF. In the Jackson case exp(θ
j
1 ) = ρ−1

1 and exp(θj
2 ) = (r2,0 + r2,1ρ

−1
1 ).

Hence, if (r2,0 + r2,1ρ
−1
1 ) > ρ−1

2 , then exp(θj
2 ) > ρ−1

2 . Using this,ρ ≥ 1 by
substitution and Theorem 2 showsθj = θb. This means exp(θb

2 ) > ρ−1
2 and,

moreover, if (2.2) fails, then (2.3) must hold. By Theorem 3 it follows the minimum
action path is a cascade andθc

1 = log(ρ−1
1 ).

If (r2,0 + r2,1ρ
−1
1 ) = ρ−1

2 , then by the above argument exp(θ
j
2 ) = ρ−1

2 . Hence,

by Theorem 3, the bridge path is optimal andθb
1 = θ

j
1 = log(ρ−1

1 ). �

5. Another model exhibiting the bridge phenomenon. We can use the
above methods to obtain the rough asymptotics ofπ(�, y) for a fork network as
introduced by Flatto and Hahn [7]. This model was later extended and described as
the bathroom problem in Chapter 16 of [15]. Couples arrive at a cinema according
to a Poisson process with rateν and immediately visit the men’s and ladies’ room.
The service rate the men’s queueα, while the rate at at the lady’s queue isβ. There
are also separate arrival streams, with rateη for single women and rateλ for single
men.

We are interested in a large deviation of the men’s queue, so let this be the
first queue and the ladies’ queue the second. We could use the above methods to
obtain the rough asymptotics ofπ(�, y), but we don’t have to because the work is
already done in Section 16.2 in [15]. In the (unrealistic) caseη + αν/(λ + ν) < β,
they show the most likely path for the men’s queue to reach a high level�

before returning to zero is a jitter path along thex-axis and the large deviation
rate is α/(λ + ν) in agreement with [11]. In the (more realistic) case when
η + αν/(λ + ν) > β, the results in [15] show the most likely path for the men’s
queue to reach a high level� before returning to zero is a path through the interior
(again in agreement with [11]). Moreover, among jitter paths, the large deviation
rate (for the more realistic case) is minimized by paths spending zero time on the
boundary.
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This just means that if, in addition to the men’s queue getting big, we require
that the ladies’ queue remain small, then the large deviation path is a bridge path.
The exact asymptotics ofπ(�, y) are calculated in [9] and are found to agree with
those in [7]. The derivation of these sharp asymptotics confirms our intuition about
the bridge behavior.
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