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GENERALIZED STOCHASTIC DIFFERENTIAL UTILITY AND
PREFERENCE FOR INFORMATION1

BY ALI LAZRAK

University of British Columbia

This paper develops, in a Brownian information setting, an approach
for analyzing the preference for information, a question that motivates the
stochastic differential utility (SDU) due to Duffie and Epstein [Econometrica
60 (1992) 353–394]. For a class of backward stochastic differential equations
(BSDEs) including the generalized SDU [Lazrak and QuenezMath. Oper.
Res. 28 (2003) 154–180], we formulate the information neutrality property
as an invariance principle when the filtration is coarser (or finer) and
characterize it. We also provide concrete examples of heterogeneity in
information that illustrate explicitly the nonneutrality property for some
GSDUs. Our results suggest that, within the GSDUs class of intertemporal
utilities, risk aversion or ambiguity aversion are inflexibly linked to the
preference for information.

1. Introduction. The study of decision making is fundamental to many
applications in economics and finance. The decision maker typically faces
uncertainty about results of an experiment such as the profitability of a new product
or a financial strategy, efficacy of a monetary policy or a social program, state of
health and so on. Since many decades, decision theorists have developed theories
and tools which help us to think about decision under uncertainty. The ultimate
objective of this line of literature in social science is to provide explanations of
the behavior under uncertainty and to give arational support for the observable
behavior in various contexts.

This paper studies the preference for information for a specific class of
intertemporal utilities. For a fixed consumption horizonT > 0, a utility function
is a function mapping the set of objects of choice, that is the pairs of state
contingent consumption processc = {ct ,0 ≤ t ≤ T } and information filtration
A = {At ,0 ≤ t ≤ T } satisfying the usual conditions, into R. The question of
preference for information consists of analyzing the dependency of a utility
function in its filtration information argument. This specific question has been
greatly simplified within the familiar context of the von Neumann–Morgenstern
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expected utility function. Specifically, an expected utility function is defined by

UA
t (c) = E

[∫ T

t
e−β(s−t)v(cs) ds

∣∣∣At

]
,(1)

for time t < T , v(·) is the felicity function and the expectationE is conditioned by
the timet available informationAt . In fact, the expected utility model (1) does not
allow for preference for information in the sense that ifA � B are two filtrations
such that bothA0 andB0 are trivial, thenUA

0 (c) = UB
0 (c) for any A-adapted

consumption processc.
However, it is often observed that preference for information is relevant in

various decision making situations. For instance, in many medical decisions
(choice between various form of prenatal diagnosis such as the amniocentesis
or decision to test for diseases such as multiple sclerosis), the decision maker
must decide whether she wishes to have the true state of health revealed earlier
or later. More generally, psychologists have recognized the importance of the
feelings related to the prospect of information acquisition [see Grant, Kajii and
Polack (1998) and Chew and Ho (1994) and the references cited therein]. It has
been recognized that information acquisition has anextrinsic and anintrinsic
motivation.

The extrinsic motivation corresponds to the notion that people value information
to take appropriate contingents decisions and thus influence in a favorable way the
final outcome. For example, certain medical treatments may lower the severity of a
disease which provide an incentive to gather information about the health state. In
an investment context for instance, information enhances the planning and should
help to identify financial strategies which provide a higher expected profitability.
In particular, for an expected utility maximizer, Epstein (1980) has shown in an
investment problem that the prospect of greater future information increases the
incentives to maintain some flexibility in order to take advantage of the content
of the future information. [Yet, as noted above and clarified below, the expected
utility investors of Epstein(1980) are indifferent to information and are interested
in it only for its planning benefits.]

On the other hand, intrinsic motivation corresponds to the notion that, planning
benefits notwithstanding, people like (or dislike) information for its own sake. In
other words, intrinsic attitude toward information is defined as individual’s direct
interest to have access to more (or less) information because they perceive it to
be innately satisfying (or unsatisfying). For instance, a decision maker could be
intrinsically information lover because she is anxious and prefer to know earlier
the outcome of any uncertainty (think of the example of a pregnant women who
decide to do the amniocentesis prenatal diagnosis). Another decision maker may be
intrinsically information averse since he fears a bad outcome (think to the example
of a person who delay a test for disease) or simply because he is optimistic and
prefers a hopeful feeling rather than risking a sad news.
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In a pioneering discrete time model, Kreps and Porteus (1978), generalized
the von Neumann–Morgenstern expected utility model (1) to permit intrinsic
information aversion or information loving. This work gave rise to the stochastic
differential utility (SDU) [Duffie and Epstein (1992) and its discrete time
counterpart Epstein and Zin (1989)]. The SDU generalized the expected utility
model (1) and is associated with an “intertemporal aggregator”f , a function
satisfying appropriate conditions. The SDU is defined by

UA
t (c) = E

[∫ T

t
f

(
cs,U

A
s (c)

)
ds

∣∣∣At

]
.(2)

The SDU model reduces to the additive model (1) whenf is linear,f (c,u) =
v(c)−βu. The SDU was primarily motivated by the desire to have some flexibility
in the modeling of the concepts of risk aversion and the concept of consumption
intertemporal substitution. While the two concepts were governed by the same
parameter in the time additive model (1), the SDU allowed some separation of
these two aspects of the preferences. This feature was particularly relevant from
an empirical perspective since it helped to match more closely consumption rates
data and equity returns data in the US [Epstein and Zin (1991)]. At the same time,
unlike the expected utility model (1), the SDU model (2) exhibits an intrinsic
attitude toward information. From a mathematical perspective, intrinsic attitude
toward information is characterized by the fact that the initial value of the SDU (2)
[i.e., UA

0 (c)] depends not only on consumption but also on the filtrationA.
Building on the discrete time approach to intrinsic attitude toward information

of Kreps and Porteus (1978), Skiadas (1998) shows that in the continuous time
SDU model (2), the concavity (convexity) of an intertemporal aggregator with
respect to its utility argumentU implies an intrinsic preference for late (early)
resolution of uncertainty. To illustrate their point, consider two filtrationF ⊂ G
and an intertemporal aggregatorf which is concave with respect to its utility
argumentU . Then, Jensen’s inequality gives,

E
(
U

G
t (c)|Ft

) = E

[∫ T

t
f

(
cs,U

G
s (c)

)
ds

∣∣∣Ft

]

≤ E

[∫ T

t
f

(
cs,E

(
U

G
s (c)|Fs

))
ds

∣∣∣Ft

]
,

for any consumption processc which is progressively measurable with respect
to the coarser filtrationF . Thus the optional projection processE[UG

. (c)|F.]
maybe interpreted as a sub-solution of the recursion (2) in the setting of the
filtration A = F and as such, heuristically, the sub-solutionE[UG

. (c)|F.] is
smaller (P ⊗ dt a.s.) than the solution itselfUF

. (c). Unfortunately, while pointing
an elegant way of proving out an elegant way of proving a monotonicity of
a utility functional with respect to its filtration argument, the Kreps–Porteus–
Skiadas method only provides sufficient conditions for preference for early (or
late) resolution of uncertainty and no characterization is obtained.
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This paper is an attempt to analyze the question of intrinsic attitude toward
information within a more general class of utility functions. We consider the class
of generalized stochastic differential utility (GSDU) introduced in Lazrak and
Quenez (2003). It has been shown by Skiadas (2003) and Lazrak and Quenez
(2003) that the GSDU unifies the SDU of Duffie and Epstein (1992) and a
recent class of intertemporal utility functions. This class encompasses the portfolio
decision models of Chen and Epstein (2002) and of Anderson, Hansen and Sargent
(1998). These models have been introduced with the operational objective of
modeling the imperfect knowledge of the asset returns probability distribution
and its impact on portfolio decision and asset prices. The objective of this paper
is to identify the implicit implications of these utilities from the angle of the
intrinsic attitude toward information. More specifically, we took the view that
investors have a neutral intrinsic attitude toward information (in a sense to be made
precise later) and, characterize this property in a context of Brownian information
and under certain assumptions on the (generalized) intertemporal aggregator. Our
finding suggests that, in general, the information neurality will not hold for
our class of GSDU. However, when information heterogeneity is such that the
Brownian property is preserved under the finer filtration, neutrality for information
holds.

Therefore, the GSDUs class of utility functions are generally not information
neutral and this suggests that the risk attitudes and the ambiguity attitudes are in
some sense confounded with the information attitude within this class of utility
functions. Consequently, any prediction of these models for portfolio decision or
asset prices is also induced by the extent to which these utilities exhibit preference
for information. Finally, our results should be of interest to the literature on the
design of risk measure for institutional investors and financial institutions [see
Artzner, Delbaen, Eber and Heath (1999), Wang (2000), Artzner, Delbaen, Eber,
Heath and Ku (2002) and Riedel (2002)]. In fact, a GSDU is in some sense a
dynamic risk measure and a preference for information may be desirable in that
context. For instance, in a stock portfolio management context, it is possible to
have a view about how a risk measure should depend on the timing of information
releases on the stock prices. In particular, the GSDU would have then the ability to
provide a quantitative prediction of the utility cost of an information enhancement
such as an increase of the frequency of the accounting reports of the underlying
companies or perhaps an increase of the coverage of the financial analysts.

The paper is organized as follows. In Section 2 we give the exact setting
for two generalized versions of model (2), define the information neutrality
property and give some mathematical prerequisites. Section 3 gives some concrete
filtrations and utility models encompassed by our formulation. Section 4 develops
some GSDU computations for two examples of heterogeneity in information
that illustrate the problem. The first example (Brownian anticipation) exhibits
a situation where information neutrality does not hold. In the second example,
the coarser filtration is generated by the absolute value of the Brownian motion
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that drives the finer filtration and we will see that in this context the information
neutrality may hold. In Section 5, we characterize the information neutrality for
a class of BSDEs (including GSDUs) which driver depend on intensityZ only
through its Euclidean norm‖Z‖. We show that the second example of Section 4
offers the only type of information heterogeneity that allows information neutrality
to hold for this class of BSDEs. In Section 6, we conclude.

2. The model.

2.1. Context and definitions. Let (�,G,P ) be a complete probability space
and for the fixed timeT, let G(·) = {Gt ,0 ≤ t ≤ T } and F(·) = {Ft ,0 ≤ t ≤ T }
be two filtrations that contain all negligible events and are right-continuous
and such thatF(·) � G(·). Furthermore, we suppose that the filtrationG(·)
(resp.F(·)) has a predictable representation property with respect to a standard
n-dimensional Brownian motionsWG = (1WG,2WG, . . . ,nWG) [resp. WF =
(1WF ,2WF , . . . ,nWF )]: For A ∈ {G,F }, eachA-local martingaleM can be
represented as a stochastic integral with respect toWA, that is, there exists
an A-predictable processϕ in Rn with

∫ T
0 ‖ϕ‖2 dt < ∞ a.s. such thatMt =

M0 + ∫ t
0 ϕs · dWA

s , 0 ≤ t ≤ T . In other words, following the Revuz and Yor
terminology [e.g., Revuz and Yor (1999), page 219], the filtrationsG andF are
weakly Brownian. As we will illustrate with some specific examples in Section 3,
there are many ways of constructing such a couple of filtrations (representing
heterogeneous information). It is important to notice at this stage that in general,
the processWF is not a Brownian motion under the finer filtrationG. However,
as we shall illustrate in Section 3, there are some special specifications of the
filtrations G andF under which the processWF turns out to be aG-Brownian
motion.

We shall denote byP G theG(·)-predictableσ -field and byP F theF(·)-predic-
tableσ -field. We consider for each integerp the setsH2(G,Rp) = {X : [0, T ] ×
� → Rp/X ∈ P G and E[∫ T

0 |Xs |2 ds] < ∞} and H2(F ,Rp) = H2(G,

Rp) ∩ P F .
For each random variableξ ∈ L2(FT ), we define the BSDEYG(ξ) ∈ H2(G,R)

associated to the filtrationG(·) as the solution of the recursion

Y
G
t (ξ ) = ξ +

∫ T

t
h
(
s,ω,Y

G
s (ξ),Z

G
s (ξ)

)
ds −

∫ T

t
Z

G
s (ξ) · dW

G
s

(3)

≡ E

[
ξ +

∫ T

t
h
(
s,ω,Y

G
s (ξ),Z

G
s (ξ)

)
ds

∣∣∣Gt

]
,

where the driver h defined on[0, T ] × � × R × Rn with values in R, s.t.
(h(t,ω, y, z))0≤t≤T ∈ H2(F ,R) for each(y, z) ∈ R × Rn and h satisfies the
following standing assumptions.
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Standing assumptions. (A1) There exists a constantK ≥ 0 s.t.P -a.s., we have

∀ t, ∀ (y1, y2), ∀ (z1, z2)

|h(s,ω, y1, z1) − h(s,ω, y2, z2)| ≤ K(|y1 − y2| + ‖z1 − z2‖).
(A2) The process(h(t,ω,0,0))0≤t≤T belongs toH2(F ,R).

Note that the processZG(ξ) ∈ H2(G,Rn) is part of the solution of (3) and we
call it the intensity associated to the BSDE (3).

Similarly, we define the BSDEYF (ξ) ∈ H2(F ,R) associated to the filtra-
tion F(·) as the solution of the BSDE

YF
t (ξ ) = ξ +

∫ T

t
h
(
s,ω,YF

s (ξ),ZF
s (ξ)

)
ds −

∫ T

t
ZF

s (ξ) · dWF
s

(4)

≡ E

[
ξ +

∫ T

t
h
(
s,ω,YF

s (ξ),ZF
s (ξ)

)
ds

∣∣∣Ft

]
.

We will also be interested by a second class of BSDEs, GSDU, an extension
of Duffie and Epstein (1992) model of SDU that has been proposed in Lazrak
and Quenez (2003). For any givencontingent consumption plan, a process
c ∈ H2(F ,R), the GSDUUG(c) ∈ H2(G,R) associated to the filtrationG(·)
solves the recursion

U
G
t (c) =

∫ T

t
f

(
s, cs,U

G
s (c),V

G
s (c)

)
ds −

∫ T

t
V

G
s (c) · dW

G
s

(5)

≡ E

[∫ T

t
f

(
s, cs,U

G
s (c),V

G
s (c)

)
ds

∣∣∣Gt

]
,

where the intertemporal aggregator f defined on[0, T ] × R × R × Rn with
values inR, s.t. (f (t, ct , y, z))0≤t≤T ∈ H2(F ,R) for each(y, z) ∈ R × Rn and
f satisfies the following standing assumptions:

Standing assumptions. (B1) There exists a constantK ≥ 0 s.t.,P -a.s., for all
relevant(t, c, y1, y2, z1, z2) we have

|f (t, c, y1, z1) − f (t, c, y2, z2)| ≤ K(|y1 − y2| + ‖z1 − z2‖).

(B2) There exists some positive constantsk1, k2 and 0< p < 1 s.t.|f (t, c,0,0)| ≤
k1 + k2c

p.

In fact, Duffie and Epstein (1992) define SDU of the form (5) in a context where
the intertemporal aggregator is essentially independent ofz, and thus we shall call
this case theclassical SDU.
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We define as well the GSDU associated to the filtrationF(·) as the solution of
the BSDE

UF
t (c) =

∫ T

t
f

(
s, c,UF

s (c),V F
s (c)

)
ds −

∫ T

t
V F

s (c) · dWF
s

(6)

≡ E

[∫ T

t
f

(
s, cs,U

F
s (c),V F

s (c)
)
ds

∣∣∣Ft

]
for eachc ∈ H2(F ,R).

Note that the intertemporal aggregatorf is a deterministic function of(t, c, y, z)

and thus the GSDU model (5) is a special case of the BSDE model (3) that is
obtained formally by settingξ = 0 andh(t,ω, y, z) = f (t, ct , y, z). However, as
will be seen from the following definitions, the information neutrality property has
a different meaning in the two models and therefore a different method is needed
to characterize it in the two models.

Now let us define the information neutrality property.

DEFINITION 1. A BSDE exhibitsinformation neutrality (between the filtra-
tion F andG) if and only if the solutions of the BSDEs (3) and (4) satisfy

YF
t (ξ ) = Y

G
t (ξ ), dP ⊗ dt a.s.,(7)

for all ξ ∈ L2(FT ).

DEFINITION 2. A GSDU exhibitsinformation neutrality (between the filtra-
tion F andG) if and only if the solutions of the GSDUs (5) and (6) satisfy

UF
t (c) = U

G
t (c), P ⊗ dt a.s.,(8)

for all c ∈ H2(F ,R).

We motivate these definitions by interpreting (7) and (8) as expressing an
indifference for the purpose of decision toward the otherwise anticipated utility
of more rather less information. A decision maker who exhibits such a property
has no intrinsic motivation to gather information for a fixed consumption. In the
subsequent analysis, our objective is to characterize this property.

2.2. Mathematical background. Under our Lipschitz assumptions on the
driver/aggregator [assumptions (A1) and (B1)], it is now a standard result in
the BSDE literature that existence and uniqueness (in a suitable sense) hold for
the recursions (3)–(6).

More precisely, forA ∈ {G,F }, it follows from Pardoux and Peng (1990) [see
also El Karoui, Peng and Quenez (1997) and Ma and Yhong (1999)] that under
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assumptions (A1) and (A2) and, for eachξ ∈ L2(FT ), there exist a unique pair
(YA(ξ),ZA(ξ)) ∈ H2(A,R) × H2(A,Rn) such that

YA
t (ξ ) = E

[
ξ +

∫ T

t
h
(
s,ω,YA

s (ξ),ZA
s (ξ)

)
ds

∣∣∣At

]
.(9)

Similarly, for A ∈ {G,F }, it follows from Pardoux and Peng (1990) that under
assumptions (B1) and (B2) and, for eachc ∈ H2(F ,R) there exist a unique pair
(UA(c),V A(c)) ∈ H2(A,R) × H2(A,Rn) such that

UA
t (c) = E

[∫ T

t
f

(
s, cs,U

A
s (c),V A

s (c)
)
ds

∣∣∣At

]
.(10)

Now, since we will extensively use them in the subsequent analysis, it is
worthwhile to recall [see El Karoui, Peng and Quenez (1997)] the representation
theorems of linear (resp. concave) BSDEs as a conditional expectation (resp. an
essential infinimum of conditional expectations). We will state these results for a
filtration A ∈ {G,F } and only for the BSDE model (9) [the GSDU model (10)
being a particular case of the BSDE model (9)].

PROPOSITION 1. Let (ρ, κ) be a bounded (R,Rn)-valued A-predictable
process, ϕ an element of H2(A,R) and ξ and element of L2(AT ). Then the
linear BSDE

YA
t (ξ ) = ξ +

∫ T

t

(
ϕs + YA

s (ξ)ρs + ZA
s (ξ) · κs

)
ds −

∫ T

t
ZA

s (ξ) · dWA
s

has a unique solution (YA(ξ),ZA(ξ)) ∈ H2(A,R) × H2(A,Rn) which admits
the representation

YA
t (ξ ) = E

[
ϒT

t ξ +
∫ T

t
ϒs

t ϕs ds
∣∣∣At

]
,

where ϒs
t is the adjoint process defined for s ≥ t by the forward SDE

dϒs
t = ϒs

t [ρs ds + κs · dWA
s ], ϒt

t = 1.

Alternatively, when the driverh is concave with respect to(y, z), it is possible
to express it as an infinimun of linear functions of(y, z): denoting byH the polar
function ofh defined by

H(t, ρ, κ) = sup
(y,z)∈R×Rn

[h(t, y, z) − ρy − κ · z],

the conjugacy relationship gives [for each(ω, t)]

h(t, y, z) = inf
(ρ,κ)∈[−K,K]n+1

[
h(ρ,κ)(t, y, z)

]
,

whereh(ρ,κ)(t, y, z) = H(t, ρ, κ) − ρy − κ · z and where we recall thatK is the
Lipschitz constant for the driverh (the domain of definition ofH is a subset of
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[−K,K]n+1). Heuristically, the representation theorem for concave BSDEs states
that the infinimum of the above conjugacy relationship commutes with the BSDE
transform, that is,

Yt (h) ≡ Yt

(
ess infh(ρ,κ)

) = ess infYt

(
h(ρ,κ)

)
.

In order to state this result more precisely in the following proposition, we first
define the domain [see El Karoui, Peng and Quenez (1997)]

D := {(ρ, κ) ∈ P A ∩ [−K,K]n+1|H(·, ρ·, κ·) ∈ H2(A,R)}.
PROPOSITION 2. Let h be a concave driver satisfying assumptions

(A1) and (A2) and let H the associated polar function. Then the BSDE (9) ad-
mits the dual representation

YA
t (ξ ) = ess inf

(ρ,κ)∈D
E

[
ϒ

ρ,κ
t,T ξ +

∫ T

t
ϒ

ρ,κ
t,s H(s, ρs, κs) ds

∣∣∣At

]
,

where ϒ
ρ,κ
t,s is the adjoint process defined for s ≥ t by the forward SDE

dϒ
ρ,κ
t,s = ϒ

ρ,κ
t,s [ρs ds + κs · dWA

s ], ϒ
ρ,κ
t,t = 1.

3. Some examples of filtrations and utilities.

3.1. Examples of heterogeneous filtrations. There aremany ways to construct
a sequence of coarser or finer Brownian filtrations and we give here some examples
of constructions.

Losing the sign of a Brownian motion. Departing from a completed filtra-
tion B generated a two-dimensional Brownian motion(νB

t = (νB
1t , ν

B
2t ))0≤t≤T one

can construct the filtrationA generated by

At := σ
(
(|νB

1s |, |νB
2s |);0≤ s ≤ t

)
,

and it follows from Revuz and Yor (1999) thatA is generated by the two dimen-
sional Brownian motion(νA

t )0≤t≤T ≡ (
∫ t
0 sgn(νB

1s ) dνB
1s,

∫ t
0 sgn(νB

2s) dνB
2s)0≤t≤T .

Note that this method provides a way to construct an infinite sequence of coarser
filtrations. Finally, it is important to observe that in this particular example,νA is
also a Brownian motion under the filtrationB.

Brownian anticipation. Consider ann-dimensional Brownian motion(νA
s ;

0 ≤ s ≤ t) that generates a completed filtrationA. Then the process

νB
t := 1√

2
νA

2t , 0 ≤ t ≤ T,

is a Brownian motion and generates a completed filtrationB that satisfies

Bt = A2t ⊃ At .

Notice that in this context,ν is not aB-martingale and thus it is not a Brownian
motion underB.
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Brownian motion with an independent random drift. A third example comes
from filtering theory. Consider a scalar Brownian motion(νt )0≤t≤T and an inde-
pendent and integrable random variableµ. Consider the filtrationB generated by

Bt := σ(νs;0≤ s ≤ t) ∨ σ(µ)

and its subfiltration

At := σ(νs + µs;0≤ s ≤ t),

which is well known to be generated [see, e.g., Liptser and Shiryayev (1977)]
by the Brownian motion(νA

t )0≤t≤T = (νt + ∫ t
0(µ − E(µ|As)) ds)0≤t≤T . Note

however that this example is outside the scope of this paper sinceB0 is not trivial.

3.2. Examples of intertemporal aggregator.

The multi-prior expected utility process. When the BSDE driver has the form

h(t,ω, y, z) = −
n∑

i=1

ki |zi |,(11)

whereki > 0 for i = 1, . . . , n, the processYF (U(ξ)) defined in (3) [resp. the
processYG(U(ξ)) defined in (4)] with the terminal dataU(ξ) whereU(·) is a
nondecreasing and concave function mappingR onto R may be interpreted as a
multi-prior utility for the wealthξ [Chen and Epstein (2002)].

Alternatively, in the GSDU case, when the intertemporal aggregator has the
following form:

f (t, c, y, z) = u(c) −
n∑

i=1

ki |zi|,(12)

whereki > 0 for i = 1, . . . , n and whereu(·) is a nondecreasing and concave
function mappingR onto R, the processUF (c) defined in (5) [resp. the
processUG(c) defined in (6)] may be interpreted as a multi-prior utility for the
consumption processc [Chen and Epstein (2002)].

Quadratic GSDU. When the intertemporal aggregator has the form

f (c, y, z) = log(c) − βy − α

2
z2,(13)

with parameter restrictions:β ≥ 0 andα ≥ 0 the existence of the GSDUs (5) are
not guaranteed anymore since the intertemporal aggregatorf is not Lipschitz with
respect toz. The GSDU associated to (13) is in fact in the class of quadratic
BSDE that has been extensively studied in Kobylansky (2000) who shows the
existence by an approximation technique. In the specific case under consideration,
Schroder and Skiadas (1999) show the existence and uniqueness of the solution of
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the BSDE (5) and consequently of the BSDE (6). Their proof consists of building
an appropriate set of consumption plan processes (that contains but is not limited
to the set of bounded process) and involves a fixed point theorem.

Interestingly, the model (13) is important since it has been recently shown by
Skiadas (2003) and Lazrak and Quenez (2003) that the GSDU associated with (13)
is a unified formulation of a recent approach to uncertainty aversion related to the
robust control theory. This approach has been introduced by Anderson, Hansen and
Sargent (1998) [see also Hansen, Sargent, Turmuhambetova and Williams (2002)
and Uppal and Wang (2003) for some applications of that model to asset pricing
issues].

4. An illustrative example. The objective of this section is to give a
concrete situation where we can measure explicitly the utility under heterogeneous
filtrations. In fact, the example that we shall give in the sequel was very helpful to
us as a guide of how to handle the problem given in the previous section.

Assume that the filtrationF is generated by

Ft := σ(|WG
s |;0≤ s ≤ t) = σ(WF

s ;0≤ s ≤ t),(14)

where theF -Brownian motion(WF
t ;0≤ t ≤ T ) is given by

WF
t =

∫ t

0
sgn(WG

s ) dW
G
s .

Also, we will consider the anticipating filtration

Ht := σ(WF
2s ;0≤ s ≤ t) = σ(WH

s ;0≤ s ≤ t),

where theH -Brownian motion(WH
t ;0≤ t ≤ T ) is given by

WH
t = 1√

2
WF

2t .

It is clear thatF(·) � G(·) andF(·) � H(·), and in order to simplify the exposition,
assume furthermore that the Brownian motionWG is one dimensional (n = 1).
Now, in the following sections, we shall consider the particular consumption plan
b ∈ H2(F ,R) given by

bt = exp(WF
t ),(15)

and compute its associated GSDU for some simple intertemporal aggregators
under the filtrationsF(·),G(·) andH(·).

4.1. A linear GSDU intertemporal aggregator. Now, let us analyze what
happens if we introduce thesimplest dependence inz in the intertemporal
aggregator, that is, a linear additive dependence of the form

f (s, c, y, z) = log(c) − β(s)y − γ z,(16)
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where theβ(·) is a deterministic integrable function.
From Proposition 1 and forA ∈ {F ,G,H}, the GSDU associated with the

aggregator (16) admits the representation

UA
t (b) = E

[∫ T

t
ϒs

t W
F
s ds

∣∣∣At

]
,(17)

whereϒs
t is the adjoint process defined fors ≥ t by the forward SDE

dϒs
t = −ϒs

t [β(s) ds + γ dWA
s ], ϒt

t = 1.

When γ = 0, the adjoint processϒt
s is deterministic and by the filtering

property of the conditional expectation we have

UF
t (b) = E[UG

t (b)|Ft ] = E[UH
t (b)|Ft ]

and in particular

UF
0 (b) = U

G
0 (b) = UH

0 (b) = 0.(18)

However, as we shall show in subsequent computations, equation (18) does not
hold whenγ �= 0 and, in particular, information neutrality fails to hold in that case.

More explicitly, whenγ �= 0, one can use the representation (17) and a simple
Girsanov transformation to get

UF
t (b) =

[∫ T

t
s

t ds

]
WF

t − γ

∫ T

t
(s − t)s

t ds,(19)

where we used the notations
t = exp(− ∫ s

t β(u) du). Thus, by differentiation, the
associated intensity is

V F
t (b) =

∫ T

t
s

t ds.(20)

On the other hand, it is also possible to compute the couple(UG(b),V G(b)).
The exercise is slightly more involved and in order to execute it, let us first define
a new probability measure onGT by(

dP̃

dP

)
GT

= exp
(
−γ 2

2
T − γW

G
T

)
.

By Girsanov’s theorem, the process

W̃
G
t = W

G
t + γ t

is a (P̃ ,G)-Brownian motion and reexpressing the representation (17) under the
probability P̃ and the filtrationG gives

U
G
t (b) = Ẽ

[∫ T

t
s

t

∫ s

0
sgn(WG

u ) dW
G
u ds

∣∣∣Gt

]

=
[∫ T

t
s

t ds

]
WF

t + Ẽ

[∫ T

t
s

t

∫ s

t
sgn(WG

u ) dW
G
u ds

∣∣∣Gt

]
,
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where Ẽ is the expectation under̃P . SubstitutingWG with W̃G in the above
expression and eliminating the stochastic integrals (which does not contribute to
the expectation) gives

U
G
t (b) =

[∫ T

t
s

t ds

]
WF

t − γ

∫ T

t
s

t

∫ s

t
Ẽ[sgn(W̃G

u − γ u)|Gt ]duds.

Now, one can remark that

Ẽ[sgn(W̃G
u − γ u)|Gt] = Ẽ

[
sgn

(
(W̃

G
u − W̃

G
t ) + W̃

G
t − γ u

)|Gt

]
= Ẽ

[
sgn

(√
u − tG + W

G
t − γ (u − t)

)]
,

whereG is a standard Gaussian variable with zero mean and unit variance under
the probabilityP̃ . Consequently, expressing the above quantity in terms of the
cumulative� of the standard Gaussian variable gives

Ẽ[sgn(W̃G
u − γ u)|Gt] = 1− 2�

(
−W

G
t − γ (u − t)√

u − t

)
and thus

U
G
t (b) =

[∫ T

t
s

t ds

]
WF

t − γ

∫ T

t
(s − t)s

t ds

(21)

+ 2γ

∫ T

t

(∫ s

t
�

(
−W

G
t − γ (u − t)√

u − t

)
du

)
s

t ds.

Differentiating the above expression, and taking only the martingale part gives the
intensity

V
G
t (b) =

[∫ T

t
s

t ds

]
sgn(WG

t )

− γ

∫ T

t

(∫ s

t

√
2

π(u − t)
exp

(
−1

2

(W
G
t − γ (u − t))2

u − t

)
du

)
s

t ds.

Thus, it becomes clear from (19) and (21) that

U
G
t (b) − UF

t (b) = 2γ

∫ T

t

(∫ s

t
�

(
−W

G
t − γ (u − t)√

u − t

)
du

)
s

t ds �= 0,(22)

P ⊗ dt a.s. and hence the information neutrality does not hold.
Finally, for the GSDUs underH , one can use some similar Girsanov

transformations and get

UH
t (b) =

∫ T

t
WF

s s
t ds,

(23)
V H

t (b) = 0,
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if t ≥ T/2 and

UH
t (b) =

∫ 2t

t
WF

s s
t ds + WF

2t

∫ T

2t
s

t ds − γ
√

2
∫ T

2t
(s/2− t)s

t ds,

(24)

V H
t (b) = √

2
∫ T

2t
s

t ds,

if t < T/2.
Thus, we see that

UH
0 (b) − UF

0 (b) = −γ
(
1−

√
2

2

)(∫ T

0
ss

t ds

)
,(25)

and in particular the identity (18) does not hold and hence the information
neutrality does not hold again. Note that whenγ > 0, it is clear thatUH

0 (b) <

UF
0 (b) and we interpret this inequality as a form of aversion to information (the

consumer prefers to have access only to the coarser filtrationF(·)). However, this
inequality is not true for every consumption plan and it can be proved that we have
the opposite inequalityUH

0 (b′) > UF
0 (b′) for the consumption planb′ defined by

b′
t = exp(−WF

t ).

4.2. A nonlinear intertemporal aggregator. Let us consider the Chen and
Epstein (2002) GSDU intertemporal aggregator given by

f (s, c, y, z) = log(c) − β(s)y − k|z|,(26)

for k ∈ R+ and for a deterministic integrable functionβ(·).
By Proposition 2, we know that for each filtrationA ∈ {F ,G}, the A-GSDU

associated with the intertemporal aggregator (26) maybe represented for any
c ∈ H2(A,R) as

UA
t (c) = ess inf

θ∈�A

U
A,θ
t (c), P ⊗ dt a.s.,(27)

where�A = {θ ∈ H2(A,R) : |θt | ≤ k, P ⊗dt a.s.} and where the processUA,θ (c)

is the GSDU defined by

U
A,θ
t (c) =

∫ T

t

(
log(cs) − β(s)UA,θ

s (c) − θsV
A,θ
s (c)

)
ds −

∫ T

t
V A,θ

s (c) dWA
s ,

for eachθ ∈ �A. By Proposition 1, we have the representation

U
A,θ
t (c) = E

[∫ T

t
ϒs

t log(cs) ds
∣∣∣At

]
,(28)

whereϒs
t is the adjoint process defined fors ≥ t by the forward SDE

dϒs
t = −ϒs

t [βs ds + θs · dWA
s ], ϒt

t = 1.
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In order to computeUF
t (b) where we recall that the consumption planb is

defined in (15), we first define for eachθ ∈ �F the probability measureP θ by
its Radon–Nikodym derivative with respect toP onFT ,

dP θ

dP
= exp

{
−

∫ T

0
θs dWF

s − 1

2

∫ T

0
θ2
s ds

}
.

By Girsanov’s theorem, the representation (28) becomes

U
F ,θ
t (b) = Eθ

[∫ T

t
s

t W
F
s ds

∣∣∣Ft

]

=
[∫ T

t
s

t ds

]
WF

t − Eθ

[∫ T

t

(
s

t

∫ s

t
θv dv

)
ds

∣∣∣Ft

]
,

whereEθ is the expectation under the probabilityP θ . Therefore, the essential
infinimum of (27) is attained byθ = k, P ⊗ dt a.s., and hence

UF
t (b) =

[∫ T

t
s

t ds

]
WF

t − k

∫ T

t
(s − t)s

t ds,

and consequently the associated intensity is given by

V F
t (b) =

∫ T

t
s

t ds.

In order to computeUG
t (b), one can write the BSDE satisfied byUF

t (b), and
translate it underG and get a uniqueness argument

U
G
t (b) =

[∫ T

t
s

t ds

]
WF

t − k

∫ T

t
(s − t)s

t ds ≡ UF
t (b)

and

V
G
t (b) =

[∫ T

t
s

t ds

]
sgn(WG

t ).

For the utility under the filtrationH , a uniqueness argument [note thatV H has
an invariant sign in equations (23) and (24)] allows us to concludeUH andV H

are given by equations (23) and (24) with the replacement ofγ by k.

4.3. A quadratic intertemporal aggregator. Let us consider the SDU intertem-
poral aggregator given by

f (s, c, y, z) = log(c) − γ

2
z2,(29)

for γ ∈ R. Although the intertemporal aggregator (29) is not Lipshitz, using Itô’s
rule, it can be shown easily that

UA
t (c) = − 1

γ
log

(
E

[
exp

(
−γ

∫ T

t
log(cs) ds

)∣∣∣At

])
,
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for anyc ∈ c ∈ H2(F ,R) and forA = F ,G andH . In particular, existence and
uniqueness of the associated BSDE hold when the above expectation is finite.
Furthermore, some straightforward computations give

UF
t (b) = U

G
t (b) = (T − t)WF

t − γ

6
(T − t)3,

UH
t (b) =

∫ 2t

t
WF

s ds + (T − 2t)WF
2t − γ

6
(T − 2t)3 for t < T/2

and

V F
t (b) = (T − t),

V
G
t (b) = (T − t)sgn(WG

t ),

V H
t (b) = √

2(T − t).

4.4. Discussion. While the computations of this section offer a modest
contribution from a theoretical perspective, they have the merit of illustrating in
a concrete way how a BSDE depends on its filtration.

For our objective of characterizing information neutrality, it is worthwhile to
see what we can learn from this example. First, the linear GSDU computations of
Section 4.1 show that the dependency inz does not allow information neutrality to
hold (for the three types of information heterogeneity under consideration).

When the utility is linear but independent fromz, the GSDUs underF andG
coincide but are different from the GSDU underH . This fact suggests that the
information heterogeneityF versusG has a special feature. This special feature
seems to be confirmed by the nonlinear intertemporal aggregators of Sections
4.2 and 4.3. In both cases, the GSDUs underF andG coincide but are different
from the GSDU underH .

Although, these statements have no theoretical value since they are only valid
for one particular consumption plan (b), the next theoretical work will establish
that the information heterogeneity of the typeF versusG is the unique type of
information heterogeneity which allow information neutrality to hold for a class of
intertemporal aggregators.

5. Characterization of information neutrality. In this section we fix a
couple of filtrationsF(·) � G(·). First, let us state a general necessary condition
of information neutrality.

LEMMA 1. If a BSDE (3) [resp. a GSDU (5)] exhibits information neutrality
then for any ξ ∈ L2(FT ) [resp. for any c ∈ H2(F ,R)] we have

‖ZF
t (ξ )‖ = ‖ZG

t (ξ )‖ [resp. ‖V F
t (c)‖ = ‖V G

t (c)‖], P ⊗ dt a.s.
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PROOF. It follows from (7) that for eachξ ∈ L2(FT ),

lim|ti+1−ti |→0

∑
i

∣∣YF
ti+1

(ξ) − YF
ti

(ξ )
∣∣2 = lim|ti+1−ti |→0

∑
i

∣∣YG
ti+1

(ξ) − Y
G
ti

(ξ )
∣∣2

and therefore, ∫ t

0
‖ZF

s (ξ)‖2 ds =
∫ t

0
‖ZG

s (ξ)‖2 ds.

Consequently,

‖ZF
t (ξ )‖ = ‖ZG

t (ξ )‖, P ⊗ dt a.s.,

and the proof is similar for the GSDU case.�

5.1. The BSDE problem. In this section, and in view of Lemma 1, we use the
following assumption on the driver of the BSDE (3):

(H1) The BSDE driver has the form

h(s,ω, y, z) = h̃(s,ω, y,‖z‖).

THEOREM 1. Under assumption (H1) the following statements are equiva-
lent:

(a) The BSDE (3) exhibits strong information neutrality.
(b) There exists a process M : [0, T ] × � → Rn×n in the set P G such that

M ′M = Idn, dt ⊗ dP a.s. and

WF
t =

∫ t

0
Ms dW

G
s , P ⊗ dt a.s.(30)

PROOF. (b) ⇒ (a) For anyξ ∈ L2(FT ), assumption (H1) in conjunction
with (30) implies that(YF

t (ξ ),MtZ
F
t (ξ ))0≤t≤T solves the BSDE (3), and by

uniqueness we getYF
t (ξ ) = Y

G
t (ξ ).

(b) ⇒ (a) For anyξ ∈ L2(FT ), and under assumption (H1), substracting
(3) and (4) gives, by Lemma 1,∫ t

0
ZF

s (ξ) · dWF
s =

∫ t

0
Z

G
s (ξ) · dW

G
s , P ⊗ dt a.s.(31)

In order to compute explicitlyZF for some particularξ , let us now introduce
the n-dimensional process(Xt = (Xt , . . . ,Xt ))0≤t≤T that solves the stochastic
differential equation

dXt = −g(t,ω,Xt ) dt + dWF
t ,

X0 = x ∈ Rn,
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whereg maps[0, T ] × �×Rn ontoRn and is defined by

g(t,ω,X) = (
h̃(t,ω,X1,1); h̃(t,ω,X2,1); . . . ; h̃(t,ω,Xn,1)

)
.

By construction, it is clear that, for eachk = 1, . . . , n; YF
t (Xk

T ) = Xk
t and

ZF
t (Xk

T ) = δk whereδk is a vector ofRn defined byδkk′ = 0 if k �= k′ andδkk = 1.
Therefore, for eachk, i = 1, . . . , n, letting

M
k,i
t := Z

i,G
t (Xk

T ),

we get, from (31),

kWF
t =

∫ t

0

n∑
i=1

Mk,i
s d iW

G
s , P ⊗ dt a.s.,

and thus for eachk, k′ = 1, . . . , n,

δ
′
kδk′ dt = d

〈k
WF ,k

′
WF 〉

t =
n∑

i=1

M
k,i
t M

k′,i
t dt = (M ′

tMt)k,k′ dt,

which completes the proof.�

To be concrete, in the scalar Brownian motion case, the filtrationFt =
σ(|WG

s |,0 ≤ s ≤ t) is generated by the Brownian motionWF
t := ∫ t

0 sgn(WG
s ) dW

G
s

as explained in Section 3.1 and this is an example of a situation where condition (b)
of Theorem 1 holds. More generally, Theorem 1 illustrates that when the link (30)
exists between two filtrationsF andG, there isno utility cost for the information
loss due to accessing toF rather thanG under assumption (H1).

REMARK 1. Note that under assumption (H1), it is easily seen from (30) that
information neutrality is also equivalent to the fact thatWF is a G-Brownian
motion. Thus Theorem 1 provides a possible interpretation of this condition in
terms of utility cost of information.

REMARK 2. Whenh = 0, the BSDE (3) is the (linear) conditional expectation
and the strong information neutrality becomes

E[ξ |Ft ] = E[ξ |Gt ], dP ⊗ dt a.s.,(32)

for all ξ ∈ L2(FT ). In particular, the above is true forξ = WF
T , and from the Lévy

criteria, we deduce that, in fact,WF is a G-Brownian motion and thus (30) is
satisfied. Thus Theorem 1 may be interpreted as a generalization of property (32)
to the BSDE generated by the driverh under assumption (H1). (The BSDEs are
denominated sometimes nonlinear expectations.)
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5.2. The GSDU case. In this section, and in view of Lemma 1, we use the
following assumption on the GSDU intertemporal aggregator:

(H2) The intertemporal aggregator has the form

f (s, c, y, z) = f̃ (s, c, y,‖z‖).
Furthermore, for technical reasons we shall use the following assumption on the

intertemporal aggregator:

(H3) The intertemporal aggregatorf is continuously differentiable with respect
to c, y, z with first derivative being bounded by some constantL > 0 and
satisfies for all(t, c, y, z) ∈ [0, T ] × R × R × Rn

|f (t, c,0, z)| ≤ C, |∂cf (t, c, y, z)| ≥ k > 0,

for some constantsC and k. Moreover, the derivatives∂cf, ∂yf, ∂zf are
uniformly Lipschitz with respect to each of the variablesc, y, z with a
Lipschitz constantM > 0.

THEOREM 2. Under assumptions (H2) and (H3), the following statements are
equivalent:

(a) The GSDU (5) exhibits information neutrality.
(b) Equality (30) holds for some process M : [0, T ] × � → Rn×n in the set P G

such that M ′M = Idn, dt ⊗ dP a.s.

PROOF. (b) ⇒ (a) For anyc ∈ H2(F ,R), assumption (H2) in conjunction
with (30) implies that(UF

t (c),M ′
tV

F
t (c))0≤t≤T solves the BSDE (5), and by

uniqueness we getUF (c) = UG(c).

(a)⇒ (b) A similar approach of Theorem 1 leads under assumption (H2) to the
identity ∫ t

0
V F

s (c) dWF
s =

∫ t

0
V

G
s (c) dW

G
s , P ⊗ dt a.s.(33)

for eachc ∈ H2(F ,R).
In particular, fork = 1, . . . , n, let us consider the utilityUF

t (kWF ) associated
to the consumption processesct = kWF

t that coincides, by uniqueness of the
BSDE (5), with the solution of the scalar BSDE

kNt =
∫ T

t
f̃ (s, kWF

s , kNs, |kζs |) ds −
∫ T

t

kζs dkWF
s .

Hence,V F
t (kWF ) = kζt δk , where we recall thatδk is a vector ofRn defined by

δkk′ = 0 if k �= k′ andδkk = 1. Now, assuming that

|kζt | > 0, P ⊗ dt a.s. fork = 1, . . . , n,(34)
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and applying (33) to the consumption processesc = kWF for k = 1, . . . , n gives

kWF
t =

∫ t

0

n∑
i=1

Mk,i
s diW

G
s , P ⊗ dt a.s.,

where

M
k,i
t := V

i,G
t (kWF )

kζt

and following the same argument of Theorem 1 we are done. The following lemma
shows that under assumption (H3), inequality (34) is satisfied.�

LEMMA 2. Let (Bt ,0 ≤ t ≤ T ) be a standard unidimensional Brownian
motion [say under (P,F )] and consider the BSDE

N0
t =

∫ T

t
g(s,Bs,N

0
s , ζ 0

s ) ds −
∫ T

t
ζ 0
s dBs,

where g is defined for each (t, c, y, z) ∈ [0, T ] × R × R × R by

g(t, c, y, z) = f (t, c, y, zδ1)

and where f is an intertemporal aggregator satisfying assumption (H3).
Then |ζ 0

t | > 0,P ⊗ dt a.s.

PROOF. First, consider the finality of BSDEs parametrized byx ≥ 0 and
defined by

Nx
t =

∫ T

t
g(s, x + Bs,N

x
s , ζ x

s ) ds −
∫ T

t
ζ x
s dBs.(35)

By a result of Ma, Protter and Yong [(1994), Lemma 3.2; see also Pardoux and
Peng (1992)] and for eachx ≥ 0 the solution of (35) satisfies

(Nx
t , ζ x

t ) = (
θ(t, x + Bt), ∂xθ(t, x + Bt)

)
,

where θ : [0, T ] × R → R is the unique bounded classical solution of the
quasilinear parabolic equation

∂t θ(t, x) + 1
2 ∂xxθ(t, x) + g

(
t, x, θ(t, x), ∂xθ(t, x)

) = 0, (t, x) ∈ (0, T ) × R,

θ(T , x) = 0.

Furthermore, by the BSDE a priori estimates [see Pardoux and Peng (1990) and
El Karoui, Peng and Quenez (1997)] and the boundness of∂cg [assumption (H3)]
we have the following bounding argument:

E

(
sup
t≤T

|Nx
t − N0

t |2
)

+ E

(∫ T

0
dt (ζ x

t − ζ 0
t )2

)

≤ CE

(∫ T

0
dt,

(
g(t, x + Bt,N

0
t , ζ 0

t ) − g(t,Bt ,N
0
t , ζ 0

t )
)2

)
(36)

≤ CT L2x2,
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for some positive constantC.
Second, consider the linear BSDE

Qt =
∫ T

t

(
∂cg(s,Bs,N

0
s , ζ 0

s )

+ Qs ∂yg(s,Bs,N
0
s , ζ 0

s ) + �s ∂zg(s,Bs,N
0
s , ζ 0

s )
)
ds(37)

−
∫ T

t
�s dBs

which, according to Proposition 1, gives the following solution:

Qt = E

[∫ T

t
ds ∂cg(s,Bs,N

0
s , ζ 0

s )exp
(∫ s

t
du ∂yg(u,Bu,N

0
u, ζ 0

u )

)
ϒs

t

∣∣∣Ft

]
,(38)

where

ϒs
t = exp

(
−1

2

∫ s

t
du ∂zg(u,Bu,N

0
u, ζ 0

u )2 +
∫ s

t
dBu ∂zg(u,Bu,N

0
u, ζ 0

u )

)
.

Notice that from the boundness of the first derivatives ofg, equation (38) shows
thatQ satisfies

ke−MT (T − t) ≤ |Qt | ≤ MeMT T(39)

and, therefore, in order to prove the lemma, we will show that

ζ 0
t = Qt, P ⊗ dt a.s.(40)

More precisely, sinceζ 0
t = ∂xθ(t,Bt ) and by the definition of a derivative, we

need only prove

lim
x↓0

�Nx
t = Qt, P ⊗ dt a.s.,(41)

where�Nx
t := (Nx

t − N0
t )/x for x > 0.

To that end, let us define for eachx > 0 the process�ζx
t := (ζ x

t − ζ 0
t )/x and,

following a linearization technique of El Karoui, Peng and Quenez (1997) we
interpret the couple(�Nx

t ,�ζx
t ) as the solution of the linear BSDE

�Nx
t =

∫ T

t
(ϕx

s + Ax
s �Nx

s + Bx
s �ζx

s ) ds −
∫ T

t
�ζx

s dBs,

where

Ax
t :=

∫ 1

0
dλ∂yg

(
t, x + Bt ,N

0
t + λ(Nx

t − N0
t ), ζ x

t

)
,

Bx
t :=

∫ 1

0
dλ∂zg

(
t, x + Bt ,N

0
t , ζ 0

t + λ(ζ x
t − ζ 0

t )
)
,

ϕx
t := (

g(t, x + Bt ,N
0
t , ζ 0

t ) − g(t,Bt ,N
0
t , ζ 0

t )
)
/x.
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Using the BSDE a priori estimates [see Pardoux and Peng (1990) and El Karoui,
Peng and Quenez (1997)] and the inequality(a + b + c)2 ≤ 4(a2 + b2 + c2) we
get

E

(
sup
t≤T

|�Nx
t − Qt |2

)

≤ CE

(∫ T

0
dt

(
Ax

t − ∂yg(t,Bt ,N
0
t , ζ 0

t )
)2

Q2
t

)
(42)

+ CE

(∫ T

0
dt

(
Bx

t − ∂zg(t,Bt ,N
0
t , ζ 0

t )
)2

�2
t

)

+ CE

(∫ T

0
dt

(
ϕx

t − ∂cg(t,Bt ,N
0
t , ζ 0

t )
)2

)
,

for some positive constantC.
By Rolle’s theorem, we haveϕx

t = ∂cg(t, ηx
t ,N0

t , ζ 0
t ) for some ηx

t ∈ (Bt ,

Bt + x) and since∂cg is uniformly Lipschitz with respect toc, we have the
following bound for the third term on the right-hand side of (42):

CE

(∫ T

0
dt

(
ϕx

t − ∂cg(t,Bt ,N
0
t , ζ 0

t )
)2

)
≤ CT M2x2.(43)

To analyze the convergence of the first term on the right-hand side of (42) we
need the following bounding arguments:

CE

(∫ T

0
dt

(∫ 1

0
dλ∂yg

(
t, x + Bt ,N

0
t + λ(Nx

t − N0
t ), ζ x

t

)
− ∂yg(t,Bt ,N

0
t , ζ 0

t )

)2

Q2
t

)
≤ KE

(∫ T

0
dt

(∫ 1

0
dλ∂yg

(
t, x + Bt ,N

0
t + λ(Nx

t − N0
t ), ζ x

t

)
− ∂yg(t,Bt ,N

0
t , ζ 0

t )

)2)
≤ 4KE

(∫ T

0
dt

(∫ 1

0
dλ∂yg

(
t, x + Bt ,N

0
t + λ(Nx

t − N0
t ), ζ x

t

)
− ∂yg(t, x + Bt,N

0
t , ζ x

t )

)2)

+ 4KE

(∫ T

0
dt

(∫ 1

0
dλ∂yg(t, x + Bt ,N

0
t , ζ x

t )

− ∂yg(t, x + Bt ,N
0
t , ζ 0

t )

)2)
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+ 4KE

(∫ T

0
dt

(∫ 1

0
dλ∂yg(t, x + Bt,N

0
t , ζ 0

t )

− ∂yg(t,Bt ,N
0
t , ζ 0

t )

)2)

≤ 4KM2
(
E

(∫ T

0
dt (Nx

t − N0
t )2/3

)
+ E

(∫ T

0
dt (ζ x

t − ζ 0
t )2

)
+ x2

)
≤ 4KM2(CT 2L2/3+ CT L2 + 1)x2,

whereK = CM2e2MT T 2 and where we used (39) to obtain the first inequality,
the uniform Lipschitz property of∂yf to obtain third inequality and we used the
a priori estimates in (36) to obtain the last inequality. By (43) and the above, we
therefore have, on taking limits,

lim
x↓0

CE

(∫ T

0
dt

(
Ax

t − ∂yg(t,Bt ,N
0
t , ζ 0

t )
)2

Q2
t

)
(44)

+ CE

(∫ T

0
dt

(
ϕx

t − ∂cg(t,Bt ,N
0
t , ζ 0

t )
)2

)
= 0.

In order to tackle the convergence of the second term on the right-hand side
of (42) we use similar bound to the above and get

CE

(∫ T

0
dt

(∫ 1

0
dλ∂zg

(
t, x + Bt ,N

0
t , ζ 0

t + λ(ζ x
t − ζ 0

t )
)

− ∂zg(t,Bt ,N
0
t , ζ 0

t )

)2

�2
t

)

≤ 2CE

(∫ T

0
dt

(∫ 1

0
dλ∂zg

(
t, x + Bt ,N

0
t , ξ0

t + λ(ζ x
t − ζ 0

t )
)

− ∂zg(t, x + Bt ,N
0
t , ζ 0

t )

)2

�2
t

)

+ 2CE

(∫ T

0
dt

(∫ 1

0
dλ∂zg(t, x + Bt ,N

0
t , ζ 0

t )(45)

− ∂zg(t,Bt ,N
0
t , ζ 0

t )

)2

�2
t

)

≤ 2CE

(∫ T

0
dt

(∫ 1

0
dλ∂zg

(
t, x + Bt ,N

0
t , ζ 0

t + λ(ζ x
t − ζ 0

t )
)

− ∂zg(t, x + Bt ,N
0
t , ζ 0

t )

)2

�2
t

)

+ 2M2x2E

(∫ T

0
dt �2

t

)
.
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Finally, to bound the last term of (45) we mimic a technique introduced in El
Karoui, Peng and Quenez (1997) as follows:

E

(∫ T

0
dt

(∫ 1

0
dλ∂zg

(
t, x + Bt ,N

0
t , ζ 0

t + λ(ζ x
t − ζ 0

t )
)

− ∂zg(t, x + Bt ,N
0
t , ζ 0

t )

)2

�2
t

)

≤ M2x1/2E

(∫ T

0
dt �2

t

)

+ E

(∫ T

0
dt

(∫ 1

0
dλ�2

t 1{|ζ x
t −ζ 0

t |>x1/4}

× ∂zg
(
t, x + Bt,N

0
t , ζ 0

t + λ(ζ x
t − ζ 0

t )
)

− ∂zg(t, x + Bt,N
0
t , ζ 0

t )

)2)

≤ M2x1/2E

(∫ T

0
dt �2

t

)
+ 4L2E

(∫ T

0
dt 1{|ζ x

t −ζ 0
t |>x1/4}�

2
t

)
(46)

≤ M2x1/2E

(∫ T

0
dt �2

t

)

+ 4L2E

(∫ T

0
dt 1{|�t |>x−1/4}1{|ζ x

t −ζ 0
t |>x1/4}�

2
t

)

+ 4L2x−1/2E

(∫ T

0
dt 1{|ζ x

t −ζ 0
t |>x1/4}

)

≤ M2x1/2E

(∫ T

0
dt �2

t

)
+ 4L2E

(∫ T

0
dt 1{|�t |>x−1/4}�2

t

)

+ 4L2x−1E

(∫ T

0
dt|ζ x

t − ζ 0
t |2

)

≤ M2x1/2E

(∫ T

0
dt �2

t

)
+ 4L2E

(∫ T

0
dt 1{|�t |>x−1/4}�2

t

)
+ 4CT L4x,

where we used the uniform Lipschitz and the boundness of∂zg to obtain the
first and the second inequality, the Markov inequality to obtain fourth inequality
and (36) to obtain the last inequality. Next, since�t is square integrable by
construction, the Lebesgue theorem implies that

lim
x↓0

E

(∫ T

0
dt 1{|�t |>x−1/4}�2

t

)
= 0,
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and we conclude that the bound obtained in (46) tends to 0 whenx ↓ 0, and thus
so does the bound obtained in (45).

The above analysis, in conjunction with (44), implies

lim
x↓0

E

(
sup
t≤T

|�Nx
t − Qt |2

)
= 0

and, in particular, (41) and thus (40) are established and we are done.�

Similarly to the BSDE model, note that under assumptions (H2) and (H3),
information neutrality for the GSDU model is equivalent to the fact thatWF

is a G-Brownian motion. Thus Theorem 1 provides a possible interpretation of
this condition in terms of utility cost of information in the formal sense of the
GSDU model. From that perspective, the results of Theorems 1 and 2 have similar
interpretations.

The technical proofs of Theorems 1 and 2 are also similar, except in the part
constructing a rich set ofF -martingales. In the BSDE model (Theorem 1), we
used forward SDEs to construct efficiently an appropriate set of terminal data
(ξ) that generaten F -martingales which integrands form a basis ofRn. This last
property allowed us to invert the time derivative of formula (31) and identifydWF

in terms ofdWG. In the BSDE model, we did not need extra technical conditions
because the assumed Lipschitz conditions on the driverh are sufficient to secure
the existence of strong solutions of the forward SDEs.

In the GSDU case, the forward SDEs technique will not work because
the terminal data is fixed(ξ = 0) and we can only choose the consumption
process. In other words, we need to control the intensityV of the GSDU by
selecting appropriately the intertemporal aggregators [through the choice of the
consumption process(c)]. The method that we provide in Lemma 2 is a self-
contained proof which relies on the link between BSDEs and quasilinear parabolic
differential equations [Pardoux and Peng (1992) and Ma, Protter and Yong (1994)].
This method requires extra technical conditions [assumption (H3)] but it is our
beliefs that it is interesting by itself and it also has the merit to rely only on classical
results from the BSDE literature.

However, assumption (H3) is intuitively not a necessary condition to obtain
our characterization [unlike assumption (H2)] and it ispossible to weaken it. For
instance, using the representation of the intensity as a right limit of the Malliavin
derivatives of the utility process(Vt = lims↓t DtUs), one can use the results of
Pardoux and Peng (1992) and El Karoui, Peng and Quenez (1997) [see also
Ma and Zhang (2002)] to weaken assumption (H3). More generally, our choice
of consumption processct = kWF

t to generate a rich set ofF -martingales is
particular. Arguably it is also possible to weaken the required technical conditions
of any method (either the Markovian technique or the Malliavin derivative
technique) by a different choice of consumption process.
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6. Conclusion. We characterized the information neutrality property for a
class of BSDEs including GSDUs under the assumption that the driver depends
on the intensityZ only through the Euclidian norm‖Z‖. Behaviorally, the
information neutrality property corresponds to a form of intrinsic indifference
to information. We proved that, unless the information reduction is specific, the
class of GSDUs exhibits an intrinsic attitude toward information. This intrinsic
attitude toward information is in fact inflexibly associated to the risk aversion and
the ambiguity aversion concepts and cannot be disentangled from them within
the GSDU context. These results invite further analysis. In particular, it would be
meaningful to characterize the monotonicity, that is, strict preference (or aversion)
for information. The Kreps–Porteus–Skiadas approach only provides sufficient
conditions for the monotonicity for a particular class of GSDUs: the SDUs.
New techniques must be introduced since we have to manipulate sub-solution of
BSDEs. For instance the generating martingale technique will not be useful in this
context because we only have inequalities.
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