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LIMIT LAWS OF ESTIMATORS FOR CRITICAL MULTI-TYPE
GALTON-WATSON PROCESSES

BY ZHiYI CHI
University of Chicago

We consider the asymptotics of various estimators based on a large
sample of branching trees from a ardi multi-type Galton—Watson process,
as the sample size increases to infinity. The asymptotics of additive functions
of trees, such as sizes of trees and frequencies of types within trees, a higher-
order asymptotic of the “relative frequency” estimator of the left eigenvector
of the mean matrix, a higher-order joint asymptotic of the maximum
likelihood estimators of the offspringgbabilities ad the consistency of an
estimator of the right eigenvector of the mean matrix, are established.

1. Introduction. This article considers the asymptotics of estimators associ-
ated with critical multi-type Galton—Watson (GW) processes. A GW process is
called critical if the largest eigenvalue of its mean matrix is 1 (see below for de-
tails). For such a process, a branching tree is finite with probability 1, but the
expectation of its size is infinite. The estimators considered here are based on a
large sample of terminating branching trees, and the asymptotics refer to the prob-
abilistic behavior as the sample size> oco.

The study on large sample asymptotics of parameter estimators for simple (i.e.,
single type) GW processes has a quite long history (cf. [20]). The idea of using
increasingly large sample of individual trees for estimation dates from as early
as [24], and much progress has been made since then (cf. [7, 8] and references
therein). This setting of parameter estimation is widely used in computational
linguistics [5, 16], where large samples of tree-structured parses of sentences are
available. On the general issues of parameter estimation or asymptotics related
to simple or multi-type GW processes, there is now extensive literature available
(e.0.,[1, 3,6, 10, 12, 14, 15, 17, 19, 21-23] and references therein). For a multi-
type GW process, in addition to the estimation of offspring probabilities associated
with different types, there is a unique problem, namely the estimation of the left
and right eigenvectors of the mean matrix of the process. Both estimation problems
will be dealt with later in the article. Indeed, by the Perron—Frobenius theorem,
there is a unique pair of left and right eigenvectors that satisfy certain conditions.
We will refer to these two eigenvectors as Frobenius eigenvectors. The estimators
considered in the article give consistent estimation for both of them.
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Since the estimation relies on the asymptotics of the total size of sample
branching trees, we shall first establish results in this regard. For simple GW
processes, it is well known that the distribution of the size of a tree, that is, its total
progeny, belongs to the domain of attraction of a stable law of expc%1{aht].

The size of a tree is an additive function of the tree (cf. [13] and Section 4). Under a
critical GW process, additive functions exhibit very different asymptotic behavior
from those under a subcritical process. The consistency of the estimator for the
left Frobenius eigenvector of the mean matrix as well as that for the offspring
probabilities is a simple consequence of a general result on the asymptotics of
an additive function (cf. Theorem 5). For the left Frobenius eigenvector, the
estimator consists of relative frequencies of types. From the offspring probabilities,
the estimators are the well-known maximum likelihood estimators, which also
take the form of relative frequencies. In analogy to the central limit theorem,
the fluctuations of these estimators around their limits are also of interest and
characterized with non-Gaussian behavior. The estimation of the Frobenius right
eigenvector, on the other hand, follows a completely different approach.

The other sections of the article are organized as follows. The main results are
stated in Section 2. Some well-known or standard results are collected in Section 3
for later use. Section 4 demonstrates a general result on the asymptotics of additive
functions of sample branching trees. In Sections 5 and 6, some finer asymptotics
for the estimators of the left Frobenius eigenvector and the offspring probabilities
are studied. Finally, a consistent estimator of the right Frobenius eigenvector is
given in Section 7.

In the rest of this section we shall fix the notation for the article. Throughout, we
useV e N as a generic notation for the number of particle types in a GW process.
Without loss of generality, let the set of types Be= {1, ..., V}. For simplicity,
the topology of a sample branching tree will be ignored, and a branching rule in
which a patrticle of typ& generatea; offspring of type 1,2 offspring of type 2
and so on is denoted by — n, wheren = (nq,...,ny) € V* := ({0} UN)".
Indeed, when the topology of a tree needs to be taken into account, one can denote
by n a finite string consisting of elements i, and by V* the set of all such
strings,n; is still the number of particles of typein n and results established in
this article still hold.

Givenk € 'V, the offspring probability distribution of¥*, namely the proba-
bility distribution onk — n, is denoted byp; (n). Let P, denote the probability
distribution determined by the offspring probability distributions s € V, on
branching trees rooted with a particle of tyheand letE; denote the expectation
underPy,. For each sample tree, k € V andn € V*, denote

|w| = number of particles i,

f (k; ) = number of particles of typk in w,
flw) = (fL ), ..., f(V;w),
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f(k — n; w) = number of times the rulé — n) is applied inw,

In|=>"n,.

seV
Then for any finite sample tree rooted with a particle of type,

Pe@)=[] [] ps/=™, ke

sEV NeV*

The mean matrix of a GW process i¥ax V matrix M, with its (k, [)th entry

Mk,1) =My =Y pe(mn; >0
ney*
In general, a matri¥(/ is called nonnegative (resp. positive) if all its entries are
nonnegative (resp. positive). Wha# is a square matrix, it is called irreducible if
MP is positive for some € N.

Henceforth, anyw € CV will be regarded as a row vector, and its transpdse
as a column vector. For two vectorsandu, denotev - u =" vsus. FOr any
scalara, denotea= (a, ..., a).

Finally, recall the following fundamental result (cf. [2], page 185, and [16]).

PERRON-FROBENIUS THEOREM Let M be a nonnegative matrix indexed by
V x V. Then M hasan eigenvalue A € [0, oo) such that no other eigenvalue of M
has absolute value greater than A; and there are nonnegative vectors v, u € RV
satisfying Av = VM, Au’ = Mu’. Moreover, if M isirreducible, then A isa simple
eigenvalue, and v and u are positive and can be chosen in such a way that
(1.1) v =1, v-u=1, M" =\"U'v+ R,,

seV

where maX ;e |Ry(k, )] = O(a™) with 0 <« < A. Indeed, for all n > 1, R, =
R} and o' (Ry) 1= SUPy—1 |R1X'| < A.

It is easy to see that eigenvectors satisfying (1.1) are unique. We will refer to
them as Frobenius eigenvectors and denote themamdu, respectively.

2. Mainresults. Define measur® on V* by
Q) = vsps(n).
seV

It is not hard to se® is a probability measure. Henceforth, we will denoteXy
the identity function orw* [i.e., X(n) = n] and assume

(2.1) Eg(X-u)? < o0.

Givenk € V, let w1, wo, ... be i.i.d. trees sampled from,.. For the asymptotics
of the total numbers of particles of different types in the trees, convergence to
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a joint stable distribution can be established, which generalizes the well-known
result that the distribution of the total progeny of a critical simple GW process is
in the domain of attraction of a stable law with expon%(xtf. [11], Theorem 13.1,

and [4], Theorem 9.34).

THEOREM 1. Letv and u be the Frabenius eigenvectors given in (1.1), with
A = 1. Suppose (2.1) holds. Then

1 X D VulE
(2.2) m’;f(wnw Q'

N — o0,

where & is areal-valued stable random vector with characteristic function
(2.3) E[e'"*] = exp|—(1— i sign()) /] }
and H isdefinedon C" by

(24) H@=EoX-2%°-Y vz? Vz=(z,....2v)eC".
seV

Notethat H(u) > 0.

Theorem 1 is a special case of the asymptotics of functions of the form ([13],
page 167).

G =Y > &Mf(s—n o),
seY nevy*
which we will refer to as “additive functions.” There are many choicegfoiFor
example, ifg;(N) = 1nj=0}, thenG () is equal to the total number of terminals
in w. In Section 4, it will be shown that, under suitable conditioﬁ.ﬁ ff:l G(wy)
converges in distribution, and Theorem 1 immediately follows.
From (2.2) and the equivalence between convergence in distribution to a
constant and convergence in probability to the same constant, it follows that

N f(wn) I3

Vv, w1, w2, ... LL.d.~ Pg.

To find finer asymptotics oy, we next consider the limit of the characteristic
functions of N (Vy — V), asN — oo. It turns out thatr = 1 is the correct scaling.
Since

_ N 3L (@) = Vie))

Ny —V)
N 1/N2) N o,

and

1 N 1 N D ult
— =—3N"1.f k>
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instead of directly dealing wittv (v — v), we shall consider the limit of the joint
characteristic functions of random vectors

1Y 1 Y
(ﬁ’;(f(wn) _V|wn|)7 mglwﬂ)

Recall the matrice®,, in (1.1). Since the GW processes are critidg],— 0 at
an exponential rate. Define matrix

o0
(2.6) A= (Z Rn)(l —1v)y=U - R~ -1v),
n=0
wherel is theV x V identity matrix. ThenA # 0, as is seen frorfi'v # I and
o0
(M—DA=)Y (M —-DHM"—u'v)(I —1'V)

n=0
2.7)

o0
=Y M —MI -1V =1v-I
n=0

THEOREM 2. Under the same conditionsasin Theorem 1,

1Y . 1 Y D
Ng((“’")“’"”"')’ﬁzl"""' =@ W), N-oox,

where (Z, W) e RV x R has characteristic function
Elexplic-Z4+iKW)] = &Eutine  ccRY K eR,

such that 7, isthe kth component of n € RV given by

(2.8) 7' = Ad,

and z(c, K) the (unique) solution with negativereal part to

2Ai 1
2.9 2 —— (B+2Ki)=0
(2.9) Z +H(u)Z+H(u)( + 2K1i) ,
where
(2.10) A=Covp(X-u,X-n) — > vsus(ng —cs) —C-V,

sey
(2.11) B=—Varg(X 1)+ Y vs(cs —ny)? = (C-v)2.
seY

Then immediately one gets N (Vy — V) 3 % as N — oo.
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The vectorvy consists of the relative frequencies of types in the population
of particles inws, ..., wy. Likewise, we can consider the relative frequencies of
branching rules iy, ..., wy. Fix j € V andn € V*. Forw, wo, ... 1.i.d. ~ P,
define

N LG =N o)
N fGion)

From Corollary 1 in Section 4, it is seen thaf y is consistent. That is, for
w1, Wy, ... Li.d. ~ P, pj ny(N) £ pj(n), asN — oo. To get finer asymptotics
of p; n(n), following Theorem 2, consider the limit of the joint characteristic
functions of

pinM)=piNNw1,...,0N) =

1 Y 1 Y
(— (G = o) = piMf(row). ne V=5 3 (s wn>).

N n=1 n=1

BecauseV* may have infinitely many elements, to avoid potential difficulty, we
only consider the joint asymptotic of a finite number of relative frequencies of
branching ruleg;j — n).

THEOREM 3. Assumethe same conditionsasin Theorem 1. Given j € 'V and
N1, ....,Ny € V¥, let Flw) = (f(j = n1),..., [ = nNu)), g = (pj(N),
..,p{,-(nM)).Then

18 . 14, D
(—Z(F(wn)—Qf(J;wn)), —ZZf(J;wn)) — (Z, W), N — o0,
N N2 &=
n=1 n=1

where (Z, W) e RM x R has characteristic function

Elexplic-Z +iKW)] = &~ Kux, c=(c1,....,cp) €ERY, K eR,
such that z(c, K) isthe (unique) solution with negative real part to
2U‘/'Al'

2 vj N

(2.12) °+ H(U)Z+H(u)(B+ZKz)_O,
where

M
(2.13) A=) cupj(ny)(Ng-u)—(C-Quj,

n=1

M
(2.14) B=Y"pj(nu)cs — (c- o>

n=1

Then immediately one gets N (p; y(n) — p;(n)) 3 % asN — oo.
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Formula (2.5) gives an estimator of the left Frobenius eigenvectof the
mean matrixM. While the right Frobenius eigenvectarof M occurs in the
asymptotics of the estimator for, it is clear how to use relative frequencies to
directly estimatal. So we consider an alternative approach to the estimation of
Given a treew, for each node € w, let |x| denote its “depth,” that is, the number
of edges on the shortest path franto the root ofw. Denote

S, n) =Y AN

Xew
whenever the sum on the right-hand side is well defined. Recall tvadlu denote
the positive left and right eigenvectors &ff, respectively, such that the sum of the
components of is equalto 1, and -u=1.

THEOREM 4. Given k, suppose w1, wo, ... arei.i.d. ~ P,. Suppose for each
seV,

(2.15) > ps(mInf* < co.

ney*
Then for any sequence A1, A2, ... € (0, 1) with

ad 1
(2.16) — <00,

& Vo
thereis
(2.17) lim 1- ZS( AN) P-a.s

. N oo Wp, AN) = UL, k.o,

n=1

REMARK. From Lemma 8, it is seen that,

Var(l kNZS(wn,kN)) o(@-xry)~INYH, N-oO
n=1

Therefore, if (2.15) is relaxed tQ ey« pj(n)|n|2 < oo and (2.16) to(1 —
AN)N — oo, then

1wy &

3 S(@n, ) S
n=1

3. Preliminaries. This section collects some standard results for later use.

LEMMA 1. (a) Abel’s theorem, cf. [9], Theorems 1.1 and 3.7). Suppose
W= (w1, ..., wy) € C¥ with w, # 0 for each s. If the series

n
f@:= ) anzi*-- 2}

nevy*
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converges at w, then it converges uniformly on any compact subset of Cyy = {z =
(z1,...,2v) :lzs] < |wsl, s € V}. Thefunction f isanalytic on Cy, and

VD St T kew.

0k oy seV\{k)

(b) (cf. [18], Theorem 5.19). Suppose f:2 — C is differentiable on some
convex open domain 2 C CY and continuous on its closure Q. Then for any
71,22 € Q, thereist € (0, 1), such that

|f(22) — f(zD)| < 22— 21l [V f (121 + (1 — 1)22)].
LEMMA 2. GivenK eRandc=(c1,...,cy) €eRY,

3.1 I|m— (efCV=Ki=edl _ 1) = _iK cvz——
(3.1) Z ) = —i +< ) ZSEZVUS

PROOFE By Taylor’'s expansion, as— 0,

Z Vg (ei(ov—Kt—cs)t _ 1)

seV

= Z vs(i(C-v— Kt —cy)t — %(c-v- Kt —cs)2t2)+ O(t3)

seV
=iy v(C-V—c)t —iK Y vt?— 3> vg(c-v—c)P+ 0d).
seV seV seV

By > ,cv vs = 1, the coefficient of is 0. Therefore

1
lim ZZUS (VTR — 1) = —iK = 53 vs(Cv =)

—>0t seV seV

1
=—iK — = Z (vs(C-V)2 — 2v5¢5C-V + vscsz),
ZSG'V

which completes the proof..

LEMMA 3. LetXq, Xp, ... berandomvectorsinRY . Supposethereis a subset
Q c RY with Lebesgue measure 0, such that for any ¢ ¢ 2, ¢- X,, convergesin

distribution. Then X,, iD> X for some randomvector X with characteristic function

X =¢p(c):= IimooEel'C'Xn Vee {ix:it eR,x ¢ Q).

PrROOF BecauseR" \ Q is dense, there existy,...,cy ¢  which are
linearly independent, such thgt- X,, converges in distribution. The mdp: x —
(C1-X,...,Cy - X) is a linear invertible transform oR". Because€(c; - X, } is
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tight for eachk € v, so is{Y,} with Y, = T'X,,. For any linear transforni,
{AY,} is tight. In particular, withA = T—1, {X,,} is tight. Then the characteristic
functions¢, (c) := Ee!* are equicontinuous. From,(c) — ¢(c) on a dense
subset ofR", it follows that the convergence holds on the enfe, andg has a

unique continuous extension froRY \ © to RY. Now by tightnessX,, 2 X for
some random vectof and clearly the characteristic ¥fhas to bep. O

4. Limit laws for additive functions. Supposegi, k € V, are real-valued
functions on'v*. One can define a functio on the branching trees, such that,
for any treew rooted with a particle of type,

G =g+ > Gy,

seV j=1

where (k — n) is the branching rule applied at the root, ang is the subtree
of w rooted with thejth particle of types in n. By recursion, it is easy to check
that

(4.) G)=)_ Y g&Mf(s—no).

SEV NeV*

We will refer to functions of the form (4.1) as “additive” functions for which there
is the following theorem.

THEOREMS5. Assume the same conditions asin Theorem 1. Suppose G isan
additive function with g1, ..., gy satisfying

(4.2) D v > psMgs(M] <00,  Cg:=) vy Y ps(n)gs(n) #0.

sey nevy* sevy ney*
Givenk € V, let ¢ (1) = Ex[¢''9@]. Then
() -1 ur[1 —isign(Cy)]
lim Y =L;:=— V|C,l, keV.
>0+ /i k JHQU) ICel ©

First, we show that Theorem 1 is implied by the above result.

(4.3)

PROOF OFTHEOREM 1. Givenc= (cy,...,cy) € RV, defineg;(n) = ¢, for
anys € V. Then

Co=D vs ) esps(M=c-V
se€V  neVx*
and
G@)=)Y_ Y ¢f(s—>nmw)=c-fw).

seV ney*
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The linear subspace- := {c e R : ¢ v = 0} does not contaifi, and hence its
Lebesgue measure is 0. By Lemma 3, it is enough to show Theorenckfot.
For any suclt, (4.2) holds, and thus

o) —1  wll—isignc-v)] ——
(44) tlrg—i— \/; - m |C V|v

Forwy, woy, ... areiid. ~ Py,

. N
E[exp{ﬁ ZC-f(wn)”
n=1

keV.

()]

Then by (4.4), lettingV — oo leads to

N
i el (S0} <o

N—o0

which completes the proof.(]

Following the proof of Theorem 1, we have the following corollary to
Theorem 5.

COROLLARY 1. Suppose g, satisfies (4.2)and w1, wo, ...~ P. Then, with &
being the same asin (2.3),

1 X D u,%
mnX::lG(wn)angé, N — 0.

The rest of the section is devoted to the proof of Theorem 5. First note that, by
(2.1) andu, v being positive,

(4.5) > pr((n-n) < oo, kevV.

nevy*

LEMMA 4. Fix k € V and function 6:vV* — C, with |#(n)| < 1 for any
n € V*. Then hy(z, 6) given below is a well-defined second-order homogeneous
polynomial inze CV:

(46) Mz o)=Y e(mpk(n)[Zns(m —1>z3+22nsnrzszr}.

ney* seV s<r
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In particular, if 6(n) =1, then

4.7) hi(Z;0) =hi(2) ==Y pr(-2)2 = > Mys22.
nevy* seV
Also define
(4.8) ne@= Y 0mpm [[A+20"™ — q@.
nevy* seV
with

@ =Y 6Mpr(M(L+n-2)+ 3h(2).
ney*
Then r; is analytic in the interior of C = {ze CV: |1+ z] <1, s € V).
Furthermore,

(4.9) r(2) = 0(|Z]%), z—0, zeC.

PROOF By (4.5), the summations ovéi* in (4.6) converge, and henég is
well defined. Equation (4.7) follows from direct computation. Consider

ax@= ) empem ]z
nevy* seV
By Lemma 1(a)a; is analytic in the open domai® = {z:|z5] < 1, s € V}.
In addition, by Lemma 1(a) and (4.5), it is not hard to check that the second-
order derivatives of; are bounded o®, and continuously extend 6. Then by
computation,

dar(1) _ 9 (0) 9%ar(1) _ 02gx(0)

’

ar(1) = qx(0), r,sevVy.

0z 0z 9z, 0zs 0z, 027

Consequently, the first- and second-order derivatives of

@ =arz+1) - Y 06Mp()A+n-2) — 3 (2)

nevy*

are bounded o’ and have continuous extension@osuch that

. @ . 0%z
lim r,(2) = lim "k(2) = lim rk(12) =
z—0 z—0 8ZS z—0 az, 8ZS

Apply Lemma 1(b) twice, once tg, and once to its derivatives. Then it can be
seen that, for anyg € C, there ist € (0, 1), such that

32ri(12)
97,975 |

Ik @)| = Ire(2) — re(0)] < |2 max
r,sey

which leads to (4.9). O
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LEMMA 5. Recall function H definedin (2.4).For the function, we have
H@ =Y vh(@=EoX-2? =) 22,

(4 10) seV seV
' H (z) # 0 and all its coefficients are nonnegative.

PROOF Because =vM, from (2.4), itis not hard to see that the equalities in
(4.10) hold. For eack € 'V, all the coefficients ofi;, are nonnegative ang, > O.
Therefore, all the coefficients éf are nonnegative as well. H(z) = 0, then there
must beh, =0, k € V. From (4.7), this implies thap,(n) > 0 only if n =0 or
n=e = (&1,...,&y), for somes € V, with g5, =0 if r £ 5 and 1 otherwise.
Therefore M, = p,(e) and Y v pr(&)us = u,. By choosingr such that
u, = maxXuy, s € V}, itis seen thati;, = u, forall s € V andd yp,(e) =1
Thus, almost surely, each particle produces exactly one offspring, leading to a
nonterminating process, which is a contradictionl

PROOF OFTHEOREM5. The following recursive relations hold:
(4.11) o)=Y V[l 1, kev.

nevy* ey
Let Ap(t) = ¢r(t) — 1, andA; = (A1(¢), ..., Ay (). By (4.11),

Ay =14 Y "W pen) [T+ AT

ney* seV
— 14 3 M)A 4N A) + (A €8) + (A
ney*
_ Z ltgk(n) Pk(n)+ Z eltgk(n)pk(n)n A;
ney* ney*

4.12 )
(#-12) + Shi(Ag; €8) + ri(A))

= Z (eil‘gk(n) — D) pe(M(@+n-A)+ Z My As(t)

ney* sevy
+ Shi(Ags %) + ri(A)),

wherey is defined as in (4.6), with functiof = ¢i’8k :n — /&M andr; is
defined as in (4.8).

We will use (4.12) to prove (4.3). It is enough to show that, for gy 0+,
there is a subsequenggof ¢, such that,,_l/zA,n convergetd. = (L1,...,Ly),
with L givenin (4.3).

Fix an arbitraryr, — 0+. We first show that, when is large enoughA; # 0.
Indeed, if this is not the case, then (4.12) implies

> ("™ —1)p(n)y=0  fort=t,, nlarge enough.
ne’y*
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Then by dominated convergence, forialt v,

1 .
> smpr) = lim = 3 (e — 1) pr(n) =
nevy* o0 U nevy*
contradicting (4.2). Then there is a subsequefafec {z,} as well as a subset
V' C V, such thatA(z,) # 0 for all s € V' while As(¢,) =0 foralls ¢ V'.
We show thaBikg € V' and{z,} C {1, }, such that

o As(T)
(4.13) & = lim_ e

exists for anys € V. First, for anys ¢ V/, (4.13) is clear. Suppos®’ =
{s1,...,sm}. If m =1, (4.13) is also obvious. i > 1, then
Ay, (1) Ay, (tn)
<X
Asz(l‘n) Asl(tn)
Agy (1)

Assuming the first one, for sonfg'} C {z,}, x ) converges. By induction, there

existsko € V' \ {s1} as well as{z,} c {t}, such thatA (r")

)
so(Tn) 51 (Tn
s €V \{s1}. In partlcular,A 2 o, converges, implying tha% converges as

well.

With kg and g being fixed such that (4.13) holds, dendte= (¢1,...,&y).
Clearly &, = 1. To get the otherg, first consider the asymptotics &,.
Rewrite (4.12) to get

Ak() =Y M Ag@) + Y (L= pe(my(L+n-A))

seV nevy*
= 3hi(As; ™) + 1 (A)).
Multiply both sides of (4.14) by, and then sum oveY. Because = VM,

g Y (1—e"EM)p(my(L+n-Ay)

<oo or liminf

n—oo

liminf

n—oo

converges for all

(4.14)

(4 15) se€V  nev*
- = % Z vshg(Ay; eitg_;) + Z Vs (Ay).
seV seV

Divide both sides of (4.15) b)A,%O(t) and lettr — 0 throught,. Because

each h(z, ¢''%) is a second-order homogeneous polynomial, by dominated
convergence,

1
lim ———hy(A,,; e
n—>| 00 QZ (‘L’n)h ( n ) h (1’:)

Since|g, (1) = |1+ Ag(®)| < 1foralls € V,andA, — 0 ast — 0, (4.9) leads to
(4.16) re(A) =o(Af%), 10
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On the other hand, by (4.2) and dominated convergence,
.1 ;
Jim =3 3 (L= e ) pma - A)

=—i ) Y vps(N)gs(n) =—iCy.

seV nevy*

Combining the above results,

. T 1 1
417 lim = h = H
(4.17) n=00 A2 (1) —2ng§% ) —2iC, ®
and hence
(4.18) lim —"

=0.
n— Ako (Tn)

Divide both sides of (4.14) by, (7), and then let — 0 alongr,. By (4.16)-
(4.18) andhi(A;) = o(A, (1)), there isE = M&. Therefore£ is an eigenvector
corresponding to the simple eigenvalue 1 Mf and thusé is some constant
timesu. Since&, = 1, by comparing with (1.1), we get
A (Ty) _ s u

(4.19) &= lim =—>0, seV, §=—,
ST S0 Ako(Tn) iy Ukg

which, together with (4.10) and (4.18), leads to

2 2 -
lim Ako(rn) _ _ch”kol

n— 00 T - H(u) ’

where H(u) > 0 is becausai is positive andH # 0 with all its coefficients
nonnegative. From the limit it is seen thatas> oo, A,%O(rn)/rn at most has two

cluster points. Because the real partgf (1) = Ex,[¢/'¢(®] — 1 is nonpositive,

L Arg(T) _ ugg(1—isign(Cy))
(4.20) Jlim_ i o VIC,l.

Combining the above limit and (4.19), we get that, for aryV,

. A (Th) o _us(l_iSigr(Cg))
T T vAm

This completes the proof.(]

5. Limit laws for the relative frequencies of types. This section is devoted
to the proof of Theorem 2. By Lemma 3, it is enough to establish the result for
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K #0. Givenc= (c1,...,cy) e RV andK e R\ {0},

N

K N
> (e f(wn) — (€ V)|wyl) + e Zl|wn|
n=1 n=

_1§:Cf() 1
TNETTTN

1
N
i(cv K)la)l

Y — — .
n=1 N

Note that, in Theorem 2, it is assumed that wo, ... are i.i.d. ~ P;. Therefore,
letting

(5.1) O (1) = Ex[e!CT@=CloD] ¢, =c.v—K1, keV

we need to find the limit

: Ny o 1
Jm Lo ()] = im e
Following the previous section, let
Ap(t) =6, (t) — 1, A= (A1), ..., Ay (2)).
Then, as in the proof of Theorem 1, provided:= lim,_, o1 %Ak(t) exists and
Ly =z(C, K)up + ing, ke,

Iim,_>o+[9k(t)]1/’ = ¢+, To this end, it is enough to show that, for apy—> 0+,
there is a subsequengs ) C {,,}, such that, *A, — L =(L1,...,Ly) eC".
The functiong (1), k € V, have the following recursive relations:

)= pr(me' O TT (6:(1))™.
ney* sey
Therefore,
ei(cr—Ck)t(l+ Ak(l)) _ Z pr(n) 1—[ (1+As(t))ns.
ney* sey
Then similarly to (4.12), it can be shown that
(5.2) Ap(t) + ("W — 1) (1+ A1) = Y Mis Ag(t) + 3hi(A) +re(A)),
seY

whereh andr; are defined as in (4.7) and (4.8), respectively. Multiply both sides
of (5.2) byv, and take the sum ovére V. By v1 +---+ vy =1,v=VM and
(4.10), one gets

(5.3) D ug(e T — 1)+ Y g (T — ) A1) = SH(A) + (A,
seY sey
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wherer(z) := > oy vrk(2). Fix t, — 0+. Following (4.13), we want to find
ko € 'V and{t,} C {t,} such that, for any € 'V,

o A
(5.4) & = lim Ak

exists. First, we show that, whern- 0 is small enoughA, £ 0. Suppose this is not
the case. Then (5.3) implies that, for a sequence-of0, 3"+ vy (e! (=)' —
1) = 0. According to Lemma 2, this leads to

i, (e 1) = 2K e - B =0
=01 seV

In particular,K = 0, which is a contradiction. Thu&; £ 0 for ¢t > 0 small. Then
we can find a subsequengf} C {r,} and a subsev’ C V, such thatA, (7)) # 0
for all s € V' while A;(z)) = 0 for all s ¢ V’. With an argument similar to the one
for (4.13), there arér,} C {1’} andkg € V' such that (5.4) holds far € V'. For

s ¢V, (5.4) clearly holds witt§; = 0. Thus (5.4) holds for all € V.

LEMMA 6. WIth kg chosen as above,

. Ay t
lim sup| —%-"-

n— 00 t,

Assume for the moment that Lemma 6 is true. Eix RY with c1,...,cy
not all equal. By the lemma, there{s,} c {z,}, such thatcn—lAko(rn) converge.
Therefore, by (5.4), there i C", such that lim_» A, /7, = 1. Divide (5.2)
by ¢ and then let — 0 throughr, to get

(5.5) M +i(c-vl —c)=MN = i@Q'v-Vv)c=W —DL\.

By (2.7), if * = Ac', thenA :=ip is a solution to (5.5). Moreover, since 1 is a
simple eigenvalue o#f, any solution to (5.5) can be written as+ iy, z € C. As
aresult, lime,*A, = zu + iy for somez e C which is to be found.

Divide both sides of (5.3) by? and letr — 0 throught,. Since H is a
homogeneous polynomial of order 2 and, according to (R9A;) = o(|A;|?),
then (3.1) implies

—iK + 2(C v)?2 Z vsc +i sz(c V—cs)(zus +ing) = 2H(zu+z17)
seV seV

By some calculation, it can be seen thas a solution to the equation

H(U)z%+ 2Azi + B+ 2Ki =0,
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where
A=Eg[(X-u)(X-n] - Zvvsus(ns —¢5) — (V-O)(V- )

=Covo(X-u, X )+ Eg(X-WEgX 1) — Y_ vsus(ns — ¢s) —V-C,

sey
B=—H@) —2) vscsns +2(v-0)(V-7) — (C-V)Z+ Y vyc?
seY seV
=—EoX -2+ Y v2 =2 vsesns +2(v- 0V ) — (C- V)2 + Y vye?
seV seV seV
= —Varg(X - ) — (Eg(X - m)*+2(v-C)(v- 1) + Zvvsms —e)?—(c-v)2

On the one hand,

Eo(X) = (Z D wpcMny, . > > vkpkm)nv)

keV ney* keV nev*

= (Z UkMkla ey Z kakV) =V,

key key
and on the other,

o0
VA=) v(M" —u'v)(I —1'v) =0,
n=0
and hence - n =vAc' =0. ThereforeA andB can be expressed as in (2.10) and
(2.11).
The roots of the equation are

—~ (—Ai £ V—(AZ+ BH(u)) — 2K H(u)i ).
H(u)( i (A“+ () (i)
Since the real part ok (1) = ¢ (¢) — 1 is nonpositivez is the one with nonpositive
real part.

PROOF OFLEMMA 6. If the claim is false, then there exidts,} C {r,} such
that
Tn

lim
n—00 Ako(fn)
First, divide both sides of (5.2) b, () and letr — 0 throught,. By (5.4), we
geté = Mé&. Sinceg, =1,8 = uk‘olu. In particular,H (¢§) > 0. Thus, by dividing
both sides of (5.3) b)Ako(t)z, and lettingg — 0 throughr,,, it is see that 6= H (§),
which is a contradiction. [J
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COROLLARY 2. For A and B, we have A2 < —H(u)B, that is,

2
(Con(X LX) = Y v —cg) — c-v)

seV

< H(u)<VarQ<x =Y vsles —ns)?+ (c-v)z).

seV

PROOF Indeed, ifA2 > —H(u)B, then—(A2 + H(u)B) < 0. Sincez has to
be the one of

1 : 2 ,
m(—Az +V—(A24 BH(U)) — 2K H(u)i)

with negative real part, withc being fixed, z is not continuous atk = 0,
a contradiction. O

6. Limit laws for the relative frequencies of branching rules. In this
section, we prove Theorem 3. With a little abuse of notation, denote

Fl)=(f(j > mo),neV*), q=(p;(n),ne V¥,

and forc, g e RV, providedY_,cy« [cngn| < 00, C- g = Y ney+ cngn.
Givenc € RY", with ¢, = 0 for all but a finite number af satisfyingp;(n) > 0,
andK e R, considerE[e'sV(©K)] with the random variable

1 N K X
En(C K) =) (¢ Flon) = € f (o) + 15 2 (i on)
n=1 n=1
1 XN 1 N K .
=Nn§1c-F<wn>—N’;(c-q—ﬁ)m,wn»

Then, to prove Theorem 3, it is enough to show that

E[eifN(CsK)] — ez(C,K)uk’

such that(c, K) is the solution to

2v;Ai Vi
6.1 2 J /_(B+2Ki)=0,
(6.1) Z+H(U)Z+H(u)( + 2Ki)

with
A= Z CnPj(n)(n : U) - (C' Q)uj,

ney*

B= Y p;jn)ci—(c-Z

ney*
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PROOF OFTHEOREM 3. As in the proof of Theorem 2, it is enough to show
the above limit fork # 0. Let

(6.2) Y;j@t)=E; [eif(C~F(j—>n;w)—Crf(j:w))] with C; =c¢-q — K.
ThenE[¢4v (K] = [wj(%)]Nz. By recursion,

N L (L

nev* seV
(@)=Y pe) [[Iws @1 fork# .
ney* sey

Let Ay(r) =5 (t) — 1,5 € V, andA, = (A1(?), ..., Ay (2)). Then
Aj(t) + (" = Dy
(6-3) =3 My () + 3 (A) + Y pi (™ —1)

seV nevy*

+ri(A)+ Y i) —1)(n- A + Th(Ap),

ney*

(6.4) A=) My As() + 3hi(A) +ri(A)  fork # j,

seV
wherehy, k € 'V, are defined as in (4.7), ang as in (4.8). By (4.9)rx(A;) =
o(|A;?) ast — 0. On other handl},(z) = [Ley(@+ 2" —n-zis apolynomial
of order greater than or equal to 2. Note that in the last sum in (6.3), sinee
for all but a finite number oh, only a finite number of summands is nonzero.
Thus, following the steps in Sections 4 and 5, multiply both sides of (6.3); by
both sides of (6.4) by, add them up and use=vM to get

vj (e — DA (1)

=3H(A) + v,'[ Y P —1) — ("¢ — 1)} +r(As)

ney*
(6.5) +v; > pi)(E ™ —1(n- A + Ta(A))
ney*
= JH(A) —vj Y pj(me (/1 Ca-Kizan _q)
ney*

+v; Y ga(@ M —1)(n-Ay) +o(AD),

ney*

wherer = )"y vsrs. Similar to the argument following (5.3), given any— O+,
there exisko € V and a subsequen¢g} C {z,}, such thatA,(z,) # 0, and

I

(6.6) lim /
n=00 Aty (1)

zs,
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for someé € CV. We need the following bounds
LEMMA 7. WIth kg chosen as above,

A /
(6.7) limsup M

n— 00 t,

<0

Assume Lemma 7 is true for now. Then by (6.6) and Lemma 7, there is
{tn} C{r;},andx € CV, such that lim_, « rn—lA,n = A. Divide both sides of (6.4)
and (6.3) byr, and letn — oo. Then there ig € C, such thak = zu.

To find the value ot, divide both ends of (6.5) by? and letr — 0 throughz,,.

By Lemma 2,

ivj(c-Qujz = 3H(zu) —v; (—iK +3ic- -3 pj(n)c,%>

ney*

+ivj Y pj(N)en(n-u)z.
ney*
It is then routine to check thatis the solution to (6.1) with negative real part. The
remaining part of the proof is similar to that for Theorem 2 and thus is omitted.

PROOF OFLEMMA 7. Ifliminf, . |t/ Ak, (t;)| = O, then choosér,} C {1}
such that
m —2  —o.
=00 Ao (Tn)
Divide both sides of (6.3) and (6.4) ky,(¢) and letr — 0 throughr,. Then (6.6)
leads to§ = M&. Becausé,=1,§ = uk‘olu. Now divide (6.5) byAko(t)2 and let
t — 0 throught,. Then it is seen thakl (¢) = 0, implying H (u) = 0, which is a
contradiction. O

7. An estimator for theright eigenvector of the mean matrix. This section
gives the proof for Theorem 4. We need a few lemmas.

LEMMA 8. Assumethe same conditionsasin Theorem4. For A > 0, denote
SiM=E;jS(w,2), jeV,  S=(511),...,Sv(})).
Thenfor A € (0, 1), S;(A) < oo and
(7.1) S =@-am) 1,

1
(7.2) Ej(S(w, 1) = 0<m) asr—1,1=234, jeV.
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LEMMA 9.
(7.3) llr/nl(l —A)S, =u.

Assume the lemmas to be true for now. By LemmaS@&y, 1) is integrable.
Letting

S(@,2) =S, 1) — Sk,
by Lemma 9, we need to show thatif, wo, ... are i.i.d. ~ P, then

1-an Lo
> S(wp in) >0,  Pe-as.

n=1
To this end, by Borel-Cantelli and the Markov inequality, it is enough to show that

o0 _ 4 N _ 4
3 M&(ZS(%,AN)) < 0.

N=1 N4 n=1
Becausev, are i.i.d., andE;[S(w, Ax)] =0, by (7.2),

N 4
Ek<z S(wp, xm) =3N(N — D[Var, S(w, An)]?2 + N ExSi(w, An)*

n=1
_ CN? . _CN N
T A-an® A-an)”
for some constant. Therefore, by (2.16),
00 4 N 4
Ngl G- _NﬁN) Ek<;§(wn,xN))
< 3 ¢ <1+ 1 ) < 00.
T i (1—=n)2N? (1—An)N

PROOF OFLEMMA 8. ThatS;(1) < oo forall j €V andi € (0,1) and
(7.1) are easy consequences of recursion AFer0, 1), because(l — A M) 1 =
1-n"1v,

v-l 1
1—x 1-a

Because all componentswhre strictly positiveS; (1) ~ (1— AL a—1-, and
thus (7.2) is proved for = 1. The proof of (7.2) is similar for = 2, 3 and 4. We
shall show the details of the proof foe= 4, to illustrate how the indices of 1 A
in the asymptotics (7.2) are counted.

(7.4) vV-S, =v(l— M) 11 =
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Suppose we have showl) S(w, 1) < oo and (7.2) forr = 2, 3. Given a treev
rooted with j, suppose the branching rule applied by the rootjis> n). For
seV,andl =1,...,ny, let w;; be the subtree rooted with théh particle of
types in n. For eachD > 0, defineSp (w, ) = ¥, ¢, A 1jjxj<py. Then

ng
Sp(@,2)=1+20) 2 1+A YD Sp-a(@rs, 1.
seVi=1

Then
(7.5) E;Sp(w, ) =1+4E;T(.)+6E;Z?(1) +4E;%30.) 4+ E; 4(0).
Forr=1,2, 3,4, andn € V*, let
m;(A) = max{ EsS(w, )) s € V},
I;(n) = {((ll,sl),...,(l,,s,)):lfl,- <ng,i=1...,1,
and (/;, s;) are different from each othpr

Then by the multinomial expansion, it is seen that

4

E;[Z001=2%Y My E[Sp-1(0, )T+ 22 D" pi() D),
seV nev* i=1

where, as. — 1—,
Sua) = Y Ej[Sp-1(@n.s. 2) Y Ej[Sp-1(@r.55. 1)]
I>(n)
< [I2(N)[m1(A)m3(A) = 0(|n|4(1 - k)_e),
with the summation over all(l1, s1), (I2, s2)) € I>(n), and likewise,
S0200 = Y En[Sp-1(@n 51, ) EL[Sp-1(@iy,s5 )7
I>(n)
< |L(MIm5() = o(In|*(1 - 1)),

3

Xp,3(A) = Z E; [SD—l(wll»Sl’ )‘)2] 1_[ E;j [SD—l(wli,Si ) )‘)]
Is(n) i=2

< [I3(n)|ma(Mm1 (M) = O(In*L — 1)),
4
Zna) = > [ Ej[Sp-1(wys. 2]
Ix(n)i=1

< [La(M)m1()* = o(Inj*(1— 0.
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By (2.15), > ney+ Pj (n)|n|* < oo. Therefore, the above estimates imply that
there is a constant, such that ag — 1—,

E;[3* W1 =2*Y " MuE[Sp-1(w. )+ CA—2)"°.
ey

By Holder’s inequality, the other summands on the right-hand side of (7.5) are
dominated by1 — A)—G. Therefore, for some constant, still denoted

Ej[Sp(w, )N =%y M E[Sp_1(0, W+ C(L—2)"8
seV
Multiply both sides of the above inequality by to the left, and sum ovefe V.
Let
Ap =Y wESp(@, M%)
key

Then
C

Ap <A*Ap_1+Cc@—-n)"" im Ap < ———.
p=A"Ap-1+C( ) = m D= T

Sincev; € (0, 1), k € V, the last formula leads to (7.2)[J

PROOF OFLEMMA 9. Let&, = (1—X)S,. Then by (7.4),
V- §A = 1

Note that all the coordinates éf = (1 — A)S, are positive. Indeed, by (7.1),

o0

S => VM1

n=0
Every M" is nonnegative. Thus all the coordinatesspf hence all those o, , are
positive. Since all the coordinates\wére strictly positive, the#, is bounded and
thus has cluster points. #fis a cluster point o, asA — 1—, thenv-& =1. On
the other hand,

(l—M)gzklin; (1—AM)E
— i _ _ _ =19 _ _ —
_Al_l)rri_(l AMY(A =2 (1 —AM) 11'59_(1 A)1=0
and hencé& = Mé. Thusé =u. O
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