The Annals of Applied Probability

2004, Vol. 14, No. 4, 1880-1919

DOI 10.1214/105051604000000882

© Institute of Mathematical Statistics, 2004

A MICROSCOPIC PROBABILISTIC DESCRIPTION OF
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MACROSCOPIC APPROXIMATIONS
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Institut Elie Cartan and Université Paris 10

We consider a discrete model that describes a locally regulated spatial
population with matality selection. This model was studied in parallel by
Bolker and Pacala and Dieckmann, Law and Murrell. We first generalize this
model by adding spatial dependence. Then we give a pathwise description
in terms of Poisson point measures. We show that different normalizations
may lead to different macroscopic approximations of this model. The first
approximation is deterministic and gives a rigorous sense tontimber
density The second approximation is a superprocess previously studied by
Etheridge. Finally, we study in specific cases the long time behavior of the
system and of its deterministic approximation.

1. Introduction. We consider a spatial ecological system that consists of
motionless individuals (such gdantg. Individuals are characterized by their
location. We assume that each plant produces seeds at a given rate. When a seed
is born, it immediately disperses from itsotherand becomes a mature plant.

We also assume that plants are subjectedntotality selection That is, each
plant dies at a rate that depends on the local population density. All these events
occur randomly in continuous time. This model was introduced by Bolker and
Pacala [2] and Dieckmann and Law [9]. To study the system, Bolker and Pacala
derived approximations for the time evolution of the moments (mean and spatial
covariance) of the population distribution. In the present article, we wish to give
a rigorous definitia of the underlyingnicroscopicstochastic process and rewrite
rigorously the moment equations of [2], then to derive some tractable macroscopic
approximations, and finally to study the long time behavior of the stochastic
process and its approximations. Unfortunately, we obtained only partial results
concerning the last point.

In Section 2, we describe the Bolker—Pacala—Dieckmann—Law (BPDL) process
in detail. In fact, we generalize the model slightly by adding a spatial dependence
in all the rates. Then we give a pathwise representation of the system in terms
of Poisson point measures. We also produce a numerical algorithm to simulate
the BPDL process. Section 3 is devoted to existence and uniqueness. We also
show some martingale properties of the BPDL process. In Section 4, we find

Received April 2003; revised September 2003.

AMS 2000 subject classificatiorg)J80, 60K35.

Key words and phrasefteracting measure-valued processes, regulated population, determinis-
tic macroscopic approximation, nonlinear superprocess, equilibrium.

1880



DESCRIPTION OF A REGULATED POPULATION 1881

the mean equation that Bolker and Pacala [2] intuitively obtained. We also give a
rigorous sense to the covariance terms formally defined in [2] or [9], [4] and [10].
Section 5 is concerned with macroscopic approximations of the BPDL process.
We first show that, conveniently normalized, the BPDL process converges to the
solution of a deterministic nonlinear integrodifferential equation. We propose this
as a rigorous interpretation of tliensity numberoften introduced by biologists
without a proper definition. We also el that with anothe normalization,

the BPDL process converges to the superprocess version of the BPDL model
introduced and studied by Etheridge [6]. We give partial results about extinction
and survival for the BPDL process in Section 6. In Section 7, we study the
convergence to equilibrium of the deterministic approximation. We obtain only
some partial results. We next show that in tletailed balance cage be specified

later on, there exists a nontrival steady state for the BPDL process. We conclude
the article with some simulations.

2. Themodel. Let us first describe the model in detail.

2.1. Definition of the parameters and heuristicsThe plants are supposedto be
motionless and characterized by their spatial location. We assume that the spatial
domain is the closuré of an open connected subsitof R?, for somed > 1.

We denote byM - (X) [resp.P (X)] the set of finite nonnegative measures (resp.

probability measures) of. Let alsoM be the subset af/(X) that consists of
all finite point measures:

n
(2.1) M= Z(Sxi,nzO,xl,...,xnef)_C .

i=1
Here and below§, denotes the Dirac massatFor anym =)' ;6,, € M, any
measurable functiorf on X, we set(m, f) = Jx fdm=37_1 f(x).

NOTATION 2.1. For allx in X, we introduce the following quantities:

(i) n(x) €[0, ) is the rate of “intrinsic” death of plants locatedgt
(i) y(x) €[0, 00) is the rate of seed production of plants located,at
(i) D(x,dz) is the dispersion law of the seeds of plants located.dt is
assumed to satisfy, for eaghe X,

/ D(x,dz)=1 and D(x,dz)=0.
zeR9 x4zeX zeR9 x4+7¢X%

(iv) a(x) € [0, co) is the rate of interaction of plants locatedvat
(V) Forx,yin X, U((x,y)=U(y, x) €[0, c0) is the competition kernel.

The competition kernel/ (x, y) describes the strength of competition between
plants located at andy.
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We aim to study the stochastic processtaking its values inM and describing
thedistributionof plants at time. We write

1(t)
(2.2) V= 8y,
i=1

wherel (t) € N stands for 'Ehe number of plants alive at timandX,l, e X,I(’)
describe their locations (if6). The supposed dynamics for this population can be
roughly summarized as follows:

(i) Attime ¢ =0, we have a (possibly random) distributiofie M.

(i) Each plant (located at some € X) has three independent exponen-
tial clocks: aseed productionclock with parametery (x), a natural death
clock with parametem(x) and acompetition mortalityclock with parameter
a(0) LG U, X)).

(i) If one of the twodeathclocks of a plant rings, then this plant disappears.

(iv) If the seed productiorlock of a plant (located at somee X) rings, then
it produces a seed. This seed immediately becomes a mature plant. Its location is
given byy = x + z, wherez is randomly chosen according to the dispersion law
D(x,dz).

In[2], y, u, @ andD were assumed to be space-independent. Our generalization
might allow us to take into account external effects such as landscape, resource
distribution and so forth. Note also that assuming that all these clocks are
exponentially distributed allows us to reset all the clocks to 0 each time one clock
rings.

We wish to describe the system by the evolution in time of the empirical
measurev,. More precisely, we are looking for am(-valued Markov process
(vr)r=0 With infinitesimal generatol, defined for a large class of functioigs
from M into R, for all v € M, by

Lo) = [_vdn) [ D dB0 +8:2) = $(0)ly ()
(2.3) x R

+/_ v(dx)[¢p(v —by) —¢(V)]{M(X) + a(x) / V(dy)U(x,y)}-
X X

The first term is linear (inv) and describes the seed production and dispersal
phenomenon. The second term is nonlinear and describes death due to age or
competition. This infinitesimal generator can be compared with formula (3) in [2],
page 182.

2.2. Description in terms of Poisson measure$Ve now give a pathwise
description of theM -valued stochastic proce&s);=o. To this end, we use Poisson
point measures. For the sake of simplicity, we assume that the spatial dependence
of all the parameters is bounded in some sense.
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ASSUMPTION A. There exist some constanés y and i such that, for
all x € X,

(2.4) a(x) <a, y(x) <y, w(x) < ft.

There exist a constari > 0 and a probability density» on R4 such that, for
all x € X,

(2.5) D(x,dz) = D(x,z)dz  with D(x,z) < CD(z).

The competition kernel/ is bounded by some constalit
We also introduce the following notation.

NOTATION 2.2. LetN*=N\{0}. LetH = (HL, ..., H*,...): M —» RHY
be defined by

n
(2.6) H(Z‘Sxi) = (Xo(1)s -+ +» Xo(n)> 0y .., 0, ),
i=1

wherex, 1) < - - - Z x,(») for some arbitrary orde¥ onR¢ (one may, e.g., choose
the lexicographic order).

This function H allows us to overcome the following (purely notational)
problem: Assume that a population of plants is described by a point measure
v € M. Choosing a plant uniformly among all plants consists of choosing
uniformly in {1,..., (v, 1)}, and then choosing the planumberi (from the
arbitrary order point of view). The location of such a plant is ti&igv).

NOTATION 2.3. We consider the path spatec D([0, o), M (X)) defined
by
Vt>0,v,eM, andd0=rng<t1 <tr <---,
(2-7) T = (Vt)tzo . '
lim, z, =occandv; =v; Yt €[t;, ti+1)

Note that for(v;);>0 € 7, ands > 0 we can define,_ in the following way: If
t ¢ Ui{ti}, vie = vy, while if t =1, for somei > 1,v,_ =v; ;.

We now introduce the probabilistic objects we need.

DEFINITION 2.4. Let(Q2, F, P) be a (sufficiently large) probability space.
On this space, we consider the following four independent random elements:

(i) an M-valued random variabley (the initial distribution);

(i) a Poisson point measuré(ds, di, dz, df) on [0, co) x N* x R? x [0, 1],
with intensity measurey ds (3_;~18x(di))(CD(z)dz)df (the seed production
Poisson measure); B
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(i) a Poisson point measur®f (ds, di, df) on [0, 00) x N* x [0, 1], with
intensity measur@ ds (3_;~1 0k (di)) d6 (the “intrinsic” death Poisson measure);
(iv) a Poisson point mfeasu@(ds,di,dj,de,de/) on [0, o0) x N* x N* x
[0, 1] x [0, 1], with intensity measuré&/a ds k=10 (di) (X p>18k(dj)) dO db’

(the “competition” mortality Poisson measure). -

We also consider the canonical filtratiofi;),>0 generated by these processes.
We finally write the BPDL model in terms of these stochastic objects.

DEFINITION 2.5. Admit Assumption A. A¥;);>o-adapted stochastic process
v = (1)r>0 that belongs a.s. t@ will be called a BPDL process if a.s., for all

t>0,
t 1
v =vo+/O f*/}%dfo i<t )80y )
* Lo<t o n oo /Gebe)
x N(ds,di,dz,do)
t 1 ]
(2.8) —/O //0 i< 2181 ) o< ucrt o Gy M (@, i dB)

t 11
o o f e itz

X L < mi oy, 1 (v /(0)
X 1{95((){(1_11'(”5_)))/(&)} Q(ds, dl, d_], d@, dQ/)

Although the formula looks complicated, the principle is very simple. The
indicator functions that involvé and¢’ are related to theatesand appear when
the parameters depend on the space variabla the case where the rates are
constant (studied in [2]), all the integrals and indicator functions that inv@lve
may be cancelled.

Let us now show that i solves (2.8), then it follows the dynamics in which we
are interested.

PROPOSITION2.6. Admit AssumptioA. Consider a solutiornv;),>o to (2.8).
Then(v;):>0 is @ Markov procesdts infinitesimal generatoL is defined for all
bounded and measurable mapsM — R, all v € M, by (2.3).In particular, the
law of (v;);>0 does not depend on the chosen orflare Notatior2.2).
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PrRooOF The fact that(v;);>0 is @ Markov process is classical. Let us now
consider a functiorp as in the statement. Recall that with our notatiof=

Zl”oll Shiag - Recall also thal¢ (vo) = 9, E[¢ (vi)];=0. A simple computation,

using the fact that a.g(v,) = ¢ (vo) + ngt [P(vs— + {vs —vs—}) — P (V)]
shows that

s =900+ [ [ [ [ 160 +00, 100) —9000)]

X <im0 Yo < (1 vy DH (0.2 ) GC D)

x N(ds,di,dz,db)

+ /0’ / . /01 [¢(vs— = b1, = ¢ (vs-)]

X Li<u ) Yo <(ueri v,y M (ds, di, d6)

t 1,1
+/0 ///O /0 [¢(vs— = 8hicn,)) = S s Lzt 1 Lyt 1)

x 1{9’5(U(Hi(vs—),H-’(vs—)))/(U)}1{95(06(Hi(vs—)))/(56)}
x Q(ds,di,dj,do,do").
Taking expectations, we obtain
Eip ()] = 9ol + [ dsE[fRd dz7CD()
W

) Zl> y (H! (v ) D(H' (), 2)
= yCD(2)

X [qb(vs_ + S(Hf(u_;,)+z)) - ¢(Vs—)]:|

t (vs,1) Hi o
+/0 dsE|:/l > M[(b(w_ —8Hi(n,_)) —¢(Us—)]:|
i=1

n

! DU (H (v5), HY (v2)) a(H' (v52))
+/0 dsE|:U g g G -

< (D — Sy ) — ¢<us_>]}
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t
= £t (o1 + [ dsE| [ van [ dzynen
X [¢(Vs + 5(x+z)) - ¢(Vs)]]
+fot dSEUx 05 (d)[ (v — 8) — B (vy)]

xfu +aeo [ nanuenl].
Differentiating this expression at= 0 leads to (2.3). O

2.3. About simulation. This pathwise definition of the BPDL process leads to
the following simulation algorithm:

STeEP 0. Simulate the initial statey and setly = 0.

STeEP 1. Compute the totagéventrate, given bym(0) = m1(0) + m2(0) +
m3(0), with
(2.9) m(0)=Cy(vo,1),  ma0) =7, 1),  ma0)=alw, 1)
SimulateS; exponentially distributed, with parameig(0), and sefy = Tp + S1.
Setv;, = g for all t < T1. Choose whether to go to Step 1.1, 1.2 or 1.3 with
probabilitym1(0)/m(0), m2(0)/m(0) andms3(0)/m(0).

Stepl.1. Choosé uniformly in {1, ..., (vo, 1)}. Choosez € R? according to
the law D(z) dz. With probability 1— (y (H'(v9))D(H' (o), 2))/(7CD(z)), do
nothing (i.e., sebr; = 1p); else, add a new plant at the locatiéf (vo) + z (i.e.,
setvyy = vo + (i (vp)+2))-

Step 1.2. Choosei uniformly in {1,..., (v, 1)}. With probability 1—
(w(H' (v0)))/ft, do nothing (i.e., setr, = 1p); else, remove théth plant (i.e.,
setvyy = vo — 8 i(y))-

Step1.3. Choose and j uniformly in {1,..., (vg, 1)}2. With probability
1 — (U(H'(vo), H' (vo))a(H' (v9)))/Ua, do nothing (i.e., sebr, = vp); else,
remove theth plant (i.e., sebr, = vo — dpi(yy))-

STEP 2. Compute the totadventrate, given byn(T1) = m1(Ty) + mo(Ty) +
m3(Ty), with
m1(T1) = Cy(vy, 1),
(2.10) mo(T1) = ji{vy, 1),
m3(T1) = aU (vy,, 1)2.

SimulateS, exponentially distributed, with paramete(Ty), and seflo = 71+ S».
Sety; = vy, forall t € [Ty, T>[ and so forth.
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3. Existence and first properties. We now show existence, uniqueness and
some moment estimates for the BPDL process.

THEOREM3.1. (i) Admit AssumptioA and thatE ({vo, 1)) < oo. Then there
exists a unique BPDL process );>o in the sense of DefinitioR.5.
(i) If furthermore for somep > 1, E({vg, 1)?) < oo, then for anyTl' < oo,

(3.1) E( sup (v, l)p) < 00.
1€[0,T]

PrRoOOF We first prove (ii). Consider thus a BPDL proce&g);>o0. We
introduce for eaclt the stopping time;,, = inf{z > 0, (v, 1) > n}. Then a simple
computation using Assumption A shows that, neglecting the nonpositive death
terms,

sup (vy, 1)”

se[0,tA1,]
AT, 1
< (vo, 1y + / / / / [((s—. 1)+ 1P — (v, P =gy 1)
0 * JRA JO

X 1{9§(V(Hi(vs—))D(Hi(vs—)»Z))/(};Cb(Z))}

(3.2)
x N(ds,di,dz,do)

tATy 1
<00+ Cp [ [ [ e 0P Ly

x N(ds,di,dz,do)

for some constanC,. Taking expectations, we thus obtain, the valueCof
changing from line to line:

E( sup (. 1>P)
s€[0,tAT,]

tAT, ~
(3.3) <C,+ C,,E(/O ds yc/Rd dz D) [(ve_, 1) + (vy_, 1>p])

t
<C,+ CPE(/O ds[1+ (vsne.s 1>P]).

The Gronwall lemma allows us to conclude that for @y oo, there exists a
constantC, 7, not dependent o, such that

(3.4) E( sup (v,,l)”)fcpj.
t€[0,T Aty]
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First, we deduce that, tends a.s. to infinity. Indeed, if not, we can find a
To < oo such thatez, = P(sup, 7, < Tp) > 0. This would imply that for allz,
E(SURc(0. 1ynr,) (Vi 1)P) > eryn?, which contradicts (3.4). We may let go to
infinity in (3.4) thanks to the Fatou lemma. This leads to (3.1).

Point (i) is a consequence of point (ii). Indeed, we can, for example, build the
solution(v;);>o using the simulation algorithm previously described, and choosing
the rates and acceptance—rejection according to the Poisson medsiifesnd Q.

We have to check only that the sequence of (effective or fictitious) jump instants
T,, goes a.s. to infinity as tends to infinity, and this follows from (3.1) with = 1.
Uniqueness also holds, since we have no choice in the construcfion.

We now prove that if there is at most one plant at each location atrtin8,
then this also holds for atl> 0.

PrROPOSITION3.2. Assume Assumptigk and thatE ({vg, 1)) < co. Assume
also that as., sup..¢ vo({x}) < 1. Consider the Bolker—Pacala proceés);>o.
Then for allr > 0, a.s.,

(3.5 /_ ve(dx)vi({x}) = (v, 1) thatis supv,({x}) <1
X xeX

PrRoOOF Consider the nonnegative functigh defined on.M by ¢(v) =
[ v(dx)v({x}) — (v, 1). Then note that a.s(vp) = 0 and that for any € M,
any x € suppv, ¢(v — 8,) — ¢(v) < 0. Consider, for each > 1, the stopping
time t, = inf{r >0, (v;, 1) > n}. A simple computation allows us to obtain, for all
t>0,aln>1,

E[¢(vin,)]
(3.6) <0+ E[/otmn ds /9_C Vs (dx) /Rd D(x,dz)y(x)

X {d)(vs + 8(x+z)) - ¢(Vs)}:|

We easily check, using thatis atomic, that the right-hand side term identically
vanishes, sinc®(x, dz) has a density. Hence, a.§.(v;r,) = 0. Thanks to (3.1)
with p =1, 7, a.s. grows to infinity withz, which concludes the proof.[]

We carry on with a property that concerns the absolute continuity of the
expectation ofy;. Forv a random measure, we define the deterministic measure

E@) by (E(), f)=E({v, ).

PrOPOSITION3.3. Accept AssumtioA, that E[{vg, 1)] < oo and thatE (vg)
admits a densityig with respect to the Lebesgue meas@ensider the BPDL
process(v;);>0. Then for allz > 0, E(v;) has a densityi,; for all measurable
nonnegative functiong on X, E[(v,, f)]= [x dx £ (x).
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PROOF  Consider a Borel set of R? with Lebesgue measure zero. Consider
also, for eachm > 1, the stopping timer, = inf{r > 0, (v;, 1) > n}. A simple
computation allows us to obtain, for al> 0, alln > 1,

E[(UZ/\TVH 1A>] = E(<v07 1A>)

AT,
+E</O ds /5(; Vs (dx)y (x) /Rd dz D(x,z)lA(x+z))

- E(fown ds fx Vs (dx)14(x)

x (u(x) raw [ vs<dy>U<x,y>)).

By assumption, the first term on the right-hand side is zero. The second term is
also zero, since for any € X, Jra dz14(x +2)D(x, z) = 0. The third term is of
course nonpositive. Hence for eachE ((v;+,, 14)) is nonpositive and thus zero.
Thanks to (3.1) withp = 1, 1,, a.s. grows to infinity withz, which concludes the
proof. [

(3.7)

We finally give some martingale properties of the progegs-o.

ProOPOSITION 3.4. Admit AssumptionA and that for somep > 2,
E[(vo, 1)?] < co. Consider the BPDL process;);>o and recall thatL is defined
by (2.3).

(i) For all measurable functiong) from M into R such that for some
constantC, forall ve M, |p (V)| + |[Lp(v)| < C(1+ (v, 1)P), the process

t
(3.8) () — b (vo) — /0 ds L (vy)

is a cadlagL!-(#;),~o-martingale starting fron®.
(i) Point(i) applies to any measurabfesatisfying|¢ (v)| < C(1+ (v, 1)7—2).
(i) Point (i) applies to any functio (v) = (v, f)4,with0<¢g < p — 1 and
with f bounded and measurable 06.
(iv) For any bounded and measurable functipron X, the process

t
Ml = )=o) = [Cds [ ooy [ dzpeafe+
(3.9) ,
+ /0 ds /x vs(dX)f(X)[u(X) +a() /x b (@)U (x, y)}

is a cadlagL2-martingale starting fron® with ( predictablg quadratic variation

(M), =/f as [, vs(dX){y(X)/ dz f2(x +2)D(x, 2)
(3.10) o e

+ fz(x)[u(x) + o (x) fx v (dy)U (x, y)]}.
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PrROOF First of all, note that point (i) is immediate thanks to Proposi-
tion 2.6 and (3.1). Points (ii) and (iii) follow from a straightforward computation
using (2.3). To prove (iv), we first assume thift{vo, 1)3] < co. We apply (i) with
#(v) = (v, f). This yields thatM/ is a martingale. To compute its bracket, we
first apply (i) with¢ (v) = (v, £)2 and obtain that

(vr, )2 — (vo, f)?

t
— [ ds [ @y [ d:peo
(3.11) X [f2(x +2) +2f (x + 2)(vs, )]

t
_ / ds / Vs (dx){ f2(x) = 2 () (vs. f)}
0 X

y [,m +aw) [ n@nu, y)}

is a martingale. Then we apply the 1td formula to compute f)2 from (3.9). We
deduce that

(v, )2 — (vo, f)?

t
~ [ ds [v@nye [ dzDe2fe o+ a0 )
(3.12) o X "

t
n /0 ds /x Vs (dx) 2 (x) (s, f)

x [u(x) +a) [ n@nue, y)} — (M),

is a martingale. Comparing (3.11) and (3.12) leads to (3.10). The extension to
the case where onlf[(vo, 1)?] < oo is straightforward since, even in this case,
E[(M'),] < oo thanks to (3.1) wittp = 2. O

4. On the the BPDL moment equations. We now wish to give a sense to
the mean moment equation given in [2], formula (6). Note that in the biology
literature, one may be confused by the notation between the discrete measure
its expectationE (v;) [defined by(E (v;), f) = E({v;, f))] and a measure with
densityn, (x) of which the definition is not clear. Following [2] in this section we
use the next assumption.

ASSUMPTIONB. The spatial domain i& = R¢. All the parameters, y, 1
and D of the model are independent of Moreover, the jounded) comgtition
kernel U(x, y) has the formU(x — y), and both dispersal and competition
kernels are symmetric probability distribution functions, thatli§z) = D(—z),
Ux—y)=U(y—x)andps dzD(z) = Jpa dzU(z) = 1.
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We moreover assume thA&{ (vp, 1)%) < oo and that there is at most one plant at
each location at time= 0. So (3.1) withp = 1 holds and we can define, for each
timer € [0, T],

(4.1) n(t) = E((v;, 1)).

Using Proposition 3.4(iv) withf = 1 and taking expectations in (3.9), we obtain

t
E((v. 1)) = E((vo. 1)) +/O ds (y — W E((vs. 1))

(4.2) .
—oe/o ds E(/Rded Vs (dx)vs(dy)U (x —y)).

Hence,

t t
n(t)=n(0)+(y—u)/o dsn(s)—a/o dsE(/Rdvswx)U(ows({x}))
(4.3)

t
—oz/o ds E(./]Rdx]Rd Vs (dx)vg(dy) L2y U (x —y)).

However, thanks to Propositid3.2, we know that for alt > 0, [ra vs(dx)U (0) x
vs({x}) = U (0){vs, 1). We thus obtain

!
n@)=nO) +(y —pn— aU(O))/ dsn(s)
(4.4) 0

t
— oe/o ds E(/IZMXR" Vs (dx)vs (dy) L x U(x — y)).

Let us now explain theovariance ternused by Bolker and Pacala. Writing

aE( 05 (d)vs (dy) Lz ey U (x — y))
(4.5) /RdXRd

=t ([ n@dy) =06 d) i Ut = ) +an(s),

we obtain, from (4.4),

n(t)=n0)+ (y —n—alU(0)) /t dsn(s) —oz/t dsnz(s)
(4.6) 0 0

t
— a/o ds E(/]I;ded Vs (dx) (v (dy) — n(s) dy) Lz U(x — y)).

Following the terminology of Bolker and Pacala, we define a covariance measure
C, onR¢ for each timer. Let 7_, denote the translation by the vectey. We set

4.7) Ci(dr)= E(/ ra 1 20pvs 0 r__;(dr) ® vt(dy)) — nz(t) dr.
ye
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In other words, the covariance measure is defined for each measurable bounded
function¢ with compact support iiR? by

f Ci(dr)e(r)
Rd
@8 =E( [, n@ou@n L) =n?0 [ drow

_ E< /R g U (@) = (1) ) Ly 3 — y)),

By using this notation, we obtain the mean equation obtained by Bolker and Pacala
([2], formula (6), page 183), with a rigorous sense for the quadratic term:

dn (1)
(4.9) = nt)(y —pu—an@)) —alUOn() —a A‘W C,(dr)U(r).
Let us finally remark that we are also able to derive an evolution equation for the
covariance measure. In other words, we can write differential equations solved by
Jra C:(dr)¢(r) for all measurable bounded functios#son R? (we, however, do
not obtain the same equation as in [2]). Of course moments of higher order are
involved in such equations. So a remaining issue is to find reasonaiigent
closuresas developed in [4]. These closures are, at the moment, not rigorously
justified.

5. Infinite particle approximations. Our aim in this section is to describe
the effect of two different normalizations on the BPDL process. In both cases,
we make the initial number of plants grow to infinity. We first consider the case
where the birth and death rates are unchanged. We show that the random measure
(v1)r>0 tends to a deterministic measu(g);>o and solution of a nonlinear
integrodifferential equation.

In addition, the second normalization consists of accelerating the rates in a
convenient way. Thetv;);>o converges to a superprocess );-o. This measure-
valued process was introduced by Etheridge [6], who called isthperprocess
version of the Bolker—Pacala model

Let us first consider the most general situation.

NOTATION 5.1. Foreach € N*, we consider a set of parametéts,, v,, a,,
U,, D,) as in Notation 2.1, that satisfy for eagh Assumption A and consider
an initial conditionvj € M. Then, we denote by;"),~o the BPDL process (see
Definition 2.5) with the corresponding coefficients. We consider the suliget
of Mr(X) defined by

1
(5.1) M”:{—U,VGM}.

n
We finally consider the cadlagt”-valued Markov processX}),>o defined
by X" = 7,

n
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The generator ofX});>0 is then given, for any measurable madrom M"
into R, by

1
g =n [ v@n [ dznoD,.0)o(v+ o) - 60|
(5.2)
[ v@n i+ ne,w [ v@nv,eon)
X X

<[o(v-38.) - 00|

Indeed, the generatdr” of (v)=0is given by (2.3), replacingu, y, «, U, D) by
(I’Ll’h y}’h ana Una Dn) Hence,

(5.3) L") =3 E[¢(X))]i=0=0En (V] /m)li=0 = L"¢" (nv),

where¢” (1) = ¢ (1/n). The conclusion follows from a straightforward computa-
tion. We now restate Proposition 3.4 for the renormalized model.

LEMMA 5.2. Letn > 1 be fixed and consider the process;');~o defined in
Notation5.1. Assume that for some> 2, E[(X(, 1)”] < oo.

(i) For all measurable functiong from M”" into R such that for some
constantC, for all v € M", |p (V)| + |L"Pp (V)| < C(1+ (v, 1)P), the process

t

(5.4) B0 —6(X5) — [ dsL'9(x2)
is a cadlagL!-martingale starting fron®.

(i) Point(i) applies to any measurabfesatisfying¢ (v)| < C(1+ (v, 1)P~2).

(iii) Point (i) applies to any functiogp (v) = (v, f)4, with0<¢g < p —1and
with f bounded and measurable o. B

(iv) For any f bounded and measurable 06, the process

M = (XI f) — (XB. )
t
(5.5) - / ds / xg(dx)/ d2 Y (¥) Dy (6, 2) £ (x +2)
0 X R4

t
+[Cas [ xt@o]uno +nano [ x2anunen o
is a cadlagL2-martingale with( predictablg quadratic variation

1 t
orhy = [Cds [ xi@n [ dzyoDe s+ 2)
1/ "
(5.6) +;/O ds /st(dx)

x {m(x) (o) [ X@nUL, y)}f2<x>.
X
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We endowM (X)) with the weak topology.

5.1. Convergence to a nonlinear integrodifferential equatiohet us now
consider the mean-field approximating case in which the initial number of particles
n tends to infinity, and the parameters of seed production and intrinsic death stay
unchanged, whereas the mortality competition parameter tends to zf—;rd/m
show that the BPDL process can be approximated by a deterministic nonlinear
integrodifferential equation. This might be a better deterministic way to describe
the model than the moment equations of [2]. In particular, it allows us to deal with
space-dependent parameters.

ASSUMPTIONC1.

1. The initial conditionsX{ converge in law and for the weak topology - (X)
to some deterministic finite measuxgs Mr(X), and SURE((Xp, 1)3) < 400.

2. There exist some continuous nonnegative functiansandy on X, bounded
by @, y andji, such that, (x) =y (x), i, (x) = n(x) andey, (x) = a(x)/n.

3. There exists a bounded nonnegative symmetric continuous funttiam
X x X bounded by such that, (x, y) = U (x, y).

4. There exists a continuous nonnegative funciiban X x R4 that satisfies, for
eachx € X, [ cpi yizexx d2D(x,2) =1, D(x,z) =0 as soon as +z ¢ X

and such thatD(x, z) < CD(z) foraconstant > 0 and a probability density
D onR4. We setD,,(x, z) = D(x, z).

The first assertion of Assumption C1 is satisfied, for exampleX{f=
%Z?:l 8,i, where the random variablgg are independent, with law. In this
case, the number can be seen as thlumeof particles at initial time, and the
limit of X} = %vf may give a rigorous sense to thember density

THEOREMb5.3. Admit Assumptio@1,and consider the sequence of processes
X" defined in Notatiorb.1. Then for all T > 0, the sequencéX™) converges
in law, in D([0, T], Mr (X)), to a deterministic continuous functiod;);>o €
C([0, T1, Mp(X)). This measure-valued functidnis the unique solutiorsatis-
fying supco r1(é:, 1) < oo, of the integrodifferential equation written in its weak

form: for all bounded and measurable functiofisrom X into R,

t
oy SO | as [ a@nye [ dzDeare+)

_/0, ds fxés(dX)f(X){M(X)-i-a(X) /xsswyw(x,y)}.

Note that the link between (2.8) and (5.7) is the same as the link between the
continuous-time binary Galton—Watson process with birth yaded death ratg,
and the deterministic differential equatigi(z) = (y — w) f(¢).
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PrROOF We divide the proof into several steps. Let usTix- O.

STEP 1. Let us first show the uniqueness for equation (5.7). We consider
two solutions (&),>0 and (¢,);>0 of (5.7) that satisfy sup, 7(& + &.1) =
A7 < +00. We consider the variation norm defined fof and p2 in Mp(X)
by

(5.8) w1 — pall = sup (1 — m2, ).
FEL®(X), ] fllo=1

Then we consider some bounded and measurable fungtidafined onX such
that|| f|loc < 1 and we obtain

(6 — & )]

t
S/ds
0

[ 1@ ~ & @)

X

< (v [ dzDnf+ w0 s )
(5.9) + /Ot ds

t
+/ds
0

However, sincé f ||« < 1 for allx € X,

f (£, (dx) — £ (dn) () £ (x) / & d)U (&, y)]
X X

[ 1@~ & [ &@newsmue, y)].
X X

]y(x)/ dzD(x,2) f(x +2) — p(0) f)| <7 + i,
R4
while

«)f @ [ E@Ue, y)\ <alA;

X

and

‘ A é(dx)a(x)f(xw(x,y)‘ <alAr.
We deduce that

_ _ t _
(5.10) (& —&. )] <17 +ﬁ+2&UAT]/O ds |16, — &|I.

Taking the supremum over all function$ such that|| f|loc <1 and using the
Gronwall lemma, we finally deduce that for alk T, ||&; — & || = 0. Unigueness
holds.
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STEP 2. Let us prove some moment estimates. By Assumption C1, it is easy
to check that, for all” > 0,

(5.11) supE( sup (X", 1)3) < +o0.

n te[0,T]
Indeed, recalling thak} = %vﬁ, we can prove, following line by line the proof
of Theorem 3.1(ii) withp = 3, thatE[supc(o.71(v/, 1)%] < CrE[(v§. 1)3], noting
that the constan€7 does not depend om. We easily conclude using part 1 of
Assumption C1.

STEP3. We first endowM () with the vague topology, the extension to the
weak topology being handled in Step 6. To show the tightness of the sequence
of laws Q" = L(X") in L(D([0, T], Mp(X))), it suffices, following [15], to
show that for any continuous bounded functignon X, the sequence of laws
of the processe&X”, f) is tight inID([O, T1, R). To this end, we use the Aldous
criterion [1] and the Rebolledo criterion (see [7]). We have to show

(5.12) supE( sup |(X?,f)|) < 00,
n t€[0,T]

and the tightness, respectively, of the laws of the martingale part and of the drift
part of the semimartingalgXx™”, f). Sincef is bounded, (5.12) is a consequence
of (5.11). Let us thus consider a couplg, S") of stopping times satisfying a.s.
0<85<8<8+68<T.UsingLemmabs.2, we get

E(Mg! — M)

(5.13) < E(MY — My 1212 < E[(M™ ) g5 — (M) 512

S+38

) 1/2
< E[(? +it +&U>/S ds (X", 1) + (X", 1>2>} <V,

where the last inequality comes from (5.11). The finite variation paiXgf, ) —
(X%, f) is bounded by

5+6 )
/ ds[(7 + @) (X", 1) + &0 (X", 1)?]
(5.14) S

< 3c[1+ sup (X", 1)2].
s€[0,T]

Hence, formula (5.11) allows us to conclude that the sequ@fce L(X") is
tight.

STEP 4. Let us now denote by the limiting law of a subsequence ¢f".
We still denote this subsequence 0¥. Let X = (X;);>0 a process with lawQ.
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We remark that by construction, almost surely,

(5.15) sup sup (X7, f) = (X, /)l <1/n.
1€l0,T] feL®(X), || f o<1

This implies that the proces§ is a.s. strongly continuous.

STEP 5. Let us now check that a.s. the procésds the unique solution
of (5.7). Thanks to (5.11), it satisfies sup 7,(X:,1) < +oo a.s. for eacl’.
Standard density arguments show that it suffices to checkXhatlves (5.7)

for all f € Cy»(X) and allz > 0. Let thus f € C,»(X) andz > 0 be fixed. For
v e C([0, 00), Mp (X)), denote

lIjl‘(v) = <vl‘v f) - <UO’ f)
t
(5.16) —fo ds /X ve(dx)y (x) /Rd dzD(x,2) f(x +2)

+ s [ow@nsoluw +ew [ uaven).
We have to show that
(5.17) Eoll¥:(X)|]=0.
However, Lemma 5.2 and Assumption C1 imply that for each
(5.18) MM =w,(x").

A straightforward computation using Lemma 5.2, Assumption C1 and (5.11)
shows that

(5.19) E[M"7 2] = E[(M™ )] [/ ds {1+ (X}, 1 H} Cf’

n

which goes to 0 as tends to infinity. On the other hand, sin&eis a.s. strongly
continuous, sincg is continuous and thanks to Assumption C1, the functign
is a.s. continuous a. Furthermore, for any € D([0, T1, M (X)),

(5.20) |W, (v)| < Cr, sup (L+ (v5, 1)?).
s€[0,1]

Hence using (5.11), we see that the sequaNgéX™)),, is uniformly integrable
and thus

(5.21) lim E (1w, (X")]) = E(1%(X)]).

Associating (5.18), (5.19) and (5.21), we conclude that (5.17) holds.
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STEP 6. The previous steps imply that the seque(X&) converges t& in
D([0, T1, Mr (X)), whereM r(X) is endowed with the vague topology. To extend
the result to the case wheér (X) is endowed with the weak topology, we use
a criterion proved in [12]: Since the limiting process is continuous, it suffices to
prove that the sequencex”, 1)) converges tdg, 1) in law, in D([0, T'], X). We
may of course apply Step 5 with= 1, which concludes the proof.(]

PROPOSITION5.4. Assume thafg in M (X) has a density with respect to
the Lebesgue measur€onsider the associated solutiag;);>o to (5.7). Then
for everyr > 0, the finite measuré, has a density with respect to the Lebesgue
measure

PrOOF The proof is similar to that of Proposition 3.3. We consider a Borel
subsetA of X with measure zero. We apply (5.7) with= 1,. The right-hand side
expression is equal to 0 since the first term is zero by hypothesis, the second one
is zero since for alk, [ra dz1c4.caD(x,z) =0, and the last term is nonpositive.

O

REMARK 5.5. (i) Equation (5.7) is the weak form of, for alle X, > 0,

8,8, (x) = f dy &)y ()D (. x — y)
(5.22) x

— n(x)& (x) — a(x)& (x) /x dy &)U (x, y).

(i) Assume now thatX = R¢, that the competition kernel is of the form
U(x,y)=U(x —y) and thatD(x, z) = D(z) does not depend an Then (5.7) is
the weak form of, for alk e R%, t > 0,

(5.23) 94 (x) =[y& » D](x) — n(x)& (x) — a(x)& (x)[& » Ul(x),
where, for exampley &, x D1(x) = [ra &(dy)y (y)D(x — y).

5.2. Convergence to a superproces#n this section we show the relationship
between the original BPDL model (rigorously written in Definition 2.5) and the
superprocess version of the Bolker—Pacala model introduced by Etheridge [6].
More precisely, we show that accelerating the rates of production and natural death
by a factor ofn makes the BPDL processes converge to a continuous random
measure-valued process which generalizes the one studied in [6].

ASSUMPTIONC?2.

1. The spaceX = R¢. The initial conditionsXg converge in law, for the weak

topology on Mz (R%), to a (random) measur&o € Mx(R?). Furthermore,
sup, E((X4,1)%) < +o0.
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2. There exist some continuous positive functien&), «(x), y (x) and B(x)
on RY, respectively bounded by,a,7 and 8, a nonnegative symmetric
continuous functior/ (x, y) onR¢ x R bounded by, such that

Yn(x) =ny(x) + Bx),

Hn(x) = ny (x),
a(x)

(5.24) an(x) = —,
n

Un(x,y) =U(x,y),

b B n d/2e nlzlz
n(E2) = <2m<x>> Xp(‘Zo(x))‘

Note that D, (x, z) is the density of a Gaussian vector with mean 0 and
variance%ld. With these coefficients and whentends to infinity, we have
more and more seed production and natural death, and less and less competition.
Each seed falls more and more close tanitsther

THEOREM 5.6. Admit AssumptiorC2 and consider the sequence of pro-
cessesX” defined in Notation5.1. Then for all T > 0, the sequenc&X")
converges in lawin D([0, T], Mr(R%)), to the unique(in law) superprocess
X € C([0, T1, Mrp(R%)), defined by the conditions

(5.25) sup E[(X,,1)%] < o
tel0,T]

and for any f € CZ(RY),

B t
1 = X )= %o ) =3 [ ds [ Xe@oomymar
(5.26)

_/Ot ds fRd Xs(dx)f(x)[ﬁ(x)—ot(X) /Rd Xs(dy)U(x,y)]

is a continuous martingale with quadratic variation
_ t
(5.27) ('), = 2/ ds /d X, (dx)y (x) f2(x).
0 R
PROOF  We break the proof into several steps.

STEP 1. Let us first prove the uniqueness of the solution of the martingale
problem defined by (5.25)—(5.27); that is, the uniqueness of a probability
measureP on C ([0, T1, Mr(R%)) under which the canonical proceX¥ssatisfies
(5.25)—(5.27). This result is well known for the super-Brownian process (defined
by a similar martingale problem, but with= 8 = 0 ando = y = 1). As noted
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in [6], we can use the version of Dawson’s Girsanov transform obtained in [5],
Theorem 2.3, to deduce the uniqueness in our situation, provided the condition

Ep(/otds/];w Xs(dx)[ﬁ(x) —a(x)/Xs(dy)U(x,y)T) < 400

is satisfied. This is easily obtained from (5.25) since the coefficients are bounded.

STEP 2. Next we obtain some moment estimates. First we check that for all
T < o0,

(5.28) sup sup E[(X",1)% < oo.
n 1e[0,T]

To this end, we use Lemma 5.2(i) wigh(v) = (v, 1)3. [To be completely rigorous,
first useg(v) = (v, 1)3 A A and then maket tend to infinity.] We obtain, using
Assumption C2, that for all > 0, all n,

E [(X7,1)3

t
:E[(Xg,1>3]+/0 dsE[/Rd X" (dx)[n?y (x) + np(x)]

(5.29) x H(Xj:, 1) + }T— (X", 1)3”

n

t
+/O ds E[/Rd X?(dx){nzy(x) + no(x) /Rd X;’(dy)U(x,y)}

n 1 3 n 3
x{[m,n_-] X1 }]
n
Neglecting the nonpositive competition term, we get
E[(X}, 1]
< E[(X§, 1)°]
+/f ds E[/dxg(dx)nzy(x)

(5.30) 0 K

173 173 3
« {[(X;’,l) +—} 4 [(Xj:,l) - —] _2x", 1) ”

n

n

+/Ot dsE[/Rd X;‘(dx)nﬂ(X){[(X?, 1) + %T_ <X?,1>3”.
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However, for allx > 0, all ¢ € (0, 1], (x + &) — x3 < 6e(1 + x2) and|(x + ¢)3 +
(x — &)3 — 2x3| = 6¢%x. We finally obtain

t
ELX", 1)% < E[(X8. 1)%] + 67 f ds E[{X", 1)2]

(5.31) t 0
+6E/0 ds E[(X", 1) + (X", 1)3.

Part 1 of Assumption C2 and the Gronwall lemma allow us to conclude that (5.28)
holds.
Next, we have to check that

(5.32) supE( sup (X7, 1)) < 00.
n te[0,T]

Applying Lemma 5.2(iv) withf = 1 and Assumption C2, we obtain

t
(5.33) /0 /R"
x [ﬁ(x) o [ X1V, y)] ML
Rd

Hence

_ t
(5:34)  sup(XI 1)< (Xg 1 +F [ ds(Xi 1)+ sup (M
s€[0,¢] 0 se[0,7]
Thanks to the Doob inequality, part 1 of Assumption C2 and the Gronwall lemma,
there exists a constaqt that is not dependent onsuch that

(5.35) E( sup (X", 1)) < C(A+ E[(M™Y V3.
s€[0,1]

Using (5.6) now and Assumption C2, we obtain, for some other con€tanot

dependent on,

_ 4 _ ot
(5.36) E[(M™1)]< 2y +ﬂ)/o dsE[<X?,l>]+&U/O ds E[(X!, 1)?] < G
thanks to (5.28). This concludes the proof of (5.32).

STep 3. We first endowM (R?) with the vague topology. The extension to
the weak topology is handled in Step 5. We prove the tightness of the sequence of
laws (L(X™)), in P (D([0, 00), Mr(R?))) by following the same approach as in
Theorem 5.3. First, we deduce from Step 2 that, Stsup o 1 (X5, /)] < 00
for any boundedf. We thus have to prove that for any e C,f(Rd), the
sequenceg X7}, f) satisfies the Aldous—Rebolledo criterion. Let us consider a
couple (S, ) of stopping times satisfying a.s.€5 <S8 < S+ 68 < T. Using
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Lemma 5.2, Assumption C2 and the fact thffs dz D, (x,z) f(x +z) — f(x)| <

o |Af]leo/2n, we deduce the existence of a constdnibhdependent ofi such that
the finite variation part of X', f) — (X%, f) is bounded by

S+5 ) )
[ as [ xia@npis e

S+6
+/S ds /Rd X (dx)ny(x)

[, dzDar 27 +2) = £ )
(5.37)

545 )
[ s [ Xi@0alifi [ Xey)
N R Rd

S48
<c| T ds (X1, 1) + (X7, 1)2).
S

We can also show that, for some constant

S+34

(5.38) E[(M"’f)s+s—(M"’f)s]SCE[ / ds(<X;’,1>+<X;’,1>2>].

Using the moment estimate (5.28), we finally obtain that the law@#%/) and
the laws of the drift parts ofX", f) are tight and then, by Rebolledo’s criterion,
the laws of(X™", f) are tight.

STEP 4. Let us identify the limit. Let us se@” = L£(X"), denote byQ a
limiting value of the tight sequena@” and denote b = (X;);>0 a process with
law Q. Exactly as in the proof of Theorem 5.3, we can show dielongs a.s.
to C([0, T'1, Mr(R%)). We have to show that satisfies conditions (5.25)—(5.27).
First note that (5.25) is straightforward from (5.28). Then, we show that for any
function f in C3(RY), the processit{ defined by (5.26) is a martingale (the
extension to every function in?lf is not hard). We considerfs1 <--- < s <
s <t and some continuous bounded maps. .., ¢ on Mz (R%). Our aim is to
prove that, if the function from D([0, T'], M (R%)) into R is defined by

V() = d1(vsy) - -~ P (vsy)

t
(5.39) x {1y = ey = [ dutvevo af/2
t
~ [ [ wtan )]s - [ vanemuen |}
then
(5.40) E(W(X))=0.

We know from Lemma 5.2 that using Assumption C2,

(5.41) 0=E[¢1(X")--- g (X2) (M — MM} = E[¥(X")] — Ap,
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whereA,, is defined by

A,,:E[/Szdu/RdXZ(a’x)

o(x)
X {y(x)n[/;&d dzDy(x,2)f(x+2)— f(x)— EAf(x)}
(5.42)

+p)| [ dzDax s+ - fw ]}

x gu(xt) - ux) |

First, an easy computation using Assumption C2, thas Cg and (5.28) shows
that

t
(5.43) |A,;] < Q/ du E[(X;’,l)]—>0
n Js

asn grows to infinity. Next, it is clear from Assumption C2, the fact thfais Cg
and thatQ only charges the space of continuous processes that th@nsag-a.s.
continuous. Furthermore,

(5.44) ()| < C<1+ (v, 1) + (vr, 1) + /t du(v,, 1)2)

and we easily deduce from (5.28) that the sequemé€X”)|),, is uniformly
integrable. Hence,

(5.45) lim E (1w (X")]) = Eo (1% (X)]).

Associating (5.41), (5.43) and (5.45) allows us to conclude that (5.40) holds and
thusM/ is a martingale.

We finally have to show that the bracketMf’ is given by (5.27). To this end,
we first check that

— t
N/ = X 12 = Xo 2= [ s [ Xetdnzy (o200
t
- [ as2x ) [ X e
0 R4
(5.46)
x[pw —a@ [ X@nven]

t
- [ das2x ) [ Xo@ndo oy wase)
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is a martingale. This can be done exactly asﬁfl)’?, using the fact that, thanks to
Lemma 5.2(iii) (withg = 2),

= (X)L )7 = (X5, )
n 2 2
~[Las [ xr@ore] [ dz 2+ apie 0+ r20]

—/Ot dsZ(Xf,f)/RdX;’(dx)

x | B(x) dz f(x +2)Dp(x,2) —a(x) f(x) | X{(dy)U(x,y)
(5.47) [ /" /Rd ]

t

—/ ds 2(X7, f / X! (dx)y(x)n
y [/R dz (¢ +2)Dp(x, 2) — f(x)]
1 r! " 2
- ;/O ds /Rd X" (a’x)ﬂ(x)/Rd dz f2(x +2)Dy(x. 2)

1 n n 2
— = [as [ xi@nac [ X2 @)UG ) 2

is a martingale for each. Next, using the 1td formula in the definition (5.26)
of M,f, we deduce that

(X, £)% = (Xo, /)2 — (M),

t
G4a8)  — [ as2xen) [ dXs(dx)f(X)[ﬂ(X)—a(X) A dxs<dy>U<x,y>}

t
- [ as2x ) [ Xo@ndo oy wase

is a martingale. Comparing this formula with (5.46) allows us to conclude that
(5.27) holds.

STEP5. The extension to the case wheie (R¢) is endowed with the weak
topology uses similar arguments as in Step 6 of the proof of TheoremB.3.

6. About extinction and survival. First of all, we recall a result in [6].
Consider the superproce¥btained in Theorem 5.6, and assume that, g and
o are constant oR?. Suppose also thék(x, y) = h(|]x — y|) for some nonnegative
decreasing functiok on R, that satisfies/s° h(r)r¢~1dr < co. Then if g is
sufficiently small andy is sufficiently large X does not survive: a.s., there exists
at > 0 such that for alk > 0, X, 4, =0.



DESCRIPTION OF A REGULATED POPULATION 1905

We can also find a complementary result in [6] which shows nonextinction with
positive probability for another model—tlstepping-stongersion of the Bolker—
Pacala process. Let us now come back to the BPDL process defined as the solution
of (2.8). The techniques used in [6] are specific to continuous processes and cannot
be generalized to the BPDL discontinuous process.

Before giving our results, let us point out the following obvious remark.

REMARK 6.1. Assume Assumption A and th&f(vg, 1)] < co. Consider the
BPDL processv;);>0. Assume also that there exist some constagts (1o such
that for allx € X, u(x) > uo andy (x) < yo. Then(v;);>0 does a.s. not survive,
thatis,P[3s > 0, (v, 1) =0] = 1.

The proof of this remark is not hard. In such a case, the progess(v,, 1)
can be bounded from above by a standard continuous-time binary Galton—Watson
processY; with death rateug and birth rateyy. Since g > yp, extinction a.s.
occurs.

In this section, we first prove almost sure extinction in a case where the state
spaceX is compact. Then we show nonextinction in the case of a discrete version
of the BPDL process with a specific (and not quite realistic) competition kéfrnel

6.1. Extinction in the compact caseWe check a result which essentially says
that if the state spac® is compact, then the population does almost surely not
survive. Let us make the following assumption:

ASSUMPTIONE.

() The mapsx(x) andu(x) + a(x)U (x, x) are bounded below.

(i) There exists a nondecreasing functipnR . +— R, satisfyinge(0) =0,
such that lim_, . ¢(x) = oo, such that the mapg(x) is convex on[0, co) and
such that, for alb € M,

(6.1) (v, U) = (v, 1)o(v,1)).

REMARK 6.2. Assumption E(ii) holds ifX is compact inR?, and if there
existe > 0 ands > 0 such thalU (x, y) > e1jjx—y|<s}-

THEOREM 6.3. Admit Assumptions andE, vg € M and E({vg, 1)) < o0.
Consider the corresponding unique BPDL procésg;>o obtained in Theo-
rem3.1.Then there is almost surely extinctighat is, P (3¢ > 0, {(v;, 1) =0) = 1.

.....

of disjoint cubes ofR? with sides/+/d. Note thatL is clearly finite and that for
each/ and each, y € Cj, |x — y| < §. Recall the following consequence of the

PROOF OFREMARK 6.2. First of all, we covefS with a family {Ci}ieq1,....1)
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Cauchy—Schwarz inequality, which says that foral 1 and all{a1, ..., a1}

iNR, Y, 02> 2[3F 1 1% Hence for allh > 1 and allxy, ..., x, € X,
n n n L
DU x) = Y elg_xzsy =€ > > 1o (x)le (x))
ij=1 ij=1 ij=1l1—1
(6.2)
=Y [ Y 1o | =e—| DD 1e(x) =e—n?
1=1Li=1 Ll == L

We immediately deduce that for anye M, sincev is atomic,{(v ® v,U) >
e (v, 1)2. Hence Assumption E(ii) holds with(n) = e1n. O

PROOF OFTHEOREM 6.3. We break the proof into several steps.

STEP1. We first of all prove that
(6.3) A = SUpPE ({1, 1)) < 4o00.

>0

To this end, we sef (1) = E((v;, 1)) and use Proposition 3.4 with(v) = (v, 1)
to obtain

t
(6.4) f(1)=£(0) + /0 ds E[<vs, y — ) — /X /x vy (dx)vs (dy)e (U (x, y)]

Hence f is differentiable. If we seb = ||y — ull« andag = inf, 5 a(x), we
deduce that for any> 0,

(6.5) f1(#) <8f () —aoE (v ® v, U)).
Using Assumption E and then the Jensen inequality, we obtain that
(6.6) () <8f@) —aof(De(f(1)).

Let now xg be the greatest solution @dfxg = agxpe(xg) [recall that p(x) is
nondecreasing and goes to infinity with and thaty(0) = 0]. Then we deduce
from (6.6) that for any > 0, f(¢) < f(0) Vv xq. This concludes the first step.

STEP2. We now check that a.s.
(6.7) liminf(v,, 1) € {0, co}.
—>00
Since(v;, 1) is N-valued, it suffices to check that for any € N¥,
t—00

P[Iim inf (v, 1) = M] =0,

but this is clear: If liminf_ (v, 1) = M, then (v;, 1) reaches the stat®/
infinitely often, but reaches the stat¢ — 1 only a finite number of times. This
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is (a.s.) impossible because each titng 1) reaches the stat®, the probability
that its next state i3/ — 1 is bounded below by

Meg
- ———— >0,
My +Mp+aUM?
whereeg = inf 5 [pn(x) +a(x)U(x, x)] > 0.

(6.8)

STEP3. Since(vy, 1) is N-valued and 0 is an absorbing state, we immediately
deduce from (6.7) that a.s. lim o (v, 1) exists and

(6.9) lim (v, 1) € {0, oo}.
I—00
STeErP4. By Fatou’s lemma and Step 1,
(6.10) E[ lim (v, 1)} = E[Iiminf(v,, 1)} <liminf E[(v;, 1)] < A.
t—00 —>00 —>00

Hence lim_, (v, 1) < oo a.s. and we deduce from (6.9) that Jigy. (v;, 1) =0
a.s. This concludes the proofld

6.2. Survival in a simplified case.Next, we show that in some cases, the
BPDL process survives with positive probability. We are not able to handle a proof
in a general case, because the problem seems very difficult. It actually looks much
more difficult than the problem of survival for the contact process, which has been
studied by many mathematicians (see [11]). The only result we are able to prove
is deduced from a comparison with the contact process.

ASSUMPTIONS.

(i) The state spacg = Z.
(i) The competition kernel is pointwise, that isl/ (x, y) = 1=}
(i) The dispersion measurB(x,dz) = D(dz) = (1/29) 2 uezd juj=16u(d2).
(iv) y, u anda are positive constants that satisfy
y2!
u+o

(6.11) )

Note thatX = Z¢ was not covered by our construction. The adaptation is,
however, immediate.

PROPOSITION 6.4. Admit Assumptiors, assume thabg € M, (vg,1) > 1
a.s. and assume thak[(vg, 1)] < oo. Consider the corresponding BPDL pro-
cess(v;);>0. This process survives with positive probabiliiyhat means that
P(inf;>o(v;,1)>1)>0.
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We do not handle a completely rigorous proof. To do so we would have to build
a rigorous coupling between the contact process and the BPDL process.

PROOF ORPROPOSITIONG6.4. We split the proof into two steps.

STEP 1. Let us first recall definitions and results about the contact process
(see [11], Chapter VI). First, denote B¥;. the set of nonnegative finite measunes
onZ¢ suchthat for alk € Z4, n({x}) € {0, 1}. The contact process with parameters
*q > 0 andx,, > 0 is a Markov proces§y,);>o, taking its values in/;. and with
generatork , defined for all bounded and measurable magsom M (Z¢) into
R and ally € Mp(Z4) by

Ko =ra [ 1@ Y Lyturun-0d 1+ era) — S0

ueZ4 |lul=1

(6.12)
i [ 1@ L=l (n = 8) = S )]

Consider an (possibly random) initial stajg in M. satisfying(no,1) > 1 a.s.
Then it is known (see [11], Chapter VI) that the contact prodggs>o with
parameters.; > 0, A, > 0 and initial statejg exists, is unique (in law) and that
under the condition; > 24,,, survives with positive probability.

STEP 2. Consider now the BPDL proces$s );>o, Which takes its values in
the integer-valued measures @fi. Denotesl; = Y, <4 v, ((x)>1;0x- Note that
1: is always dominated by;. Then (7;);>0 iS a process with values it} and
we can observe that),);>o iS a sort of contact process with time- and space-
dependent, random parametegsgz, x, w) = 241 v v, ({x})] andi,, (t, x, w) =
L, (xp<1(u + ). Under Assumption Si,(¢, x, @) is uniformly bounded from
below by 1, = y2~4, while A,,(t, x, ) is uniformly bounded from above by
Am = 1 + . Hence, the process;),~o is bounded below by a contact process
with parameters. ; and,,. Since (6.11) ensures that,2 < A 4, the conclusion
follows from Step 1. [

Note that the previously described method may not apply to the continuous-state
BPDL process, since we really need the interaction to be strictly local. In fact, the
only case we could treat by such a method is the case where the competition kernel
is completely localnd cannot propagate; for exampé,= R? and U (x, y) <
Y pezd 1c,(¥)1c, (y), where, forp € Z¢, C,, = [p1, p1+ 11 X -+ X [pa. pa + 11.

7. Onequilibria. Aninteresting question is that of the existence of nontrivial
equilibria for the BPDL process. Since this question seems very complicated, we
first try to give some results about the deterministic equation (5.7). Then we show
that there exists a nontrivial equilibrium for the BPDL process that is related to the
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carrying capacity under a detailed balance condition which is unfortunately very
restrictive. We finally present some simulations. We suppose Assumption B in the
whole section.

7.1. Equilibrium of the deterministic equationWe first of all point out a
trivial remark.

REMARK 7.1. Suppose Assumption B and thpt< w, and consider a
nonnegative finite measugg on R¢. Consider the corresponding unique solution
(&))=0 € C([0, 00), Mp(R%)) of (5.7). Theng, tends to 0 as grows to infinity in
the sense thag;, 1) < (&g, 1)e~ “—1)1,

This remark follows from a straightforward application of (5.7) wjth= 1 and
of the Gronwall lemma. We next generalize the existence of solutions to (5.7) to
the case of possibly nonintegrable initial conditions.

PROPOSITION 7.2. Admit AssumptiorB. Consider a nonnegative bounded
measurable functiogy onR¢.

1. There exists a unique functi@g (x)),-q ,cre Such that
(i) forall+>0andallx e R?, &(x) > O;
(i) forall T < oo, SURc[0,7].xerd & (X) < 00;
(iii) forallr >0andallx e R?,

t
(7.1) &) =éo(x) + /o ds [y (& * D)(x) — u&s(x) — ads(x) (& * U)(x)],

where for example (§; x D)(x) = [rady D(x — )& (y).
2. Forall x e R?, the map — & (x) is of classC! on [0, ), and for all 7 < oo,
19, £ (x)| is bounded o0, T'] x R4,
3. If furthermore a4 £o(x) dx < oo, then for all T < oo,

sup dx&;(x) <o
te[0,7] /R4
and the finite measure-valued functigf) (x) dx);>o is the unique solution
to (5.7).

Since this proposition iquite unsurprising, wenly sketch the proof.

PROOF OF PROPOSITION 7.2. First note that point 2 is an immediate
consequence of (7.1) and of the fact tljais bounded, obtained in (i) and (ii).
Point 3 is also easily deduced from point 1. To check the uniqueness part of point 1,
it suffices to consider two solutiori& (x)),> ¢ cgrd and(&, (X));>0,xerd 10 (I)=(iii),
both bounded by some constant on[0, 7] x R?. A straightforward computation
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shows that, for (t) = SUR -, ,cpa 1&(x) — &(x)], fort < T,

t
(7.2) $(1) < (v + 1t + 20 A7) /0 ds ¢ (s).

[Recall that sincefps U(x)dx = 1, supra(&s * U)(x) < SUp,cga & (x).] The
Gronwall lemma allows us to conclude that £.

The existence part follows from a@mplicit Picard iteration. Defing?(x) =
£o(x) and construct by induction a sequence of functief9,>o such that for
eachx e RY, t > &' (x) is of classC! onR* and satisfies, for > 1,

11(x) = &o(x)
(7.3) t
+ /0 ds [y (" « D)(x) — u&" 1 (x) — ") (EF « U) (x)].

We can, moreover, check at each step #iais well defined, nonnegative and
bounded or{0, 7] x R? for eachn and eachl'. A straightforward computation
shows that for alt > 0, sup, sup, cre &' (x) < SUp,.cra £0(x)e?’, and next that for
anyT, there exists a constaBt such thatforalk < T,

sup g (x) — &M (x)|
xeRd

(7.4) t
<br [ ds[ SUp [£7+1(x) — &7 ()| + sup J&" (x) —ss"—loc)q.

xeRd xeRd
Thanks to the Gronwall lemma, we deduce that foffalbll r < 7 and alln,
t
(7.5) sup & (x) —&(x)| < Brexp(TBr) | ds suplg!(x) — &1 (x)l.
xeRd 0 xeRd
The Picard lemma allows us to conclude that for7all
(7.6) Y osup g — £'(x0)] < oo

n>11€[0,T],xeR4

Hence, there exists a function( (x));>0cre Such that for anyT,
SURc(0.7].xerd 1§ (x) — &' (x)] tends to 0. We easily check that this function satis-

fies points (i)—(iii)). O
We may now define the equilibria.

DEFINITION 7.3. Admit Assumption B. For a nonnegative bounded continu-
ous functionf onR?, define the functiorF f onRR? by

yLf * D](x)

(7.7 B = U100
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Then (7.1) can be rewritten as

t
(7.8) & (x) =&o(x) + /0 ds (n + algs * U(x)) (F& (x) — & (x)).

This leads us to define the equilibria in the following sense. A continuous bounded
nonnegative functiom onR? is said to be aeasonable equilibriunof (7.1) if for
all x e RY,

(7.9) c(x) = Fc(x).

This definition is slightly restrictive, but we may note thatZif and U are
continuous, then any solution to (7.9) such that
limsupcx D](x)/[c* Ul(x) < o0

|x|—o00

will be continuous and bounded.

REMARK 7.4. Assume Assumption B, that> u and thate > 0. Then the
constant functiorcg(x) = (y — w)/« is a reasonable equilibrium of (7.1). The
constant functior(x) = 0 is also, of course, a reasonable equilibrium of (7.1).

Note that the quantitfy — w)/a appears in [2] and is called thearrying
capacity which can be understood as a sortneiximum number of plants per
unit of volumeWe use the following estimate.

LEMMA 7.5. Assume Assumptid, that y > p and thate > 0. Define the
signed functionkR on R by R(x) = D(x) + %(D(x) — U(x)). Then for all
bounded functiong and all x € R¢,

o
pwtalf*Ulx

(7.10) Ff(x) — Feo(x) = )[(f—co)*R](X)-

This result is immediately proved by using simply the expressian.le now
state an assumption which ensures that) dx is a probability measure and hence
that F is a contraction arounc} in the space of bounded functions.

ASSUMPTIONC. y > u and for allx € RY, yD(x) > (y — w)U(x). This
implies thatR (x) dx is a probability measure dR?.

Let us now describe a situation for which the constant funatigis the unique
nontrivial reasonable equilibrium.

PROPOSITION 7.6. Assume Assumptio® and C, that y > 29, and that
a > 0. Suppose also thab(x) = D(|x|), where the mapD is nonincreasing
on [0, o0). (This hypothesis is physically reasongtsee[2].) Then any nontrivial
reasonable quilibrium ¢ of (7.1)identically equals:g.
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PROOF Letc thus be a nontrivial reasonable equilibrium for (7.1).

STEP 1. Sincec is nontrivial, there existsg such thatc(xg) > 0. Sincec
is continuous, we deduce thatis bounded below on a neighborhood af.
Then (7.9) and the fact thaD charges any neighborhood of 0 (since it is
nonincreasing) ensure thanever vanishes.

Step 2. We now show that there exists a constant- 0 such that for all
x € R4, ¢(x) > go. To this end, we first consider> 0 such that (1/2¢ —¢) > u
and then consider > 0 such thatf[o’a]d D(x)dx > 1/2" — ¢, which is possible
since D is radial. Consider now any point = (x1, ..., x4) € R and the box
B =[x1,x1+a] x --- X [x4, x4 + a]. Denotem = inf,cp c(x), which is positive
sincec is continuous and never vanishes. Our aim is to showdthatg (m), where
the C! function g is defined orf0, co) by

=3

Fluy= e .
utay/(y —pwu

(7.11)

This concludes the proof of Step 2 since we can check gh@ = (1/2¢ —
g)y/u > 1 so thatm > g9 > 0 wheregg is the smallest positive solution to
u=g(u).

We thus check thak: > g(m). Let y € B. Using (7.9) and Assumption C, we
deduce that(y) > f([c x D](y)). However, f is nondecreasing, so thaty) >
f(m [ dz D(y — z)). Using the symmetry and the nonincreasing propertid3,of
we easily deduce that singee B, [p dzD(y —2) > [ig 40 d2D(2) > 1/2¢ —¢.
Thus for ally € B, c(y) = f(m(1/2¢ — &)) = g(m), which ends Step 2.

StepP 3. Using (7.10), Step 2 and Assumption C, we obtain

supfc(x) — col = SUp|Fc(x) — Feo(x)|

R4 R4
(7.12) e e p
< sup|c(x) — col.
M+ Q€0 e

This implies that sup.ga [c(x) —col =0. O

Although the above uniqueness result seems quite promising, we are at the
moment not able to prove that under the conditions of the previous proposition,
any solution(§;),>0 to (7.1) starting from a nontrivial initial condition converges
to co in some sense. We can, however, obtain two partial results.
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AsSsSUMPTIONDBC. «>0,y>0,u=0andD =U.

This assumption is detailed balance conditiorindeed, under this condition,
the equilibriumco(x) = y/a ensures that for any couple of pointisand y, the
rate of appearance of plants.atdue to seed production atequals the rate of
disappearance of plants:abecause of competition of plantsyatin other words,
yD(x — y)co(y) = aco(x)co(y)U (x — y). Unfortunately, this condition is very
restrictive.

PrRoOPOSITION 7.7. Take Assumption8 and DBC. Let & be a positive
bounded and measurable function&f. Consider the associated unique solution
(&)1=0 of (7.1) starting fromé&p obtained in Propositior.2. Theng; tends to
co = y/a ast grows to infinity in the sense that for alland all z,

(7.13)  [&(x) — col® < [£o(x) — col® exp(—2x[(£0 A co) * D](x)1).

We furthermore see in the proof below that the behaviay; a6 quite simple:
If £9(x) < co, thené, (x) increases teg, while if £y(x) > c¢g, then&, (x) decreases
to co.

PROOF OFPROPOSITION7.7. Since in this casé; & (x) = —a& » D(x) x
(& (x) — cg), we easily show that for all > 0 and allx € R?,

(7.14) 3/[& (x) — col® = —2a[& (x) — col?[& * D](x).

Since¢ is nonnegative, we deduce thit(x) — co]? is nonincreasing in for
eachx. Since furthermoré;, (x) is continuous in for eachx, we deduce that for
anyt, x, &(x) > &(x) A co. Hence

(7.15) (& (x) — col?® < —2a[& (x) — col®[ (0 A co) * D1(x),

from which the conclusion follows.

We now treat quite a general case of coefficients’, u, U and D, but we
consider an initial condition which is onlysamall perturbatiorof cg.

PROPOSITION 7.8. Admit AssumptionB and C, that « > 0 and thatU is
bounded below by a positive continuous funcfian R¢. Consider a nonnegative
bounded measurable functiofy on R¢ such that [ra[é0(x) — col?dx < oo.
Consider the associated unique solutigp),>o of (7.1)starting fromé&p obtained
in Proposition7.2. Thené; tends tocg ast grows to infinity in the sense that there
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existsa > 0 such that for allz,
(7.16) [ s — codx < e [ o) — coldx.
Rd R4
PROOF We break the proof into three steps.

STEP 1. A straightforward computation using part 2 of Proposition 7.2,
(7.8) and (7.10) shows that for al> 0 and allx € R¢,
0,18 (x) — col®
= 2[&/(x) — co] 3§ (x)
= 2[& (x) — collp + (& * U)(X)I[F& (x) — & (x)]
= 2[5 (x) — colln +a (& * U)(X)][F& (x) — Feo(x)]
(7.17) + 2[& (x) — collp + (& x» U)(x)][co — & (x)]
= 2p[&(x) — coll(& — co) x R](x)
— 20& (x) — colP [ + (& * U)(x)]
= —2a[& (x) — col*(& * U) (x)
— 22L& (x) = col[(5:(x) — co) — {(& — co) * R}()].

Integrating this differential inequality against time, we obtain
[£ (x) — col?
t
(7.18)  =[&(x) —col® -2 fo ds a[&; (x) — col’[& * U1(x)
t
- 2/0 ds pu[§s(x) — col{l§s(x) — col — [(§s — co) * R](x)} ds.
Thanks to Assumption @ is a probability measure. We furthermore know that

and thusg, » U, is bounded o0, 7] x R? for eachT. Thus an application of the
Cauchy-Schwarz and Young inequalities yields

(7.19) [ dxls - coll(60) — o)« Ro)] < [ dx 6 (0) = col?.

We easily deduce that for all > 0, supy 7, [ra dx [&(x) — co]? < o0. Hence
(7.18) may be integrated one R¢ and we get that for all > 0,

(7.20) 3, /R L dx[5(x) = col” < ~20 /R , dx[6:(0) = col’l& * U1(0).
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STEP 2. We now wish to boundé; » U](x) from below. First, we deduce
from (7.20) that/pa dx [&(x) — co]? is nonincreasing in time. Hence there exists
a constanb < oo such that for alk > 0,

(7.21) /[sz dx 1{5:()6)500/2} <b.

However, sincé/ (x) > h(x), for some positive continuous functidgnthere exists
a constant: > 0 such that

(7.22) inf / dzU(z) > ba.
AeBRY), [, dx<bJRI/A

Indeed, choose any compact subkesf R? whose Lebesgue measure equals 2
and set: = inf,cx h(x). Note that for all4d € B8(R?) such that/, dx < b, we also
havefK/A dx > b, so that

(7.23) /Rd/A dzU(2) > /K/A dzh(z) > ba.

Finally using (7.22) withA = A; , = {y € R, & (x — y) > co/2}, of which the
Lebesgue measure is smaller thathanks to (7.21), we obtain for alle R? and
allr >0,

&+ Ul = [ dvéte = UG

(7.24)
co bacg
> — dyU(y) = ——.
2 JArs

STEP 3. Gathering (7.20) and (7.24), we finally obtain

(725) o [ drlgo — ol < —bacow [ dxlg() = col

from which the conclusion follows.

7.2. Equilibrium of the BPDL process.We now to show that it might be
possible to find an equilibrium for the BPDL processes. This is a first step to
study the long time behavior of the BPDL procéss;-o defined in Definition 2.5
conditioned on nonextinction. We unfortunately are able to treat only the case
where the detailed balance condition holds. Of course, such an equilibrium will
be infinite. We can, however, state the following rigorous result.

We first of all denote byM the set of nonnegative (possibly infinite) integer-
valued measures dR?. We also denote byt the set of functiong from M into
R of the form¢ (v) = F({v, f)), for some bounded measurable functibron R
and some functiorf with compact support oR¢.
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PROPOSITION7.9. Admit AssumptionB andDBC (see Sectioii.1)and that
U (0) = 0. Consider a Poisson measure on R? with intensity measuregdx,
wherecg = y/a. Thenn is a stationary BPDL process in the sense that for all
¢ € A, Lo () as. exists belongs toL! and E[L¢ ()] = 0, whereL is defined
in (2.3).

Note that allowing Assumption DBC and th&t(0) = 0 implies that there is
no natural death We remark also that this result is somewhat surprising, since it
suggests that at equilibrium, the plant locations are independent. Let us finally
mention that a similar result without Assumption DBC would be much more
interesting. However, the stationary procesgoes not seem to be Poisson in such
a case. The proof relies on the following lemma, known as Slivnyak’s formula
in [13] and also can be obtained from Palm measure considerations (see [8],
Chapter 10).

LEMMA 7.10. Letv be a Poisson measure dR¢ with intensitym(dx).
Denote by{x;};>1 the points ofv, thatis v =3",.1 dy,. Then for all measurable
functionsh fromR? x M into R such thatfgs m(dx)E[|h(x, v + 8,)|] < oo,

(7.26) E[Zh(xi, v):| — /Rd m(dx)Eh(x, v + )],

i>1

PROOF OFPROPOSITION7.9. Let¢ belong toA. The fact thatL¢ () a.s.
exists and belongs té! for ¢ € A can be easily checked using the explicit
expression of. and standard results about Poisson measures. We thus prove only
that E[L¢ ()] = 0. Denote by{x;};>1 the points ofr, that is,7 = ;-1 dy;.
Hence, we obtain, using Assumption DBC, B

E[L¢(m)] = VE[Z/W dz D(){$(m + 8x;+2) —¢(N)}}

i>1
(7.27) +ozE|:Z{¢(n—6xi)—qb(n)}ZD(xi —xj)}
i>1 j=1
=:yA1+aAs.

We first use Lemma 7.10 with the functida(x, v) = fpa dz2 D(2){P (v + 8x47) —
dp()}:

A= E|:Zh1(x,-,n)i|
i1

(7.28)
=/ code[/ dzD(z){¢<n+8x+8x+z)—¢<n+ax)}]
R4 R4
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Next, with ho(x, v) = {¢p (v — 8x) — ¢ (V)} Jga v(dy)D(x — y), we obtain

A2=E<Zh2(xi,n))

i>1

(7.29)
= /Rd dx coE[{qb(n) —¢(w + 8x)} /Rd(” +68x)(dy)D(x — y)].

Since D(0) = U(0) = 0, we obtain, settingh3(y,v) = D(x — y){¢(v) —
d(v+dx)},

(7.30) A2=/Rd dxcoE<Zh§(xj,n)).

j=1

Using Lemma 7.10 again, we obtain

Az = /d dxco/d dy coE[D(x — y){¢ (7 +8y) — p(w + 8¢ + 8,)}]
(7.31) R R

= [ dx [ dzED@I$Gr +8) = @ +8r4+ 80NN

where we have used in the last equality the substitution) — (x, x + z). Since
acs = yco, we deduce that A1 = —a A, which ends the proof. O

7.3. Simulations. The previous results suggest that the BPDL process, condi-
tioned on nonextinction, should converge as time tends to infinity to a random
measurev,, quite well distributed (not far from the Lebesgue measure), with
(y — w)/a plants per unit of volume on average. We present simulations of this
situation.

We assume thak =R and thaty =5, u =1 anda = 1. We consider the case
whereU (x, y) = 1{jx—y|<1/2y and D(z) = %1{|Z|53}. Then we compare the BPDL
processv;);>o With the stationary solutiong(dx) = [(y — n)/a]dx of (7.1).

On Figure 1, we assume that= 5o. The boxes represent the empirical density

(a) (b)

0 I I L L L L L L L I I L L L L L
=50 —40 =30 -20 -10 0 10 20 30 40 50 =50 -40 -30 =20 -10 0 10 20 30 40 50

Fic. 1. (a)t=3; (b)r =25.
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(b)

FIG. 2. (a)vg=do; (b) vg =605q.

of the BPDL process at timas= 3 [Figure 1(a)] and then = 25 [Figure 1(b)],
obtained with one simulation, while the dotted line is the density@fi.e.,

(y — w)/a]. We check that after some time, the BPDL process is quite well
approximated by.

Figure 2 represents the evolution in timevpf{ —5, 5]) (full line), starting either
from vg = 8¢ [Figure 2(a)] or fromvg = 605g [Figure 2(b)], and compares it with
co([-5,5]) = 10(y — u)/« (dotted line).

Finally, we measure the power of competition. To this end, we compare the
evolution in time of the rate of interaction of all particles on particles located in a
ball. We assume thaiy = §g. Figure 3(a) represents, in full line, the evolution in
time of [ v, (dx) Jg vi(dy)1)x<sU (x, y) obtained by one simulation. The constant
value (dotted line) isfy co(dx) g co(dy)1jx<sU(x,y) = 10 % [(y — w)/al?.
Figure 3(b) shows the same quantities replacing 5 by 50.

In conclusion, we can say that, on one hadgeems to be a good deterministic
approximation of the BPDL process after a long time. On the other hand, there are
clearly stochastic fluctuations around the deterministic approximation that could
be interesting to study.

(a) (b)

300 T T T T T 2500

250
2000

200 -
1500 [~
150
1000 |

100 [~

< 500
50 -

0 L L L L L 0 L L L L L
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Fic. 3. Rate of interaction endured by all particles(a)[—5, 5] or (b) [-50, 50].
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