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CONTINUUM PERCOLATION WITH STEPS IN AN ANNULUS

By PauL BALISTER,! BELA BoLLOBAS? AND MARK WALTERS!
University of Memphis

Let A be the annulus ifR? centered at the origin with inner and outer
radii (1 — ¢) and r, respectively. Place points;} in R? according to a
Poisson process with intensity 1 and$et be the random graph with vertex
set{x;} and edges; x; whenever; —x; € A. We show thatif the area of is
large, therg 4 almost surely has an infinite component. Moreover, if we fix
increase and letn, = n.(¢) be the area oft when this infinite component
appears, then, — 1 ase — 0. This is in contrast to the case of a “square”
annulus where we show tha¢ is bounded away from 1.

1. Introduction. Consider the following percolation process. Fix 0 ands
with 0 < ¢ < 1. Place pointsx;} in R? according to a Poisson process with
intensity 1. Join points; andx; provided the Euclidean distande; — x;||2 lie
betweenr(1 — ¢) andr. We wish to know whether the resulting graph has an
infinite component.

More, generally, lett be a bounded region iR? and define an infinite random
graphg 4 with vertex setV (§.4) € R? given by a Poisson process with intensity 1
and edgesy € E(%4) whenx € y + A (wherey + A = {y +a:a € A}). Define,
for x e R?, A.(x,r) ={y:(1—¢)r <|ly — x|l2 < r} to be the annulus centered
at x with inner radiusr (1 — ¢) and outer radius. Then the percolation process
above is given by 4, whereA = A, (O, r).

For convexA, the modelg, has been widely studied; see, for example,
Grimmett (1999), Haggstrom and Meester (1996), Jonasson (2001) and especially
Meester and Roy (1996). However, very little is known about the model for non-
convex bodies such as the annulys

The modelg; 4 occur very naturally as ad hoc wireless networks. Suppose that
transmitters are distributed at random in the plane and broadcast to neighbors if
they are inside a certain region relative to the transmitter (i.e., thé)sétis then
very natural to ask whether a message can propogate through the network (i.e.,
does an infinite connected component exist?).

The model§4,(- is monotonic inr since, by scaling, it is equivalent to
one in whichr (and henced) is fixed and the intensity of the Poisson process
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varies. Hence, by standard results, for anyere is a critical valua.(¢) of the
area|A| = nr?e(2 — ¢) (or, equivalently, the radius) above which an infinite
component exists with probability 1 and below which there is almost surely no
infinite component.

Our main result is the following:

THEOREM 1.

14+ - <nu(e) < 14 o(Y/15).

737

In particular, the critical area tends to 1 as—> 0. The aregA| is just the
expected number of neighbors of a point, so for smakn infinite component
appears when the average degreg pis slightly more than 1. This is not quite as
surprising as it may seem: The giant component in a random graph appears when
the average degree of the graph is 1 [see, e.g., Bollobas (2001)].

By comparison, if instead of the annulus= A, (0, r) we use the “square”
annulus defined by thig,-norm, then, as we show,(¢) is bounded away from 1
independently of.

We abuse notation by writing| for the standard Lebesgue measure in eiftfer
or R, or for the number of elements 8f depending on context.

The layout of this article is as follows: In the next section we prove the lower
bound for Theorem 1 and the lower bound for the square annulus. In Section 3 we
prove the upper bound in Theorem 1 manlalkey proposition (Proposition 6). In
the final section we prove Proposition 6.

After this work was done, we found out that, independently and simultaneously,
Franceschetti, Booth, Cook, MeestadeBruck (2003) proved the same result.

2. Lower bound. We first prove the lower bound on.(¢) from Theorem 1.
We start with a simple geometric lemma.

LEMMA 2. Suppose y —x € A = A.(0,r). Then |A.(x,r) N A (y,r)| =

&
. 3|A|.

PrROOF The proofis easy but tedious, so we shall not spell it out. For small
the worst case occurs whén — y|lo =r. O

PROOF OF THE LOWER BOUND OFTHEOREM 1. SupposéA| <1+ nf/é

and fix a vertexx1 of the Poisson process. L&, be the expected number of
induced paths of length starting atx;. We show thatE, — 0 asn — oo.
Supposen > 2 and we have an induced path, ..., x, of lengthn. If this
is the initial segment of an induced path, ..., x,+1 of lengthn + 1, then
Xpt1 € Ag(xp, 1) \ Ul’.‘:‘llAg(xi,r), so the expected number of pointg.1,
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conditioned on the points, ..., x, and on the points injl’.‘;ll Ag(x;, r) is at most
A (. ) \UIZT A (7, 7)] < 1A (X0, 7) \ Ag (-1, 7)|. HOweverx, —x,_1 € A,

so by Lemma 2, this is at most= |A|(1— nf/é) < 1. Hence the expected number
of pointsx,1 conditioned on the pointsy, ..., x, is at mostx andE, 11 <« E,,.

It follows that E,, — 0 asn — oo, but

P(x1 is in an infinite componeht P(3 induced pathxq, ..., x,) < E,

and hence, with probability 1x; is not in an infinite component. Sinog was
chosen arbitrarily and there are almost surely countably many points in the Poisson
processg 4 almost surely has no infinite componentl]

We show in the next section that — 1 ase — 0. However, first we show that
this is not true for the square annulus, defined by/thaorm.

LEMMA 3. Let A be a region in R? with A = —A. Define a percolation
process by joining x; and x; when x; — x; € A. Then the Poisson process with
density 1 almost surely does not have an infinite component if |A|3 — Sasalx+
AN (y+ A)|dxdy < 1.

PROOF  As before, we count the expected number of induced paths of leangth
starting atx1. Supposex;, ..., x, are fixed. We count the expected number of
choices ofx,, 11, x,+2 andx, 3 that give an induced path, . . ., x,,13, conditional
onxi,...,x,. Write x,, 11 = x, + x andx, 2 =x,+1 — y, Sothatx,ye A = —A.
Now x,13€ A" = (x,42 + A) \ (x, + A). The area of this setisi| — |(x + A) N
(y + A)|. From this we see that

B ([ idray)E, = (1P~ [ jx+ 00+ dldrdy )E,.
AxA AxA
The result now follows as before ™

LEMMA 4. For anyinterval I =[a,b], [;,; |(x + DN (y+1)|dxdy = 3|13.

PROOF Both sides are unchanged if we repldcwith I — a = [0, c], where
c=b—a.So [, lx+ DN+ Dldxdy =[5 [oc — |x —y)dxdy =
Zfo()y(c—y+x)dxdy=%c3. O

THEOREMS5. LetA ={x eR2:r(1—¢) < |lx]loc <r}. Then g, almost surely
has no infinite component when |A| < 1.014.

Proor Define the intervalsl = [r(1 — ¢),r] and J = [—r,r], and the
rectangleS =1 x J. ThenA 2> SU —S. Now

/ |(x+A)ﬂ(y+A)|dxdy26/ x4+ SN+ S)|dxdy,
AXA Sx S
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where we have used symmetry to bound the integral ayere +S of |(x +
SU=8) N+ S U=5))| by six equal terms given by the six choices of
signinx € £5, y € 8, (x £ S) and(y = S) that give the same contribution as
Joxs1x +8)N(y+S)|dxdy. However,S is a productl x J, so we can separate
variables to obtain

/ [(x+A)N(y+ A)|dxdy
AxA
zG(/ |(x+I)ﬂ(y+I)|a’xdy)(/ |(x+J)ﬂ(y+J)|dxdy)
IxI JxJ

=6(2111%)(2171%) = 4143

where we have used Lemma 4 and the bouaf< 4/1||J|. Hence if|A|® x
1- 2%1) < 1, then there is no percolation. This occurgdf < 1.014. O

3. Upper bound. We prove the upper bound of Theorem 1, namely that
n. =1+ o(e¥/1% ase — 0. The strategy is to compare the percolation process
with an oriented bond percolation df?. Fix a largeR and integers: < N.
PartitionRR? into 6R x 6R squares, and let the sites Z? correspond to the square
Sy = 6Rx + [—3R, 3R)? in R2. Our bondsry in Z? correspond to certain good
events in the correspondingR6x 12R rectangleS, U S, of R2,

Roughly speaking, these good events comprise the ability to get from some set
of n points near the middle of, to at least: points in the middle of5, by paths
that lie entirely withinS, U S,. However, we insist on more. We “test” annuli
around at mosIV points when we construct the joining paths. Also, there are up
to 3N points inS, U S, that have been tested when constructing earlier bonds, so
we wish to avoid these points and the annuli about them.

Fix sets of pointsP = {x1,...,x,} and O = {y1,...,yx}, K < 3N, in the
rectangleS, U S, that corresponds to bonely of 72. We assume that no two
points of P U Q lie within r,/¢ of each other. Assume further that, ..., x, lie
in the middle & x 4R square &x + [—2R, 2R)? of S,. Suppose is one of the
two pointsx + (1, 0) or x + (0, 1). We construct subsef?’ and Q’ of the Poisson
process with the following properties:

(@) P’ C6Ry+[—2R,2R)?and|P’| <n.

(b) Q' c S, US,, every element o’ is at distance at leastrom the boundary
of S, US, and|Q’| < N.

c oints of P U Q U P’ U Q' are distinct and are at least{/s from eac

(c) All poi f [0) "UQ’ disti d least/s f h
other.

(d) (P'UQ)NUyeg As(y, 1) =2.

(e) Everyx’ € P’ is joined to some poink € P by a sequence of points

/ / /

i ---> ¥ 0f Q'
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We declare the oriented boid to be open with respect to P and Q if, in this
construction|P’| =n.

The idea is that? is a set of points irnS, that we can get to from the origin,
and we wish to find a set of poinf¥’ in S, that we can get to fron®. The setQ’
consists of all the points we need to look at when constructing paths fram
P’ and Q is the set of points we have looked at previously. When constructing
paths fromP to P’ it is important that we avoid annuli about pointsdh since
this would introduce uncontrollable dependencies on our previous bonds.

Note that the openness depends on the choice df and O as well as
the restriction of the Poisson process to the rectafigle S,. The setsP and Q
depend on the construction of previous bonds, which will introduce dependencies
on the bonds. The key element of the proof is the following:

PROPOSITIONG. Fixe > 0small andwrite |[A| =1+ n, wheren =n(r, e). If
r is large enough that ¢ < cn4logn|~19, then there exist N, n and R such that
the probability of a bond being open with respectto P and Q isat least 0.9.

The proof of this proposition is deferred until the next section.

PROOF OF THE UPPER BOUND OFTHEOREM 1. Using Proposition 6 we
complete the proof. We define the oriented percolatioZ®&nOrder the bonds in
the first quadrant a2 by their/; distance from the origin and, for each distakce
order the bonds at distangdrom the origin as

(0,k)(0,k+ 1) 0,k)(1,k) 1 k-1)(1,k) e (k,0)(k +1,0).

Suppose the bonds in this order deg, e, ...}. We declare some bonds open
in such a way that if there is an infinite directed open pattZinfrom (0, 0),
then (with positive probability) there is an infinite path gy . To this end, we
inductively define, for each edgg, a subsetQ; of the Poisson process with
Qi_1 C Q; and, for each vertex joined by an open path to the origin i,

a subsef, of the Poisson process inside.

Initially set Qo = @ and setPg,g) to be any subset of points of the Poisson
process that lie ifi—2R, 2R)2 and such that no two points ®0.0) lie within r /e
of each other. It is easy to check that such a set exists with high probability.

Now suppose we have defined the openness of the hgnfds j < i and the
setQ; and all relevan®,. We now consider the bong = xy.

(a) If there is no directed path consisting of open bonds f(0/0) to x, setxy
to be open an@®; 1 = Q;.

(b) If there is a directed open path frof®, 0) to x, declarexy to be open if it
is open with respectt® = P, andQ = Q; N (S, U S,). SetQ; 41 = Q; U Q' and,
if xy is open andPy is not yet defined, se®, = P’.
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Condition (a) is a technical condition whickearly does not affect whether or not
(0, 0) is in an infinite cluster.

By (b), at each stepQ; N S;| < kN, wherek is the number of edges;,

j < i, meetingz. Thus, given the ordering of bonds as above; ifs a vertical

bond,|Q; N Sy| < 2N and|Q; N S,| < N, whereas ife; is a horizontal bond,
|Q; N Sy] <3N and |Q; N S| = 0. Hence the sep in (b) always satisfies
|Q] <3N.

There are two edges = xy with a given value ofy, so there are two chances
for P, to be defined in (b). Clearly, is defined iffy is joined to(0, 0) by an open
path. Also, by construction, all points itJ; Q;) U (U, Py) are at least./s from
each other. If is joined to(0, 0) by an open pathh = xi, ..., xg = (0, 0), then
each pointinP,, , is joined by a path ir§ 4 to a point inP,,. Hence there is a path
from any point ofP, to one of the: points of Pg,q).

Finally, by Proposition 6, ifs < cn'*logn|~10 [which is satisfied ify =
Q(¢Y/19)], then each bond is open with probability bounded below by 0.9 even
conditioned on the state of all previous edges and region®%bn which
they depend (the annuli around the points@f). Thus the percolation process
on Z? stochastically dominates an independent oriented bond percolation with
bond probability 0.9. HowevexQ, 0) is then in an infinite cluster with positive
probability [see, e.g., Balister, Bollobas and Stacey (1994)]. The result now
follows. O

4. Proof of Proposition 6. The proof of the bound is complicated by the fact
that the annuli intersect, so we first consider the simpler case when we ignore these
intersections and model the percolation by a branching process [see, e.g., Athreya
and Ney (1972)]. We generally refer to the points of a branching processles
to avoid confusion with the points of our Poisson process.

LEMMA 7. Consider a branching process where at each step each node
branches into several new nodes according to independent identical Poisson
distributions with mean 1 + . Let N; be the number of nodes at time ¢ > 0. Then
P(N; > (1+n)") = nP(N; = 0)? = e~ 214,

PROOF Itis easy to show by induction arthat

EN, =1+ 77)t
and
VarN, = (L+ )" (14" = 1)/n < BN)?/n.
Let X; = N;/EN,, so thatEX, = 1 and VarX; < 1/5. By Cauchy—Schwarz,

E(Ix,>DE((X; — 1?) = (E((X; — DIx,>1))".
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Now
E((X; — 1)?) = VarX, < 1/n,
E((X; — DIx,>1) =E(1— X)) Ix,<1)
> P(X, =0) =P(N, =0).

HenceP(N; > (1+n)") =E(Ix,>1) > nP(N; = 0)2. FinallyP(N; = 0) > P(Ny =
0)=e O

LEMMA 8. Assume n > O is sufficiently small and consider a branching
process where at each step each node branches into several new nodes indepen-
dently according to identical Poisson distributionswith mean 1 + 5. Suppose also
that we remove nodes so there are at most K nodes at each step and assume
T < ¢"%y/3. Then the probability that there is at least one node at time T is
at least n/3.

PrROOE Let N; be the number of nodes at timeand consider the random
variable X, = exp(—AN;), where A is the positive solution to the equation
(1—e ") (14 n) = A [unique sincg1 — ¢~*)/A monotonically decreases from 1
to 0]. Now

Ny
Niy1=min(N/,;,K)  whereN/ ;=>"Y;
i=1

andY; are independentidentical Poisson random variables of maan. Also

L o A+0" y y
Eexp—1Y;) = 7 3" e "—exp(e ™ —D(A+n)=e".
n=0 :

Hence

N
E(exp(—AN/,)IN;) = [ [ Eexp(—1Y;) = exp(—AN,) = X,
i=1

butif Nyy1# N/, 4, thenK = N1 < N/ ;. Hence
0 < E(eXp(—AN41) — €XP(—AN/, )|N;) < e K.

SOE(X;41 | N;) < X; + e K and thusEX; ;1 <EX; + ¢ *K. HoweverEX; >
P(N; = 0) andEXg = exp(—ANg) = e~*. Hence

P(Ny =0) <EXy <e "+ Te K.

It remains to bound.. Let f(x) = (1 — e *)(1+ n) — x, so thath is a solution
of f(A) =0. Thenf(n) = (n — n%/2+ 0(1®))(1 + n) — n is positive for smalk,
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but f(1+n) <0.Hencex > n and thusP(N; =0) <e "+ Te 1K <14 5/3,
which is at most - n/3 for sufficiently smally. O

We now consider a simplified version of our percolation process in which each
step is independent of all previous steps. Consider a branching process where at
each step each node branches into several new nodes according to independent
identical Poisson distributions with meantlp. Assign to each node (other
than the root node) a random varialbig uniformly distributed inA = A, (O, r)
independently of the branching process and all othgs. Fix a positionzg in R2
for the root node and define the positignof a nodev to bezo + Y, A,, where
the sum runs over all ancestarsf v back to the root node. L&ty be the random
graph with vertices, and edges,z,/ for all child nodes’ of v. Also, defines;
to be the set of nodes that occur at timélhe process, clearly approximates
the percolation procesg,, but it differs in that the distribution of points (child
nodes) inA.(z,, r) is independent of the process up to that point, wheregs,in
the points inA, (z,, r) depend on points in previous annuli where they intersect.

LEMMA 9. Pick zg € [-2R, 2R)? and consider the branching process 77
defined above, except that at each step (if necessary) we remove nodes (randomly,
independent of their locations) so there are at most K new nodes at each step.
Run this process up to time T = (R/r)?. Define the event & to be the event that
the process has not died out at time T (i.e., T AT # @) and that, picking a node
at random from ‘J’AT, this node lies in the square (0, 6R) + [—R, R)? and all its
ancestors liein [-3R 4+ r,3R —r) x [=3R + r,9R — r). Then there exists an
absolute constant ¢ > 0, independent of 7, ¢, » and R, such that for » sufficiently
small and R/r sufficiently large, P(€|7] # @) > co.

PrRooF Conditioning OI”ITAT # &, pick a nodev at random fromTAT. Note
that the choice ofv is independent of the locations of the nodes. Consider
the locations of the nodes on the path from the root node.tdhese form
a random walk with steps taken uniformly from= A, (0, r). The probability
we are interested in is bounded below by the probability of this random walk
meeting(0, 6R) +[— R, R)? before hitting the boundary of the rectangte3R +r,
3R—r) x[-3R+r,9R —r) and before timg'. Each step has mean 0 and variance
in either coordinate direction afr2, wherec = c¢(¢) can be bounded above and
below by positive constants independently 0By scaling the dimensions by R
and time byc/(r/R)?, this random walk for largeR/r can be approximated
by a two-dimensional Brownian motion, run for constant time starting in
[—2,2]2. The probability of the Brownian motion lying 0.9, 0.9] x [5.1, 6.9]
at timerp without hitting the boundary d—2.9, 2.9] x [—2.9, 8.9] before timerg
is bounded below by a constatit > 0. Choosingcg < ¢’ we see that provided
R/r is larger than some absolute constant, the probability:titias in the square
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(0,6R) + [—R, R)2 and all its ancestors lie in the rectangde3R + r, 3R — r) x
[—3R +r,9R — r) is at leastg. Moreover, the bound oR/r and the value ofg
can be chosen independentlyrofR, n ande. O

We now need to deal with the dependencies caused by the intersections of
annuli. We start with a couple of geometric lemmas.

LEMMA 10. There exists a constant ¢1 > 0 such that for any r, ¢ and x, y,
with ||lx — yll2 > /e, we have |A¢ (x, r) N Ag(y, r)| < c1] AlVe.

PrRooOF Tedious, but straightforward verification. Note that there are two
cases when the bound is tight: one when— y||2 ~ r./¢ and the other when
lx =ylloxr2—¢). O

Note that this lemma fails for the square annulus wier y|s ~ r(2 — ¢).

LEMMA 11. Let x1,...,x; be points, no two of which are within r\/e of

each other. Let A; = A (x;,r) and let B; = A1(x;, r+/¢) be the ball around x;
of radiusr/e. Then

< cok|AlV/e.

A,-m(U(AJUBj))

J#

PROOF Theregiond; N B; has are@ ((re)(ry/e)) = O(JAl/¢) sinceA; is
of “width” re andB; is of diameter 2,/¢. The regiond; N A; has area (|A|/¢)
by Lemma 10. The result follows.

PROOF OF PROPOSITION 6. The strategy of the proof is to find some
pointsx!’ in 6Ry + [—R, R)? by comparing the procegs, with T4. There will,
however, be rather fewer tharsuch points, so we then run the percolation®gr
further steps irg 4 to obtain sufficiently many points infy + [—2R, 2R)? (note
that we cannot travel more than distariRen R/r steps).

Pick eachx; € P in turn and run a truncated branching procéssas in
Lemma 9, starting at;. We call a nodébad if it lies in any annulusA,(z, r)
or ball A1(z,r+/¢), wherez is in Q, P\ {x;} or any one of the nodes of the
branching process other than the parentwpbr any one of the points in the
branching processes already constructedxfoe P, j <i. There are at most
3N +n +nK(R/r)? such values of. Set

1 R?
1) K=—- Iog(s—z).
n nr

Itis clear that we can run the same branching process in the percolation gngdel
coupling ¢4 with 74 so that they agree up until we hit a bad nodefat By
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Lemma 8, the branching process has not died out by firae(R /r)2 = "% /3

with probability at leasty/3. Moreover, the probability that a given node in
this process is bad conditioned on all its predecessors being good is at most
c2(3N +n + nK(R/r)2)|A|¢E/|A| by Lemma 11. Also this is independent of
any event involving the existence of its decendants in the branching process. Thus,
if we condition on’J‘AT # @ and we pick a path of lengtii (independently of
locations of the nodes), the probability that this path contains a bad node is at most
(R/r)%c2(3N +n +nK(R/r)?)/c. We require

2) (R/r)%c2(3N +n +nK(R/r)?)/e < co/2.

Thus by Lemma 9, conditioning ofi # &, we obtain a pointc/ in 6Ry +
[—R, R)? joined tox; in the percolation process withisy, U Sy with probability

at leastco — co/2 = co/2. Thus, by Lemma 8, the probability of finding such a
point x/" is at least(co/2)(n/3) = con/6, independently of all previously found
points. The number of pointg’ found is hence stochastically bounded below by
a binomial variableX with meanconn/6. Now take the point§o = {x7, ..., x%

and construct inductively sei§ by taking all points joined to some point ¥ _1
which are notinA.(z, r) U A1(z, r4/¢) for any pointz already considered. Repeat
for R/r steps or untilV;| > n if this occurs earlier. All points of; must then lie

in 6Ry + [—2R, 2R)? and the cardinalitietV;| are stochastically dominated by a
Poisson branching process with mea# #/2 provided

(3) c2(3N 4+ n+nK(R/r)?+n(R/r)ve <n/2.

Define Q' to be all the new points encountered above which are Ry 6
[—3R, 3R)? except those of the ladt; and let P’ consist ofn points from this
lastV;, if they exist. Let

(4) N =nK(R/r)?>+n(R/r).

ThenN > |Q’|. Finally, the probability of the bond being open is bounded below
by the probability that a branching process with parameten 12 starting fromX
points will have at least points by timeR/r. If

®) n<@L+n/2%7,

then by Lemma 7, the probability that such a branching process starting with one
node has at least nodes by timeR/r is at least(n/2)e~21t1/2 which is at
leastn/20 for smalln. Now the probability of not having at least nodes by

time R/r starting fromX points is bounded above byl — /20)%, which has
expected value

(') tcon/®)' (2~ con/6y~ (1.~ n/20)
= (1 - con?/120"
< eX[X—connz/120).
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The result follows provided
(6) conn?/120> —log(0.1).

It remains to choose the parameters:, N and R so that equations (1)—(6) are
satisfied. For (6) we can defime= c3n—2 for somecs > 0. Then (5) is satisfied
if we take R/r = can~1|logn|. From (1) and (4) we geN = O(n~°|logn|®),
so (2) and (3) are now satisfied {f’e < csn’|logn|> or, equivalently,s <
en*¥logn|~10. O

Note that the set®’, Q' depend only on the points of the Poisson process
inside the regiontSy U Sy) N (U;cpugr Ae(z, 7)) \ (U, A (2, 1)), SO each bond
is independent of the regions tested when constructing previous bonds.
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