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CONTINUUM PERCOLATION WITH STEPS IN AN ANNULUS

BY PAUL BALISTER,1 BÉLA BOLLOBÁS2 AND MARK WALTERS1

University of Memphis

Let A be the annulus inR2 centered at the origin with inner and outer
radii r(1 − ε) and r, respectively. Place points{xi} in R

2 according to a
Poisson process with intensity 1 and letGA be the random graph with vertex
set{xi} and edgesxixj wheneverxi −xj ∈ A. We show that if the area ofA is
large, thenGA almost surely has an infinite component. Moreover, if we fixε,
increaser and letnc = nc(ε) be the area ofA when this infinite component
appears, thennc → 1 asε → 0. This is in contrast to the case of a “square”
annulus where we show thatnc is bounded away from 1.

1. Introduction. Consider the following percolation process. Fixr > 0 andε

with 0 ≤ ε ≤ 1. Place points{xi} in R
2 according to a Poisson process with

intensity 1. Join pointsxi andxj provided the Euclidean distance‖xi − xj‖2 lie
betweenr(1 − ε) and r . We wish to know whether the resulting graph has an
infinite component.

More, generally, letA be a bounded region inR2 and define an infinite random
graphGA with vertex setV (GA) ⊆ R

2 given by a Poisson process with intensity 1
and edgesxy ∈ E(GA) whenx ∈ y + A (wherey + A = {y + a :a ∈ A}). Define,
for x ∈ R

2, Aε(x, r) = {y : (1 − ε)r ≤ ‖y − x‖2 ≤ r} to be the annulus centered
at x with inner radiusr(1 − ε) and outer radiusr . Then the percolation process
above is given byGA, whereA = Aε(0, r).

For convexA, the modelGA has been widely studied; see, for example,
Grimmett (1999), Häggström and Meester (1996), Jonasson (2001) and especially
Meester and Roy (1996). However, very little is known about the model for non-
convex bodies such as the annulusAε.

The modelsGA occur very naturally as ad hoc wireless networks. Suppose that
transmitters are distributed at random in the plane and broadcast to neighbors if
they are inside a certain region relative to the transmitter (i.e., the setA). It is then
very natural to ask whether a message can propogate through the network (i.e.,
does an infinite connected component exist?).

The modelGAε(r) is monotonic inr since, by scaling, it is equivalent to
one in whichr (and henceA) is fixed and the intensity of the Poisson process
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varies. Hence, by standard results, for anyε there is a critical valuenc(ε) of the
area|A| = πr2ε(2 − ε) (or, equivalently, the radiusr) above which an infinite
component exists with probability 1 and below which there is almost surely no
infinite component.

Our main result is the following:

THEOREM 1.

1+ ε

π
√

3
≤ nc(ε) ≤ 1+ o(ε1/15).

In particular, the critical area tends to 1 asε → 0. The area|A| is just the
expected number of neighbors of a point, so for smallε, an infinite component
appears when the average degree ofGA is slightly more than 1. This is not quite as
surprising as it may seem: The giant component in a random graph appears when
the average degree of the graph is 1 [see, e.g., Bollobás (2001)].

By comparison, if instead of the annulusA = Aε(0, r) we use the “square”
annulus defined by thel∞-norm, then, as we show,nc(ε) is bounded away from 1
independently ofε.

We abuse notation by writing|S| for the standard Lebesgue measure in eitherR
2

or R, or for the number of elements ofS, depending on context.
The layout of this article is as follows: In the next section we prove the lower

bound for Theorem 1 and the lower bound for the square annulus. In Section 3 we
prove the upper bound in Theorem 1 modulo a key proposition (Proposition 6). In
the final section we prove Proposition 6.

After this work was done, we found out that, independently and simultaneously,
Franceschetti, Booth, Cook, Meester and Bruck (2003) proved the same result.

2. Lower bound. We first prove the lower bound onnc(ε) from Theorem 1.
We start with a simple geometric lemma.

LEMMA 2. Suppose y − x ∈ A = Aε(0, r). Then |Aε(x, r) ∩ Aε(y, r)| ≥
ε

π
√

3
|A|.

PROOF. The proof is easy but tedious, so we shall not spell it out. For smallε,
the worst case occurs when‖x − y‖2 = r . �

PROOF OF THE LOWER BOUND OFTHEOREM 1. Suppose|A| ≤ 1 + ε

π
√

3
and fix a vertexx1 of the Poisson process. LetEn be the expected number of
induced paths of lengthn starting atx1. We show thatEn → 0 as n → ∞.
Supposen ≥ 2 and we have an induced pathx1, . . . , xn of length n. If this
is the initial segment of an induced pathx1, . . . , xn+1 of length n + 1, then
xn+1 ∈ Aε(xn, r) \ ⋃n−1

i=1 Aε(xi, r), so the expected number of pointsxn+1,
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conditioned on the pointsx1, . . . , xn and on the points in
⋃n−1

i=1 Aε(xi, r) is at most
|Aε(xn, r)\⋃n−1

i=1 Aε(xi, r)| ≤ |Aε(xn, r)\Aε(xn−1, r)|. However,xn −xn−1 ∈ A,
so by Lemma 2, this is at mostα = |A|(1− ε

π
√

3
) < 1. Hence the expected number

of pointsxn+1 conditioned on the pointsx1, . . . , xn is at mostα andEn+1 ≤ αEn.
It follows thatEn → 0 asn → ∞, but

P(x1 is in an infinite component) ≤ P(∃ induced pathx1, . . . , xn) ≤ En

and hence, with probability 1,x1 is not in an infinite component. Sincex1 was
chosen arbitrarily and there are almost surely countably many points in the Poisson
process,GA almost surely has no infinite component.�

We show in the next section thatnc → 1 asε → 0. However, first we show that
this is not true for the square annulus, defined by thel∞-norm.

LEMMA 3. Let A be a region in R
2 with A = −A. Define a percolation

process by joining xi and xj when xi − xj ∈ A. Then the Poisson process with
density 1 almost surely does not have an infinite component if |A|3 − ∫

A×A |(x +
A) ∩ (y + A)|dx dy < 1.

PROOF. As before, we count the expected number of induced paths of lengthn

starting atx1. Supposex1, . . . , xn are fixed. We count the expected number of
choices ofxn+1, xn+2 andxn+3 that give an induced pathx1, . . . , xn+3, conditional
onx1, . . . , xn. Write xn+1 = xn + x andxn+2 = xn+1 − y, so thatx, y ∈ A = −A.
Now xn+3 ∈ A′ = (xn+2 + A) \ (xn + A). The area of this set is|A| − |(x + A) ∩
(y + A)|. From this we see that

En+3 ≤
(∫

A×A
|A′|dx dy

)
En =

(
|A|3 −

∫
A×A

|(x + A) ∩ (y + A)|dx dy

)
En.

The result now follows as before.�

LEMMA 4. For any interval I = [a, b], ∫
I×I |(x +I )∩ (y+I )|dx dy = 2

3|I |3.

PROOF. Both sides are unchanged if we replaceI with I − a = [0, c], where
c = b − a. So

∫
I×I |(x + I ) ∩ (y + I )|dx dy = ∫ c

0
∫ c
0 (c − |x − y|) dx dy =

2
∫ c
0

∫ y
0 (c − y + x) dx dy = 2

3c3. �

THEOREM 5. Let A = {x ∈ R
2 : r(1−ε) ≤ ‖x‖∞ ≤ r}. Then GA almost surely

has no infinite component when |A| ≤ 1.014.

PROOF. Define the intervalsI = [r(1 − ε), r] and J = [−r, r], and the
rectangleS = I × J . ThenA ⊇ S ∪ −S. Now∫

A×A
|(x + A) ∩ (y + A)|dx dy ≥ 6

∫
S×S

|(x + S) ∩ (y + S)|dx dy,
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where we have used symmetry to bound the integral overx, y ∈ ±S of |(x +
(S ∪ −S)) ∩ (y + (S ∪ −S))| by six equal terms given by the six choices of
sign in x ∈ ±S, y ∈ ±S, (x ± S) and(y ± S) that give the same contribution as∫
S×S |(x + S) ∩ (y + S)|dx dy. However,S is a productI × J , so we can separate

variables to obtain∫
A×A

|(x + A) ∩ (y + A)|dx dy

≥ 6
(∫

I×I
|(x + I ) ∩ (y + I )|dx dy

)(∫
J×J

|(x + J ) ∩ (y + J )|dx dy

)

= 6
(2

3|I |3)(2
3|J |3) ≥ 1

24|A|3,
where we have used Lemma 4 and the bound|A| ≤ 4|I ||J |. Hence if |A|3 ×
(1− 1

24) < 1, then there is no percolation. This occurs if|A| ≤ 1.014. �

3. Upper bound. We prove the upper bound of Theorem 1, namely that
nc = 1 + o(ε1/15) asε → 0. The strategy is to compare the percolation process
with an oriented bond percolation onZ2. Fix a largeR and integersn < N .
PartitionR

2 into 6R × 6R squares, and let the sitex ∈ Z
2 correspond to the square

Sx = 6Rx + [−3R,3R)2 in R
2. Our bondsxy in Z

2 correspond to certain good
events in the corresponding 6R × 12R rectangleSx ∪ Sy of R

2.
Roughly speaking, these good events comprise the ability to get from some set

of n points near the middle ofSx to at leastn points in the middle ofSy by paths
that lie entirely withinSx ∪ Sy . However, we insist on more. We “test” annuli
around at mostN points when we construct the joining paths. Also, there are up
to 3N points inSx ∪ Sy that have been tested when constructing earlier bonds, so
we wish to avoid these points and the annuli about them.

Fix sets of pointsP = {x1, . . . , xn} and Q = {y1, . . . , yK}, K ≤ 3N , in the
rectangleSx ∪ Sy that corresponds to bondxy of Z

2. We assume that no two
points ofP ∪ Q lie within r

√
ε of each other. Assume further thatx1, . . . , xn lie

in the middle 4R × 4R square 6Rx + [−2R,2R)2 of Sx . Supposey is one of the
two pointsx + (1,0) or x + (0,1). We construct subsetsP ′ andQ′ of the Poisson
process with the following properties:

(a) P ′ ⊆ 6Ry + [−2R,2R)2 and|P ′| ≤ n.
(b) Q′ ⊆ Sx ∪Sy , every element ofQ′ is at distance at leastr from the boundary

of Sx ∪ Sy and|Q′| ≤ N .
(c) All points of P ∪ Q ∪ P ′ ∪ Q′ are distinct and are at leastr

√
ε from each

other.
(d) (P ′ ∪ Q′) ∩ ⋃

y∈Q Aε(y, r) = ∅.
(e) Every x′ ∈ P ′ is joined to some pointx ∈ P by a sequence of points

y′
1, . . . , y

′
k of Q′.
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We declare the oriented bond−→xy to beopen with respect to P and Q if, in this
construction,|P ′| = n.

The idea is thatP is a set of points inSx that we can get to from the origin,
and we wish to find a set of pointsP ′ in Sy that we can get to fromP . The setQ′
consists of all the points we need to look at when constructing paths fromP to
P ′ andQ is the set of points we have looked at previously. When constructing
paths fromP to P ′ it is important that we avoid annuli about points inQ, since
this would introduce uncontrollable dependencies on our previous bonds.

Note that the openness of−→
xy depends on the choice ofP andQ as well as

the restriction of the Poisson process to the rectangleSx ∪ Sy . The setsP andQ

depend on the construction of previous bonds, which will introduce dependencies
on the bonds. The key element of the proof is the following:

PROPOSITION6. Fix ε > 0 small and write |A| = 1+ η, where η = η(r, ε). If
r is large enough that ε ≤ cη14| logη|−10, then there exist N , n and R such that
the probability of a bond being open with respect to P and Q is at least 0.9.

The proof of this proposition is deferred until the next section.

PROOF OF THE UPPER BOUND OFTHEOREM 1. Using Proposition 6 we
complete the proof. We define the oriented percolation onZ

2. Order the bonds in
the first quadrant ofZ2 by theirl1 distance from the origin and, for each distancek,
order the bonds at distancek from the origin as

(0, k)(0, k + 1) (0, k)(1, k) (1, k − 1)(1, k) · · · (k,0)(k + 1,0).

Suppose the bonds in this order are{e1, e2, . . . }. We declare some bonds open
in such a way that if there is an infinite directed open path inZ

2 from (0,0),
then (with positive probability) there is an infinite path inGA. To this end, we
inductively define, for each edgeei , a subsetQi of the Poisson process with
Qi−1 ⊆ Qi and, for each vertexx joined by an open path to the origin inZ2,
a subsetPx of the Poisson process insideSx .

Initially set Q0 = ∅ and setP(0,0) to be any subset ofn points of the Poisson
process that lie in[−2R,2R)2 and such that no two points ofP(0,0) lie within r

√
ε

of each other. It is easy to check that such a set exists with high probability.
Now suppose we have defined the openness of the bondsej for j < i and the

setQi and all relevantPx . We now consider the bondei = xy.

(a) If there is no directed path consisting of open bonds from(0,0) to x, setxy

to be open andQi+1 = Qi .
(b) If there is a directed open path from(0,0) to x, declarexy to be open if it

is open with respect toP = Px andQ = Qi ∩ (Sx ∪ Sy). SetQi+1 = Qi ∪Q′ and,
if xy is open andPy is not yet defined, setPy = P ′.
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Condition (a) is a technical condition whichclearly does not affect whether or not
(0,0) is in an infinite cluster.

By (b), at each step|Qi ∩ Sz| ≤ kN , where k is the number of edgesej ,
j < i, meetingz. Thus, given the ordering of bonds as above, ifei is a vertical
bond, |Qi ∩ Sx | ≤ 2N and |Qi ∩ Sy | ≤ N , whereas ifei is a horizontal bond,
|Qi ∩ Sx | ≤ 3N and |Qi ∩ Sy | = 0. Hence the setQ in (b) always satisfies
|Q| ≤ 3N .

There are two edgesei = xy with a given value ofy, so there are two chances
for Py to be defined in (b). ClearlyPy is defined iffy is joined to(0,0) by an open
path. Also, by construction, all points in(

⋃
i Qi) ∪ (

⋃
x Px) are at leastr

√
ε from

each other. Ifx is joined to(0,0) by an open pathx = xk, . . . , x0 = (0,0), then
each point inPxi+1 is joined by a path inGA to a point inPxi

. Hence there is a path
from any point ofPx to one of then points ofP(0,0).

Finally, by Proposition 6, ifε ≤ cη14| logη|−10 [which is satisfied ifη =
�(ε1/15)], then each bond is open with probability bounded below by 0.9 even
conditioned on the state of all previous edges and regions ofR

2 on which
they depend (the annuli around the points ofQi ). Thus the percolation process
on Z

2 stochastically dominates an independent oriented bond percolation with
bond probability 0.9. However,(0,0) is then in an infinite cluster with positive
probability [see, e.g., Balister, Bollobás and Stacey (1994)]. The result now
follows. �

4. Proof of Proposition 6. The proof of the bound is complicated by the fact
that the annuli intersect, so we first consider the simpler case when we ignore these
intersections and model the percolation by a branching process [see, e.g., Athreya
and Ney (1972)]. We generally refer to the points of a branching process asnodes
to avoid confusion with the points of our Poisson process.

LEMMA 7. Consider a branching process where at each step each node
branches into several new nodes according to independent identical Poisson
distributions with mean 1+ η. Let Nt be the number of nodes at time t > 0. Then
P(Nt ≥ (1+ η)t ) ≥ ηP(Nt = 0)2 ≥ ηe−2(1+η).

PROOF. It is easy to show by induction ont that

ENt = (1+ η)t

and

VarNt = (1+ η)t
(
(1+ η)t − 1

)
/η < (ENt)

2/η.

Let Xt = Nt/ENt , so thatEXt = 1 and VarXt < 1/η. By Cauchy–Schwarz,

E(IXt≥1)E
(
(Xt − 1)2) ≥ (

E
(
(Xt − 1)IXt≥1

))2
.
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Now

E
(
(Xt − 1)2) = VarXt < 1/η,

E
(
(Xt − 1)IXt≥1

) = E
(
(1− Xt)IXt≤1

)
≥ P(Xt = 0) = P(Nt = 0).

HenceP(Nt ≥ (1+η)t ) = E(IXt≥1) ≥ ηP(Nt = 0)2. Finally P(Nt = 0) ≥ P(N1 =
0) = e−(1+η). �

LEMMA 8. Assume η > 0 is sufficiently small and consider a branching
process where at each step each node branches into several new nodes indepen-
dently according to identical Poisson distributions with mean 1+ η. Suppose also
that we remove nodes so there are at most K nodes at each step and assume
T ≤ eηKη/3. Then the probability that there is at least one node at time T is
at least η/3.

PROOF. Let Nt be the number of nodes at timet and consider the random
variable Xt = exp(−λNt), where λ is the positive solution to the equation
(1− e−λ)(1+ η) = λ [unique since(1 − e−λ)/λ monotonically decreases from 1
to 0]. Now

Nt+1 = min(N ′
t+1,K) whereN ′

t+1 =
Nt∑
i=1

Yi

andYi are independent identical Poisson random variables of mean 1+ η. Also

Eexp(−λYi) = e−(1+η)
∞∑

n=0

(1+ η)n

n! e−λn = exp
(
(e−λ − 1)(1+ η)

) = e−λ.

Hence

E
(
exp(−λN ′

t+1)|Nt

) =
Nt∏
i=1

Eexp(−λYi) = exp(−λNt) = Xt ,

but if Nt+1 �= N ′
t+1, thenK = Nt+1 < N ′

t+1. Hence

0≤ E
(
exp(−λNt+1) − exp(−λN ′

t+1)|Nt

) ≤ e−λK.

SoE(Xt+1 | Nt) ≤ Xt + e−λK and thusEXt+1 ≤ EXt + e−λK . However,EXt ≥
P(Nt = 0) andEX0 = exp(−λN0) = e−λ. Hence

P(NT = 0) ≤ EXT ≤ e−λ + T e−λK.

It remains to boundλ. Let f (x) = (1 − e−x)(1 + η) − x, so thatλ is a solution
of f (λ) = 0. Thenf (η) = (η − η2/2+ O(η3))(1+ η) − η is positive for smallη,
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butf (1+ η) < 0. Henceλ > η and thusP(Nt = 0) ≤ e−η + T e−ηK ≤ e−η + η/3,
which is at most 1− η/3 for sufficiently smallη. �

We now consider a simplified version of our percolation process in which each
step is independent of all previous steps. Consider a branching process where at
each step each node branches into several new nodes according to independent
identical Poisson distributions with mean 1+ η. Assign to each nodev (other
than the root node) a random variableAv uniformly distributed inA = Aε(0, r)

independently of the branching process and all otherAu’s. Fix a positionz0 in R
2

for the root node and define the positionzv of a nodev to bez0 + ∑
u Au, where

the sum runs over all ancestorsu of v back to the root node. LetTA be the random
graph with verticeszv and edgeszvzv′ for all child nodesv′ of v. Also, defineT t

A

to be the set of nodes that occur at timet . The processTA clearly approximates
the percolation processGA, but it differs in that the distribution of points (child
nodes) inAε(zv, r) is independent of the process up to that point, whereas inGA

the points inAε(zv, r) depend on points in previous annuli where they intersect.

LEMMA 9. Pick z0 ∈ [−2R,2R)2 and consider the branching process TA

defined above, except that at each step (if necessary) we remove nodes (randomly,
independent of their locations) so there are at most K new nodes at each step.
Run this process up to time T = (R/r)2. Define the event E to be the event that
the process has not died out at time T (i.e., T T

A �= ∅) and that, picking a node
at random from T T

A , this node lies in the square (0,6R) + [−R,R)2 and all its
ancestors lie in [−3R + r,3R − r) × [−3R + r,9R − r). Then there exists an
absolute constant c0 > 0, independent of η, ε, r and R, such that for η sufficiently
small and R/r sufficiently large, P(E |T T

A �= ∅) ≥ c0.

PROOF. Conditioning onT T
A �= ∅, pick a nodev at random fromT T

A . Note
that the choice ofv is independent of the locations of the nodes. Consider
the locations of the nodes on the path from the root node tov. These form
a random walk with steps taken uniformly fromA = Aε(0, r). The probability
we are interested in is bounded below by the probability of this random walk
meeting(0,6R)+[−R,R)2 before hitting the boundary of the rectangle[−3R+r,

3R−r)×[−3R+r,9R−r) and before timeT . Each step has mean 0 and variance
in either coordinate direction ofcr2, wherec = c(ε) can be bounded above and
below by positive constants independently ofε. By scaling the dimensions by 1/R

and time byc′(r/R)2, this random walk for largeR/r can be approximated
by a two-dimensional Brownian motion, run for constant timet0, starting in
[−2,2]2. The probability of the Brownian motion lying in[−0.9,0.9] × [5.1,6.9]
at timet0 without hitting the boundary of[−2.9,2.9] × [−2.9,8.9] before timet0
is bounded below by a constantc′′ > 0. Choosingc0 < c′′ we see that provided
R/r is larger than some absolute constant, the probability thatv lies in the square
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(0,6R) + [−R,R)2 and all its ancestors lie in the rectangle[−3R + r,3R − r) ×
[−3R + r,9R − r) is at leastc0. Moreover, the bound onR/r and the value ofc0
can be chosen independently ofr , R, η andε. �

We now need to deal with the dependencies caused by the intersections of
annuli. We start with a couple of geometric lemmas.

LEMMA 10. There exists a constant c1 > 0 such that for any r , ε and x, y,
with ‖x − y‖2 ≥ r

√
ε, we have |Aε(x, r) ∩ Aε(y, r)| ≤ c1|A|√ε.

PROOF. Tedious, but straightforward verification. Note that there are two
cases when the bound is tight: one when‖x − y‖2 ≈ r

√
ε and the other when

‖x − y‖2 ≈ r(2− ε). �

Note that this lemma fails for the square annulus when‖x − y‖∞ ≈ r(2− ε).

LEMMA 11. Let x1, . . . , xk be points, no two of which are within r
√

ε of
each other. Let Ai = Aε(xi, r) and let Bi = A1(xi, r

√
ε ) be the ball around xi

of radius r
√

ε. Then ∣∣∣∣∣Ai ∩
(⋃

j �=i

(Aj ∪ Bj )

)∣∣∣∣∣ ≤ c2k|A|√ε.

PROOF. The regionAi ∩Bj has areaO((rε)(r
√

ε )) = O(|A|√ε ) sinceAi is
of “width” rε andBj is of diameter 2r

√
ε. The regionAi ∩Aj has areaO(|A|√ε )

by Lemma 10. The result follows.�

PROOF OF PROPOSITION 6. The strategy of the proof is to find some
pointsx′′

i in 6Ry + [−R,R)2 by comparing the processGA with TA. There will,
however, be rather fewer thann such points, so we then run the percolation forR/r

further steps inGA to obtain sufficiently many points in 6Ry + [−2R,2R)2 (note
that we cannot travel more than distanceR in R/r steps).

Pick eachxi ∈ P in turn and run a truncated branching processTA as in
Lemma 9, starting atxi . We call a nodebad if it lies in any annulusAε(z, r)

or ball A1(z, r
√

ε ), wherez is in Q, P \ {xi} or any one of the nodes of the
branching process other than the parent ofv, or any one of the points in the
branching processes already constructed forxj ∈ P , j < i. There are at most
3N + n + nK(R/r)2 such values ofz. Set

K = 1

η
log

(
3R2

ηr2

)
.(1)

It is clear that we can run the same branching process in the percolation modelGA,
couplingGA with TA so that they agree up until we hit a bad node ofTA. By
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Lemma 8, the branching process has not died out by timeT = (R/r)2 = eηKη/3
with probability at leastη/3. Moreover, the probability that a given node in
this process is bad conditioned on all its predecessors being good is at most
c2(3N + n + nK(R/r)2)|A|√ε/|A| by Lemma 11. Also this is independent of
any event involving the existence of its decendants in the branching process. Thus,
if we condition onT T

A �= ∅ and we pick a path of lengthT (independently of
locations of the nodes), the probability that this path contains a bad node is at most
(R/r)2c2(3N + n + nK(R/r)2)

√
ε. We require

(R/r)2c2
(
3N + n + nK(R/r)2)√ε ≤ c0/2.(2)

Thus by Lemma 9, conditioning onT T
A �= ∅, we obtain a pointx′′

i in 6Ry +
[−R,R)2 joined toxi in the percolation process withinSx ∪ Sy with probability
at leastc0 − c0/2 = c0/2. Thus, by Lemma 8, the probability of finding such a
point x′′

i is at least(c0/2)(η/3) = c0η/6, independently of all previously found
points. The number of pointsx′′

i found is hence stochastically bounded below by
a binomial variableX with meanc0nη/6. Now take the pointsV0 = {x′′

1, . . . , x′′
X}

and construct inductively setsVi by taking all points joined to some point inVi−1
which are not inAε(z, r)∪A1(z, r

√
ε ) for any pointz already considered. Repeat

for R/r steps or until|Vi | ≥ n if this occurs earlier. All points ofVi must then lie
in 6Ry + [−2R,2R)2 and the cardinalities|Vi | are stochastically dominated by a
Poisson branching process with mean 1+ η/2 provided

c2
(
3N + n + nK(R/r)2 + n(R/r)

)√
ε ≤ η/2.(3)

Define Q′ to be all the new points encountered above which are in 6Ry +
[−3R,3R)2 except those of the lastVi and letP ′ consist ofn points from this
lastVi , if they exist. Let

N = nK(R/r)2 + n(R/r).(4)

ThenN > |Q′|. Finally, the probability of the bond being open is bounded below
by the probability that a branching process with parameter 1+η/2 starting fromX

points will have at leastn points by timeR/r . If

n ≤ (1+ η/2)R/r,(5)

then by Lemma 7, the probability that such a branching process starting with one
node has at leastn nodes by timeR/r is at least(η/2)e−2(1+η/2), which is at
leastη/20 for smallη. Now the probability of not having at leastn nodes by
time R/r starting fromX points is bounded above by(1 − η/20)X, which has
expected value ∑

i

(
n

i

)
(c0η/6)i(1− c0η/6)n−i (1− η/20)i

= (1− c0η
2/120)n

≤ exp(−c0nη2/120).
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The result follows provided

c0nη2/120≥ − log(0.1).(6)

It remains to choose the parametersε, n, N andR so that equations (1)–(6) are
satisfied. For (6) we can definen = c3η

−2 for somec3 > 0. Then (5) is satisfied
if we take R/r = c4η

−1| logη|. From (1) and (4) we getN = O(η−5| logη|3),
so (2) and (3) are now satisfied if

√
ε ≤ c5η

7| logη|−5 or, equivalently,ε ≤
cη14| logη|−10. �

Note that the setsP ′, Q′ depend only on the points of the Poisson process
inside the region(Sx ∪ Sy) ∩ (

⋃
z∈P∪Q′ Aε(z, r)) \ (

⋃
z∈Q Aε(z, r)), so each bond

is independent of the regions tested when constructing previous bonds.
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