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LIMIT THEOREMS FOR MIXED MAX-SUM PROCESSES
WITH RENEWAL STOPPING

By DMITRII' S. SLVESTROV! AND JOZEFL. TEUGELS
Méalardalen University and Katholieke Universiteit Leuven

This article is devoted to the investigation of limit theorems for mixed
max—sum processes with renewal type stopping indexes. Limit theorems of
weak convergence type are obtained as well as functional limit theorems.

1. Introduction. The main object of this article is the derivation of a number
of limit theorems for mixed max—sum processes with renewal stopping. Such
processes are constructed from the three-component sequences of i.i.d. random
vectors taking values iRy x Ry x [0,00) in the following way. The first
component of the sequence is used to construct an extremal max process of i.i.d.
random variables. The second is used as a traditional real-valued sum process of
i.i.d. random variables. Finally, the third componentis introduced by a nonnegative
sum process of i.i.d. random variables. It induces the stopping renewal process that
is a process of the first exceeding times over a specific lexed. The first two
components are then stopped using this renewal process. The overall process so
obtained will be called anax—sum process with renewal stoppiNgte that at this
point we do not restrict possible dependencies between the three components.

Max—sum processes with renewal stopping of the above type naturally appear
in various applications. To help visualize such processes, we give a few concrete
examples.

ExAMPLE 1. Consider an ordinary renewal procegss:, X»,...} gener-
ated by nonnegative independent random variables with common distribition
of X. Define therenewal counting proces¥ (1) = max(n:) ;., X; <1t). The
two-dimensional procesdmax <y Xi, 2 i<n() Xi) Serves as a special case of
a max—sum process with renewal stopping where max, sum and renewal compo-
nents are constructed from the samsequence of i.i.d. random variables.

ExaMPLE 2. Consider a similar setup based on a sequefiada, Y1),
(X2, Y92),...} of i.i.d. random vectors with nonnegative components. Interpret
the X values as the times in between claims in an insurance portfolioYand
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as the claim values. The renewal counting proc¥$s), constructed as in the

first example, counts the number of claims in the time intef@al]. The two-
dimensional processmax<n) Yi, > i<y Yi) Serves as a special case of a
max—sum process with renewal stopping, where the first two components are
constructed from the samE sequence of i.i.d. random variables, while the
renewal stopping process is constructed fromXh@equence. The first component
represents the maximal claim experienced within the portfolio over the time
interval [0, t], while the second component models the totality of claims over the
same period. The possible dependence between arrival times and claim sizes can
be kept as part of the model.

ExamMpLE 3. Consider once more a similar setup, but now based on a
sequence of triplet§(X1, Y1, Z1), (X2, Y2, Z5), ...} of i.i.d. random vectors with
nonnegative components. Interpret tkievalues as the interarrival times between
earthquakes at a specific location, thealues as the sizes of the quakes andZzhe
values as the damages caused by these quakes. Alternatively, the last component
could also model the number of aftershocks from the corresponding earthquake.
The renewal counting proce9é(r), constructed as in the first example, counts
the number of quakes in the time intendl, r]. Again, the bivariate process
(MaX<n@) Yi, Xi<nq) Zi) illustrates the max-sum process as constructed from
a three-dimensiondlX, Y, Z) sequence. It is rather natural to look at the maximal
size of the quakes, represented by the first max component. The second sum
component could refer to the total damage caused by it. In the alternative
interpretation, the last component models the number of aftershocks from this
major earthquake.

In all three examples, the question of interest is the influence of the first max
component on the second sum component. As a particular case, one might be
interested in the asymptotic behavior when timtnds to infinity. The answer
to this question relies on another problem that needs to be solved first. What is
the asymptotic behavior of the joint distribution of the corresponding mixed max—
sum processes with renewal stopping? This is precisely the subject of the present
article.

If we look only at the first and third component, then we are in the realm of
limit theory for extremal processes with random sample size index. This area has
been thoroughly studied by Berman (1962), Barndorff-Nielsen (1964), Mogyorédi
(1967), Thomas (1972), Sen (1972), Galambos (1973, 1975, 1978, 1992, 1994),
Gnedenko and Gnedenko (1982), Beirlant and Teugels (1992) and, more recently,
Silvestrov and Teugels (1998a, b). We need to point out that the last article covers
limit theorems for extremal max processes with renewal stopping for the case of
asymptotic independency between the extremal process and the renewal stopping
process. Some related results concerning exceedances of ergodic regenerative
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processes with discrete time can also be found in works by Serfozo (1980),
Rootzén (1988) and Leadbetter and Rootzén (1988).

Results concerning the joint asymptotic behavior of maxima and sums of i.i.d.
random variables, in particular concerning the case when their quotient tends to 1,
were obtained by Arov and Bobrov (1960), O'Brien (1980), Maller and Resnick
(1984) and Pruitt (1987). Related results can also be found in Darling (1952),
Smirnov (1952) and Aebi, Embrechts and Mikosch (1992). In the general case,
the joint asymptotic distribution of maxima and sums of i.i.d. random variables
was studied for the scale—location model by Breiman (1965), Chow and Teugels
(1979), Resnick (1986) and Haas (1992). Related results also can be found in
Lamperti (1964), Anderson and Turkman (1991), Kesten and Maller (1994), Hsing
(1995), Ho and Hsing (1996) and the book edited by Hahn, Mason and Weiner
(1991).

Looking only at the second and third components, we end up in the area of limit
theorems for sums of random variables with random index. To avoid overloading
the bibliography, we refer only to contributions devoted to theorems for sums with
renewal type stopping indexes. A good bibliography for the period up to the early
seventies is Serfozo (1975). Another good summary can be found in the book
by Gut (1988). More specific references are Feller (1949, 1966), Smith (1955),
Dynkin (1955), Takacs (1959), Lamperti (1961, 1962), Borovkov (1967), Iglehart
(1969), Silvestrov (1972a, 1974, 1983, 1991), Kaplan and Silvestrov (1979), Gut
and Janson (1983), Niculescu (1984), Murphree and Smith (1986), Shedler (1987,
1993) and Roginsky (1989, 1994). Another source of results is formed by diffusion
approximations for risk processes as in Iglehart (1969), Siegmund (1975), Harrison
(1977), Gerber (1979), Grandell (1977, 1991), Beard, Pentikdinen and Pesonen
(1984), Aebi, Embrechts and Mikosch (1994), Asmussen (1984, 2000, 2003),
Schmidli (1992, 1997) and the books by Embrechts, Klippelberg and Mikosch
(1997), Rolski, Schmidli, Schmidt and Teugels (1999) and Bening and Korolev
(2002).

We also refer to the articles by Silvestrov and Teugels (2001), which is an
extended report version of the current article, and Silvestrov (2000, 2002), where
one can find an extended bibliography of publications from the realm of this article.

The goal of the current work is to derive weak and functional limit theorems
for a combination of the above processes that we have coined max—sum processes
with renewal stopping. Our model includes as particular cases all three types of
models mentioned above, that is, mixed max—sum processes, max processes with
random indices of renewal type and sum processes with renewal stopping. Finding
inspiration in the classical model with i.i.d. random variables, the model under
consideration deals nevertheless with the joint behavior of max processes, sum
processes and renewal stopping processes where dependencies can be introduced
via the components of the initial i.i.d. random vectors. To increase their generality
and applicability, all results are presented in a random process setting and for a
general triangular array model. We show that the corresponding limit theorems can
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be obtained under conditions analogous to the well-known conditions of the central
criterion of convergence for sums of i.i.d. random variables and similar conditions
for maxima of i.i.d. random variables. No additional technical assumptions are
involved. In this sense, limit theorems presented herein give some kind of a “final
solution” for limit theorems for max—sum processes with renewal stopping based
on i.i.d. random variables.

More specifically, let{(& n, Yen,ken), n = 1,2,...} be for everye > 0
a sequence of i.i.d. random variables taking valuesRinx R; x [0, 00).
Furthermore, we need nonrandom functieags> 0 for whichn, — oo ase — 0.

We first introduce the components using nonrandom sample sizes, namely the
extremal max process. (r) = MaX.<ivin, &k, ¢ = 0, the sum procesg,(t) =
> k<, Yed» t = 0, and thepositive sum process (t) = >y, ke.ks t = 0. The
last process inducesranewal stopping process (t) = SUR(s : k. (s) <1),t > 0,
that will behave like a random time clock on the three separate components.

In the current article our attention goes to a thorough study ofrihg—sum
process with renewal stoppin@e (t: (1)), v: (t: (), k- (t:(2))), t > 0, because we
will give general conditions for weak convergence of these processes and for their
functional counterparts.

Before doing that we need to investigate in detail limit theorems for the
three-dimensional mixed max—sum proceg$ess), y. (1), k¢ (1)), t > 0}. Among
others, we give conditions of weak convergence of such processes as well as
conditions of their convergence in Skorokhddtopology. We therefore first
recall what is known about the separate components of this three-variate process.
Because we definitely need marginal weak convergence of the max processes
{&-(2),t > 0} and of the two-component sum proces8es(t), v. (1)), t > 0}, we
automatically need a set of necessary conditions. They help in the formulation
of the conditions for joint weak convergence, in particular for the corresponding
limiting three-component mixed max—sum process.

The weak convergence anticonvergence of mixed max—sum processes is
treated in Section 2. In Section 3 we deal with the weak and/Heenvergence
of the max—sum processes with renewal stopping. In the final Section 4 we treat
some examples.

2. Mixed max—sum processes. In this section we deal with general condi-
tions for the weak and functional convergence of the mixed max—sum processes.
We start with the extremal component. We then turn to the sum processes to finish
this section with the mixed max—sum processes.

2.1. Weak convergence of max processédle start with the extremal compo-
nent. As usual, let us denotg the set of continuity of a functiofi. The following
condition is standard in papers dealing with limit theorems for extremes:

CONDITION A. As ¢ > 0, ngP{é.1 > u} — m1(u) for all u € Ry which
belongs to the set;, for the limiting functionmy(u).
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The ingredients on the right satisfy a number of conditions.

e The functionz1 (1) acts from(—o0, o0) into [0, oo] and is nonincreasing and
continuous from the right: ifr1 () = oo, continuity is interpreted as1(¢) 1 co
ast | u; furthermorer1(—o0) = oo andmr1(co) = 0.

e As such, these conditions imply that the function @xp1(u)) is a distribution
function. If we defineu, = supu:m1(u) = c0) > —o0, then exp—mr1(u))
takes positive values for > u, and exg—m1(u)) = 0 for u < u,, while
exp(—m1(uy)) = exp(—m1(uy+)) can take any value in the intervi, 1].

One of the important aspects of classical extreme value theory iscthie—
location model Here the random variables , are represented in the form
Ecn = (&, — ag)/bs, Where§&,,n =1,2,..., are ii.d. random variables, and
a. andb, are some nonrandom centralization and normalization constants. In this
case, the distribution expr1(1)) belongs to one of three families of classical
extremal distributions. See, for instance, Galambos (1978), Leadbetter, Lindgren
and Rootzén (1983), Resnick (1987) and Berman (1992).

This one-dimensional result can be extended. Denot®dthe space of step
functions on(0, co) continuous from the right and with a finite number of only
positive jumps in every finite subinterval @, co). It is known [see, e.g., Serfozo
(1982), Leadbetter, Lindgren and Rootzén (1983), Resnick (1987) and Berman
(1992)] that Condition A is ecessary and sufficient for the weak convergence

(2.1) {£.(1),t >0} — {&(),t >0} ase — 0.

The limiting process{ép(r),t > 0} in (2.1) is called anextremal process
It has the following finite-dimensional distributions for9m < 1 < --- < t,,
—oo<u1<---<u,<oo,n>1:

n
(2.2)  Plgo(ty) <ux, ..., &) <un} =[] exp(—m1up) (t — tk-1)).
k=1

Referring to the notation, above, letv, = inf(u:m1(u) = 0) < co. Then
the distribution function exp-m1(u)) is concentrated on the intervil,, v,],
&) — u, a.s. ag — 0, while&y(r) — v, a.s. ag — oo.

Also, the procesgéo(t),t > 0} is a stochastically continuous homogeneous
Markov jump process whose trajectories belong to the spaaeith probability 1.
It has transition probabilities

(2.3) P{éo(s +1) <uléo(s) = v} = x (v < u) exp(—tmw1(u)),
wherey (A) is used for the indicator of event.
2.2. Weak convergence of sum processé®t us consider the bivariate process

{(ye(t),ke(2)),t > 0O}. It is a process of step sums of i.i.d. random vectors.
Conditions of weak convergence of these processes can be formulated with the
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use of the vector form of the classical criterion for weak convergence given in
Skorokhod (1964). These conditions involve the tail probabilities, the truncated
means and the truncated variances of the random variables.

We use the abbreviatioR = (R; x [0, 00)) \ {(0,0)} and we write B for
the Borelo-algebra of subsets @&. Let & be the class of continuous bounded
functions defined orR and vanishing in some neighborhood of the pgiht0).
The condition for convergence takes the following form:

CONDITION B. (@) Ase — 0, ngEQ(Ye1. ke 1) = ne [ (v, w) P{(Ve,1,
Ke 1) €dv X dw} — [ ¢ (v, w2 3(dv x dw) forall ¢ € ®.

(b) Ase = 0, ngEye1x(|ye.1]l < v) — a(v) for somev > 0 for which the
pointstv are points of continuity of the functiol2 3({v} x [0, 00)).

(€) Ase — 0,n:Ek. 1x(ke1 < w) — c(v) for somew > 0 which is a point of
continuity of the functiorllz 3(R1 x {w}).

(d) As ¢ — 0 and thenv — 0, ne(Ey2x (1Ve1l < v) — (Eve1x(ve1l <
v))%) — b2. This expression refers to two repeated limits of the form
limo<y—olimsup._, o and limy-,_oliminf._o.

We list a number of properties of the limits on the right.

e 17 3(A) is a measure on the-algebraBg.

e The projectionIz(B) = 12 3(B x [0, 00)) is @ measure on the Borelalgebra
of subsets ofR; \ {0} such thatf, s2/(s* + DITa(ds) < oo, wheref is an
integral over the corresponding interval with the point 0 excluded from the
interval of integration.

e The projectionl13(C) = I123(R1 x C) is a measure on the Borelalgebra of
subsets of0, co) such thatf(o’oo) s/(s + DII3(ds) < oo.

e a(v), v > 0is areal-valued measurable function and Condition B(b) can, under
Condition B(a), only hold simultaneously for all points- 0 for which+v are
points of continuity of the functiomlz({v}) and for any such point the constant
a=a()— fi; ., 53/ L+ s)T2(ds)+ -, 5/(1+ s?)T2(ds) does not depend
on the choice ob.

e Functionc(w), w > 0, iIs a nonnegative nondecreasing function and Condi-
tion B(c) can, under Condition B(a), only hold simultaneously for all points
w > 0 for which w is a point of continuity of the functiodilz({w}) and
for any such point the constants= c(w) — f(ovw)sl_[3(ds) >0 andd =
c+ f(o,oo) s /(14 s2)T13(ds) do not depend on the choice of

e Finally, b? is a nonnegative constant.

The nonnegativity of the random variables; and Conditions B(a)—(c) imply
that the repeated limits for variances of these random variables and covariances of
random variables, 1 andy, 1, analogous to those in Condition B(d), are equal to
zero. For this reason, the corresponding conditions are notincluded in Condition B.
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According to a central criterion of convergence [see, e.g., Loéve (1955)],
Condition B is recessary and sufficient for the bivariate weak convergence

(2.4) {(ye@®),ke(®),t =0} = {(»o(),x0()),t =0}  ase — 0.

Denote by D the space of functions oK0, co) without discontinuities of
the second kind and continuous from the right. Let al3p be the space of
nondecreasing functions fron® and let D, be the space of nonnegative
functions fromD .

The limiting process(yo(2), xo(t)),t > 0} is a homogeneous stochastically
continuous process with independent increments whose trajectories belong to the
spaceD x D, with probability 1 and with the characteristic function fox 0
given by

E expli (yyo(t) + zxo(1)))

= ¢23(, ¥, 2)
1
(2.5) :exp{t<iay — Ebzyz—i-idz
i(yvtzw) (v +zw)
+'/R<€ yrTIw —1—m Hz’g(dUde) .

2.3. Weak convergence of mixed max—sum proces$&s.finally turn to the
study of the joint behavior of the three components together. The following
condition should be added to Conditions A and B to provide joint weak
convergence of max and sum processes:

ConDITION C. As ¢ — 0, neEx(é1 > uw)d(Ye1.ke1) = ne X

Jr@, w)P{& 1> u, (Ve,1,ke1) €dvxdw} — [pd(v, w)l'l(zlg(dv x dw) for all

u>ug,ucCq andg e @, wherel‘[g‘;(A) is a measure on the-algebraBy, for

everyu > uy,u € Cy,.

Obviouslyl‘[%(A) IS monotonic inu > u,,u € Cr,, because the prelimiting
functions in the left-hand side in Condition C are monotonig fior nonnegative
¢ ed.

(a) Due to this property, there exist fdc, u<u—u H(Z’TQ(A) = MY%(A)
for every A € Bg, andu > uy,u ¢ Cr,, and also foru = u, if u; > —oo,
T1(uy) < 00.

(b) The following estimates are validi1y3 (A) — N33 (A) < (ry(u1) —
m1(u2)) A I2.3(A); in particular, Hé’fé)(A) < m(u1) A Tp3(A) for any A €
Br, andu, < u1 <uz < oo, and also foru; = u1 < up < oo if uy > —o0,
mT1(uy) < 00.
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These estimates can be verified by the limiting transition in the corresponding
estimates for the prelimiting functions in the left-hand side in Condition C, for
nonnegativep € ® approximating in a proper way the indicators of séts Bg,
andu; <uy <up <00, ug,up € Cr,;. Then by the limiting transition in:; €
Crpuj < ug — u;,i =1, 2, these estimates can be obtained for any Bz and
Uy <up<upx<ooandu; =ui <up <o if uy > —00, m1(u;) < o0o. It follows
from these estimates that convergence in statement is uniform with respect to
A € Bg. This implies thaﬂ'l(z’g(A) is a measure for eveny > u, and foru = u,
if ugy > —00,m1(uy;) < 00.

(c) These estimates also imply thHé’f%(A), as a function inu for every
A € Bg, is nondecreasing and right-continuous at any paintu, and at point
U=uzmif uy >—00, w1 (uy) < 0o.

Foru > u, and foru = u, if u; > —oo, m1(u;) < 0o, we define a measure on
theo-algebraBg by the formula

(2.6) [153(A) = T2,3(A) — TI3%(A).

Let us also define for the corresponding projectidiy’ (B) = I3%3(B x
[0, 00)) and 115" (B) = ﬁ(z’%(B x [0, 00)), which are measures on the Borel
o-algebra of subsets at; \ {0}, and also defineFIé“)(C) = H;’%(Rl x C) and
) = ﬁ;’%(Rl x C), which are measures on the Botelalgebra of subsets
of (0, 00).

To be able to write down the representation of the limiting process, we define for
U>uyOru=uyif uy > —00, m1(uy;) < oo andr > 0 the characteristic function

(u)

902,3(1,)7,2)

1
(2.7) =exp{t<ia(”)y - §b2y2+id(")z

[ (yo+zw) i(yv+2zw) \ ~ )

+/R<el yvTIw _1_71+v2+w2 I 3(dv x dw) | 1,

where
2.8 a(”)za—f * s, a'(”):d—/ >0 ds).
( ) R11+S2 2 ( ) (O,oo)1+S2 3 ( )

Note also that the constantsh, d, a™ andd™ and the measurds; 3(A) and
MY'3(A) in (2.6)~(2.8) are determined by Conditions A-C.

It follows from statement (b) that™, 4 andgog%(t, y, z) are right-continuous
functions inu > u, and foru = u, if u; > —o0, T1(u;) < 0o.

Let us also defin@%(t,y,z) =1foru <uy, orforu=u, if upy > —o0,
m1(u;) = 00. Here is a first key result.
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THEOREM2.1. Let ConditionsA—C hold. Then
{(&c (), e (1), ke (1)), t > O}
= {(8o(®), yo(1), k0(1)),t >0}  ase— 0,

where {(&0(2), yo(2), ko(2)), t > 0} is a homogeneoustochastically continuous
Markov process whose trajectories belong to the spBgex D x Dy, with
probability 1 and transition probabilities that have the hybrid characteristic-
distribution form

Elexpli(y(yo(t +5) — yo(s)) + z(ko(t + 5) — ko(s)))}
(2.10) x x(§o(r +5) <u) | &o(s) =u’, yo(s) = v, ko(s) = w'}

= x(u' < w)yexp(—tmi(w) - 332, y. 2).

(2.9)

PrRoOF The method that we use is based on application of the classical
central criterion of convergence to distributions of sum processes conditioned in a
special way with respect to the corresponding max components. This method was
proposed in Chow and Teugels (1979), where asymptotics of joint distributions
of maxima and sums of i.i.d. random variablés = y:x,k = 1,2,...) was
investigated for the case of the scale location model in the situation when the
random variables belong to the domain of attraction of a stable law. Here, we
deal with nonidentical random variablés; and y. ; and a general triangular
array model. This complicates the consideration. Nevertheless, the method still
is the most effective one. It also yields explicit expressions for the corresponding
limiting characteristics that are not easy to guess in advance.

By the definition of the processés(r), y. () andk.(¢) forany O=1r <1 <
e <y <00, —00 <UL < < Uy <00, Yy =(V1y--45Ym)2=1(22,..-,2m) €
R,,, m > 1, and fore such thatyn, > 1,

Eexpli Yy (vive() + e () px (@) Swi, 1=1,...,m)

(2.11) =t

m
= H(E exp{i(yl,m Ve,1 + Zl,mKe,l)}X (ge,l =< ul))[tmg]_[tlilng],
=1

Whereyl,m =y+-+ YmUm =z1+-+zm,l=1...,m.
It follows from (2.11) that (2.9) will result if we can show that wheyz € Ry,
for everyu € Cy,,

(E expli (vYe1 + ke )} x (Ee1 <u))™

(u)

2.12)
— exr(—nl(u))<p273(1, v,2) ase — 0.

This relationship is obvious for the case: u,, since in this case the expression
on the right-hand side in (2.12) tends to zero due to Condition A and the expression
on the left-hand side in (2.12) is also equal to zero due to the same condition.
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If u, is a point of continuity of the functiormry (), thenm1(u,;) = oco. In this
case again the expression on the right-hand side in (2.12) takensar,, tends
to zero due to Condition A and the expression on the left-hand side in (2.12) taken
for u = u, is also equal to zero. So, the only case that needs to be considered is
whenu > uy,u € Cyr,.

Obviously

(E expli(yye.1 + z2ke. 1)} x Een <u))™
= (P{&:,1 < uD)" (E{expli(y¥e,1+ 2661} | Ee1 <u})™.

By Condition Aforu > uy,u € Cyy,

(2.13)

(2.14) (P{&.1 <u))™ — exp(—m1(u)) ase — 0.

From (2.13) and (2.14), relation (2.12) will be proved if we show that when
v,z € Ry, foreveryu > uy,u € Cpy,

(2.15) (E{expli(yye1+zceD} | Ge1 <u))™ — ¢33l y,2)  ase — 0.

For everye > 0 andu > u,u € Cy,, define sequences of i.i.d. random vectors
{(yg(fil), lcéf‘n)), n=1,2, ...} suchthatforn e Ry, w >0,

(2.16) P{Vg(’ul) <v, be”l) <w}=P{ys1<v,ke1 <w|& 1 <u}.
With these sequences we can associate their natural sum processes defined by

@17 Yo=Y vl Po=Y &, =0

k<tng k<tng

For givenu > u,,u € C,, relationship (2.15) is actually equivalent to

{0, k1)), 1 > 0}

(2.18) () D)
= {(ro ),k (1),1 >0} ase — 0,

Whel’e{()/O(M)(t),/céu)(t)),t > 0} is a homogeneous process with independent
increments with the characteristic functi(afgif%(t, v, 2).

It was pointed out in Section 2.1 that Condition B is necessary and sufficient
for (2.18) to hold. Of course, all of these conditions should be checked for
the random vector$y8("1),/<£f‘1)) rather than for the random vecto(g; 1, k¢ 1).
These conditions should be checked for every u,,u € C,,. Comparison of
(2.5) and (2.7) shows that we need constafits b, d® and measureﬁ%(A) to

replace constants, b, d and measureH> 3(A) in these conditions. We deal with
all of them in separate steps.
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() Let us first treat the asymptotic relationship in Condition B(a). Note first
that Condition A implies that for eveny > u,

(2.19) P{&1<u}—1 ase — 0.

Using Conditions B(a) and C and (2.19) we have, for evesyu,,u € C,, and
every functionp € @,

neEp(v\7, k)
Ex (1 <u)p(Ve1, ke 1)

— PlEe1 <u)
_ Ep(Yen.ke1) — Ex(§e1>u)@ (Ve 1, Ke1)
(2.20) e Pleor<u)

[ $@. w2 x dw) ~ [ ¢, wNFY@o x dw)

Z/Rd)(v, w)lclgg(dv X dw) ase— 0.

(i) We turn to the asymptotic relationships given in Conditions B(b) and (c)
which have the same structure. We restrict attention to the more general
Condition B(b) lecause the proof of Cortain B(c) is analogous.

Using Conditions A and B(b) we have, for every> u,,u € C;, and 0<
v — 0 ask — oo,

limsuplngEye 1x (5e,1 > u, |Ve,1] < i)l

e—0

(2.21) <limsupn;E|ye 1]x (€e.1 > u, |ve.1] < vg)

e—0

<limsupving P{&;1 > u} = vpmwa(u) - 0 ask — oo.

e—0

We use (2.20) again together with (2.21) to see that for everyu,,u € Cr,
and O< v; < v, vz — 0 such thaf1y” ({v}) = M5 ({+u}) =0,

lim neEve1x(e1>u, |ye 1l <)
e—0

(2_22) = k”—>moo !il)noneEVe,lX (58,1 >Uu, v < |Vs,l| <v)
= lim sTISVds) = sTI3Y (ds).

k=00 Jy<|s|<v Is|<v
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Combining (2.22) and Condition B(b) we get for> u,,u € C;, andv >0
such thaﬂ'[é”)({iv}) =0

neEy ) x(vi7] < v)
Eyeaxe1=u,|ye 1l Zv)
P{§c1 <u}
(223) =n, EVe,lX(h/s,ll <v)— Eys,lX(ge,l >Uu, |Ve,l| <v)
P{&:1=<u}

=g

— a®(v)

=a(v)—f sTI{"Y(ds)  ase — 0.
[s|<v ’

This relationship enables us to calculate the corresponding con$taint (2.7)
that replaces:. Indeed, according to relationships (2.20) and (2.23) and the
defining formula for the constaat we have

a® — a(u)(v) _f

(M)
ds +/
|s|<v 1+ ( )

3

0
=p 1+ 52 2" (ds)

=a(v) —/l | My (ds) — [Ma(ds) — 1Y (ds)]

|s|<v 1+ 1+s2

s (M)
+ /M 2 M2@s) — 115 @s)]

=a —f (”)(ds)
|s\<v

3
§ (u) ()
+/ ——I1, " (ds —/ 5115 ds
Is|<v 1+S2 2 ( ) |s|>v 1+S ( )

f S
R] 1+S

(i) Finally, we must check Condition B(d) for the random variab;léﬁ).

(2.24)

W (ds).

Note that (2.23) implies in an obvious way that, fot u,,u € C,, andv > 0,

(2.25) lim Supne(Ey |y€ )| <v) )2 =0.

e—0
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Then, using Conditions A and B(d) we get o> u,,u € C,,

limsupn: Ey2 x (e > u, |ye1] < v)

e—0

<limsup,/ne P{&e.1 > u} - \/ne Ey2x (veal < v)

—0
(2.26) ’
< im Supy P& > u) - imSUpyfu2ne Ey2yx (el < v)
£— =0

<Jm(u) - \/ 2I|msupngEyg 1X(ve1l <v)—>0 as O<v — 0.

Using (2.19), (2.25), (2.26) and Conditions B(b) and (d) we getufor u,
u e Cyy,

lim Tim n, Vary(”) (|y£(f‘1)| <v)

O0<v—0.0

= lim IlmngE(y(“l)) (|y8(“1)|§v)

0<v—0,.-0
2 < _ 2 <
(2.27) — iim T Eyiix(ye1l =v) — Eyiix(Ge1 > u, [ye1l <)
O<U—’Os—>0 P{Es,l =< u}

= lim _Tm n.EyZ x(|ye1l <v)

O0<v—0,.0

= lim [imn, Varys 1X Vel <v) =
O0<v—=0,-0
Note that the constamit does not depend an> u,. By combining the above
determinations, the proof is complete.]

2.4. J-convergence of mixed max—sum process®fe turn to convergence in
J-topology. Let D, be the space of functions ai®, co), taking values inRy,
that are right-continuous and have no discontinuities of the second kind. The

symbol {¢.(¢),t > 0} A {¢o(t),t > 0} ase — 0 is used to indicate that the
processesg,(t), whose trajectories belong to the spalg with probability 1,
converge in Skorokhod-topology to a procesg(r) on any intervalt’, 1], where
0 <t <t” < oo are points of stochastic continuity of the procéssgr), r > 0}.

We refer to the books by Billingsley868) and Gikhman ahSkorokhod (1971)
as well as to the articles by Stone (1963) and Lindvall (1973), where one can
find the basic definitions and general facts concerdirgpnvergence for random
processes on finite and infinite intervals.

Our interest lies in the proces$s. () = (&:(1), y: (1), k. (t)), t > 0} which has
phase spac®; x Ry x [0, 00) and trajectories that by definition belong to the
spaceD3 with probability 1. It is a Markov process. We denote the transition
probabilities of this process b, ((u, v, w),t,t + s, A).

The following theorem is our second main result.
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THEOREM2.2. Letthe Condition®—C hold. Then
(2.28) (), 1 >0} 5 (¢0(t),t >0} ase — 0.

PROOFE Let {x(r),t > 0} be a function from the spac®; and 0< T <
T’ < 00, ¢ > 0. Denote thenodulus of compactness for topolagypy

Aj(x(),e, T, T = sup min(|x (") — x @)1, |x (") — x(@)]).
TV (t—c)<t' <t<t"<(t4+c)AT’
Whereas the weak convergence of the procegs€s, r > 0} has been proven in
Theorem 2.1, Theorem 2.2 will follow if we can show that, for ak @ < T’ < oo
ands > 0,
(2.29) IimolimsupP{AJ(ge(-),c, T,T")>é8}=0.
>V ¢—0

Note that the first componené.(¢),t > 0} is a hondecreasing process with
probability 1. We use this property to reduce the phase space of the first component
to the interval(k, co). This is an essential part in the proof of tliecompactness
relationship (2.29).

Let us choose:

(d) h > —o0 to be a point of continuity of the functiam (u) if u, = —o0;
() h=uy if uy > —o0.

We introduce the truncated random variatﬁgg =&rVh k=12, ..., and
the corresponding max processes

(2.30) ge(h) (1) = k<n1]\?})r(l ée(};c) =&({)Vh, t>0.

The three-variate proce@h)(t) = (ég(h) (1), v (1), ks (1)), t > 0} has the phase
space[h, o0) x R1 x [0,00) and its trajectories belong to the spabg with
probability 1. It is a Markov process which has for, v, w) € [k, 00) x R1 X
[0, c0) the same transition probabilitie® ((«, v, w),t,t + s, A) as the process
{¢e(2),t > 0}.

Note that Theorem 2.1 can be applied to max—sum proce{ég@g),t > 0}
because all conditions of Theorem 2.1 are satisfied. The only difference is that in
the current case the corresponding limiting functions and measures in Conditions
A-C should be changed. We introduce new functions indexed by a lower ndex
as follows:rr1., (1) = w1 (u), M2 3.4, (A) =12, 3(A) for u > h, while 1., (1) = oo,
[M23.,(A) =12 3(A) for u < h. Note that only in the case when, = —oco are
the changes genuine, while in the case> —oo andh = u,; the new functions
coincide with the old ones.

According to Theorem 2.1, the following relationship holds:

(2.31) (EP@), >0 = [¢@),1=0} ase—0.
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This relationship also follows directly from (2.9) since according to (2.30) the

random variablééh)(t) is a continuous function of the random variablér) for
everyt > 0 andh € R;.

The limiting process{;0 )(t) t > 0} is fully similar to the process described
in Theorem 2.1 with the only changes thais the lower index in the limiting

characteristics. Moreover, it can be easily shown that the prqéé@sst),t > 0}
can be constructed from the procgss(r), ¢ > 0} by simple truncation of the first

component of this process, that {ééh) ) = (§éh)(t), yo(t), ko(2)), t > O}, where

ééh)(t) =&p(t) vV h,t > 0. Note again that in the casg = —oo the truncation is

genuine while in the cases, > —oo andh = u,, process"” (1) = £&(1), 1 > 0.
Let us now use the inequality

P{Aj (¢ (), e, T, T") = 25}

(2.32) <P{A, PO e, T T') = 8} + P{ sup ]|§,§h)<r> —E(0)] = 5}.
te[T, T’
Obviously,
(2.33) P{ sup [EP(1) — £.(1)| >8} < PlE(T) <h—5).
te[T,T]

One can always choos$¢2 < §, < § in such a way that the poirit — §;, is a
point of continuity of functionry(x). Then we get, foe such thaw, T > 1,
lim limsupP{&(T) <h — 4§}

h——00 c—0

< lim limsupP{&.(T) <h— 4}
h——00 0
(2.34)
= lim limsupP{&. 1 <h — §,}"T!
h——00 ¢0
= lim e ™0=WT —q,
h——o0
Inequalities (2.33) and relationship (2.34) imply that forany @ < 7’ < co
ands > 0,

(2.35) Jim _lim supP{ sup |EM (1) — &.(0)| = 5} —0.
=0 ¢-0 te[T,T']

In the caset, > —oo, the internal limiting expression on the left-hand side
in (2.34) is equal to zero. In this case additional external limit transitions given in
(2.34) and (2.35) are not required.

Relationships (2.32) and (2.35) imply that (2.29) will follow if we show that for
anyh, chosen as described above, and aryD < T’ < oo andé > 0,

(2.36) IlmollmsupP{A,(g“g(h)() ¢, T,T') =8} =0.

e—0
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Let us define

ag(h,c, T, T, 5)
= sup sup Po((u,v,w), t,t+s, Ss((u, v, w))),

u>h,—oo<v<oo,w>0 T <t<t+s<t+c<T’
wheresSs((u, v, w)) = {/, v, w): (lu —u' |2+ v — V|2 + |w — w'|DH V2 > §).
We showed in (2.31) weak convergence of proce:{ééh%(t),t > 0}. As is

known [see Gikhman and Skorokhod (1971)], in this case (2.36) follows from the
following relationship that should be proved for ang@ < 7’ < oo andé > O:

(2.37) lim limsupag (h,c, T, T',8) =0.

=0 -0

We now exploit the fact that the proceggs(¢), ¢ > 0} is nondecreasing and that
the two processes, (1), t > 0} and{k.(¢),t > 0} are processes with independent
increments. We get the estimate

ag(h,c, T, T, 38)
<sup sup P{&c(t +5) — & (1) > 8|8 (1) = u}

u>h T<t<t+s<t+c<T'

+ sup (P{lye(t +5) — ve(0)] > 8}

T <t<t+s<t+c<T’
+ P{ke(t +5) — ke (1) > 8})

<sup  sup  (1— PfE1<us)lnetoInlne)
u>h T<t<t+s<t+c<T'

4 sup  ([ne(t + )] — [net))

T<t<t+s<t+c<T’

(2.38)

X (P{|ye.1l > 8} + |Eve1x (Iye1l <98
+ Varye 1x (1¥e,11 < 8) + Plke 1> 8} + Ekg 1 (ke 1 < 5))
<1—(P{&1<h+8)"
+ cne(P{lye1l > 8} + | EVe1x (1Ve1] < 8))
+Varye 1x(|ve,1] <8) + Plke,1 > 8} + Ekg 1x (k1 < 5)).

We are now in a position to use the truncation of the phase space described
above, and Conditions A—-C.

Indeed, for every:, chosen according to choice (d) or (&)2 < §, < é can be
chosen such that

(2.39) m1(h + 8) < oo.
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Conditions A—C and (2.39) applied to (2.38) yield
lim limsupea,(h,c, T, T’, 38)

=0 >0

< lim limsup(1 — (P{&:.1 < h + 8,})"°)

=0 0

+ c”—r>n0c. lim Supns(P{|V8,1| > 8} + |EV8,1X(|V8,1| <d)|

e—0

(2.40)
+Varye 1x (|ve,1l < 9)
+ P{ke1> 8} + Exe1x (ke1 <98))
= lim (1— exp(—m1(h + 8)c)) = 0.

The proof is complete. [

3. Mixed max—sum processes with renewal stopping. In this section we
deal with general conditions for the weak and functional convergence of the mixed
max—sum processes with renewal stopping.

3.1. Joint weak convergence of max—sum processes and renewal stopping
processes. To start the discussion we need some results about the renewal
counting processes. We introduce the renewal stopping procgsses =
SUR(s ike(s) <t),t > O}, wherex. () = 3y, ke.k» ¢ = 0, have been introduced
in Section 1. We interpret the sequengg as the times between renewals, and
hencer, (t)n, — 1 is the number of renewals in the intery@) rn;].

We assume the basic Condition B. To exclude the trivial case where the process
{ko(t) =0, t > 0}, we also assume the following condition on the mea$ig€&C)
and the quantity from Condition B:

ConDITION D.  We haver > 0 or IT3((v, 00)) > 0 for somev > 0.

If we look at the inverse procesi&o(t) = sup(s:ko(s) < t),t > 0}, then

Condition D implies thakq() £ oo ast — oo and thereforeg(¢) is an a.s. finite
random variable for every > 0. Conditions B and D obviously imply that, for

everye small enough (say < gg), k. (¢) £ o0 ast — oo and therefore also the
renewal stopping process(?) is an a.s. finite random variable for every 0.
Furthermore, by definition, the trajectories of the procedsgg),t > 0} a.s.
belong to the spacB. ;. for everye < gg.

Let us denote by the set of points of stochastic continuity of the process
{ro(t),t > 0}. This process is stochastically continuous, thatVis= (0, co) if
one of the following conditions hold: (i} > 0, (i) IT3((v, o)) — co asv — 0
or (iii) IT3((v, o)) is a continuous function. If all three conditions (i)—(iii) are
violated, then the séf is (0, co) excluding perhaps some countable or finite set.
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Namely, the seV = (0,00) \ V ={vil1 + -+ vplp:l1, ..., L, =0,1,..., 1 +
<o+ 1, > 1, m > 1}, where{vy, vo, ...} is the set of discontinuity points of the
function IT3((v, 00)). The processto(z), r > 0} is a.s. continuous if the process
{ko(t), t > O} is strictly monotone, that is, if at least one of the conditions (i) or (ii)
holds.

Preparing the results for the mixed max—sum processes with renewal stopping,
we formulate conditions for the joint weak convergence of max—sum processes
and renewal stopping processes.

LEMMA 3.1. Let ConditionsA-D be satisfiedThen

{(2e(1), 7e(5)), (£, 5) € (0, 00) x V}

(3.1)
= {(¢o(®), T0(5)), (1, 5) € (0, 00) x V} ase — 0.
PrROOF Use the definition of the processgs(¢),r > 0} and{z.(¢),t > 0}
to write that, for any O< sy < -+~ < s, O0<t1 < -+ < t,, @anduy, v, w; € Ry,
[1=1,2,....m,m=>1,

Pl&(t) <up,ye(t) v, ke(t) Swp, te(y) > 51,0 =1,...,m}

(3.2)
=PlEM) <u,ve(t) S v, k() Swp,ke(s) <t;,1=1,...,m}.

Choose some countable set of poif{s= {x1,x2,...} C (0,00) dense in
(0, 00). Since any distribution function has at most a countable set of discontinuity
points, we can choose a countable Bet {y1, y», ...} C V dense in(0, oo) such
that P{«xo(x;) = y;} foralli, j > 1, and then a countable sét={z1,z2,...} C R
dense inRy for which P{&o(y;) = zx} = P{yo(y;) = zx} = P{ko(y;) = z} =0
for all j,k > 1. By Theorem 2.1 and (3.2) we have, for poigts= X, € Y,
un,v,weZzZl=1...mm=>1,

Pl&(t) <up, ve(t) v, ke(t) <wp, te(ty) >s1,l=1,...,m}
(3.3) — P{&o(t) <uy, yo(ty) <uy, ko(tr) <wy, to(ty) > 5,1 =1,...,m}
ase — 0.

Note that Condition D implies that all random variables in (3.3) are proper
for ¢ small enough. Taking into account that the weak convergence of distribution
functions of random vectors follows from their convergence on some countable set
everywhere dense in the corresponding phase space, we get from (3.3) that

(3.4) {(&(0),w(0)),teY}) = {(¢),w0()), 1Y}  ase— 0.

The processef.(t),t > 0} J-converge while the processgs (1), ¢ > 0} are
monotonic. Therefore, (3.4) can be extended by obvious arguments to (311).
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3.2. Weak convergence of max—sum processes with renewal stoppliegare
in a position to formulate and prove our third main result.

THEOREM3.1. Let ConditionsA-D hold. Then

{{e(fs(t)) = (gs(fs(t))’ Ve(fe(t))’ Ke(fs(t)))’t € V}
(3.5) = {zo(r0(1)) = (éo(70(?)), yo(70(1)), ko(T0(2))), 1 € V'}
ase — 0.

PrROOF We are going to use Theorem 2.7.1 from the book by Silvestrov
[(1974), page 82]. This theorem provides the proper conditions for the weak
convergence for cadlag processes stopped in Markov type moments. Here, the
Markov processes al{ég(h) 1)} = {(ééh) (1), v (1), ke (1)), t > 0} while the stopping
moments are given by, (¢),t > 0. By definition, for everyr > 0 the random
variable 7.(+) is a Markov moment for the Markov proce$é§h)(t),t > 0}.
Moreover, also by definitionP{r.(t) > 0} =1,¢ > 0, foralle > 0.

As was mentioned above, Theorem 2.1 can be applied to hybrid max—sum
processe(;fg(h)(t), t > 0}. Also Lemma 3.1 can be applied to these processes and
renewal stopping processest), t > 0. All conditions of Lemma 3.1 are satisfied.
According to Lemma 3.1 the following relationship holds:

{EM (). 7e(5)). (2.5) € (0. 00) x V}

(3.6) .
= {(¢p (©),70(s)), (t,5) € (0,00) x V}  ase— 0.

Again it is useful to note that (3.6) also follows directly from (3.1) because
§,§h) (t) = &.(t) Vv h is a continuous function of random varialiig(r) for every
t >0andh € R;.

As was mentioned above, the procc{z&g‘) (t),t > 0} can be constructed from
the procesqo(r),t > 0} by simple truncation of the first component of this
process, that i€z (1) = G (1), yo(1), ko(1)), t > 0}, whereE{" (1) = & (1) v 1,

t > 0. As far as the limiting renewal stoppipgocess is concerned, it can again be
defined agto(r) = sup(s : xo(s) <t),t > 0}.
Next, define

ﬂ&‘(hv Ca t? 6)
= Sup Sup Pg((u,v,W),S,S+q,S3((M,U, w)))

u>h,—oo<v<oo,w>0t—c<s<s+q=<t+c

It is easy to see that, for any© T <t < T’ and for all¢ > 0 such that
c<t,T<t—c,t+c<T/,

(37) ﬁ&‘(hvcvt’a) SO{g(h,ZC, T7 T/76)‘
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Because of this, (2.37) implies that for a- 0,

(3.8) I|m Ilmsupﬁs(h ¢, t,8)=

e—0

According to Theorem 2.7.1 from Silvestrov (1974), (3.6) and (3.8) imply that

[P (z(0)) = (M (2 (1)), Ve (Te (D)), ke (Te (1)), £ € V)
(3.9) = {E" (o) = ES" (r0(®)), vo(t0(1)), ko(zo(1))), t € V)

ase — 0.

We are now prepared to complete the proof of the theorem. Let us use the
following inequality, which holds for any> 0and 0< 7T < T’ < oc:

P{IED (2. (1)) — & (1)) | = 5}

< P{t(t) < T} + Ple(t) > T') + P{ sup EP (1) — £.()| = 8}
te[T,T]

(3.10)

Foranyr € V, points 0< T < T’ < oo can be chosen in such a way that they are
continuity points of the distribution functions of random variakj&). Moreover,
for an arbitraryo > 0, the pointsT and7’ can be chosen, respectively, so small
and so large thaP{to(r) < T} + P{to(t) > T'} <o.

We use inequality (3.10), relationship (2.35) and the remark concerning the
choice ofT, T’ made above to conclude that for anyx0 € V ands > 0,

(3.11) Jim _lim supP{|EM (z (1)) — & (v ()| = 8} = 0.

=0 ¢=0

As was already mentioned above, the proqégﬁ (1), t > 0} can be constructed
from the processe&(t),t > 0} by truncation of the first component of this
process, that ig2"” (1) = (1), yo(1)., ko()), t > 0}, whereE{" (1) = &(1) v 1,

t > 0, and the limiting renewal stopping process can be definetk@s) =
SUp(s :ko(s) < 1t),t > 0}. The representation of the limiting processes described
above yields that

B.12) {(wo@).1e V) = {to(w@®),teV} ase—0.

Note that in the case, > —oo andh = u,, the representation described above
yields that%h)(t) = &(),t > 0, so that in the sequeﬂgh)(ro(t)) = ¢o(to(1)),
t > 0. For this reason, the additional external limit transitions given in
(3.11) and (3.12) are not required.

Relationships (3.9), (3.11) and (3.12) imply (3.5].1
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3.3. J-convergence of renewal processem this section we treat conditions
for J-convergence of max—sum renewal processes with renewal stopping. We
again go through a two-step procedure.

There are two cases when Condition B providesikmnvergence relationship

(3.13) {1 (1), t > 0} 2 {ro(2),t > 0} ase — 0.

The first case is when the following condition holds:
CoNDITION D1.  We haver > 0 orI13((v, o0)) — oo asv — 0.

In this case{ko(?),t > 0} is an a.s. strictly monotonic process and therefore
70(¢) is an a.s. continuous process. Aldy the definition, the processés (1),
t > 0} and{zo(¢), t > O} are nondecreasing.

Since Condition B is stronger than Condition D, Lemma 3.1 guarantees that
the processes () weakly converge to the processgér) on the set, which is
in this case the intervall, co). As is known [see Billingsley (1968)], the weak
convergence of monotone processes to a continuous process on the dense set
implies theirJ-convergence. Thus (3.13) holds.

The second case is when the following condition holds:

CONDITION D2. As ¢ — 0, ngP{ke1 > 0} — II3((0, 00)), where 0<
I13((0, o0)) < oo.

In this case the procegsg(¢) is a compound Poisson process.

Note first thatJ-convergence of the processesr) can be derived from
conditions for J-convergence on monotonic processes as given in Silvestrov
(1974) and in Jacod and Shiryaev (1987).

Alternatively, J-compactness of the processg§&) can be obtained by direct
estimates for the modulus dfcompactnesa ; (z.(-), ¢, T, T') obtained by using
the fact that the processes(r) and«o(¢) are both step processes with a finite
number of jumps in any finite interval. Take<OT < T’ < oo as two points that do
not belong to the se. Defined, [T, T'] to be the minimal length of the intervals
between jump points of the proces$r) in the interval[ T, T'] if there are at least
two such points; otherwise p@t[T,T'] = T’ — T. Conditions B and b give
the joint weak convergence of the consecutive moments and values of the jumps
for the processes.(¢) to the corresponding functionals for the processgs).
However, this implies the same joint weak convergence for the consecutive
moments and values of the jumps for the inverse processesand zo(z). It
easily follows from the remark made above that the random variablés7') =
0o[T, T'] ase — 0 and that the random variakdg[T, T'] > 0 with probability 1.
Relationship (3.14) now follows from these two observations and the obvious fact
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that{A;(t.(-),c, T, T") > 0} C {6.[T, T'] < c}. Combining all of this information
together tells us that
lim limsupP{A;(t:(-),c, T, T') > §}

=0 -0

< lim limsupP{6.[T,T'1 <c}=0.

=0 .0

(3.14)

It is clear that Condition B implies Condition D. Thanks to Lemma 3.1, the
processes, (t) weakly converge to the processgs:) on the setV, which is in
this case the intervaD, co) except at most a countable set. Therefore, Conditions
B and D imply the requested-convergence (3.13).

We refer to the recent work by Silvestrov (2002), where one can find a more
detailed presentation of the proof. To indicate the relevance of some of the above
conditions, an example is given where the prooggs) is a compound Poisson
process and where the processgg) weakly converge but do naf-converge
when Conditim B holds but Condition Pfails.

3.4. J-convergence of max—sum processes with renewal stoppliwgrything
is ready to prove the fourth key result of the paper.

THEOREM 3.2. Let the ConditionsA—C hold together with Conditions
D4 or Dy. Then

(3.15) {&e(te(2)), 1 > O} 2 {¢o(z0(1)), t > 0O} ase — 0.

PrRoOOFE The weak convergence of the procedgeér. (1)), t € V} was proved
in Theorem 3.1. Recall that the sgtis dense in the intervalD, co). Therefore,
we need only to check-compactness. More precisely, for ang@ < T’ < oo,
we need that
(3.16) [imolim supP{A;(¢e(ze (), ¢, T, T") = 8} =0.

e—0

We go through the proof under the two alternatives.

() Assume first that Condition D holds. Then we can use results given
in Silvestrov (1972b, 1973, 1974), where conditions fbiconvergence and
J-compactness of the composition of cadlag processes have been obtained.
Actually, we can apply Theorem 2.2.3 from Silvestrov [(1974), page 96] to
processe$c. (1), t > 0} and{z.(¢), t > 0}. Whereas we need to consider intervals
of the form[T, T'] rather thar{0, T'], we repeat here the necessary estimates.

Let {x(7),t > 0} be a function from the space; and let 0< 7’ < T"” < oo,
¢ > 0. Themodulus of compactness for the uniform topol@gys defined and
denoted by

Ay(x(),e, T, T') = sup (Jx (") — x(@")]).

lt'—t"|<e,T<t'<t"<T"
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Forany 0< S < §’ < oo andc, C > 0 we have
P{A;(L:(ze(), e, T, T') = 8}
(3.17) < P{t.(T) < S} + P{r.(T") > S'}
+ P{Ay(te().c, T, T') = C} + P{A;((2().C, S, S') > 8}.

Now, J-convergence of the procesdes(t), ¢ > 0} was proved in Theorem 2.2.
As was mentioned above, the weak convergence of the procgsses: € V}
to a.s. continuous proces$sp(r),t € V} implies the J-convergence. Since the
limiting process is a.s. continuoug;convergence is equivalent to convergence
of these processes in the uniform topology. Also by Theorem 2.1, the processes
{t.(¢),t € V} converge weakly.

It therefore suffices to prove (3.16) only for those@" < T’ < oo for which
T,T' € V. ChooseS and S’ continuity points for the distribution functions of
the random variables.(T) and z.(T’), respectively. By using convergence of
processe$r.(¢), t > 0} in uniform topology, we get, from (3.17),

im limsupP{A; (¢ (e ("), c, T, T') > 8}
e—0

c|‘—>0
(3.18) < P{to(T) < S} + P{ro(T") > S’}
+ limsupP{A,;((¢&()),C, S, S') > 8}
e—0

Due to J-convergence of processgs (), ¢ > 0}, the expression on the right-
hand side can be made less than any 0 by first choosingS small enough and
S’ large enough and then by choosi@iggmall enough. This proves (3.16).

(i) Next assume that Condition Dholds. In this simpler case, the process
{¢: (1 (1)), t > O} has stepwise trajectories since the internal stopping processes
{z.(¢),t > 0} has such trajectories. Moreover, both processes have the same jump
points. For this reasof\ ; (¢.(t:(-)), ¢, T, T') > 0} C{0.[T, T'] < c}.

Using this relationship we get as with (3.14) that

Iimolim SUPP{Aj(¢e(Te()), e, T, T') > 68}
c—> —
(3.19) e
< |Im0|lm SUPP{O,[T, T'1 <c}=0.
=Y ¢—0

The proof is complete. [

4. Examples and remarks. In this section we discuss some variations of
results given above and consider examples.

4.1. Asymptotically independent component§he max procesgo(z),t > 0}
and the sum processy(z),r > 0} are independent if and only if the function

Hg”)((—oo, —v] U (v,00)) =0 for u > u,, v > 0. In this casea™ = a and
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the measuref[é“)(B) = [1o(B) for every u € Ri. Therefore,gogf%(t,y,O) =
@2.3(t,y,0) for everyu € R;.

Analogously, the max proce$& (), ¢ > 0} and the sum proceg$so(z), ¢ > 0}
are independent if and only if the functid'mg”)((w, o)) =0foru > uy, w>0.
Now, d® = d and the measuré[g‘)(C) = [13(A) for everyu € R1. Again,
wé’f%(t,o, 7) = ¢2.3(1,0,z) for everyu € R1. Obviously, the processego(?),
t > 0} and{o(¢), r > 0} are also independent.

In the case where both marginal independence assumptions are valid, the

max proces$éo(t), t > 0} and the two-dimensional sum proceg$go(t), ko(2)),

t > 0} are also independent. Indeeld(g’f%(((—oo, —v] U (v, ) x (w,0)) <

M5 ((—o0, —v]U (v, 00)) ATIS (w, 00)) = O for everyu > u,, v, w > 0. Again,

the constants satisiy™ = a, d™ = d while the measurél(z’%(A) = I,3(A) for

all u € R1. As aresultp(t, y,z2) = p2,3(t. v, ) for everyu € Ry.

4.2. Identical components.Let us consider the special case when the max and
sum variables coincide, that i, x = y. k., k =1, 2, .... In this case, Condition A
is implied by Condition B. Moreover, in this case, Condition B(a) implies that
w1(u) = T2((u, 00)) for u > 0. Also u, = 0 as follows from Condition B(a),
which implies thati, P{y. 1 > u} — oo ase — 0 for anyu < 0. Furthermore,
Condition C is implied by Condition B, anH(z’f%((v, 00) X (w, 00)) =TI 3((u v

v,00) X (w,00)) for u,v,w > 0 while TIy%((—00, —v] x (w,00)) = 0 for

u,v,w > 0.

By summarizing all of the above information, we see that, in this case, the
conditions to be validated are thoroughly reduced to Condition B.

Looking at the max processes, it is obvious that in this ¢a&® = f;(y.(-)),
where f; (x(-)) = maXe,: As(x(-)) and As(x(-)) = x(s) — x(s — 0) for & such
thatn.s > 1. S0&.(r) is a maximal jump of the process(s) on the interval
[0, r]. This functional is a.sJ-continuous with respect to measure generated by
the limiting procesgyo(s), s > 0} on the Borelo-algebra of the spac®; for
everytr > 0. Therefore&o(¢) = f;(yo(+)),t > 0.

4.3. Transformed max—sum processes with renewal stoppioet 1 (¢, x) be a
continuous function which is defined ¢, oo) x R3 while taking values inR;.
The transformed stochastic procggsz, ¢.(t:(¢))), t > 0} has trajectories which
belong to the spacP4 with probability 1. Theorem 3.2 implieg-convergence of
transformed processes

4.1)  {f(r,¢(z(®))), 1 > 0} 2 {f (2, ¢o(ro(0))), t > O} ase — 0.

Below, several examples illustrate (4.1). We can apply the relationship to a
variety of processes representing modifications of the original sum processes and
max processes.
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As a first example, take
{Ve(fs(t)) - gs(fs(t))J > 0}

s Iyo(to() — Eo(to(t)),1 > 0} ase — O.
As other examples, look at

(4.3) { £e(7:(1)) ’t>0}_1>{ §o(70(1)) ’
a+ [ye(ze ()] a + |yo(to(1))]

(4.2)

>O} ase — 0

and

(4.4) { £e(7:(1)) ,t>0}—J>{ §o(7o(1)) ’t>0}
at + |ye(7: (1)) at + |yo(7o(?))|

Herea > 0 is a regularization parameter which prevents the denominator in the
last two relationships to take the value zero.

Relationships (4.2)—(4.4) establish the weak convergence of the functionals that
describe deviations of max and sum processes with renewal stopping.

It is obvious that the procedgo(to(?)),t > 0} and the transformed process
{f(t, co(to(2))), t > O} are stochastically continuous in pointg V, whereV is
the set of stochastic continuity of the internal stopping pro¢ess), r > 0}. That
is why (4.1) implies, for example, that for any<071 < 7> < 00, T3, T2 € V,

(4.5) sup f(t,s:(te (1) = sup f(t, ¢o(ro(1))) ase — 0.
1€[T1,T3] 1e[T1,T3]

ase — 0.

This relationship, applied to the modified processes (4.2)—(4.4), establishes the
weak convergence of the functional that describes the maximal deviations given
by the corresponding processes.

We stress that the results presented in the current article give the general
framework for the asymptotic study of hybrid max—sum processes with renewal
stopping in the form of weak and functional limit theorems. Questions about
the explicit form of the corresponding limiting distributions require explicit
calculations outside the scope of this article.

4.4. Applications to risk processesLet {(Be,,ken), n =1,2,...} be, for
everye > 0, a sequence of i.i.d. random variables taking valueBirx [0, co).
Further we need nonrandom functioms> 0 for whichn, — oo ase — 0 and
constants, > 0. Let us introduce a proce§s. (t) = c.t — B (1:(¢)), t > 0}, where
Be(t) = stms Bek» Te(t) = SURs ike(s) < 1) and k(1) = stm£ Kex,t > 0.
Random variableg, ,, can be interpreted as successive claims within a portfolio,
while «. , stands for the interarrival times of the claims. The proeg&9 counts
the number of claims that arrived within the portfolio up to tim&he constant,
acts as a premium rate. The resulting procgsgt),t > 0} is called the (risk)
reserves process.
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(a) This process can be represented in the fap@) = ¢, - (t — k(1 (2))) +
Ve(Te(2)),t > 0, Whereys(t) = stzng (CeKe,k - ,Be,k), t>0.

(b) This representation can be supplemented by the estifaate (r —
ke(Te(1)))| <& (Te(2)),t >0, Where& @) = MaX.<1vin, CeKe ks I = 0.

The representation (a) and the estimate (b) show that asymptotic behavior of the
risk processes can be studied via mixed max—sum processes with renewal stopping
based on the sequences of i.i.d. random variaffs,, ve.n, ken), n =1,2,...},
whereé, , = ceken, Ven = Ceken — Ben,n=1,2, ...

(c) Assume that the functiomr1(u) = 0 for u > 0 in the corresponding
Condition A. Then automatically, = 0, since the random variablgs, = c.«¢ ,
are nonnegative.

Under Condition A and assumption (c), the corresponding limiting max process

&(@) = 0,t > 0. Thus, due to (b), the processes- (t — k. (t:(2))) £0as
¢ — 0 for ¢ > 0. If Conditions B and C hold together with;Dn the formc > 0
[this does not contradict (c)], then Theorem 3.2 and (b) imply that the processes
{ce - (t —Ke(1:(2))), t > 0} J-converge as — 0 to the process which is identically
equal to zero. In this case, the asymptotic behavior of the risk procgsses,
¢t > 0} coincides with the asymptotic behavior of the sum processes with renewal
stopping{y.(t.(¢)), t > 0}. The latter is described in Theorems 3.1 and 3.2.

Many questions from current day actuarial science can be formulated in terms
of functionals on the (B¢, ke.n), n = 1,2,...} process. The important concept
of large claimcan be formulated in terms of the portion that the maximal claim
consumes of the total claim amount. The behavior of the ratio between the largest
claim and the totality of the claims for the i.i.d. case can be derived from results in
Breiman (1965). In Ammeter (1964) we find a first attempt to consider the effect
of reducing the total claim amount by subtracting the maximal claim from it. An
extension to measure the influence of the largest claims on their total is linked to
the concept of Lorenz curve, which was already hinted at in Aebi, Embrechts and
Mikosch (1992).

4.5. More general stopping processesl he method of proof used in Theorems
3.1 and 3.2 can be applied to more general positive nondecreasing stopping
processe$r. (1), t > 0} such that:

(i) For everyr > 0, 1.(¢) is a Markov moment for the max—sum processes
{fs(h(’) (1), t > 0} for somehg > —oo if uy, = —oo andhg =u if u, > —oo.

(j) The relationship of joint weak convergence (3.1) holds for processes
{¢e(1), t > 0} and{z.(¢¥), t > O}, with some seV dense in(0, co).

Note that we involve truncated process{ég)(t),t > 0} only for one value
h = ho. Indeed, any Markov moment for the proce{séhf’) (t),t > 0} is also a



1864 D. S. SILVESTROV AND J. L. TEUGELS

Markov moment for the proces{ééh)(t),t > 0} for everyh € [—o0, hg]. Also,
since maxx, k) is a continuous function im, (j) implies that the same condition
holds for processe{ééh)(t), t > 0} andt.(¢), t > 0, for anyh € [—o0, 00).

Note also that in many cases one can avoid truncation in Condition (i). For
example, ifr,(¢) is, for everyr > 0, a Markov moment for the max—sum processes
{(ye (1), ke (2)),t > 0}, then condition (i) holds for ankg € R;.

A large number of various examples can be constructed where the stopping
moments have a renewal structure. We refer to Silvestrov (1974, 2000), where one
can find a variety of examples of stopping moments of such a type. Here we point
out only two typical examples.

The first one is concerned with the case whigg€r) = sup(s : f (s, Zéhf’) (s)) <
t),t > 0}. Here f (¢, x) is a continuous function which is defined @) co) x R3
while taking values inR;. By varying the functionf, one can construct many
types of renewal type stopping moments which are of a first-passage-time type.

To avoid consideration of improper moments, we assume that stigs,

Ag(hO) (s)) tends tooco in probability as — oo for everye € [0, gg). The alternative
could be to truncate moments(z). Obviously, condition (i) holds. It can be shown
[see, e.g., Silvestrov (1974) or Whitt (1980)] that, under Conditions A-C, the
functional sugs: f (s, x(s)) < 1) is for everyt > 0 a.s.J-continuous with respect

to the limiting proces$Zy"” (s), s > 0} if the procesgsup., f (s, 25 (5)), ¢ > 0}

is a.s. strictly monotonic. That is why condition (j) also holds with= (0, c0).

Another example which we would like to point out covers the models with
renewal extremal stopping. Such models were studied in Shanthikumur and Sumita
(1983), Sumita and Shanthikumur (1985), Silvestrov and Teugels (1998b), Gut and
Husler (1999) and Gut (2001). In this cage(r) = sup(s : Ay (&:(-)) <1),t > 0}.

For simplicity, we assume that;(«) > O for all u > 0 to exclude the case
of improper renewal moments far small enough. Again andition (i) holds.

It can be easily shown that, under Condition A, the functionajgx(-)) and
sups: Ag(x(-)) < t) are a.s.J-continuous with respect the limiting process
{&0(s),s > O} for everyr € U, whereU is the set ofu > 0 which are points of
continuity of the functionr,(u) appearing in Condition A. So, condition (j) also
holds.
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