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LIMIT THEOREMS FOR MIXED MAX–SUM PROCESSES
WITH RENEWAL STOPPING

BY DMITRII S. SILVESTROV1 AND JOZEF L. TEUGELS

Mälardalen University and Katholieke Universiteit Leuven

This article is devoted to the investigation of limit theorems for mixed
max–sum processes with renewal type stopping indexes. Limit theorems of
weak convergence type are obtained as well as functional limit theorems.

1. Introduction. The main object of this article is the derivation of a number
of limit theorems for mixed max–sum processes with renewal stopping. Such
processes are constructed from the three-component sequences of i.i.d. random
vectors taking values inR1 × R1 × [0,∞) in the following way. The first
component of the sequence is used to construct an extremal max process of i.i.d.
random variables. The second is used as a traditional real-valued sum process of
i.i.d. random variables. Finally, the third component is introduced by a nonnegative
sum process of i.i.d. random variables. It induces the stopping renewal process that
is a process of the first exceeding times over a specific levelt > 0. The first two
components are then stopped using this renewal process. The overall process so
obtained will be called amax–sum process with renewal stopping. Note that at this
point we do not restrict possible dependencies between the three components.

Max–sum processes with renewal stopping of the above type naturally appear
in various applications. To help visualize such processes, we give a few concrete
examples.

EXAMPLE 1. Consider an ordinary renewal process{X1,X2, . . .} gener-
ated by nonnegative independent random variables with common distributionF

of X. Define therenewal counting processN(t) = max(n :
∑

i≤n Xi ≤ t). The
two-dimensional process(maxi≤N(t) Xi,

∑
i≤N(t) Xi) serves as a special case of

a max–sum process with renewal stopping where max, sum and renewal compo-
nents are constructed from the sameX sequence of i.i.d. random variables.

EXAMPLE 2. Consider a similar setup based on a sequence{(X1, Y1),

(X2, Y2), . . .} of i.i.d. random vectors with nonnegative components. Interpret
the X values as the times in between claims in an insurance portfolio andY
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as the claim values. The renewal counting processN(t), constructed as in the
first example, counts the number of claims in the time interval[0, t]. The two-
dimensional process(maxi≤N(t) Yi,

∑
i≤N(t) Yi) serves as a special case of a

max–sum process with renewal stopping, where the first two components are
constructed from the sameY sequence of i.i.d. random variables, while the
renewal stopping process is constructed from theX sequence. The first component
represents the maximal claim experienced within the portfolio over the time
interval [0, t], while the second component models the totality of claims over the
same period. The possible dependence between arrival times and claim sizes can
be kept as part of the model.

EXAMPLE 3. Consider once more a similar setup, but now based on a
sequence of triplets{(X1, Y1,Z1), (X2, Y2,Z2), . . .} of i.i.d. random vectors with
nonnegative components. Interpret theX values as the interarrival times between
earthquakes at a specific location, theY values as the sizes of the quakes and theZ

values as the damages caused by these quakes. Alternatively, the last component
could also model the number of aftershocks from the corresponding earthquake.
The renewal counting processN(t), constructed as in the first example, counts
the number of quakes in the time interval[0, t]. Again, the bivariate process
(maxi≤N(t) Yi,

∑
i≤N(t) Zi) illustrates the max-sum process as constructed from

a three-dimensional(X,Y,Z) sequence. It is rather natural to look at the maximal
size of the quakes, represented by the first max component. The second sum
component could refer to the total damage caused by it. In the alternative
interpretation, the last component models the number of aftershocks from this
major earthquake.

In all three examples, the question of interest is the influence of the first max
component on the second sum component. As a particular case, one might be
interested in the asymptotic behavior when timet tends to infinity. The answer
to this question relies on another problem that needs to be solved first. What is
the asymptotic behavior of the joint distribution of the corresponding mixed max–
sum processes with renewal stopping? This is precisely the subject of the present
article.

If we look only at the first and third component, then we are in the realm of
limit theory for extremal processes with random sample size index. This area has
been thoroughly studied by Berman (1962), Barndorff-Nielsen (1964), Mogyoródi
(1967), Thomas (1972), Sen (1972), Galambos (1973, 1975, 1978, 1992, 1994),
Gnedenko and Gnedenko (1982), Beirlant and Teugels (1992) and, more recently,
Silvestrov and Teugels (1998a, b). We need to point out that the last article covers
limit theorems for extremal max processes with renewal stopping for the case of
asymptotic independency between the extremal process and the renewal stopping
process. Some related results concerning exceedances of ergodic regenerative
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processes with discrete time can also be found in works by Serfozo (1980),
Rootzén (1988) and Leadbetter and Rootzén (1988).

Results concerning the joint asymptotic behavior of maxima and sums of i.i.d.
random variables, in particular concerning the case when their quotient tends to 1,
were obtained by Arov and Bobrov (1960), O’Brien (1980), Maller and Resnick
(1984) and Pruitt (1987). Related results can also be found in Darling (1952),
Smirnov (1952) and Aebi, Embrechts and Mikosch (1992). In the general case,
the joint asymptotic distribution of maxima and sums of i.i.d. random variables
was studied for the scale–location model by Breiman (1965), Chow and Teugels
(1979), Resnick (1986) and Haas (1992). Related results also can be found in
Lamperti (1964), Anderson and Turkman (1991), Kesten and Maller (1994), Hsing
(1995), Ho and Hsing (1996) and the book edited by Hahn, Mason and Weiner
(1991).

Looking only at the second and third components, we end up in the area of limit
theorems for sums of random variables with random index. To avoid overloading
the bibliography, we refer only to contributions devoted to theorems for sums with
renewal type stopping indexes. A good bibliography for the period up to the early
seventies is Serfozo (1975). Another good summary can be found in the book
by Gut (1988). More specific references are Feller (1949, 1966), Smith (1955),
Dynkin (1955), Takacs (1959), Lamperti (1961, 1962), Borovkov (1967), Iglehart
(1969), Silvestrov (1972a, 1974, 1983, 1991), Kaplan and Silvestrov (1979), Gut
and Janson (1983), Niculescu (1984), Murphree and Smith (1986), Shedler (1987,
1993) and Roginsky (1989, 1994). Another source of results is formed by diffusion
approximations for risk processes as in Iglehart (1969), Siegmund (1975), Harrison
(1977), Gerber (1979), Grandell (1977, 1991), Beard, Pentikäinen and Pesonen
(1984), Aebi, Embrechts and Mikosch (1994), Asmussen (1984, 2000, 2003),
Schmidli (1992, 1997) and the books by Embrechts, Klüppelberg and Mikosch
(1997), Rolski, Schmidli, Schmidt and Teugels (1999) and Bening and Korolev
(2002).

We also refer to the articles by Silvestrov and Teugels (2001), which is an
extended report version of the current article, and Silvestrov (2000, 2002), where
one can find an extended bibliography of publications from the realm of this article.

The goal of the current work is to derive weak and functional limit theorems
for a combination of the above processes that we have coined max–sum processes
with renewal stopping. Our model includes as particular cases all three types of
models mentioned above, that is, mixed max–sum processes, max processes with
random indices of renewal type and sum processes with renewal stopping. Finding
inspiration in the classical model with i.i.d. random variables, the model under
consideration deals nevertheless with the joint behavior of max processes, sum
processes and renewal stopping processes where dependencies can be introduced
via the components of the initial i.i.d. random vectors. To increase their generality
and applicability, all results are presented in a random process setting and for a
general triangular array model. We show that the corresponding limit theorems can
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be obtained under conditions analogous to the well-known conditions of the central
criterion of convergence for sums of i.i.d. random variables and similar conditions
for maxima of i.i.d. random variables. No additional technical assumptions are
involved. In this sense, limit theorems presented herein give some kind of a “final
solution” for limit theorems for max–sum processes with renewal stopping based
on i.i.d. random variables.

More specifically, let{(ξε,n, γε,n, κε,n), n = 1,2, . . .} be for every ε > 0
a sequence of i.i.d. random variables taking values inR1 × R1 × [0,∞).
Furthermore, we need nonrandom functionsnε > 0 for whichnε → ∞ asε → 0.

We first introduce the components using nonrandom sample sizes, namely the
extremal max processξε(t) = maxk≤1∨tnε ξε,k , t ≥ 0, the sum processγε(t) =∑

k≤tnε
γε,k , t ≥ 0, and thepositive sum processκε(t) = ∑

k≤tnε
κε,k , t ≥ 0. The

last process induces arenewal stopping processτε(t) = sup(s :κε(s) ≤ t), t > 0,
that will behave like a random time clock on the three separate components.

In the current article our attention goes to a thorough study of themax–sum
process with renewal stopping(ξε(τε(t)), γε(τε(t)), κε(τε(t))), t > 0, because we
will give general conditions for weak convergence of these processes and for their
functional counterparts.

Before doing that we need to investigate in detail limit theorems for the
three-dimensional mixed max–sum processes{(ξε(t), γε(t), κε(t)), t > 0}. Among
others, we give conditions of weak convergence of such processes as well as
conditions of their convergence in SkorokhodJ -topology. We therefore first
recall what is known about the separate components of this three-variate process.
Because we definitely need marginal weak convergence of the max processes
{ξε(t), t > 0} and of the two-component sum processes{(κε(t), γε(t)), t ≥ 0}, we
automatically need a set of necessary conditions. They help in the formulation
of the conditions for joint weak convergence, in particular for the corresponding
limiting three-component mixed max–sum process.

The weak convergence andJ -convergence of mixed max–sum processes is
treated in Section 2. In Section 3 we deal with the weak and theJ -convergence
of the max–sum processes with renewal stopping. In the final Section 4 we treat
some examples.

2. Mixed max–sum processes. In this section we deal with general condi-
tions for the weak and functional convergence of the mixed max–sum processes.
We start with the extremal component. We then turn to the sum processes to finish
this section with the mixed max–sum processes.

2.1. Weak convergence of max processes.We start with the extremal compo-
nent. As usual, let us denoteCf the set of continuity of a functionf . The following
condition is standard in papers dealing with limit theorems for extremes:

CONDITION A. As ε > 0, nεP {ξε,1 > u} → π1(u) for all u ∈ R1 which
belongs to the setCπ1 for the limiting functionπ1(u).
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The ingredients on the right satisfy a number of conditions.

• The functionπ1(u) acts from(−∞,∞) into [0,∞] and is nonincreasing and
continuous from the right: ifπ1(u) = ∞, continuity is interpreted asπ1(t) ↑ ∞
ast ↓ u; furthermore,π1(−∞) = ∞ andπ1(∞) = 0.

• As such, these conditions imply that the function exp(−π1(u)) is a distribution
function. If we defineuπ = sup(u :π1(u) = ∞) ≥ −∞, then exp(−π1(u))

takes positive values foru > uπ and exp(−π1(u)) = 0 for u < uπ , while
exp(−π1(uπ)) = exp(−π1(uπ+)) can take any value in the interval[0,1].
One of the important aspects of classical extreme value theory is thescale–

location model. Here the random variablesξε,n are represented in the form
ξε,n = (ξn − aε)/bε, where ξn, n = 1,2, . . . , are i.i.d. random variables, and
aε andbε are some nonrandom centralization and normalization constants. In this
case, the distribution exp(−π1(u)) belongs to one of three families of classical
extremal distributions. See, for instance, Galambos (1978), Leadbetter, Lindgren
and Rootzén (1983), Resnick (1987) and Berman (1992).

This one-dimensional result can be extended. Denote byD0 the space of step
functions on(0,∞) continuous from the right and with a finite number of only
positive jumps in every finite subinterval of(0,∞). It is known [see, e.g., Serfozo
(1982), Leadbetter, Lindgren and Rootzén (1983), Resnick (1987) and Berman
(1992)] that Condition A is necessary and sufficient for the weak convergence

{ξε(t), t > 0} 	⇒ {ξ0(t), t > 0} asε → 0.(2.1)

The limiting process{ξ0(t), t > 0} in (2.1) is called anextremal process.
It has the following finite-dimensional distributions for 0= t0 < t1 < · · · < tn,
−∞ < u1 ≤ · · · ≤ un < ∞, n ≥ 1:

P {ξ0(t1) ≤ u1, . . . , ξ0(tn) ≤ un} =
n∏

k=1

exp
(−π1(uk)(tk − tk−1)

)
.(2.2)

Referring to the notationuπ above, letvπ = inf(u :π1(u) = 0) ≤ ∞. Then
the distribution function exp(−π1(u)) is concentrated on the interval[uπ, vπ ],
ξ0(t) → uπ a.s. ast → 0, whileξ0(t) → vπ a.s. ast → ∞.

Also, the process{ξ0(t), t > 0} is a stochastically continuous homogeneous
Markov jump process whose trajectories belong to the spaceD0 with probability 1.
It has transition probabilities

P {ξ0(s + t) ≤ u|ξ0(s) = v} = χ(v ≤ u)exp
(−tπ1(u)

)
,(2.3)

whereχ(A) is used for the indicator of eventA.

2.2. Weak convergence of sum processes.Let us consider the bivariate process
{(γε(t), κε(t)), t > 0}. It is a process of step sums of i.i.d. random vectors.
Conditions of weak convergence of these processes can be formulated with the
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use of the vector form of the classical criterion for weak convergence given in
Skorokhod (1964). These conditions involve the tail probabilities, the truncated
means and the truncated variances of the random variables.

We use the abbreviationR = (R1 × [0,∞)) \ {(0,0)} and we writeBR for
the Borelσ -algebra of subsets ofR. Let 	 be the class of continuous bounded
functions defined onR and vanishing in some neighborhood of the point(0,0).
The condition for convergence takes the following form:

CONDITION B. (a) As ε → 0, nεEφ(γε,1, κε,1) = nε

∫
R φ(v,w)P {(γε,1,

κε,1) ∈ dv × dw} → ∫
R φ(v,w)�2,3(dv × dw) for all φ ∈ 	.

(b) As ε → 0, nεEγε,1χ(|γε,1| ≤ v) → a(v) for somev > 0 for which the
points±v are points of continuity of the function�2,3({v} × [0,∞)).

(c) As ε → 0, nεEκε,1χ(κε,1 ≤ w) → c(v) for somew > 0 which is a point of
continuity of the function�2,3(R1 × {w}).

(d) As ε → 0 and thenv → 0, nε(Eγ 2
ε,1χ(|γε,1| ≤ v) − (Eγε,1χ(|γε,1| ≤

v))2) → b2. This expression refers to two repeated limits of the form
lim0<v→0 lim supε→0 and lim0<v→0 lim inf ε→0.

We list a number of properties of the limits on the right.

• �2,3(A) is a measure on theσ -algebraBR .
• The projection�2(B) = �2,3(B × [0,∞)) is a measure on the Borelσ -algebra

of subsets ofR1 \ {0} such that
∫
R1

s2/(s2 + 1)�2(ds) < ∞, where
∫

is an
integral over the corresponding interval with the point 0 excluded from the
interval of integration.

• The projection�3(C) = �2,3(R1 × C) is a measure on the Borelσ -algebra of
subsets of(0,∞) such that

∫
(0,∞) s/(s + 1)�3(ds) < ∞.

• a(v), v > 0 is a real-valued measurable function and Condition B(b) can, under
Condition B(a), only hold simultaneously for all pointsv > 0 for which±v are
points of continuity of the function�2({v}) and for any such point the constant
a = a(v)−∫

|s|<v s3/(1+ s2)�2(ds)+∫
|s|>v s/(1+ s2)�2(ds) does not depend

on the choice ofv.
• Function c(w),w > 0, is a nonnegative nondecreasing function and Condi-

tion B(c) can, under Condition B(a), only hold simultaneously for all points
w > 0 for which w is a point of continuity of the function�3({w}) and
for any such point the constantsc = c(w) − ∫

(0,w) s�3(ds) ≥ 0 and d =
c + ∫

(0,∞) s/(1+ s2)�3(ds) do not depend on the choice ofw.

• Finally, b2 is a nonnegative constant.

The nonnegativity of the random variablesκε,1 and Conditions B(a)–(c) imply
that the repeated limits for variances of these random variables and covariances of
random variablesκε,1 andγε,1, analogous to those in Condition B(d), are equal to
zero. For this reason, the corresponding conditions are not included in Condition B.
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According to a central criterion of convergence [see, e.g., Loève (1955)],
Condition B is necessary and sufficient for the bivariate weak convergence{(

γε(t), κε(t)
)
, t ≥ 0

} 	⇒ {(
γ0(t), κ0(t)

)
, t ≥ 0

}
asε → 0.(2.4)

Denote byD the space of functions on(0,∞) without discontinuities of
the second kind and continuous from the right. Let alsoD+ be the space of
nondecreasing functions fromD and let D++ be the space of nonnegative
functions fromD+.

The limiting process{(γ0(t), κ0(t)), t > 0} is a homogeneous stochastically
continuous process with independent increments whose trajectories belong to the
spaceD × D++ with probability 1 and with the characteristic function fort > 0
given by

E exp
{
i
(
yγ0(t) + zκ0(t)

)}
= ϕ2,3(t, y, z)

= exp
{
t

(
iay − 1

2
b2y2 + i dz

+
∫
R

(
ei(yv+zw) − 1− i(yv + zw)

1+ v2 + w2

)
�2,3(dv × dw)

)}
.

(2.5)

2.3. Weak convergence of mixed max–sum processes.We finally turn to the
study of the joint behavior of the three components together. The following
condition should be added to Conditions A and B to provide joint weak
convergence of max and sum processes:

CONDITION C. As ε → 0, nεEχ(ξε,1 > u)φ(γε,1, κε,1) = nε ×∫
R φ(v,w)P {ξε,1 > u, (γε,1, κε,1) ∈ dv×dw} → ∫

R φ(v,w)�
(u)
2,3(dv×dw) for all

u > uπ,u ∈ Cπ1 andφ ∈ 	, where�
(u)
2,3(A) is a measure on theσ -algebraBR for

everyu > uπ,u ∈ Cπ1.

Obviously�
(u)
2,3(A) is monotonic inu > uπ,u ∈ Cπ1, because the prelimiting

functions in the left-hand side in Condition C are monotonic inu for nonnegative
φ ∈ 	.

(a) Due to this property, there exist limu′∈Cπ1,u<u′→u �
(u′)
2,3 (A) = �

(u)
2,3(A)

for every A ∈ BR , and u > uπ,u /∈ Cπ1, and also foru = uπ if uπ > −∞,

π1(uπ) < ∞.
(b) The following estimates are valid:�(u1)

2,3 (A) − �
(u2)
2,3 (A) ≤ (π1(u1) −

π1(u2)) ∧ �2,3(A); in particular, �(u1)
2,3 (A) ≤ π1(u1) ∧ �2,3(A) for any A ∈

BR , and uπ < u1 ≤ u2 < ∞, and also foruπ = u1 ≤ u2 < ∞ if uπ > −∞,

π1(uπ) < ∞.
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These estimates can be verified by the limiting transition in the corresponding
estimates for the prelimiting functions in the left-hand side in Condition C, for
nonnegativeφ ∈ 	 approximating in a proper way the indicators of setsA ∈ BR ,
and uπ < u1 ≤ u2 < ∞, u1, u2 ∈ Cπ1. Then by the limiting transition inu′

i ∈
Cπ1, ui < u′

i → ui, i = 1,2, these estimates can be obtained for anyA ∈ BR and
uπ < u1 ≤ u2 < ∞ anduπ = u1 ≤ u2 < ∞ if uπ > −∞, π1(uπ) < ∞. It follows
from these estimates that convergence in statement is uniform with respect to
A ∈ BR . This implies that�(u)

2,3(A) is a measure for everyu > uπ and foru = uπ

if uπ > −∞, π1(uπ) < ∞.

(c) These estimates also imply that�
(u)
2,3(A), as a function inu for every

A ∈ BR, is nondecreasing and right-continuous at any pointu > uπ and at point
u = uπ if uπ > −∞, π1(uπ) < ∞.

Foru > uπ and foru = uπ if uπ > −∞, π1(uπ) < ∞, we define a measure on
theσ -algebraBR by the formula

�̂
(u)
2,3(A) = �2,3(A) − �

(u)
2,3(A).(2.6)

Let us also define for the corresponding projections�
(u)
2 (B) = �

(u)
2,3(B ×

[0,∞)) and �̂
(u)
2 (B) = �̂

(u)
2,3(B × [0,∞)), which are measures on the Borel

σ -algebra of subsets ofR1 \ {0}, and also define�(u)
3 (C) = �

(u)
2,3(R1 × C) and

�̂
(u)
3 (C) = �̂

(u)
2,3(R1 × C), which are measures on the Borelσ -algebra of subsets

of (0,∞).
To be able to write down the representation of the limiting process, we define for

u > uπ or u = uπ if uπ > −∞, π1(uπ) < ∞ andt > 0 the characteristic function

ϕ
(u)
2,3(t, y, z)

= exp
{
t

(
ia(u)y − 1

2
b2y2 + id(u)z

+
∫
R

(
ei(yv+zw) − 1− i(yv + zw)

1+ v2 + w2

)
�̂

(u)
2,3(dv × dw)

)}
,

(2.7)

where

a(u) = a −
∫
R1

s

1+ s2
�

(u)
2 (ds), d(u) = d −

∫
(0,∞)

s

1+ s2
�

(u)
3 (ds).(2.8)

Note also that the constantsa, b, d, a(u) andd(u) and the measures�2,3(A) and
�

(u)
2,3(A) in (2.6)–(2.8) are determined by Conditions A–C.

It follows from statement (b) thata(u), d(u) andϕ
(u)
2,3(t, y, z) are right-continuous

functions inu > uπ and foru = uπ if uπ > −∞, π1(uπ) < ∞.
Let us also defineϕ(u)

2,3(t, y, z) = 1 for u < uπ or for u = uπ if uπ > −∞,
π1(uπ) = ∞. Here is a first key result.
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THEOREM 2.1. Let ConditionsA–C hold. Then{(
ξε(t), γε(t), κε(t)

)
, t > 0

}
	⇒ {(

ξ0(t), γ0(t), κ0(t)
)
, t > 0

}
asε → 0,

(2.9)

where{(ξ0(t), γ0(t), κ0(t)), t > 0} is a homogeneous, stochastically continuous
Markov process whose trajectories belong to the spaceD0 × D × D++ with
probability 1 and transition probabilities that have the hybrid characteristic-
distribution form

E
{
exp

{
i
(
y
(
γ0(t + s) − γ0(s)

) + z
(
κ0(t + s) − κ0(s)

))}
× χ

(
ξ0(t + s) ≤ u

) | ξ0(s) = u′, γ0(s) = v′, κ0(s) = w′}
= χ(u′ ≤ u)exp

(−tπ1(u)
) · ϕ(u)

2,3(t, y, z).

(2.10)

PROOF. The method that we use is based on application of the classical
central criterion of convergence to distributions of sum processes conditioned in a
special way with respect to the corresponding max components. This method was
proposed in Chow and Teugels (1979), where asymptotics of joint distributions
of maxima and sums of i.i.d. random variables (ξε,k = γε,k, k = 1,2, . . . ) was
investigated for the case of the scale location model in the situation when the
random variables belong to the domain of attraction of a stable law. Here, we
deal with nonidentical random variablesξε,k and γε,k and a general triangular
array model. This complicates the consideration. Nevertheless, the method still
is the most effective one. It also yields explicit expressions for the corresponding
limiting characteristics that are not easy to guess in advance.

By the definition of the processesξε(t), γε(t) andκε(t) for any 0= t0 < t1 <

· · · < tm < ∞, −∞ < u1 < · · · < um < ∞, ȳ = (y1, . . . , ym), z̄ = (z1, . . . , zm) ∈
Rm, m ≥ 1, and forε such thatt1nε ≥ 1,

E exp

{
i

m∑
l=1

(
ylγε(tl) + zlκε(tl)

)}
χ

(
ξε(tl) ≤ ul, l = 1, . . . ,m

)

=
m∏

l=1

(
E exp

{
i(yl,mγε,1 + zl,mκε,1)

}
χ(ξε,1 ≤ ul)

)[tlnε]−[tl−1nε],
(2.11)

whereyl,m = yl + · · · + ym, zl,m = zl + · · · + zm, l = 1, . . . ,m.
It follows from (2.11) that (2.9) will result if we can show that wheny, z ∈ R1,

for everyu ∈ Cπ1,(
E exp{i(yγε,1 + zκε,1)}χ(ξε,1 ≤ u)

)nε

→ exp
(−π1(u)

)
ϕ

(u)
2,3(1, y, z) asε → 0.

(2.12)

This relationship is obvious for the caseu < uπ , since in this case the expression
on the right-hand side in (2.12) tends to zero due to Condition A and the expression
on the left-hand side in (2.12) is also equal to zero due to the same condition.
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If uπ is a point of continuity of the functionπ1(u), thenπ1(uπ) = ∞. In this
case again the expression on the right-hand side in (2.12) taken foru = uπ tends
to zero due to Condition A and the expression on the left-hand side in (2.12) taken
for u = uπ is also equal to zero. So, the only case that needs to be considered is
whenu > uπ,u ∈ Cπ1.

Obviously(
E exp{i(yγε,1 + zκε,1)}χ(ξε,1 ≤ u)

)nε

= (P {ξε,1 ≤ u})nε
(
E{exp{i(yγε,1 + zκε,1)} | ξε,1 ≤ u})nε .

(2.13)

By Condition A foru > uπ,u ∈ Cπ1,

(P {ξε,1 ≤ u})nε → exp
(−π1(u)

)
asε → 0.(2.14)

From (2.13) and (2.14), relation (2.12) will be proved if we show that when
y, z ∈ R1, for everyu > uπ,u ∈ Cπ1,

(
E

{
exp{i(yγε,1 + zκε,1)} | ξε,1 ≤ u

})nε → ϕ
(u)
2,3(1, y, z) asε → 0.(2.15)

For everyε > 0 andu > uπ,u ∈ Cπ1, define sequences of i.i.d. random vectors
{(γ (u)

ε,n , κ
(u)
ε,n), n = 1,2, . . .} such that forv ∈ R1,w ≥ 0,

P
{
γ

(u)
ε,1 ≤ v, κ

(u)
ε,1 ≤ w

} = P {γε,1 ≤ v, κε,1 ≤ w | ξε,1 ≤ u}.(2.16)

With these sequences we can associate their natural sum processes defined by

γ (u)
ε (t) = ∑

k≤tnε

γ
(u)
ε,k , κ(u)

ε (t) = ∑
k≤tnε

κ
(u)
ε,k , t ≥ 0.(2.17)

For givenu > uπ,u ∈ Cπ1, relationship (2.15) is actually equivalent to

{(
γ (u)
ε (t), κ(u)

ε (t)
)
, t ≥ 0

}
	⇒ {(

γ
(u)
0 (t), κ

(u)
0 (t)

)
, t ≥ 0

}
asε → 0,

(2.18)

where {(γ (u)
0 (t), κ

(u)
0 (t)), t ≥ 0} is a homogeneous process with independent

increments with the characteristic functionϕ
(u)
2,3(t, y, z).

It was pointed out in Section 2.1 that Condition B is necessary and sufficient
for (2.18) to hold. Of course, all of these conditions should be checked for
the random vectors(γ (u)

ε,1 , κ
(u)
ε,1) rather than for the random vectors(γε,1, κε,1).

These conditions should be checked for everyu > uπ,u ∈ Cπ1. Comparison of
(2.5) and (2.7) shows that we need constantsa(u), b, d(u) and measureŝ�(u)

2,3(A) to
replace constantsa, b, d and measures�2,3(A) in these conditions. We deal with
all of them in separate steps.



1848 D. S. SILVESTROV AND J. L. TEUGELS

(i) Let us first treat the asymptotic relationship in Condition B(a). Note first
that Condition A implies that for everyu > uπ ,

P {ξε,1 ≤ u} → 1 asε → 0.(2.19)

Using Conditions B(a) and C and (2.19) we have, for everyu > uπ,u ∈ Cπ1 and
every functionφ ∈ 	,

nεEφ
(
γ

(u)
ε,1 , κ

(u)
ε,1

)
= nε

Eχ(ξε,1 ≤ u)φ(γε,1, κε,1)

P {ξε,1 ≤ u}
= nε

Eφ(γε,1, κε,1) − Eχ(ξε,1 > u)φ(γε,1, κε,1)

P {ξε,1 ≤ u}
→

∫
R

φ(v,w)�2,3(dv × dw) −
∫
R

φ(v,w)�
(u)
2,3(dv × dw)

=
∫
R

φ(v,w)�̂
(u)
2,3(dv × dw) as ε → 0.

(2.20)

(ii) We turn to the asymptotic relationships given in Conditions B(b) and (c)
which have the same structure. We restrict attention to the more general
Condition B(b) because the proof of Condition B(c) is analogous.

Using Conditions A and B(b) we have, for everyu > uπ,u ∈ Cπ1 and 0<

vk → 0 ask → ∞,

lim sup
ε→0

|nεEγε,1χ(ξε,1 > u, |γε,1| ≤ vk)|

≤ lim sup
ε→0

nεE|γε,1|χ(ξε,1 > u, |γε,1| ≤ vk)

≤ lim sup
ε→0

vknεP {ξε,1 > u} = vkπ1(u) → 0 ask → ∞.

(2.21)

We use (2.20) again together with (2.21) to see that for everyu > uπ,u ∈ Cπ1

and 0< vk < v,vk → 0 such that�(u)
2 ({±v}) = �

(u)
2 ({±vk}) = 0,

lim
ε→0

nεEγε,1χ(ξε,1 > u, |γε,1| ≤ v)

= lim
k→∞ lim

ε→0
nεEγε,1χ(ξε,1 > u,vk ≤ |γε,1| ≤ v)

= lim
k→∞

∫
vk≤|s|≤v

s�
(u)
2 (ds) =

∫
|s|≤v

s�
(u)
2 (ds).

(2.22)
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Combining (2.22) and Condition B(b) we get foru > uπ,u ∈ Cπ1 andv > 0
such that�(u)

2 ({±v}) = 0,

nεEγ
(u)
ε,1 χ

(∣∣γ (u)
ε,1

∣∣ ≤ v
)

= nε

Eγε,1χ(ξε,1 ≤ u, |γε,1| ≤ v)

P {ξε,1 ≤ u}
= nε

Eγε,1χ(|γε,1| ≤ v) − Eγε,1χ(ξε,1 > u, |γε,1| ≤ v)

P {ξε,1 ≤ u}
→ a(u)(v)

= a(v) −
∫
|s|≤v

s�
(u)
1,2(ds) asε → 0.

(2.23)

This relationship enables us to calculate the corresponding constanta(u) in (2.7)
that replacesa. Indeed, according to relationships (2.20) and (2.23) and the
defining formula for the constanta, we have

a(u) = a(u)(v) −
∫
|s|<v

s3

1+ s2
�̂

(u)
2 (ds) +

∫
|s|>v

s

1+ s2
�̂

(u)
2 (ds)

= a(v) −
∫
|s|<v

s�
(u)
1,2(ds) −

∫
|s|<v

s3

1+ s2

[
�2(ds) − �

(u)
2 (ds)

]

+
∫
|s|>v

s

1+ s2

[
�2(ds) − �

(u)
2 (ds)

]

= a −
∫
|s|<v

s�
(u)
2 (ds)

+
∫
|s|<v

s3

1+ s2�
(u)
2 (ds) −

∫
|s|>v

s

1+ s2�
(u)
2 (ds)

= a −
∫
R1

s

1+ s2�
(u)
2 (ds).

(2.24)

(iii) Finally, we must check Condition B(d) for the random variablesγ
(u)
ε,1 .

Note that (2.23) implies in an obvious way that, foru > uπ,u ∈ Cπ1 andv > 0,

lim sup
ε→0

nε

(
Eγ

(u)
ε,1 χ

(∣∣γ (u)
ε,1

∣∣ ≤ v
))2 = 0.(2.25)
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Then, using Conditions A and B(d) we get foru > uπ,u ∈ Cπ1,

lim sup
ε→0

nεEγ 2
ε,1χ(ξε,1 > u, |γε,1| ≤ v)

≤ lim sup
ε→0

√
nεP {ξε,1 > u} ·

√
nεEγ 4

ε,1χ(|γε,1| ≤ v)

≤ lim sup
ε→0

√
nεP {ξε,1 > u} · lim sup

ε→0

√
v2nεEγ 2

ε,1χ(|γε,1| ≤ v)

≤ √
π1(u) ·

√
v2 lim sup

ε→0
nεEγ 2

ε,1χ(|γε,1| ≤ v) → 0 as 0< v → 0.

(2.26)

Using (2.19), (2.25), (2.26) and Conditions B(b) and (d) we get, foru > uπ,

u ∈ Cπ1,

lim
0<v→0

lim
ε→0

nε Varγ (u)
ε,1 χ

(∣∣γ (u)
ε,1

∣∣ ≤ v
)

= lim
0<v→0

lim
ε→0

nεE
(
γ

(u)
ε,1

)2
χ

(∣∣γ (u)
ε,1

∣∣ ≤ v
)

= lim
0<v→0

lim
ε→0

nε

Eγ 2
ε,1χ(|γε,1| ≤ v) − Eγ 2

ε,1χ(ξε,1 > u, |γε,1| ≤ v)

P {ξε,1 ≤ u}
= lim

0<v→0
lim
ε→0

nεEγ 2
ε,1χ(|γε,1| ≤ v)

= lim
0<v→0

lim
ε→0

nε Varγ 2
ε,1χ(|γε,1| ≤ v) = b2.

(2.27)

Note that the constantb does not depend onu > uπ . By combining the above
determinations, the proof is complete.�

2.4. J -convergence of mixed max–sum processes.We turn to convergence in
J -topology. LetDk be the space of functions on(0,∞), taking values inRk ,
that are right-continuous and have no discontinuities of the second kind. The

symbol {ζε(t), t > 0} J→ {ζ0(t), t > 0} as ε → 0 is used to indicate that the
processesζε(t), whose trajectories belong to the spaceDk with probability 1,
converge in SkorokhodJ -topology to a processζ0(t) on any interval[t ′, t ′′], where
0 < t ′ < t ′′ < ∞ are points of stochastic continuity of the process{ζ0(t), t > 0}.

We refer to the books by Billingsley (1968) and Gikhman and Skorokhod (1971)
as well as to the articles by Stone (1963) and Lindvall (1973), where one can
find the basic definitions and general facts concerningJ -convergence for random
processes on finite and infinite intervals.

Our interest lies in the process{ζε(t) = (ξε(t), γε(t), κε(t)), t > 0} which has
phase spaceR1 × R1 × [0,∞) and trajectories that by definition belong to the
spaceD3 with probability 1. It is a Markov process. We denote the transition
probabilities of this process byPε((u, v,w), t, t + s,A).

The following theorem is our second main result.



MIXED MAX–SUM PROCESSES 1851

THEOREM 2.2. Let the ConditionsA–C hold. Then

{ζε(t), t > 0} J→ {ζ0(t), t > 0} asε → 0.(2.28)

PROOF. Let {x(t), t > 0} be a function from the spaceDk and 0< T <

T ′ < ∞, c > 0. Denote themodulus of compactness for topologyJ by

�J

(
x(·), c, T , T ′) = sup

T ∨(t−c)≤t ′≤t≤t ′′≤(t+c)∧T ′
min

(|x(t ′) − x(t)|, |x(t ′′) − x(t)|).
Whereas the weak convergence of the processes{ζε(t), t > 0} has been proven in
Theorem 2.1, Theorem 2.2 will follow if we can show that, for all 0< T < T ′ < ∞
andδ > 0,

lim
c→0

lim sup
ε→0

P
{
�J

(
ζε(·), c, T , T ′) ≥ δ

} = 0.(2.29)

Note that the first component{ξε(t), t > 0} is a nondecreasing process with
probability 1. We use this property to reduce the phase space of the first component
to the interval[h,∞). This is an essential part in the proof of theJ -compactness
relationship (2.29).

Let us choose:

(d) h > −∞ to be a point of continuity of the functionπ1(u) if uπ = −∞;
(e) h = uπ if uπ > −∞.

We introduce the truncated random variablesξ̂
(h)
ε,k = ξε,k ∨ h, k = 1,2, . . . , and

the corresponding max processes

ξ̂ (h)
ε (t) = max

k≤1∨tnε

ξ̂
(h)
ε,k = ξε(t) ∨ h, t ≥ 0.(2.30)

The three-variate process{ζ̂ (h)
ε (t) = (ξ̂

(h)
ε (t), γε(t), κε(t)), t > 0} has the phase

space[h,∞) × R1 × [0,∞) and its trajectories belong to the spaceD3 with
probability 1. It is a Markov process which has for(u, v,w) ∈ [h,∞) × R1 ×
[0,∞) the same transition probabilitiesPε((u, v,w), t, t + s,A) as the process
{ζε(t), t > 0}.

Note that Theorem 2.1 can be applied to max–sum processes{ζ̂ (h)
ε (t), t > 0}

because all conditions of Theorem 2.1 are satisfied. The only difference is that in
the current case the corresponding limiting functions and measures in Conditions
A–C should be changed. We introduce new functions indexed by a lower indexh

as follows:π1;h(u) = π1(u), �2,3;h(A) = �2,3(A) for u ≥ h, while π1;h(u) = ∞,
�2,3;h(A) = �2,3(A) for u < h. Note that only in the case whenuπ = −∞ are
the changes genuine, while in the caseuπ > −∞ andh = uπ the new functions
coincide with the old ones.

According to Theorem 2.1, the following relationship holds:{
ζ̂ (h)
ε (t), t > 0

} 	⇒ {
ζ̂

(h)
0 (t), t ≥ 0

}
asε → 0.(2.31)
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This relationship also follows directly from (2.9) since according to (2.30) the
random variablêξ (h)

ε (t) is a continuous function of the random variableξε(t) for
everyt > 0 andh ∈ R1.

The limiting process{ζ̂ (h)
0 (t), t > 0} is fully similar to the process described

in Theorem 2.1 with the only changes thath is the lower index in the limiting
characteristics. Moreover, it can be easily shown that the process{ζ̂ (h)

0 (t), t > 0}
can be constructed from the process{ζ0(t), t > 0} by simple truncation of the first

component of this process, that is,{ζ̂ (h)
0 (t) = (ξ̂

(h)
0 (t), γ0(t), κ0(t)), t > 0}, where

ξ̂
(h)
0 (t) = ξ0(t) ∨ h, t > 0. Note again that in the caseuπ = −∞ the truncation is

genuine while in the casesuπ > −∞ andh = uπ procesŝξ (h)
0 (t) ≡ ξ0(t), t > 0.

Let us now use the inequality

P
{
�J

(
ζε(·), c, T , T ′) ≥ 2δ

}
≤ P

{
�J

(
ζ̂ (h)
ε (·), c, T , T ′) ≥ δ

} + P

{
sup

t∈[T,T ′]
∣∣ξ̂ (h)

ε (t) − ξε(t)
∣∣ ≥ δ

}
.

(2.32)

Obviously,

P

{
sup

t∈[T,T ′]
∣∣ξ̂ (h)

ε (t) − ξε(t)
∣∣ ≥ δ

}
≤ P {ξε(T ) ≤ h − δ}.(2.33)

One can always chooseδ/2 ≤ δh ≤ δ in such a way that the pointh − δh is a
point of continuity of functionπ1(u). Then we get, forε such thatnεT ≥ 1,

lim
h→−∞ lim sup

ε→0
P {ξε(T ) ≤ h − δ}

≤ lim
h→−∞ lim sup

ε→0
P {ξε(T ) ≤ h − δh}

= lim
h→−∞ lim sup

ε→0
P {ξε,1 ≤ h − δh}[nεT ]

= lim
h→−∞ e−π1(h−δh)T = 0.

(2.34)

Inequalities (2.33) and relationship (2.34) imply that for any 0< T < T ′ < ∞
andδ > 0,

lim
h→−∞ lim sup

ε→0
P

{
sup

t∈[T,T ′]
∣∣ξ̂ (h)

ε (t) − ξε(t)
∣∣ ≥ δ

}
= 0.(2.35)

In the caseuπ > −∞, the internal limiting expression on the left-hand side
in (2.34) is equal to zero. In this case additional external limit transitions given in
(2.34) and (2.35) are not required.

Relationships (2.32) and (2.35) imply that (2.29) will follow if we show that for
anyh, chosen as described above, and any 0< T < T ′ < ∞ andδ > 0,

lim
c→0

lim sup
ε→0

P
{
�J

(
ζ̂ (h)
ε (·), c, T , T ′) ≥ δ

} = 0.(2.36)
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Let us define

αε(h, c, T ,T ′, δ)

= sup
u≥h,−∞<v<∞,w≥0

sup
T ≤t≤t+s≤t+c≤T ′

Pε

(
(u, v,w), t, t + s, Sδ

(
(u, v,w)

))
,

whereSδ((u, v,w)) = {(u′, v′,w′) : (|u − u′|2 + |v − v′|2 + |w − w′|2)1/2 > δ}.
We showed in (2.31) weak convergence of processes{ζ̂ (h)

ε (t), t > 0}. As is
known [see Gikhman and Skorokhod (1971)], in this case (2.36) follows from the
following relationship that should be proved for any 0< T < T ′ < ∞ andδ > 0:

lim
c→0

lim sup
ε→0

αε(h, c, T ,T ′, δ) = 0.(2.37)

We now exploit the fact that the process{ξε(t), t > 0} is nondecreasing and that
the two processes{γε(t), t > 0} and{κε(t), t > 0} are processes with independent
increments. We get the estimate

αε(h, c, T ,T ′,3δ)

≤ sup
u≥h

sup
T ≤t≤t+s≤t+c≤T ′

P {ξε(t + s) − ξε(t) > δ|ξε(t) = u}

+ sup
T ≤t≤t+s≤t+c≤T ′

(
P {|γε(t + s) − γε(t)| > δ}

+ P {κε(t + s) − κε(t) > δ})
≤ sup

u≥h

sup
T ≤t≤t+s≤t+c≤T ′

(
1− P {ξε,1 ≤ u + δ}[nε(t+s)]−[nεt])

+ sup
T ≤t≤t+s≤t+c≤T ′

([nε(t + s)] − [nεt])
× (

P {|γε,1| > δ} + |Eγε,1χ(|γε,1| ≤ δ)|
+ Varγε,1χ(|γε,1| ≤ δ) + P {κε,1 > δ} + Eκε,1χ(κε,1 ≤ δ)

)
≤ 1− (

P {ξε,1 ≤ h + δ})nεc

+ cnε

(
P {|γε,1| > δ} + |Eγε,1χ(|γε,1| ≤ δ)|
+ Varγε,1χ(|γε,1| ≤ δ) + P {κε,1 > δ} + Eκε,1χ(κε,1 ≤ δ)

)
.

(2.38)

We are now in a position to use the truncation of the phase space described
above, and Conditions A–C.

Indeed, for everyh, chosen according to choice (d) or (e),δ/2 ≤ δh ≤ δ can be
chosen such that

π1(h + δh) < ∞.(2.39)
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Conditions A–C and (2.39) applied to (2.38) yield

lim
c→0

lim sup
ε→0

αε(h, c, T ,T ′,3δ)

≤ lim
c→0

lim sup
ε→0

(
1− (P {ξε,1 ≤ h + δh})nεc

)
+ lim

c→0
c · lim sup

ε→0
nε

(
P {|γε,1| > δ} + |Eγε,1χ(|γε,1| ≤ δ)|

+ Varγε,1χ(|γε,1| ≤ δ)

+ P {κε,1 > δ} + Eκε,1χ(κε,1 ≤ δ)
)

= lim
c→0

(
1− exp(−π1(h + δh)c)

) = 0.

(2.40)

The proof is complete. �

3. Mixed max–sum processes with renewal stopping. In this section we
deal with general conditions for the weak and functional convergence of the mixed
max–sum processes with renewal stopping.

3.1. Joint weak convergence of max–sum processes and renewal stopping
processes. To start the discussion we need some results about the renewal
counting processes. We introduce the renewal stopping processes{τε(t) =
sup(s :κε(s) ≤ t), t > 0}, whereκε(t) = ∑

k≤tnε
κε,k, t ≥ 0, have been introduced

in Section 1. We interpret the sequenceκε,k as the times between renewals, and
henceτε(t)nε − 1 is the number of renewals in the interval[0, tnε].

We assume the basic Condition B. To exclude the trivial case where the process
{κ0(t) = 0, t > 0}, we also assume the following condition on the measure�3(C)

and the quantityc from Condition B:

CONDITION D. We havec > 0 or�3((v,∞)) > 0 for somev > 0.

If we look at the inverse process{τ0(t) = sup(s :κ0(s) ≤ t), t > 0}, then

Condition D implies thatκ0(t)
P→ ∞ ast → ∞ and thereforeτ0(t) is an a.s. finite

random variable for everyt > 0. Conditions B and D obviously imply that, for

everyε small enough (sayε ≤ ε0), κε(t)
P→ ∞ as t → ∞ and therefore also the

renewal stopping processτε(t) is an a.s. finite random variable for everyt > 0.
Furthermore, by definition, the trajectories of the processes{τε(t), t > 0} a.s.
belong to the spaceD++ for everyε ≤ ε0.

Let us denote byV the set of points of stochastic continuity of the process
{τ0(t), t > 0}. This process is stochastically continuous, that is,V = (0,∞) if
one of the following conditions hold: (i)c > 0, (ii) �3((v,∞)) → ∞ asv → 0
or (iii) �3((v,∞)) is a continuous function. If all three conditions (i)–(iii) are
violated, then the setV is (0,∞) excluding perhaps some countable or finite set.
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Namely, the setV = (0,∞) \ V = {v1l1 + · · · + vmlm : l1, . . . , lm = 0,1, . . . , l1 +
· · · + lm ≥ 1,m ≥ 1}, where{v1, v2, . . .} is the set of discontinuity points of the
function �3((v,∞)). The process{τ0(t), t > 0} is a.s. continuous if the process
{κ0(t), t > 0} is strictly monotone, that is, if at least one of the conditions (i) or (ii)
holds.

Preparing the results for the mixed max–sum processes with renewal stopping,
we formulate conditions for the joint weak convergence of max–sum processes
and renewal stopping processes.

LEMMA 3.1. Let ConditionsA–D be satisfied. Then{(
ζε(t), τε(s)

)
, (t, s) ∈ (0,∞) × V

}
	⇒ {(

ζ0(t), τ0(s)
)
, (t, s) ∈ (0,∞) × V

}
asε → 0.

(3.1)

PROOF. Use the definition of the processes{ζε(t), t > 0} and {τε(t), t > 0}
to write that, for any 0< s1 < · · · < sm, 0 < t1 < · · · < tm andul, vl,wl ∈ R1,

l = 1,2, . . . ,m, m ≥ 1,

P {ξε(tl) ≤ ul, γε(tl) ≤ vl, κε(tl) ≤ wl, τε(tl) > sl, l = 1, . . . ,m}
= P {ξε(tl) ≤ ul, γε(tl) ≤ vl, κε(tl) ≤ wl, κε(sl) ≤ tl, l = 1, . . . ,m}.(3.2)

Choose some countable set of pointsX = {x1, x2, . . .} ⊂ (0,∞) dense in
(0,∞). Since any distribution function has at most a countable set of discontinuity
points, we can choose a countable setY = {y1, y2, . . .} ⊂ V dense in(0,∞) such
thatP {κ0(xi) = yj } for all i, j ≥ 1, and then a countable setZ = {z1, z2, . . .} ⊂ R1

dense inR1 for which P {ξ0(yj ) = zk} = P {γ0(yj ) = zk} = P {κ0(yj ) = zk} = 0
for all j, k ≥ 1. By Theorem 2.1 and (3.2) we have, for pointssl ∈ X, tl ∈ Y,

ul, vl,wl ∈ Z, l = 1, . . . ,m,m ≥ 1,

P {ξε(tl) ≤ ul, γε(tl) ≤ vl, κε(tl) ≤ wl, τε(tl) > sl, l = 1, . . . ,m}
→ P {ξ0(tl) ≤ ul, γ0(tl) ≤ ul, κ0(tl) ≤ wl, τ0(tl) > sl, l = 1, . . . ,m}(3.3)

asε → 0.

Note that Condition D implies that all random variables in (3.3) are proper
for ε small enough. Taking into account that the weak convergence of distribution
functions of random vectors follows from their convergence on some countable set
everywhere dense in the corresponding phase space, we get from (3.3) that{(

ζε(t), τε(t)
)
, t ∈ Y

} 	⇒ {(
ζ0(t), τ0(t)

)
, t ∈ Y

}
asε → 0.(3.4)

The processes{ζε(t), t > 0} J -converge while the processes{τε(t), t > 0} are
monotonic. Therefore, (3.4) can be extended by obvious arguments to (3.1).�
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3.2. Weak convergence of max–sum processes with renewal stopping.We are
in a position to formulate and prove our third main result.

THEOREM 3.1. Let ConditionsA–D hold. Then,{
ζε

(
τε(t)

) = (
ξε

(
τε(t)

)
, γε

(
τε(t)

)
, κε

(
τε(t)

))
, t ∈ V

}
	⇒ {

ζ0
(
τ0(t)

) = (
ξ0

(
τ0(t)

)
, γ0

(
τ0(t)

)
, κ0

(
τ0(t)

))
, t ∈ V

}
(3.5)

asε → 0.

PROOF. We are going to use Theorem 2.7.1 from the book by Silvestrov
[(1974), page 82]. This theorem provides the proper conditions for the weak
convergence for cadlag processes stopped in Markov type moments. Here, the

Markov processes are{ζ̂ (h)
ε (t)} = {(ξ̂ (h)

ε (t), γε(t), κε(t)), t > 0} while the stopping
moments are given byτε(t), t > 0. By definition, for everyt > 0 the random
variable τε(t) is a Markov moment for the Markov process{ζ̂ (h)

ε (t), t > 0}.
Moreover, also by definition,P {τε(t) > 0} = 1, t > 0, for all ε ≥ 0.

As was mentioned above, Theorem 2.1 can be applied to hybrid max–sum
processes{ζ̂ (h)

ε (t), t > 0}. Also Lemma 3.1 can be applied to these processes and
renewal stopping processesτε(t), t > 0. All conditions of Lemma 3.1 are satisfied.
According to Lemma 3.1 the following relationship holds:{(

ζ̂ (h)
ε (t), τε(s)

)
, (t, s) ∈ (0,∞) × V

}
	⇒ {(

ζ̂
(h)
0 (t), τ0(s)

)
, (t, s) ∈ (0,∞) × V

}
asε → 0.

(3.6)

Again it is useful to note that (3.6) also follows directly from (3.1) because
ξ̂

(h)
ε (t) = ξε(t) ∨ h is a continuous function of random variableξε(t) for every

t > 0 andh ∈ R1.
As was mentioned above, the process{ζ̂ (h)

0 (t), t > 0} can be constructed from
the process{ζ0(t), t > 0} by simple truncation of the first component of this

process, that is,{ζ̂ (h)
0 (t) = (ξ̂

(h)
0 (t), γ0(t), κ0(t)), t > 0}, whereξ̂ (h)

0 (t) = ξ0(t)∨h,

t > 0. As far as the limiting renewal stoppingprocess is concerned, it can again be
defined as{τ0(t) = sup(s :κ0(s) ≤ t), t > 0}.

Next, define

βε(h, c, t, δ)

= sup
u≥h,−∞<v<∞,w≥0

sup
t−c≤s≤s+q≤t+c

Pε

(
(u, v,w), s, s + q,Sδ

(
(u, v,w)

))
.

It is easy to see that, for any 0< T < t < T ′ and for all c > 0 such that
c < t, T ≤ t − c, t + c ≤ T ′,

βε(h, c, t, δ) ≤ αε(h,2c, T ,T ′, δ).(3.7)
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Because of this, (2.37) implies that for allt > 0,

lim
c→0

lim sup
ε→0

βε(h, c, t, δ) = 0.(3.8)

According to Theorem 2.7.1 from Silvestrov (1974), (3.6) and (3.8) imply that

{
ζ̂ (h)
ε

(
τε(t)

) = (
ξ (h)
ε

(
τε(t)

)
, γε

(
τε(t)

)
, κε

(
τε(t)

))
, t ∈ V

}
	⇒ {

ζ̂
(h)
0

(
τ0(t)

) = (
ξ̂

(h)
0

(
τ0(t)

)
, γ0

(
τ0(t)

)
, κ0

(
τ0(t)

))
, t ∈ V

}
(3.9)

asε → 0.

We are now prepared to complete the proof of the theorem. Let us use the
following inequality, which holds for anyt > 0 and 0< T < T ′ < ∞:

P
{∣∣ξ̂ (h)

ε

(
τε(t)

) − ξε

(
τε(t)

)∣∣ ≥ δ
}

≤ P {τε(t) < T } + P {τε(t) > T ′} + P

{
sup

t∈[T,T ′]
∣∣ξ̂ (h)

ε (t) − ξε(t)
∣∣ ≥ δ

}
.

(3.10)

For anyt ∈ V, points 0< T < T ′ < ∞ can be chosen in such a way that they are
continuity points of the distribution functions of random variableτ0(t). Moreover,
for an arbitraryσ > 0, the pointsT andT ′ can be chosen, respectively, so small
and so large thatP {τ0(t) < T } + P {τ0(t) > T ′} ≤ σ .

We use inequality (3.10), relationship (2.35) and the remark concerning the
choice ofT,T ′ made above to conclude that for any 0< t ∈ V andδ > 0,

lim
h→−∞ lim sup

ε→0
P

{∣∣ξ̂ (h)
ε

(
τε(t)

) − ξε

(
τε(t)

)∣∣ ≥ δ
} = 0.(3.11)

As was already mentioned above, the process{ζ̂ (h)
0 (t), t > 0} can be constructed

from the processes{ζ0(t), t > 0} by truncation of the first component of this

process, that is,{ζ̂ (h)
0 (t) = (ξ̂

(h)
0 (t), γ0(t), κ0(t)), t > 0}, whereξ̂ (h)

0 (t) = ξ0(t)∨h,

t > 0, and the limiting renewal stopping process can be defined as{τ0(t) =
sup(s :κ0(s) ≤ t), t > 0}. The representation of the limiting processes described
above yields that

{
ζ̂

(h)
0

(
τ0(t)

)
, t ∈ V

} 	⇒ {
ζ0

(
τ0(t)

)
, t ∈ V

}
asε → 0.(3.12)

Note that in the caseuπ > −∞ andh = uπ , the representation described above
yields that ξ̂ (h)

0 (t) ≡ ξ0(t), t > 0, so that in the sequel̂ζ (h)
0 (τ0(t)) ≡ ζ0(τ0(t)),

t > 0. For this reason, the additional external limit transitions given in
(3.11) and (3.12) are not required.

Relationships (3.9), (3.11) and (3.12) imply (3.5).�
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3.3. J -convergence of renewal processes.In this section we treat conditions
for J -convergence of max–sum renewal processes with renewal stopping. We
again go through a two-step procedure.

There are two cases when Condition B provides theJ -convergence relationship

{τε(t), t > 0} J→ {τ0(t), t > 0} asε → 0.(3.13)

The first case is when the following condition holds:

CONDITION D1. We havec > 0 or�3((v,∞)) → ∞ asv → 0.

In this case{κ0(t), t > 0} is an a.s. strictly monotonic process and therefore
τ0(t) is an a.s. continuous process. Also, by the definition, the processes{τε(t),

t > 0} and{τ0(t), t > 0} are nondecreasing.
Since Condition D1 is stronger than Condition D, Lemma 3.1 guarantees that

the processesτε(t) weakly converge to the processesτ0(t) on the setV , which is
in this case the interval(0,∞). As is known [see Billingsley (1968)], the weak
convergence of monotone processes to a continuous process on the dense set
implies theirJ -convergence. Thus (3.13) holds.

The second case is when the following condition holds:

CONDITION D2. As ε → 0, nεP {κε,1 > 0} → �3((0,∞)), where 0<

�3((0,∞)) < ∞.

In this case the processκ0(t) is a compound Poisson process.
Note first thatJ -convergence of the processesτε(t) can be derived from

conditions for J -convergence on monotonic processes as given in Silvestrov
(1974) and in Jacod and Shiryaev (1987).

Alternatively,J -compactness of the processesτε(t) can be obtained by direct
estimates for the modulus ofJ -compactness�J (τε(·), c, T , T ′) obtained by using
the fact that the processesκε(t) and κ0(t) are both step processes with a finite
number of jumps in any finite interval. Take 0< T < T ′ < ∞ as two points that do
not belong to the setV . Defineθε[T,T ′] to be the minimal length of the intervals
between jump points of the processτε(t) in the interval[T,T ′] if there are at least
two such points; otherwise putθε[T,T ′] = T ′ − T . Conditions B and D2 give
the joint weak convergence of the consecutive moments and values of the jumps
for the processesκε(t) to the corresponding functionals for the processesκ0(t).
However, this implies the same joint weak convergence for the consecutive
moments and values of the jumps for the inverse processesτε(t) and τ0(t). It
easily follows from the remark made above that the random variablesθε(T ,T ′) ⇒
θ0[T,T ′] asε → 0 and that the random variableθ0[T,T ′] > 0 with probability 1.
Relationship (3.14) now follows from these two observations and the obvious fact
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that{�J (τε(·), c, T , T ′) > 0} ⊆ {θε[T,T ′] ≤ c}. Combining all of this information
together tells us that

lim
c→0

lim sup
ε→0

P
{
�J

(
τε(·), c, T , T ′) ≥ δ

}
≤ lim

c→0
lim sup

ε→0
P {θε[T,T ′] ≤ c} = 0.

(3.14)

It is clear that Condition D2 implies Condition D. Thanks to Lemma 3.1, the
processesτε(t) weakly converge to the processesτ0(t) on the setV , which is in
this case the interval(0,∞) except at most a countable set. Therefore, Conditions
B and D2 imply the requestedJ -convergence (3.13).

We refer to the recent work by Silvestrov (2002), where one can find a more
detailed presentation of the proof. To indicate the relevance of some of the above
conditions, an example is given where the processκ0(t) is a compound Poisson
process and where the processesτε(t) weakly converge but do notJ -converge
when Condition B holds but Condition D2 fails.

3.4. J -convergence of max–sum processes with renewal stopping.Everything
is ready to prove the fourth key result of the paper.

THEOREM 3.2. Let the ConditionsA–C hold together with Conditions
D1 or D2. Then{

ζε

(
τε(t)

)
, t > 0

} J→ {
ζ0

(
τ0(t)

)
, t > 0

}
asε → 0.(3.15)

PROOF. The weak convergence of the processes{ζε(τε(t)), t ∈ V } was proved
in Theorem 3.1. Recall that the setV is dense in the interval(0,∞). Therefore,
we need only to checkJ -compactness. More precisely, for any 0< T < T ′ < ∞,
we need that

lim
c→0

lim sup
ε→0

P
{
�J

(
ζε

(
τε(·)), c, T , T ′) ≥ δ

} = 0.(3.16)

We go through the proof under the two alternatives.

(i) Assume first that Condition D1 holds. Then we can use results given
in Silvestrov (1972b, 1973, 1974), where conditions forJ -convergence and
J -compactness of the composition of cadlag processes have been obtained.
Actually, we can apply Theorem 2.2.3 from Silvestrov [(1974), page 96] to
processes{ζε(t), t ≥ 0} and{τε(t), t ≥ 0}. Whereas we need to consider intervals
of the form[T,T ′] rather than[0, T ], we repeat here the necessary estimates.

Let {x(t), t > 0} be a function from the spaceD1 and let 0< T ′ < T ′′ < ∞,

c > 0. Themodulus of compactness for the uniform topologyU is defined and
denoted by

�U

(
x(·), c, T , T ′) = sup

|t ′−t ′′|≤c,T ≤t ′≤t ′′≤T ′

(|x(t ′) − x(t ′′)|).
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For any 0< S < S′ < ∞ andc,C > 0 we have

P
{
�J

(
ζε

(
τε(·)), c, T , T ′) ≥ δ

}
≤ P {τε(T ) < S} + P {τε(T

′) > S′}
+ P

{
�U

(
τε(·), c, T , T ′) ≥ C

} + P
{
�J

((
ζε(·)),C,S,S′) ≥ δ

}
.

(3.17)

Now,J -convergence of the processes{ζε(t), t ≥ 0} was proved in Theorem 2.2.
As was mentioned above, the weak convergence of the processes{τε(t), t ∈ V }
to a.s. continuous process{τ0(t), t ∈ V } implies theJ -convergence. Since the
limiting process is a.s. continuous,J -convergence is equivalent to convergence
of these processes in the uniform topology. Also by Theorem 2.1, the processes
{τε(t), t ∈ V } converge weakly.

It therefore suffices to prove (3.16) only for those 0< T < T ′ < ∞ for which
T,T ′ ∈ V . ChooseS and S′ continuity points for the distribution functions of
the random variablesτε(T ) and τε(T

′), respectively. By using convergence of
processes{τε(t), t ≥ 0} in uniform topology, we get, from (3.17),

lim
c→0

lim sup
ε→0

P
{
�J

(
ζε

(
τε(·)), c, T , T ′) ≥ δ

}
≤ P {τ0(T ) < S} + P {τ0(T

′) > S′}
+ lim sup

ε→0
P

{
�J

((
ζε(·)),C,S,S′) ≥ δ

}
.

(3.18)

Due toJ -convergence of processes{ζε(t), t ≥ 0}, the expression on the right-
hand side can be made less than anyσ > 0 by first choosingS small enough and
S′ large enough and then by choosingC small enough. This proves (3.16).

(ii) Next assume that Condition D2 holds. In this simpler case, the process
{ζε(τε(t)), t > 0} has stepwise trajectories since the internal stopping processes
{τε(t), t > 0} has such trajectories. Moreover, both processes have the same jump
points. For this reason{�J (ζε(τε(·)), c, T , T ′) > 0} ⊆ {θε[T,T ′] ≤ c}.

Using this relationship we get as with (3.14) that

lim
c→0

lim sup
ε→0

P
{
�J

(
ζε

(
τε(·)), c, T , T ′) ≥ δ

}
≤ lim

c→0
lim sup

ε→0
P {θε[T,T ′] ≤ c} = 0.

(3.19)

The proof is complete. �

4. Examples and remarks. In this section we discuss some variations of
results given above and consider examples.

4.1. Asymptotically independent components.The max process{ξ0(t), t ≥ 0}
and the sum process{γ0(t), t ≥ 0} are independent if and only if the function
�

(u)
2 ((−∞,−v] ∪ (v,∞)) ≡ 0 for u > uπ , v > 0. In this case,a(u) ≡ a and
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the measure�̂(u)
2 (B) ≡ �2(B) for every u ∈ R1. Therefore,ϕ(u)

2,3(t, y,0) ≡
ϕ2,3(t, y,0) for everyu ∈ R1.

Analogously, the max process{ξ0(t), t ≥ 0} and the sum process{κ0(t), t ≥ 0}
are independent if and only if the function�(u)

3 ((w,∞)) ≡ 0 for u > uπ , w > 0.

Now, d(u) ≡ d and the measurê�(u)
3 (C) ≡ �3(A) for every u ∈ R1. Again,

ϕ
(u)
2,3(t,0, z) ≡ ϕ2,3(t,0, z) for every u ∈ R1. Obviously, the processes{ξ0(t),

t ≥ 0} and{τ0(t), t ≥ 0} are also independent.
In the case where both marginal independence assumptions are valid, the

max process{ξ0(t), t ≥ 0} and the two-dimensional sum process{(γ0(t), κ0(t)),

t ≥ 0} are also independent. Indeed,�
(u)
2,3(((−∞,−v] ∪ (v,∞)) × (w,∞)) ≤

�
(u)
2 ((−∞,−v]∪(v,∞))∧�

(u)
3 ((w,∞)) ≡ 0 for everyu > uπ , v,w > 0. Again,

the constants satisfya(u) ≡ a, d(u) ≡ d while the measurê�(u)
2,3(A) ≡ �2,3(A) for

all u ∈ R1. As a result,ϕ(u)
2,3(t, y, z) ≡ ϕ2,3(t, y, z) for everyu ∈ R1.

4.2. Identical components.Let us consider the special case when the max and
sum variables coincide, that is,ξε,k ≡ γε,k, k = 1,2, . . . . In this case, Condition A
is implied by Condition B. Moreover, in this case, Condition B(a) implies that
π1(u) = �2((u,∞)) for u > 0. Also uπ = 0 as follows from Condition B(a),
which implies thatnεP {γε,1 > u} → ∞ as ε → 0 for anyu < 0. Furthermore,
Condition C is implied by Condition B, and�(u)

2,3((v,∞) × (w,∞)) = �2,3((u ∨
v,∞) × (w,∞)) for u, v,w > 0 while �

(u)
2,3((−∞,−v] × (w,∞)) = 0 for

u, v,w > 0.
By summarizing all of the above information, we see that, in this case, the

conditions to be validated are thoroughly reduced to Condition B.
Looking at the max processes, it is obvious that in this caseξε(t) = ft (γε(·)),

whereft(x(·)) = maxs∈(0,t] �s(x(·)) and�s(x(·)) = x(s) − x(s − 0) for ε such
that nεt ≥ 1. So ξε(t) is a maximal jump of the processγε(s) on the interval
[0, t]. This functional is a.s.J -continuous with respect to measure generated by
the limiting process{γ0(s), s ≥ 0} on the Borelσ -algebra of the spaceD1 for
everyt > 0. Therefore,ξ0(t) = ft (γ0(·)), t > 0.

4.3. Transformed max–sum processes with renewal stopping.Let f (t, x) be a
continuous function which is defined on[0,∞) × R3 while taking values inR1.
The transformed stochastic process{f (t, ζε(τε(t))), t > 0} has trajectories which
belong to the spaceD1 with probability 1. Theorem 3.2 impliesJ -convergence of
transformed processes{

f
(
t, ζε

(
τε(t)

))
, t ≥ 0

} J→ {
f

(
t, ζ0

(
τ0(t)

))
, t > 0

}
asε → 0.(4.1)

Below, several examples illustrate (4.1). We can apply the relationship to a
variety of processes representing modifications of the original sum processes and
max processes.
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As a first example, take{
γε

(
τε(t)

) − ξε

(
τε(t)

)
, t > 0

}
J→ {

γ0
(
τ0(t)

) − ξ0
(
τ0(t)

)
, t > 0

}
asε → 0.

(4.2)

As other examples, look at{
ξε(τε(t))

a + |γε(τε(t))| , t > 0
}

J→
{

ξ0(τ0(t))

a + |γ0(τ0(t))| , t > 0
}

asε → 0(4.3)

and {
ξε(τε(t))

at + |γε(τε(t))| , t > 0
}

J→
{

ξ0(τ0(t))

at + |γ0(τ0(t))| , t > 0
}

asε → 0.(4.4)

Herea > 0 is a regularization parameter which prevents the denominator in the
last two relationships to take the value zero.

Relationships (4.2)–(4.4) establish the weak convergence of the functionals that
describe deviations of max and sum processes with renewal stopping.

It is obvious that the process{ζ0(τ0(t)), t > 0} and the transformed process
{f (t, ζ0(τ0(t))), t > 0} are stochastically continuous in pointst ∈ V , whereV is
the set of stochastic continuity of the internal stopping process{τ0(t), t > 0}. That
is why (4.1) implies, for example, that for any 0< T1 < T2 < ∞, T1, T2 ∈ V ,

sup
t∈[T1,T2]

f
(
t, ζε

(
τε(t)

)) 	⇒ sup
t∈[T1,T2]

f
(
t, ζ0

(
τ0(t)

))
asε → 0.(4.5)

This relationship, applied to the modified processes (4.2)–(4.4), establishes the
weak convergence of the functional that describes the maximal deviations given
by the corresponding processes.

We stress that the results presented in the current article give the general
framework for the asymptotic study of hybrid max–sum processes with renewal
stopping in the form of weak and functional limit theorems. Questions about
the explicit form of the corresponding limiting distributions require explicit
calculations outside the scope of this article.

4.4. Applications to risk processes.Let {(βε,n, κε,n), n = 1,2, . . .} be, for
everyε > 0, a sequence of i.i.d. random variables taking values inR1 × [0,∞).
Further we need nonrandom functionsnε > 0 for which nε → ∞ asε → 0 and
constantscε ≥ 0. Let us introduce a process{µε(t) = cεt −βε(τε(t)), t ≥ 0}, where
βε(t) = ∑

k≤tnε
βε,k, τε(t) = sup(s :κε(s) ≤ t) and κε(t) = ∑

k≤tnε
κε,k, t ≥ 0.

Random variablesβε,n can be interpreted as successive claims within a portfolio,
while κε,n stands for the interarrival times of the claims. The processτε(t) counts
the number of claims that arrived within the portfolio up to timet . The constantcε

acts as a premium rate. The resulting process{µε(t), t ≥ 0} is called the (risk)
reserves process.
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(a) This process can be represented in the formµε(t) = cε · (t − κε(τε(t))) +
γε(τε(t)), t ≥ 0, whereγε(t) = ∑

k≤tnε
(cεκε,k − βε,k), t ≥ 0.

(b) This representation can be supplemented by the estimate|cε · (t −
κε(τε(t)))| ≤ ξε(τε(t)), t ≥ 0, whereξε(t) = maxk≤1∨tnε cεκε,k, t ≥ 0.

The representation (a) and the estimate (b) show that asymptotic behavior of the
risk processes can be studied via mixed max–sum processes with renewal stopping
based on the sequences of i.i.d. random variables{(ξε,n, γε,n, κε,n), n = 1,2, . . .},
whereξε,n = cεκε,n, γε,n = cεκε,n − βε,n, n = 1,2, . . . .

(c) Assume that the functionπ1(u) = 0 for u > 0 in the corresponding
Condition A. Then automaticallyuπ = 0, since the random variablesξε,n = cεκε,n

are nonnegative.

Under Condition A and assumption (c), the corresponding limiting max process

ξ0(t) ≡ 0, t > 0. Thus, due to (b), the processescε · (t − κε(τε(t)))
P→ 0 as

ε → 0 for t > 0. If Conditions B and C hold together with D1 in the formc > 0
[this does not contradict (c)], then Theorem 3.2 and (b) imply that the processes
{cε · (t −κε(τε(t))), t > 0} J -converge asε → 0 to the process which is identically
equal to zero. In this case, the asymptotic behavior of the risk processes{µε(t),

t ≥ 0} coincides with the asymptotic behavior of the sum processes with renewal
stopping{γε(τε(t)), t ≥ 0}. The latter is described in Theorems 3.1 and 3.2.

Many questions from current day actuarial science can be formulated in terms
of functionals on the{(βε,n, κε,n), n = 1,2, . . .} process. The important concept
of large claimcan be formulated in terms of the portion that the maximal claim
consumes of the total claim amount. The behavior of the ratio between the largest
claim and the totality of the claims for the i.i.d. case can be derived from results in
Breiman (1965). In Ammeter (1964) we find a first attempt to consider the effect
of reducing the total claim amount by subtracting the maximal claim from it. An
extension to measure the influence of the largest claims on their total is linked to
the concept of Lorenz curve, which was already hinted at in Aebi, Embrechts and
Mikosch (1992).

4.5. More general stopping processes.The method of proof used in Theorems
3.1 and 3.2 can be applied to more general positive nondecreasing stopping
processes{τε(t), t > 0} such that:

(i) For every t > 0, τε(t) is a Markov moment for the max–sum processes

{ζ̂ (h0)
ε (t), t > 0} for someh0 > −∞ if uπ = −∞ andh0 = uπ if uπ > −∞.
( j) The relationship of joint weak convergence (3.1) holds for processes

{ζε(t), t > 0} and{τε(t), t > 0}, with some setV dense in(0,∞).

Note that we involve truncated processes{ζ̂ (h)
ε (t), t > 0} only for one value

h = h0. Indeed, any Markov moment for the process{ζ (h0)
ε (t), t > 0} is also a
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Markov moment for the process{ζ̂ (h)
ε (t), t > 0} for everyh ∈ [−∞, h0]. Also,

since max(x,h) is a continuous function inx, ( j) implies that the same condition
holds for processes{ζ̂ (h)

ε (t), t > 0} andτε(t), t > 0, for anyh ∈ [−∞,∞).
Note also that in many cases one can avoid truncation in Condition (i). For

example, ifτε(t) is, for everyt > 0, a Markov moment for the max–sum processes
{(γε(t), κε(t)), t > 0}, then condition (i) holds for anyh0 ∈ R1.

A large number of various examples can be constructed where the stopping
moments have a renewal structure. We refer to Silvestrov (1974, 2000), where one
can find a variety of examples of stopping moments of such a type. Here we point
out only two typical examples.

The first one is concerned with the case where{τε(t) = sup(s :f (s, ζ̂
(h0)
ε (s)) ≤

t), t > 0}. Heref (t, x) is a continuous function which is defined on[0,∞) × R3
while taking values inR1. By varying the functionf , one can construct many
types of renewal type stopping moments which are of a first-passage-time type.

To avoid consideration of improper moments, we assume that sups≤t f (s,

ζ̂
(h0)
ε (s)) tends to∞ in probability ast → ∞ for everyε ∈ [0, ε0). The alternative

could be to truncate momentsτε(t). Obviously, condition (i) holds. It can be shown
[see, e.g., Silvestrov (1974) or Whitt (1980)] that, under Conditions A–C, the
functional sup(s :f (s, x(s)) ≤ t) is for everyt > 0 a.s.J -continuous with respect

to the limiting process{ζ̂ (h0)
0 (s), s > 0} if the process{sups≤t f (s, ζ̂

(h0)
0 (s)), t > 0}

is a.s. strictly monotonic. That is why condition ( j) also holds withV = (0,∞).
Another example which we would like to point out covers the models with

renewal extremal stopping. Such models were studied in Shanthikumur and Sumita
(1983), Sumita and Shanthikumur (1985), Silvestrov and Teugels (1998b), Gut and
Hüsler (1999) and Gut (2001). In this case{τε(t) = sup(s :�s(ξε(·)) ≤ t), t > 0}.

For simplicity, we assume thatπ1(u) > 0 for all u > 0 to exclude the case
of improper renewal moments forε small enough. Again condition (i) holds.
It can be easily shown that, under Condition A, the functionals�t(x(·)) and
sup(s :�s(x(·)) ≤ t) are a.s.J -continuous with respect the limiting process
{ξ0(s), s ≥ 0} for every t ∈ U , whereU is the set ofu > 0 which are points of
continuity of the functionπ1(u) appearing in Condition A. So, condition ( j) also
holds.
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