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INTERPLAY BETWEEN DIVIDEND RATE AND BUSINESS
CONSTRAINTS FOR A FINANCIAL CORPORATION

BY TAHIR CHOULLI ,1 MICHAEL TAKSAR2 AND XUN YU ZHOU3

University of Alberta, University of Missouri
and Chinese University of Hong Kong

We study a model of a corporation which has the possibility to choose
various production/business policies with different expected profits and risks.
In the model there are restrictions on the dividend distribution rates as well
as restrictions on the risk the company can undertake. The objective is
to maximize the expected present value of the total dividend distributions.
We outline the corresponding Hamilton–Jacobi–Bellman equation, compute
explicitly the optimal return function and determine the optimal policy. As
a consequence of these results, the way the dividend rate and business
constraints affect the optimal policy is revealed. In particular, we show
that under certain relationships between the constraints and the exogenous
parameters of the random processes that govern the returns, some business
activities might be redundant, that is, under the optimal policy they will never
be used in any scenario.

1. Introduction. In recent years we have seen a lot of new results in the
application of diffusion optimization models to financial mathematics. Together
with portfolio optimization models, dividend distribution and risk control models
have undergone major development.

In typical models of this type (see [2, 3, 8–11, 13, 14, 16]), the liquid assets of
the company are governed by a Brownian motion with constant drift and diffusion
coefficients. The drift term corresponds to the expected (potential) profit per unit
time, while the diffusion term is interpreted as risk. The decrease of risk from
business activities corresponds to a decrease in potential profits. Different business
activities in these models correspond to changing the drift and the diffusion
coefficients of the underlying processsimultaneously. This sets the scene for an
optimal stochastic control model where the controls affect not only the drift, but
also the diffusion part of the dynamic of the system.

Received December 2002; revised March 2003.
1Supported by the Department of Systems Engineering and Engineering Management at the

Chinese University of Hong Kong and NSERC Grant 121210818.
2Supported by NSF Grant DMS-00-72388.
3Supported by RGC Earmarked Grant CUHK 4054/98E.
AMS 2000 subject classifications. 91B70, 93E20.
Key words and phrases. Diffusion model, dividend distribution, business constraints, risk control,

optimal stochastic control, HJB equation.

1810



DIVIDEND RATE AND BUSINESS CONSTRAINTS 1811

In this article we study a model with an explicit restriction on risk control and
on the rate at which the dividends are paid out. In addition, the company may have
liability which it has to pay out at a constant rate no matter what the business
plan is.

The controls are described by two functionalsat and ct . The first represents
the degree of business activity which the company assumes. The processat

takes on values in the interval[α,β], 0 < α < β ≤ +∞. The risk, which in
our model is associated with the diffusion coefficient, and the potential profit,
which is associated with the drift coefficient of the corresponding process, are
both proportional toat . The constraints on the values ofat reflect institutional or
statutory restrictions (e.g., for a public company) that the risk it can assume cannot
exceed a certain level or that its business activities cannot be reduced to zero unless
the company goes bankrupt.

The valuect of the second control functional shows the rate at which dividends
are paid out at timet . The dividends are paid out from the liquid reserve and are
distributed to shareholders. This corresponds toct entering the drift coefficient
of the reserve process with a negative sign. The dividend rate is bounded by a
constantM given a priori.

In our model we also assume the existence of a constant rate liability payment,
such as a mortgage payment on a property or amortization of bonds. The results
of this model can be viewed as an extension of the results of Choulli, Taksar
and Zhou [4]. The presence of dividend rate constraints, however, adds a whole
new dimension to the analysis as well as to the qualitative structure of the results
obtained.

What is the most interesting is the interplay between the constraints and
the exogenous parameters that govern the process of returns. Depending on the
relationship between these parameters, we get several distinct cases of qualitative
behavior of the company under the optimal policy.

This article is structured as follows. In the next section we present a rigorous
mathematical formulation of the problem and state general properties of the
optimal return or thevalue function. We also write the Hamilton–Jacobi–Bellman
(HJB) equation this function must satisfy. In Section 3 we find a bounded smooth
solution to the HJB equation. In Section 4 we construct the optimal policy and
present our main findings in table form. Finally, in Section 5 we describe some
economic interpretation of the results and state conclusions.

2. Mathematical model. We start with a filtered probability space(�,F ,

Ft , P ) and a one-dimensional standard Brownian motionWt (with W0 = 0) on it,
adapted to the filtrationFt . We denote byRπ

t the reserve of the company at timet

under a control policyπ = (aπ
t , cπ

t ; t ≥ 0) (to be specified below). The dynamic
of the reserve processRπ

t is described by

dRπ
t = (aπ

t µ − δ) dt + aπ
t σ dWt − cπ

t dt, Rπ
0 = x,(2.1)
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whereµ is the expected profit per unit time (profit rate),σ is the volatility rate of
the reserve process (in the absence of any risk control),δ represents the amount of
money the company has to pay per unit time (the debt rate) irrespective of what
business activities it chooses andx is the initial reserve.

The control in this model is described by a pair ofFt -adapted processes
π = (aπ

t , cπ
t ; t ≥ 0). A controlπ = (aπ

t , cπ
t ; t ≥ 0) is admissible ifα ≤ aπ

t ≤ β and
0 ≤ cπ

t ≤ M ∀ t ≥ 0, where 0< α < β < +∞ and 0< M < +∞ are given scalars.
We denote the set of all admissible controls byA. The control componentaπ

t

represents one of the possible business activities available for the company at
time t , and the componentcπ

t corresponds to the dividend payout rate at timet .
Given a control policyπ , the time of bankruptcy is defined as

τπ = inf{t ≥ 0 :Rπ
t = 0}.(2.2)

Theperformance functional associated with each controlπ is

Jx(π) = E

(∫ τπ

0
e−γ tcπ

t dt

)
,(2.3)

whereγ > 0 is an a priori given discount factor (used to calculate the present
value of the future dividends), and the subscriptx denotes the initial statex. The
objective is to find

v(x) = sup
π∈A

Jx(π)(2.4)

and the optimal policyπ∗ such that

Jx(π∗) = v(x).(2.5)

The exogenous parameters of the problem areµ, σ , δ, α, β andγ . The aim of this
article is to obtain the optimal return functionv and the optimal policyexplicitly
in terms of these parameters.

The main tools for solving the problem are the dynamic programming and
HJB equation (see [6, 7 and 17] as well as relevant discussions in [2, 9 and 16]).
We start by stating the following properties of the optimal return functionv.

PROPOSITION2.1. The optimal return function v is a concave, nondecreasing
function subject to v(0) = 0 and

0≤ v(x) ≤ M

γ
∀x > 0.(2.6)

PROOF. The proof of the concavity and the monotonicity as well as the
boundary condition,v(0) = 0, is similar to the one in [4]. To show (2.6), consider

0≤ E

(∫ τπ

0
e−γ tcπ

t dt

)
≤ M

∫ ∞
0

e−γ t dt = M

γ
. �
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If the optimal return functionv is twice continuously differentiable, then it must
be a solution to the HJB equation

0 = max
α≤a≤β,0≤c≤M

(1
2σ 2a2V ′′(x) + (aµ − δ − c)V ′(x) − γV (x) + c

)

≡ max
α≤a≤β

(1
2σ 2a2V ′′(x) + (aµ − δ)V ′(x) − γV (x) + M

(
1− V ′(x)

)+)
(2.7)

V (0) = 0,

wherex+ = max(x,0). This equation is rather standard and its derivation can be
found in [6, 7, and 17]; see also [9] and [10].

Note that we do not know a priori whether the HJB equation has any
solution other than the optimal return function. However, the following verification
theorem, which says thatany concave solutionV to the HJB equation (2.7) whose
derivative is finite at 0 majorizes the performance functional for any policyπ , is
sufficient for us to identify optimal policies.

THEOREM 2.2. Let V be a concave, twice continuously differentiable solution
of (2.7),such that V ′(0) < +∞. Then, for any policy π = (aπ

t , cπ
t ; t ≥ 0),

V (x) ≥ Jx(π).(2.8)

PROOF. Let Rπ
t be the reserve process given by (2.1). Denote the operator

La = 1

2
σ 2a2 d2

dx2
+ (aµ − δ)

d

dx
− γ.

Then by applying Ito’s formula (see [5], Theorem VIII.27) to the process
e−γ tV (Rπ

t ), we get

e−γ (t∧τ)V (Rπ
t∧τ ) = V (x) +

∫ t∧τ

0
e−γ sσaπ

s V ′(Rπ
s ) dWs

(2.9)

+
∫ t∧τ

0
e−γ sLaπ

s V (Rπ
s ) ds −

∫ t∧τ

0
e−γ sV ′(Rπ

s )cπ
s ds.

SinceV is nondecreasing, concave with finite derivative at the origin,V ′(x) is
bounded and the stochastic integral in (2.9) is a square integrable martingale whose
expectation vanishes. In view of the HJB equation (2.7) and the inequalitycπ

s ≤ M ,
we have

Laπ
s V (Rπ

s ) ≤ −cπ
s

(
1− V ′(Rπ

s )
)+

.(2.10)

Taking expectations of both sides of (2.9), in view of (2.10) we get

E
(
e−γ (t∧τ)V (Rπ

t∧τ )
)

(2.11)

≤ V (x) − E

∫ t∧τ

0
e−γ scπ

s

[
V ′(Rπ

s ) + (
1− V ′(Rπ

s )
)+]

ds.
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Combining (2.11) with the fact thaty + (1− y)+ ≥ 1, we get

E
(
e−γ (t∧τ)V (Rπ

t∧τ )
) + E

∫ t∧τ

0
e−γ scπ

s ds ≤ V (x).(2.12)

Note that in view of the boundedness ofV ′,

e−γ (t∧τ)V (Rπ
t∧τ ) ≤ e−γ tK(1+ Rπ

t∧τ ) ≤ e−γ tK(1+ |Rπ
t |)

for some constantK . SinceRπ
t is a diffusion process with uniformly bounded drift

and diffusion coefficient, standard arguments yieldE|Rπ
t | ≤ x + K1t for some

constantK1. Therefore,

Ee−γ (t∧τ)V (Rπ
t∧τ ) → 0(2.13)

ast → ∞. Thus taking the limit in (2.12) ast → ∞, we arrive at

V (x) ≥ E

∫ τ

0
e−γ scπ

s ds = Jπ(x). �

The idea of solving the original optimization problem is first to find a concave,
smooth function to the HJB equation (2.7) and then to construct a control policy
[by solving a stochastic differential equation (SDE); for details see Section 4]
whose performance functional can be shown to coincide with the solution to (2.7).
Then, the above verification theorem establishes the optimality of the constructed
control policy. As a by-product, there is no other concave solution to (2.7) than the
optimal return function.

3. A smooth solution to the HJB equation. In this section, we are looking
for a concave, smooth solution to (2.7). Assume that such a solutionV has been
found. Let

x1 = inf{x ≥ 0 :V ′(x) ≤ 1}.(3.1)

Then, for 0≤ x < x1, (2.7) becomes

0 = max
α≤a≤β

(1
2σ 2a2V ′′(x) + (aµ − δ)V ′(x) − γV (x)

)
,(3.2)

while for x ≥ x1, (2.7) can be rewritten as

0 = max
α≤a≤β

(1
2σ 2a2V ′′(x) + (aµ − δ − M)V ′(x) − γV (x) + M

)
.(3.3)

We start by seeking a smooth solution to (3.3). Obviously ifV ′(0) ≤ 1, thenx1 = 0
and (2.7) is equivalent to (3.3) for allx ≥ 0.

PROPOSITION3.1. If βµ ≤ δ, then V ′(0) < 1.
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PROOF. It follows from (2.7) that there exist̃a ∈ [α,β] such that

0 = 1
2σ 2ã2V ′′(0) + (ãµ − δ)V ′(0) + M

(
1− V ′(0)

)+
.(3.4)

If βµ < δ, then each of the first two terms on the right-hand side of (3.4) is non-
positive with the second being strictly negative. Therefore,M(1− V ′(0))+ > 0,
which impliesV ′(0) < 1. The same argument goes ifβµ = δ andV ′′(0) < 0. In
this case, either the first or the second term on the right-hand side of (3.4) is strictly
negative. Ifβµ = δ and V ′′(0) = 0, then the maximizer of the right-hand side
of (2.7) is equal toβ for all x in a right neighborhood of 0 [recall thatV ′(0) > 0].
Substitutinga = β either into (3.2) or into (3.3) and solving the resulting linear or-
dinary differential equation (ODE) with constant coefficients, we get a functionV

whose second derivative at 0 does not vanish, which is a contradiction.�

REMARK 3.2. When the dividend rates are unrestricted, the conditionβµ ≤ δ

makes the problem trivial (see [4], Theorem 4.1). This is not the case when the
dividend rates are bounded. Even ifβµ ≤ δ, the second derivative ofV at 0
is strictly negative, which makes the problem nontrivial in contrast to a similar
situation in the case of unrestricted dividends.

Now we analyze the solution to (3.3) under the conditionβµ > δ. As we see
later, the qualitative nature of this solution depends on whethera(x1) < α or
α ≤ a(x1) < β or a(x1) ≥ β, where

a(x) ≡ − µV ′(x)

σ 2V ′′(x)
> 0, x < x1.(3.5)

To this end, we need the following proposition:

PROPOSITION3.3. (i) If a(x1) ≥ α, then, for each x ≥ x1,

a(x) ≥ α.(3.6)

(ii) If a(x1) ≥ β, then, for each x ≥ x1,

a(x) ≥ β.(3.7)

PROOF. (i) Suppose there existsx0 > x1 such thata(x0) < α. Then there exists
ε > 0 such thata(x) < α for eachx with |x − x0| < ε. Let x′ = sup{x1 ≤ x <

x0 :a(x) = α}. Thenx1 ≤ x′ < x0 < x0 + ε anda(x′) = α. Sincea(x) ≤ α for all
x ∈ [x′, x0 + ε), the functionV satisfies (3.3) with the maximum there attained at
a = α. Therefore,

V (x) = M

γ
+ K1 exp

(
r̃+(α)(x − x′)

) + K2 exp
(
r̃−(α)(x − x′)

)
(3.8) ∀x ∈ [x′, x0 + ε).
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Here

r̃+(z) ≡ −(zµ − δ − M) +
√

(zµ − δ − M)2 + 2γ σ 2z2

z2σ 2 ,(3.9)

r̃−(z) ≡ −(zµ − δ − M) −
√

(zµ − δ − M)2 + 2γ σ 2z2

z2σ 2 , z > 0.(3.10)

From (3.8) and (3.5), the equationa(x′) = α can be rewritten as

K1r̃+(α) = −K2r̃−(α)
µ + ασ 2r̃−(α)

µ + ασ 2r̃+(α)
,

which establishes a relationship between the constantsK1 and K2. Using this
relationship, we calculate

a(x) = −µV ′(x)

σ 2V ′′(x)

=
(
−µ

(
exp

((
r̃+(α) − r̃−(α)

)
(x − x′)

) − µ + ασ 2r̃+(α)

µ + ασ 2r̃−(α)

))

×
(
σ 2

(
r̃+(α)exp

((
r̃+(α) − r̃−(α)

)
(x − x′)

)
(3.11)

− r̃−(α)
µ + ασ 2r̃+(α)

µ + ασ 2r̃−(α)

))−1

∀x ∈ [x′, x0 + ε).

However, we havea(x) < α for x > x′, which after a simple algebraic transforma-
tion of (3.11) is equivalent to exp((r̃+(α) − r̃−(α))(x − x′)) < 1. This leads to a
contradiction. Therefore (3.6) holds.

(ii) By virtue of the assertion (i),a(x) ≥ α for all x ≥ x1. Suppose there
existsx′ > x1 such thata(x′) < β. Then there existsε > 0 such thata(x) < β

for all x < x′ + ε. Let x̄ = sup{x1 ≤ x < x′ :a(x) = β}. Thenx1 ≤ x̄ < x′ and
a(x̄) = β. In additionα ≤ a(x) < β for all x̄ < x ≤ x′. Substitutinga ≡ a(x) and
V ′′(x) = −(µV ′(x))/(σ 2a(x)) into (3.3), we get

0 = µa(x)

2
V ′(x) − (δ + M)V ′(x) − γV (x) + M.(3.12)

Differentiating (3.12) and again substitutingV ′′(x) = −(µV ′(x))/(σ 2a(x)) into
the resulting equation, we obtain

a(x)a′(x) = (
a(x) − c̃

)µ2 + 2σ 2γ

µσ 2 .(3.13)
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Then integrating (3.13) we get

a(x) − a(x̄) + c̃ log
(

a(x) − c̃

a(x̄) − c̃

)
= (x − x̄)

µ2 + 2σ 2γ

µσ 2 > 0
(3.14) ∀ x̄ < x < x′,

which is a contradiction. Hence (3.7) holds and this completes the proof of the
proposition. �

First suppose thata(x1) ≥ β. In view of Proposition 3.3(i), we deduce that
a(x) ≥ β for eachx ≥ x1. Substitutinga = β into (3.3) and solving the resulting
equation, we get

V (x) = M

γ
+ Kβ exp

(
r̃−(β)(x − x1)

) ∀x ≥ x1.

Here Kβ is a constant which takes on either the value−M
γ

or 1/(r̃−(β))

depending, respectively, on whetherx1 in (3.1) is zero or not. Then straightforward
calculations show thata(x) = −µ/(σ 2r̃−(β)). Thus, the conditiona(x1) ≥ β is
equivalent to

c̃ ≡ 2µ(δ + M)

µ2 + 2γ σ 2 ≥ β.(3.15)

Next supposeα ≤ a(x1) < β. By virtue of Proposition 3.3(i),a(x) ≥ α for all
x ≥ x1. As a result,α ≤ a(x) < β in a right neighborhood ofx1. Substituting
a ≡ a(x) andV ′′(x) = −(µV ′(x))/(σ 2a(x)) into (3.3), we deduce thata(x) satis-
fies (3.12). Then, following the same analysis there, we derive equation (3.13) for
a(x).

Suppose there existsx′ ≥ x1 such thata(x′) < c̃ [resp., a(x′) > c̃]. Then
from (3.13) we deduce thata(x) < c̃ [resp.,a(x) > c̃] for eachx ≥ x′. Thus, by
integrating (3.13) we derive (3.14) for allx ≥ x′, with x̄ replaced byx′. From
(3.12) and (2.6), we see thata(x) ≤ 2(δ+M)

µ
∀x ≥ x1. Therefore, the left-hand

side of (3.14) is bounded. This is a contradiction and we conclude thata(x) = c̃

for eachx ≥ x1. In view of the above results, the conditionα ≤ a(x1) < β can be
rewritten asα ≤ c̃ < β. Now, substitutinga = c̃ into (3.3) and solving the resulting
equation [noting that̃r−(c̃) = −σ 2c̃/µ], we get

V (x) = M

γ
+ K̃ exp

(
−σ 2c̃

µ
(x − x1)

)
∀x ≥ x1,

where K̃ is a constant which takes on either the value of−M
γ

or −µ/(σ 2c̃)

depending, respectively, on whetherx1 = 0 orx1 > 0.
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Finally, suppose thata(x1) < α. Then it follows from the above results that
c̃ < α. Thereforea(x) < α for all x in a right neighborhood ofx1. Substituting
a = α into (3.3) and solving the resulting linear differential equation, we get

V (x) = M

γ
+ K1(α)exp

(
r̃+(α)(x − x1)

) + K2(α)exp
(
r̃−(α)(x − x1)

)
,(3.16)

whereK1(α) andK2(α) are free constants. IfK1(α) > 0, then the right-hand side
of (3.16) is unbounded on[x1,∞), which contradicts (2.6). IfK1(α) < 0, then
the right-hand side of (3.16) becomes negative forx large enough, which again is
a contradiction. HenceK1(α) = 0. On the other hand, we haveK2(α) < 0 in view
of V ′′(0) < 0. Therefore,

V (x) = M

γ
+ Kα exp

(
r̃−(α)(x − x1)

)
,

whereKα is a constant that takes on the value either−M
γ

or 1/(r̃−(α)) depending
on whetherx1 is zero or not. Combining the above results, we can formulate the
following theorem.

THEOREM 3.4. Let r̃−(α), r̃−(β) and c̃ be the constants given by
(3.10)and (3.15),respectively. Let x1 be defined by (3.1).Then for x1 = 0 (resp.,
for x1 > 0) the following assertions hold.

(i) If c̃ ≥ β, then

V (x) = M

γ
+ Kβ exp

(
r̃−(β)(x − x1)

)
, x ≥ x1,(3.17)

is a concave, twice differentiable solution of the HJB equation (3.3) on [x1,∞),
where Kβ is equal to −M

γ
[resp., to 1/(r̃−(β))].

(ii) If α ≤ c̃ < β, then,

V (x) = M

γ
+ K̃ exp

(−µ

σ 2c̃
(x − x1)

)
, x ≥ x1,(3.18)

is a concave, twice differentiable solution of the HJB equation (3.3) on [x1,∞),
where K̃ is equal to −M

γ
[resp., to −µ/(σ 2c̃)].

(iii) If c̃ < α, then,

V (x) = M

γ
+ Kα exp

(
r̃−(α)(x − x1)

)
, x ≥ x1,(3.19)

is a concave, twice differentiable solution of the HJB equation (3.3) on [x1,∞),
where Kα is a constant equal to −M

γ
[resp., to 1/(r̃−(α))].
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COROLLARY 3.5. If x1 = 0, then the solution to (2.7) subject to (2.6) is
given by

V (x) =




M

γ

(
1− exp

(
r̃−(β)x

))
, if c̃ ≥ β,

M

γ

(
1− exp

(−µ

σ 2c̃
x

))
, if α ≤ c̃ < β, ∀x ≥ 0,

M

γ

(
1− exp

(
r̃−(α)x

))
, if c̃ < α.

Corollary 3.5 shows that the qualitative nature of the solution depends on the
relationship between2δ

µ
, α andβ. Accordingly, we consider three cases. However,

in contrast to the situation with unbounded dividend rates, each case here will
consist of several subcases, each subcase being associated with a different range
for the value ofM .

REMARK 3.6. If neither −M
γ

r̃−(β) ≤ 1 when c̃ ≤ β nor M
γ

(µ/(σ 2c̃)) ≤ 1

when α ≤ c̃ < β nor −M
γ

r̃−(α) ≤ 1 when c̃ < α is satisfied, then the solution
to (2.7)satisfies

V ′(0) > 1.

The main purpose of the remaining part is to derive the solution to (3.2) and
then to combine the latter with Theorem 3.4. The solution to (3.2) is based mainly
on the value ofa(0). Thus, first of all, we present an analysis ofa(0).

PROPOSITION3.7. Suppose the assumptions of Remark 3.6hold. Then:

(i) 2δ
µ

< α if and only if a(0) < α. In this case a(0) = (µα2)/(2(µα − δ)).

(ii) α ≤ 2δ
µ

< β if and only if α ≤ a(0) < β. In this case a(0) = 2 δ
µ

.

(iii) β ≤ 2δ
µ

if and only if a(0) ≥ β. In this case a(0) = (µβ2)/(2(µβ − δ)).

PROOF. In view of the assumption of Remark 3.6, assume thatx1 is positive.
Let ã ∈ [α,β] be such that

0 = max
α≤a≤β

(1
2σ 2a2V ′′(0) + (aµ − δ)V ′(0)

)
(3.20)

= 1
2σ 2ã2V ′′(0) + (ãµ − δ)V ′(0).

Comparing (3.20) to (3.5) we obtain

ã2 − 2a(0)ã + 2δ

µ
a(0) = 0.(3.21)
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From (3.21), it follows thata(0) ≥ 2δ
µ

. Moreover, by definition,a(0) ∈ [α, β] is

equivalent toã = a(0), which is further equivalent toa(0) = 2δ
µ

∈ [α, β]. Thus we
conclude:

(i) If a(0) < α, then 2δ
µ

≤ a(0) < α. Conversely, suppose2δ
µ

< α. If a(0) ∈
[α,β], then by the above resultsa(0) = 2δ

µ
< α, which is a contradiction. Thus

either a(0) < α or a(0) > β. Supposea(0) > β. Then ã = β and by (3.21),
a(0) = (µβ2)/(2(µβ − δ)) < β (due to2δ

µ
< α < β). This is again a contradiction.

Hence we havea(0) < α. Then ã = α, and in view of (3.21), we geta(0) =
(µα2)/(2(αµ − δ)).

(ii) Supposeα ≤ 2δ
µ

< β. Then due to (i) we havea(0) ≥ α. Now we proceed

to prove thata(0) ≤ 2δ
µ

< β. Supposea(0) > 2δ
µ

. Thena(0) > β ≡ ã. On the other

hand, in view of (3.21), we havea(0) = (µβ2)/(2(βµ − δ)); thus(µβ2)/(2(βµ −
δ)) ≥ β, which is equivalent to 2δ

µ
≥ β. This, however, is a contradiction and

thereforea(0) = 2δ
µ

∈ [α,β). Conversely, ifa(0) ∈ [α,β), thena(0) = 2δ
µ

∈ [α,β).

(iii) Supposeβ ≤ 2δ
µ

. Then a(0) ≥ 2δ
µ

≥ β, leading to ã = β and a(0) =
(µβ2)/(2(βµ − δ)) ≥ β. Conversely, if a(0) ≥ β, then ã = β and a(0) =
(µβ2)/(2(µβ − δ)) ≥ β, which is equivalent to2δ

µ
≥ β. �

3.1. Case of 2δ
µ

< α. To resolve equation (3.2), we begin our analysis with an
observation that in this case, in view of Proposition 3.7(i),a(x) < α for all x in
the right neighborhood of 0. We also suppose thata(x1) > β. This assumption is
not a restriction, but gives us the solution of (3.2) that corresponds to the maximal
interval[0, x1). Substitutinga ≡ α in (3.2) and solving the resulting second-order
linear ODE, we obtain

V (x) = k1(α,β)
(
exp

(
r+(α)x

) − exp
(
r−(α)x

))
,(3.22)

wherek1(α,β) is a free constant to be determined and

r+(z) = −(zµ − δ) + [(zµ − δ)2 + 2σ 2z2γ ]1/2

σ 2z2
,

(3.23)

r−(z) = −(zµ − δ) − [(zµ − δ)2 + 2σ 2z2γ ]1/2

σ 2z2 , z > 0.

Due to (3.5) and (3.22),

a′(x) = −µ

σ 2

(V ′′(x))2 − V ′(x)V (3)(x)

(V ′′(x))2

= −µr+(α)r−(α)exp((r+(α) + r−(α))x)(r+(α) − r−(α))2

σ 2(V ′′(x))2
> 0
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for eachx in the right neighborhood of 0. Thereforea(x) increases and reachesα

at the pointxα given by

xα = 1

r+(α) − r−(α)
log

(
r−(α)(µ + ασ 2r−(α))

r+(α)(µ + ασ 2r+(α))

)
> 0.(3.24)

By virtue of Proposition 3.3(i),α ≤ a(x) < β in the right neighborhood ofxα. In
this case we substitutea ≡ a(x) and

V ′′(x) = −µV ′(x)

σ 2a(x)
(3.25)

into (3.2), differentiating the resulting equation and substituting

V ′′(x) = −µV ′(x)

σ 2a(x)

once more, we arrive at

µa′(x)

2
+ µδ

σ 2a(x)
= µ2 + 2γ σ 2

2σ 2 .

As a result,

a′(x) = µ2 + 2γ σ 2

µσ 2

(
1− c

a(x)

)
(3.26)

with

c ≡ 2δµ

µ2 + 2γ σ 2
.(3.27)

Integrating (3.26), we getG(a(x)) ≡ ((µ2 + 2γ σ 2)/(µσ 2))(x − xα) + G(α),
where

G(u) = u + c log(u − c).(3.28)

Therefore,

a(x) = G−1
(

µ2 + 2γ σ 2

µσ 2
(x − xα) + G(α)

)
.(3.29)

Thusa(x) is increasing anda(xβ) = β for

xβ ≡ µσ 2

µ2 + 2γ σ 2
[G(β) − G(α)] + xα

(3.30)

= µσ 2

µ2 + 2γ σ 2
(β − α) + µσ 2c

µ2 + 2γ σ 2
log

(
β − c

α − c

)
.

Solving (3.25) we obtain

V (x) = V (xα) + V ′(xα)

∫ x

xα

exp
(
− µ

σ 2

∫ y

xα

du

a(u)

)
dy, xα ≤ x < xβ,(3.31)



1822 T. CHOULLI, M. TAKSAR AND X. Y. ZHOU

whereV (xα) andV ′(xα) are free constants. ChoosingV (xα) andV ′(xα) as the
value and the derivative, respectively, of the right-hand side of (3.22) atxα, we
can ensure that the functionV given by (3.22) and (3.31) is continuous with its
first and second derivatives at the pointxα no matter what the choice ofk(α,β)

is. (Note that due to the HJB equation, continuity ofV and its first derivative at
xα automatically implies continuity of the second derivative as well.) Next we
simplify (3.31). First, changing variablesa(u) = θ we get∫ x

xα

exp
(
− µ

σ 2

∫ y

xα

du

a(u)
dy

)

= µσ 2

µ2 + 2γ σ 2

∫ a(x)

α

(
1+ c

θ − c

)(
θ − c

α − c

)−�

dθ, xα ≤ x < xβ.

On the other hand, relationships (3.24) and (3.22) imply

V (xα) = αµ − 2δ

2γ
V ′(xα).

Simple algebraic transformations yield(
µσ 2

µ2 + 2γ σ 2

)(
c

�
− z − c

1− �

)
= zµ − 2δ

2γ
∀ z > 0,(3.32)

wherec is given by (3.27) and

� = µ2

µ2 + 2γ σ 2 .(3.33)

Therefore,

V (x) = V ′(xα)
µa(x) − 2δ

2γ

(
a(x) − c

α − c

)−�

, xα ≤ x < xβ.(3.34)

The same arguments as in Proposition 3.3(ii) show thata(x) ≥ β for eachx ≥ xβ .
Thus, substitutinga ≡ β into (3.2) and solving the resulting ODE, we get

V (x) = k1(β)exp
(
r+(β)(x − x1)

) + k2(β)exp
(
r−(β)(x − x1)

)
,

(3.35)
xβ ≤ x < x1,

wherek1(β) andk2(β) are two free constants to be determined. The continuity of
(3.31) atxβ , together with simple but tedious algebraic transformation [similar to
those used above to simplify (3.31) to (3.34)] lead to

V ′(xα) = V ′(xβ)

(
β − c

α − c

)�

.(3.36)

Let c̃ be given by(3.15) and

Mz =
(
z − 2δµ

µ2 + 2σ 2γ

)
µ2 + 2σ 2γ

2µ
, z > 0.(3.37)

Thenc̃ ≥ β (resp.,c̃ = β ) is equivalent toM ≥ Mβ (resp.,M = Mβ). This is the
first subcase we consider.
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3.1.1. Case of M > Mβ . Our assumptions imply that in this case,a(x1) > β,
which is equivalent tox1 > xβ . Combining (3.22), (3.34) and (3.35) and
Theorem 3.4(i) we can write a general form of the solution to (2.7) and (2.6),

V (x) =




K1(α,β)
(
exp

(
r+(α)x

) − exp
(
r−(α)x

))
, 0 ≤ x < xα,

V ′(xα)
µa(x) − 2δ

2γ

(
a(x) − c

α − c

)−�

, xα ≤ x < xβ ,

K1(β)exp
(
r+(β)(x − x1)

)
+ K2(β)exp

(
r−(β)(x − x1)

)
, xβ ≤ x < x1,

M

γ
+ 1

r̃−(β)
exp

(
r̃−(β)(x − x1)

)
, x ≥ x1,

(3.38)

where r+(α), r−(α), r+(β) and r−(β), xα and xβ are given by (3.23),
(3.24) and (3.30), respectively, andK1(β), K2(β), K1(α,β) andx1 are unknown
constants to be determined. Continuity of the first and the second derivatives at
x1 results in

V ′(x1) = 1, V ′′(x1) = r̃−(β).

This gives us two equations,

1 = K1(β)r+(β) + K2(β)r−(β),

r̃−(β) = K1(β)r2+(β) + K2(β)r2−(β),

whose solutions are

K1(β) = r̃−(β) − r−(β)

r+(β)(r+(β) − r−(β))
,

(3.39)

K2(β) = r+(β) − r̃−(β)

r−(β)(r+(β) − r−(β))
.

Put� = xβ − x1. As before, using the principle of smooth fit atxβ , we get

xβ − x1 = � = 1

(r+(β) − r−(β))
(3.40)

× log
(
−(r+(β) − r̃−(β))(µ + βσ 2r−(β))

(r̃−(β) − r−(β))(µ + βσ 2r+(β))

)
.

The expression on the right-hand side of(3.40) is negative due tõc > β. In view
of (3.40) and (3.39) we can derive a simplified expression forV ′(xβ):

V ′(xβ) = βσ 2 exp
(
r−(β)�

) r+(β) − r̃−(β)

µ + βσ 2r+(β)
.
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The continuity of V ′ at xα yields V ′(xα) = K1(α,β)(r+(α)exp(r+(α)xα) −
r−(α)exp(r−(α)xα)). Combining this equality with (3.36), we get

K1(α,β) = V ′(xβ)((β − c)/(α − c))�

r+(α)exp(r+(α)xα) − r−(α)exp(r−(α)xα)
.(3.41)

THEOREM 3.8. Let a(x) be a function given by (3.29)and let r+(α), r−(α),
r+(β), r−(β), xα, xβ , c, �, r̃−(β), K1(β), K2(β), K1(α,β) and x1 be given by
(3.23), (3.24), (3.30), (3.27), (3.33), (3.10), (3.39), (3.41)and (3.40),respectively.
If 2δ

µ
< α and M > Mβ , then V given by (3.38)is a concave, twice differentiable

solution of the HJB equation (2.7),subject to (2.6).

PROOF. From the way we constructedV , it is a twice continuously differen-
tiable solution to the HJB equation (3.2). What remains to show is the concavity.
From (3.38), we deduce that

V ′′′(x) = k1(α,β)
(
r3+(α)exp

(
r+(α)x

) − r3−(α)exp
(
r−(α)x

))
> 0

∀0≤ x < xα,

due tor−(α) < 0< k1(α,β). Hence on this intervalV ′′ is increasing and

V ′′(x) < V ′′(xα) = k1(α,β)
(
r2+(α)exp

(
r+(α)xα

) − r2−(α)exp
(
r−(α)xα

))
< 0,

due to(r−(α))/(r+(α)) = exp((r+(α) − r−(α))xα) and|r−(α)| > r+(α).
Forxα ≤ x < xβ , V ′′(x) = (−µV ′(x))/(σ 2a(x)) < 0. Forxβ ≤ x < x1,

V ′′′(x) = k1(β)r3+(β)exp
(
r+(β)(x − x1)

) + k2(β)r3−(β)exp
(
r−(β)(x − x1)

)
> 0,

sincek2(β) and r−(β) are of the same sign. ThusV ′′(x) < V ′′(x1) < 0 ∀xβ ≤
x < x1. Finally, V ′′(x) < 0 ∀x ≥ x1. This establishes the concavity ofV . Since
V ′(x) > 1 for x < x1 andV ′(x) ≤ 1 for x ≥ x1, it is clear thatV satisfies (2.7).

�

3.1.2. Case of Mα < M ≤ Mβ . Expression (3.37) shows thatβ ≥ c̃ > α if
and only if Mβ ≥ M > Mα. From (3.29) we see that the conditionβ ≥ c̃ > α

is equivalent toβ ≥ a(x1) > α. In view of Theorem 3.4,a(x) ≤ a(x1) ≤ β for
all x ≥ 0. This also impliesV ′(x1) = 1. As a resultK̃ = −σ 2c̃/µ. Taking into
account (3.22), (3.34) and (3.18), we can write the expression forV as

V (x) =




K1(α,β)
(
exp

(
r+(α)x

) − exp
(
r−(α)x

))
, 0 ≤ x < xα,

V ′(xα)
µa(x) − 2δ

2γ

(
a(x) − c

2δ/µ − c

)−�

, xα ≤ x < x1,

M

γ
− σ 2c̃

µ
exp

(
− µ

σ 2c̃
(x − x1)

)
, x ≥ x1.
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Fora(x) given by (3.29), the root of the equationa(x1) = c̃ can be written as

x1 = µσ 2

µ2 + 2σ 2γ

∫ c̃

2δ/µ

udu

u − c
(3.42)

= µσ 2(c̃ − 2δ/µ)

µ2 + 2σ 2γ
+ µσ 2

µ2 + 2σ 2γ
log

(
c̃ − c

2δ/µ − c

)
.

The continuity ofV ′ atx1 leads toV ′(xα) = ( c̃−c
2δ/µ−c

)� . Consequently,

K1(α,β) = ((c̃ − c)/(2δ/µ − c))�

r+(α)exp(r+(α)xα) − r−(α)exp(r−(α)xα)
.(3.43)

THEOREM 3.9. Let a(x) be a function given by (3.29)and let r+(α), r−(α),
K1(α,β), xα, x1, c, � and c̃ be given by (3.23), (3.43), (3.24), (3.42), (3.27), (3.33)
and (3.15),respectively. If 2δ

µ
< α and Mα < M ≤ Mβ , then

V (x) =




K1(α,β)
(
exp

(
r+(α)x

) − exp
(
r−(α)x

))
, 0 ≤ x < xα,

µa(x) − 2δ

2γ

(
a(x) − c

c̃ − c

)−�

, xα ≤ x < x1,

M

γ
− σ 2c̃

µ
exp

(
− µ

σ 2c̃
(x − x1)

)
, x ≥ x1

(3.44)

is a concave, twice differentiable solution of the HJB equation (2.7) subject
to (2.6).

PROOF. The proof of this theorem follows the same lines as that of Theo-
rem 3.8. �

Now suppose thatM ≤ Mα. Then a(x) ≤ a(x1) ≤ α for eachx ≥ 0 [since
a(x) is increasing on[0, x1) and is constant forx ≥ x1; see Theorem 3.4]. If
V ′(0) > 1, thenx1 > 0 andV ′(x1) = 1. As a result,K̃α = 1/(r̃−(α)). In view of
(3.22) and (3.19), the functionV is given by

V (x) =



k1(α,β)
(
exp

(
r+(α)x

) − exp
(
r−(α)x

))
, 0 ≤ x < x1,

M

γ
+ 1

r̃−(α)
exp

(
r̃−(α)(x − x1)

)
, x ≥ x1.

(3.45)

The smoothness ofV requires

V ′(x1−) = 1, V ′′(x1−) = r̃−(α),

which translates into

k1(α,β)
(
r+(α)exp

(
r+(α)x1

) − r−(α)exp
(
r−(α)x1

)) = 1,
(3.46)

k1(α,β)
(
r2+(α)exp

(
r+(α)x1

) − r2−(α)exp
(
r−(α)x1

)) = r̃−(α).
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Excludingk1(α,β), we get an equation forx1:

exp
((

r+(α) − r−(α)
)
x1

) = r−(α)(r−(α) − r̃−(α))

r+(α)(r+(α) − r̃−(α))
.(3.47)

This equation has a positive solution if and only if

M > M0(α) ≡ α2σ 2γ

2(αµ − δ)
.(3.48)

This proves the following statement.

PROPOSITION3.10. If 2δ
µ

< α, then

V ′(0) > 1 iff M >
α2σ 2γ

2(αµ − δ)
.

Let Mz be given by (3.37) and

M0(z) ≡ z2σ 2γ

2(zµ − δ)
, z >

δ

µ
.

A simple analysis shows thatf (z) ≡ M0(z)−Mz is a decreasing function ofz and
f (2δ

µ
) = 0. Similarly, we claim thatM0(z) is decreasing forz ≤ 2δ

µ
and increasing

for z ≥ 2δ
µ

. Thus, we derive the inequalities

M0

(
2δ

µ

)
< M0(α) < Mα < Mβ if

2δ

µ
< α,(3.49)

Mα ≤ M0(α) ≤ M0

(
2δ

µ

)
< Mβ if α ≤ 2δ

µ
< β,(3.50)

Mα < Mβ ≤ M0

(
2δ

µ

)
≤ M0(β) < M0(α) if β ≤ 2δ

µ
.(3.51)

Since the qualitative behavior of the solution to (3.2) [resp., to (3.3)] depends on
the value ofa(0) [resp., ofa(x1)], in accordance with (3.49) we distinguish and
study the remaining subcases in the following sections.

3.1.3. Case of M0(α) < M ≤ Mα . This is the case when (3.47) has a positive
solutionx1 given by

x1 = 1

r+(α) − r−(α)
log

(
r−(α)(r−(α) − r̃−(α))

r+(α)(r+(α) − r̃−(α))

)
.(3.52)

THEOREM 3.11. Let r+(α), r−(α), r̃−(α) and x1 be given by (3.23),
(3.10)and (3.52),respectively, and let k1(α,β) be determined by (3.46).If 2δ

µ
< α

and M0(α) < M ≤ Mα, then V given by (3.45) is a concave, twice continuously
differentiable solution of (2.7)subject to (2.6).

PROOF. The proof of this theorem follows from that of Theorem 3.9.�
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3.1.4. Case of M ≤ M0(α). By virtue of Proposition 3.10, this assumption
results inV ′(0) ≤ 1. As a consequence,x1 = 0. As shown in Theorem 3.4,
this leads toa(x) = a(0) for eachx ≥ 0. SinceMα > M0(α), we can apply
Corollary 3.5 to deducea(0) < α.

THEOREM 3.12. Let r̃−(α) be a constant given by (3.10). If 2δ
µ

< α and
M ≤ M0(α), then

V (x) = M

γ

(
1− exp

(
r̃−(α)x

))
, x ≥ 0,(3.53)

is a concave, twice continuously differentiable solution of (2.7)subject to (2.6).

PROOF. See Corollary 3.5. �

3.2. Case of α ≤ 2δ
µ

< β . In this section, we investigate the second main case
of α ≤ a(0) < β. As in the preceding section, if we assumea(x1) > β, then (3.2)
admits the solution

V (x) =




V ′(0)
µa(x) − 2δ

2γ

(
a(x) − c

2δ/µ − c

)−�

, 0≤ x < xβ ,

K1(β)exp
(
r+(β)(x − x1)

)
+ K2(β)exp

(
r−(β)(x − x1)

)
, xβ ≤ x < x1.

(3.54)

Here

xβ = µσ 2

µ2 + 2γ σ 2

[
G(β) − G

(
2δ

µ

)]

(3.55)

= µσ 2

µ2 + 2γ σ 2

(
β − 2δ

µ

)
+ 2δµc

µ2 + 2γ σ 2
log

(
β − c

2δ/µ − c

)

and the functiona(x) is defined by

a(x) = G−1
(

µ2 + 2γ σ 2

µσ 2
x + G

(
2δ

µ

))
∈

[
2δ

µ
,∞

)
,(3.56)

whereG is given by (3.28).
As before, the solution to (2.7) is derived by combining (3.54) and (3.3), by

distinguishing subcases as follows.

3.2.1. Case of M > Mβ . As in Section 3.1.1, consider the case ofx1 > xβ .
This case is characterized byM > Mβ , which is also equivalent tõc > β. As a
result, we getV ′(x1) = 1. This leads toK̃β = 1/(r̃−(β)) [see Theorem 3.4(i)].
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Then using (3.54) and Theorem 3.4(i),V can be represented in the form

V (x) =




V ′(0)
µa(x) − 2δ

2γ

(
a(x) − c

2δ/µ − c

)−�

, 0≤ x < xβ ,

K1(β)exp
(
r+(β)(x − x1)

)
+ K2(β)exp

(
r−(β)(x − x1)

)
, xβ ≤ x < x1,

M

γ
+ 1

r̃−(β)
exp

(
r̃−(β)(x − x1)

)
, x ≥ x1,

(3.57)

where a(x), K1(β), K2(β) and x1 are given by (3.56), (3.39) and (3.40),
respectively. Let� = xβ − x1 be given by (3.30). Continuity ofV atxβ yields

V ′(0) =
(

2γ

µβ − 2δ

(
β − c

2δ/µ − c

)�)

(3.58)
× (

K1(β)exp
(
r+(β)�

) + K2(β)exp
(
r−(β)�

))
.

THEOREM 3.13. Let V ′(0), a(x), c, �, K1(β), K2(β), x1 and c̃ be given by
(3.58), (3.56), (3.27), (3.33), (3.39), (3.40)and (3.15),respectively. If α ≤ 2δ

µ
< β

and M ≥ Mβ , then V (x) given by (3.57) is a concave, twice continuously
differentiable solution of (2.7)subject to (2.6).

PROOF. The proof results from combining (3.54) and Theorem 3.4(ii).�

To classify the remaining cases, supposeM ≤ Mβ . Let V ′(0) > 1. In this case,
x1 defined by (3.1) is positive. Therefore, using (3.54) and Theorem 3.4(ii), we can
representV as

V (x) =




V ′(0)
µa(x) − 2δ

2γ

(
a(x) − c

2δ/µ − c

)−�

, 0 ≤ x < x1,

V (x1) + σ 2c̃

µ
− σ 2c̃

µ
exp

(
− µ

σ 2c̃
(x − x1)

)
, x ≥ x1,

(3.59)

wherea(x) andc̃ are given by (3.56) and (3.15), respectively. As a consequence,
we get

a(x1) = c̃.(3.60)

Continuity of V ′(x) at x = x1 [see (3.26) for the expression of the derivatives
of a(x)] along with (3.60) results in

V ′(0) =
(

c̃ − c

2δ/µ − c

)�

.(3.61)
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Substituting(3.61), (3.60) and (3.37) into (3.59), we obtain

V (x1) = M

γ
− σ 2c̃

µ
.(3.62)

The unknown constantx1 is the root of (3.60). Recalling (3.56), we see that (3.60)
admits a positive solution if and only if

M > M0

(
2δ

µ

)
= 2δ2σ 2γ

µ2
.(3.63)

PROPOSITION3.14. Suppose α ≤ 2δ
µ

< β. Then

V ′(0) > 1 iff M > M0

(
2δ

µ

)
.

In view of this proposition, we distinguish the remaining subcases as follows.

3.2.2. Case of M0(
2δ
µ

) < M ≤ Mβ . Substituting (3.56) into (3.60), we obtain

x1 = µσ 2

µ2 + 2σ 2γ

∫ c̃

2δ/µ

udu

u − c
(3.64)

= µσ 2(c̃ − 2δ/µ)

µ2 + 2σ 2γ
+ µσ 2

µ2 + 2σ 2γ
log

(
c̃ − c

2δ/µ − c

)
.

THEOREM 3.15. Let a(x), c, �, c̃ and x1 be given by (3.56), (3.27), (3.33),
(3.15)and (3.64),respectively. If α ≤ 2δ

µ
< β and M0(

2δ
µ

) < M ≤ Mβ , then

V (x) =




µa(x) − 2δ

2γ

(
a(x) − c

c̃ − c

)−�

, 0≤ x < x1,

M

γ
− σ 2c̃

µ
exp

(
− µ

σ 2c̃
(x − x1)

)
, x ≥ x1,

(3.65)

is a concave, twice continuously differentiable solution of (2.7)subject to (2.6).

PROOF. The proof of this theorem follows from that of (3.54).�

3.2.3. Case of M ≤ M0(
2δ
µ

). Note that in this case,V ′(0) ≤ 1 due to
Proposition 3.14. From (3.50), it follows thata(0) = c̃ < β.

THEOREM 3.16. Suppose α ≤ 2δ
µ

< b and M ≤ M0(
2δ
µ

). Let c̃ and r̃−(α) be
given by (3.15)and (3.10),respectively.
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(i) If α < 2δ
µ

and α ≤ c̃, then

V (x) = M

γ

(
1− exp

(
− µ

σ 2c̃
x

))
, x ≥ 0,(3.66)

is a concave, twice continuously differentiable solution of (2.7)subject to (2.6).
(ii) If α = 2δ

µ
or c̃ < α, then

V (x) = M

γ

(
1− exp

(
r̃−(α)x

))
, x ≥ 0,(3.67)

is a concave, twice continuously differentiable solution of (2.7)subject to (2.6).

PROOF. See Corollary 3.5. �

3.3. Case of δ
µ

< β ≤ 2δ
µ

. We now investigate the final main case,δ
µ

<

β ≤ 2δ
µ

. SupposeV ′(0) > 1. Thenx1 defined by (3.1) is positive. In view of
Proposition 3.7(iii) and Proposition 3.3(i),a(x) ≥ β for all x ≥ 0. Therefore,
using (3.62) and Theorem 3.4(i),V can be represented as

V (x) =



K
(
exp

(
r+(β)x

) − exp
(
r−(β)x

))
, 0 ≤ x < x1,

M

γ
+ 1

r̃−(β)
exp

(
r̃−(β)(x − x1)

)
, x ≥ x1.

(3.68)

The principle of smooth fit forV atx1 yields

V ′(x1−) = K
(
r+(β)exp

(
r+(β)x1

) − r−(β)exp
(
r−(β)x1

)) = 1,
(3.69)

V ′′(x1−) = r̃−(β).

Thus

exp
((

r+(β) − r−(β)
)
x1

) = r−(β)(r−(β) − r̃−(β))

r+(β)(r+(β) − r̃−(β))
,(3.70)

which admits a positive solutionx1 iff

M > M0(β) = σ 2β2γ

2(βµ − δ)
.(3.71)

PROPOSITION3.17. If δ
µ

< β ≤ 2δ
µ

, then

V ′(0) > 1 iff M > M0(β).

PROOF. The proof of this proposition follows from the calculations in this and
the previous sections.�

In view of Proposition 3.17, we need to treat only two subcases, namely,
M > M0(β) andM ≤ M0(β), to complete our analysis.
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3.3.1. Case of M > M0(β). In this case, (3.70) has a positive solutionx1
given by

x1 = 1

r+(β) − r−(β)
log

(
r−(β)(r−(β) − r̃−(β))

r+(β)(r+(β) − r̃−(β))

)
.(3.72)

THEOREM 3.18. Let x1, r+(β), and r−(β) and r̃−(β) be given by (3.72),
(3.23)and (3.10),respectively, and let K be a constant determined from (3.69).
If δ

µ
< β ≤ 2δ

µ
and M > M0(β), then V given by (3.68) is a concave, twice

continuously differentiable solution of (2.7)subject to (2.6).

PROOF. By differentiating the expression (3.68), we obtain

V (3)(x) = K
(
r3+(β)exp

(
r+(β)x

) − r3−(β)exp
(
r−(β)x

))
> 0, 0 ≤ x < x1.

As a result,V ′′(x) < V ′′(x1) = 0 andV ′(x) > V ′(x1) = 1. This proves thatV is
concave. �

3.3.2. Case of M ≤ M0(β). In this case, in view of Proposition 3.17,
V ′(0) ≤ 1. Therefore,x1 defined by (3.1) equals zero.

THEOREM 3.19. Suppose that either β ≤ δ
µ

or δ
µ

< β ≤ 2δ
µ

and M ≤ M0(β).
Let r̃−(β), r̃−(α) and c̃ be given by (3.10)and (3.15),respectively.

(i) If M ≥ Mβ , then

V (x) = M

γ

(
1− exp

(
r̃−(β)x

))
, x ≥ 0,(3.73)

is a concave, twice continuously differentiable solution of (2.7)subject to (2.6).
(ii) If Mα ≤ M < Mβ , then

V (x) = M

γ

(
1− exp

(
− µ

σ 2c̃
x

))
, x ≥ 0,

is a concave, twice continuously differentiable solution of (2.7)subject to (2.6).
(iii) If M < Mα, then

V (x) = M

γ

(
1− exp

(
r̃−(α)x

))
, x ≥ 0,

is a concave, twice continuously differentiable solution of (2.7)subject to (2.6).

PROOF. In the case ofβ ≤ δ
µ

, the inequalityV ′(0) ≤ 1 holds due to
Proposition 3.17. Then by applying Corollary 3.5, the desired result follows.
On the other hand, ifδ

µ
< β ≤ 2δ

µ
and M ≤ M0(β), then V ′(0) ≤ 1 (see

Proposition 3.1). Thus, in view of (3.51), Corollary 3.5 can be applied again to
obtain the results. �
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4. Optimal policies. In this section we construct the optimal control policies
based on the solutions to the HJB equations obtained in the previous section. The
derivation of the results of this section is simpler than the corresponding one in [4],
in view of the fact that no Skorohod problem has to be involved in this case.

SupposeV is a concave solution to the HJB equation (2.7). Define

a∗(x) ≡ arg max
α≤a≤β

(1
2σ 2a2V ′′(x) + (aµ − δ)V ′(x)

(4.1) − γV (x) + M
(
1− V ′(x)

)+)

and

M∗(x) ≡ M1{x≥x1},
wherex1 is defined by (3.1). The functiona∗(x) is the optimal feedback risk
control function, while the functionM∗(x) represents the optimal dividend rate
payments when the level of the reserve isx.

THEOREM 4.1. Let R∗
t , t ≥ 0, be a solution to the stochastic differential

equation

dR∗
t = [a∗(R∗

t )µ − δ − M∗(R∗
t )]dt + a∗(R∗

t )σ dWt,
(4.2)

R∗
0 = x.

Then for π∗ ≡ (a∗
t , c∗

t ; t ≥ 0) = (a∗(R∗
t ),M∗(R∗

t ); t ≥ 0), we have

Jx(π∗) = V (x) ∀x ≥ 0.(4.3)

PROOF. For simplicity assume that the initial positionx ≤ x1. In this case the
processR∗

t as a solution to (4.2) is continuous. In view of (4.1) and (2.7),

La∗(R∗
s )V (R∗

s ) − M∗(R∗
s )V ′(R∗

s ) + M∗(R∗
t ) = 0(4.4)

[sinceM(1− V ′(x))+ = M∗(x)(1 − V ′(x))], where the operatorLa is defined in
the proof of Theorem 2.2. Repeating the arguments of the proof of Theorem 2.2
and applying (4.4), we see that (we writeτ instead ofτπ below, since there will
be no confusion)

E
(
e−γ (t∧τ)V (R∗

t∧τ )
) = V (x) − E

∫ t∧τ

0
e−γ sc∗

s ds.(4.5)

Taking the limit ast → ∞, and applying (2.13), we obtain the desired result.�

Combining Theorems 2.2 and 4.1, we get the following result immediately.

COROLLARY 4.2. The function V presented in Section 3 is the optimal return
function and π∗ is the optimal policy.

All the results we obtained are summarized in Tables 1 and 2 for easy reference.
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TABLE 1
The case of 2δ

µ < α

Range for M xα xβ a∗(x)

Risk α

ever
attained

Risk β

ever
attained x1

x1 is the first point at
which the possible

maximal risk is attained

M > Mβ Positive
and
finite;
see
(3.24)

Positive
and
finite;
see
(3.30)

(i) α for x ∈ [0, xα]
(ii) Increases from

α to β on [xα, xβ ];
see (3.29)

(iii) β for x ≥ xβ

Yes Yes Positive;
see
(3.40)

No

Mα<M<Mβ

M=Mβ

Positive
and
finite;
see
(3.24)

∞ (i) α for x ∈ [0, xα]
(ii) Increases fromα

to 2µ(δ+M)

µ2+2γ σ 2

on [xα, x1];
see (3.29)

(iii) 2µ(δ+M)

µ2+2γ σ 2

for x ≥ x1

Yes No
Yes

Positive;
see
(3.42)

Yes

M0(α) < M ≤ Mα ∞ ∞ α Yes No Positive;
see
(3.52)

No

M ≤ M0(α) ∞ ∞ α Yes No 0 Yes
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TABLE 2

Range for M xα xβ a∗(x)

Risk α

ever
attained

Risk β

ever
attained x1

x1 is the first point at
which the possible

maximal risk is attained

The case of α ≤ 2δ
µ < β

M > Mβ 0 Positive
and
finite;
see
(3.55)

(i) Increases from
2δ
µ to β on [0, xβ ];
see (3.56);

(ii) β for x > xβ

Yes if
α = 2δ

µ ;
no if
α > 2δ

µ

Yes Positive;
see
(3.40)

No

M0(2δ/µ)<M<Mβ

M=Mβ

0 ∞ (i) Increases from
2δ
µ to 2µ(δ+M)

µ2+2γ σ 2

on [0, x1]; see (3.56)

(ii) 2µ(δ+M)

µ2+2γ σ 2 for x ≥ x1

Yes if
α = 2δ

µ ;
no if
α > 2δ

µ

No
Yes

Positive;
see
(3.64)

Yes

Mα < M ≤ M0(2δ
µ ) 0 ∞ 2µ(δ+M)

µ2+2γ σ 2
No No 0 Yes

M ≤ Mα 0 ∞ α Yes No 0 Yes

The case of δ
µ < β ≤ 2δ

µ

M > M0(β) 0 0 β No Yes Positive;
see
(3.72)

No

Mβ ≤ M ≤ M0(β) 0 0 β No Yes 0 Yes

Mα<M<Mβ

M=Mα

0 ∞ 2µ(δ+M)

µ2+2γ σ 2
No
Yes

No 0 Yes

M < Mα ∞ ∞ α No No 0 Yes
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5. Economic interpretation and conclusions. The optimal policies obtained
in the previous sections have clear economic meaning and are very easy to
implement. Let us now elaborate.

The risk control policy is characterized by two critical reserve levels:xα andxβ .
The values of these two levels are further determined by four parameters: the
minimum risk allowed (α), the maximum risk allowed (β), the ratio between
the debt rate and profit rate (δ

µ
), and the maximum dividend rate allowed (M).

Specifically, there are three different cases to consider.
The first case is when the company has very little debt compared to the potential

profit (so that2δ
µ

< α). In this case, if the maximum dividend rateM is large
enough (M > Mβ), then both critical reserve levels,xα andxβ , are positive and
finite. In other words, the company will minimize business activity (i.e., take the
minimum risk α) when the reserve is below levelxα, then gradually increase
business activity when the reserve is betweenxα and xβ , and then maximize
business activity (i.e., take the maximum riskβ) when the reserve reaches or goes
beyond levelxβ . This policy is the same as that obtained in [4] for the case of
unbounded dividend rate. Next, if the maximum dividend rateM is at a medium
level (Mα < M < Mβ ), then xα remains positive and finite whilexβ becomes
infinite. This implies that the company will become less aggressive; in particular, it
will never take the maximum risk, due to a more restrictive dividend payout upper
bound. Finally, ifM is so small thatM ≤ Mα, then bothxα andxβ turn out to be
infinite, meaning that business activities will be carried out at the minimum level
or those business activities are redundant.

The second case is when the company has a higher debt–profit ratio (so that
α ≤ 2δ

µ
< β). In this case,xα = 0. This means that no matter how small the reserve

is the company will never take the minimum risk; rather it will start with a bit
higher risk level and gradually increase it. On the other hand, whether it will ever
increase to the maximum possible risk (i.e., whetherxβ is finite or infinite) depends
on the value of the maximum possible dividend rateM , in the same way as in the
first case discussed above. Therefore, in the second case the company overall has to
be a bit more aggressive than in the first case. This can be explained by the fact that
when the debt rate is high, one needs to gamble on higher potential profits to get
out of the “bankruptcy zone” as fast as possible, even at the expense of assuming
higher risk.

The company becomes even more aggressive in the third case when the debt–
profit ratio is even higher (precisely whenδ

µ
< β ≤ 2δ

µ
). In this case, when the

maximum dividend rateM is large enough (M ≥ Mβ ), the maximum allowable
risk β is taken throughout, while the two critical levelsxα andxβ are both zero.
On the other hand, whenM is small enough so thatM < Mα, business activities
are carried out at the minimum levelα throughout.

On the other hand, the optimal dividend policy is always of a threshold type here
the threshold isx1 (which is positive or zero). Namely, the dividend distribution
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takes place only when the reserve exceeds the critical levelx1, in which case the
dividend payout rate isM .

It is interesting to note that in the case of unbounded dividend rate, the
maximum business activity is always takenbefore dividend distributions ever take
place; see [4]. However, in the present case of bounded dividend rate, the company
may need to pay dividendsbefore the maximum risk levelβ is ever taken; refer to
Tables 1 and 2 for details. This represents a striking difference between the cases of
unbounded and bounded dividend rate. The economic reason for such behavior is
the following. When there is a significant constraint on the dividend rate, there may
be no necessity to pursue business aggressively because the accumulated liquid
assets cannot be paid out as dividends fast enough anyway.

In conclusion, we point out an intricate interplay between the restriction on
the dividend distribution rate and that on the risk control of a financial company.
The sheer number of qualitatively different optimal policies, which appears due
to different possible relationships between exogenous parameters, shows the
multiplicity of different economic environments which a financial company faces
depending on the size of the debt, on the constraint on the dividend rate, and on
the size of available business activity.
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