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STABILITY IN DISTRIBUTION OF RANDOMLY PERTURBED
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Iteration of randomly chosen quadratic maps defines a Markov process:
Xp+1=ep+1Xn(1 — X,), whereg, are i.i.d. with values in the parameter
spacqO0, 4] of quadratic map$y (x) = 6x(1— x). Its study is of significance
as an important Markov model, with applications to problems of optimization
under uncertainty arising in economics. In this article a broad criterion is
established for positive Harris recurrenceXof.

1. Introduction. The present article explores the problem of stability in
distribution of randomly perturbed dynamical systems of random compositions
of the form

(1.1) X,=Fy, F, - Fo, X0, n>1,

n—1"

whereeg,, n > 1, is an i.i.d. sequence with values in the parameter sfiadg of
the quadratic magy (x) = 0x(1 — x), and Xy is independent ofe,, :n > 1}. To
exclude the trivial invariant probability;oy, we will restrict the state space of the
Markov process t¢ = (0, 1). By stability in distribution we mean the convergence
in distribution of%zzl‘:lo p™(x,dy) to the same limitr(dy) for every initial
statex € S, with p denoting then-step transition probability ofX, :n > 0}.
Thens is the unique invariant probability of this Markov process.

One may, more generally, consider a stationary ergodic seqyence > 1},
rather than an i.i.d. one. For some results in this direction we refer to Anantharam
and Konstantopoulos (1997). Our motivations for using the present framework are
briefly stated below.

We mention one particular application from economics that has provided at least
a part of the motivation for this work. Consider a dynamic optimization problem in
which one is given aproduction function” f:R, — R, and awelfare function
w :Ri x A — R4, whereA is a parameter set, say = [1, 4], parametrizing a
family of economies. For an initial > 0, aprogramx, :n > 0, is a sequence such
that0< xg=x < x;, < f(x,—1). Theconsumption sequence{c, :n > 1} is defined
asc, = f(x,—1) — x,. Given adiscount factor § > 0 and a parameter valug
one wishes to find aoptimal program {x, :n > 0}, xo = x, which maximizes
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ne08"w(x,, cht1,0) over all programgx, :n > 0} starting atxg = x. Under
economically feasible assumptions one may fifidnd w such that an optimal
program is given recursively by,.1 = 6x,(1 — %), x € [0, 1] [Majumdar and
Mitra (2000); also see Bala and Majumdar (1992) for a special case]. That is, the
optimal program is given by the trajectory of the dynamical syskgmith initial
statex. Since “uncertainty” is inherent in economic systems, one may thus obtain a
randomly perturbed quadratic system. Alternatively, one may at the outset consider
a stochastic dynamic programming problem and directly arrive at a stationary
optimal policy leading to an evolution of states of the form (1.1) [Mitra (1998)].

For earlier work on the existence of a unique invariant probability of the
process (1.1) when the distribution ef has a two-point support or, more
generally, may not have a density component, see Bhattacharya and Majumdar
(1999), Bhattacharya and Rao (1993), Bhattacharya and Waymire (2002) and
Carlsson (2002). SincgX,,} is then generally non-Harris or nonirreducible, fairly
strong restrictions on the distribution gf are needed to ensure uniqueness of the
invariant probability. The question of Harris recurrence of the process (1.1) was
raised by Athreya and Dai (2000).

For ease of reference, we recall that a Markov process 08)( or its transition
probability p(x, dy), is irreducible if there exists a nonzere-finite measurey
such that

o0
(1.2) Ux,B):=) p"x,B)>0 VxeSif ¢(B)>0.

n=1
In this case one also says that the Markov procegdiiseducible. A p-irreducible
Markov process islarris recurrent, or g-recurrent, if

(1.3) Ux,B)=o00 VxeSif o(B) > 0.

A g-irreducible Markov process is said to blarris positive if it has an invariant
probability . It is known that a Harris positive process is Harris recurrent [Meyn
and Tweedie (1993), Proposition 10.1.1]. Therefore, one may call the process
Harris positive recurrent in this case, oHarris ergodic. The invariant probability
measurer of a Harris positive (recurrent) process is unique and one has the
convergence of the Caesaro mean in total variation distance,

(1.4) su%% > p"™(x,B)—mw(B)) >0 asn—ooVxeS.
m=1

In our present content irreducibility is proved with the help of Lemmas 2.3 and 2.4.
A tightness assumption does the rest. A verifiable sufficient condition for tightness
due to Athreya and Dai (2000) then yields the useful Corollary 2.2.

Before concluding this section, let us mention that our goal is to derive Harris
positive recurrence of the process (1.1) under as broad a (verifiable) condition as
we can muster. That this task is rather delicate is perhaps evident from Remark 2.4.
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In addition to the economic application mentioned above, another motivation
for this work comes from a program proposed originally by Kolmogorov for
the approximate computation of the physically meaningful ergodic invariant
probability of a dynamical system. Note that a chaotic dynamical system has
infinitely many extremal, orrgodic, invariant probabties (including one uniform
distribution on each of its infinitely many periodic orbits). The problem is
to approximate the invariant probability to which most points are attracted.
Kolmogorov had proposed that one introduce a small random (possibly absolutely
continuous) perturbation to the dynamical system, such that the resulting Markov
process has a unique invariant probability, which is an approximation to the so-
calledKolmogorov measure of the dynamical system [see Kifer (1988) and Katok
and Kifer (1986)]. In our context this may be achieved, for example, by having a
uniform density on a small interval around a parameter point of interest. Extensive
simulations have shown that, for the present case, this program works not only
for the chaotic regime, but also férsuch thatFy has a stable periodic orbit, or

a quasi-periodic attractor. These simulations may be found in Bhattacharya and
Majumdar (2002).

2. Harrisrecurrenceand ergodicity. On the state space= (0, 1), consider
the Markov process defined recursively by
(2-1) Xp1=F,

En+1

X, n=012...,

where{e, :n > 1} is a sequence of i.i.d. random variables with value®i) and,
for each valu# < (0, 4), Fy is the quadratic function (of):

(2.2) Fox = Fy(x) =0x(1—x), O<x <1l

As always, the initial random variabl& is independent ofe,, : n > 1}. Our main
result provides a criterion for Harris recurrence and the existence of a unique
invariant probability for the proce$X,, :n > 0}. Recall that a sequengg,, n > 1,
of probability measures o#i is said to beight if, for every e > 0, there exists a
compactk, c S such thafu,(K;) >1—¢foralln > 1.

Let p(x,dy) denote the (one-step) transition probability {&f, :n > 1} and
p™ (x, dy) the corresponding:-step transition probability.

THEOREM 2.1. Assume that the distribution of &1 has a nonzero absolutely
continuous component [w.r.t. Lebesgue measure on (0,4)] whose density is
bounded away from zero on some nondegenerateinterval in (1, 4). If, in addition,
(3N p™(x,dy): N = 1}istight on S = (0, 1) for some x, then:

() {X,:n>0}isHarrisrecurrent and hasa uniqueinvariant probability =,
(i) &N, p™(x,dy) convergesto  intotal variation distance, for every x,
asn — oo.
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COROLLARY 2.2. If &1 has a nonzero density component which is bounded
away from zero on some nondegenerate interval contained in (1,4) and if, in
addition,

(2.3) Eloge; >0 and E|log(4—e1)| < oo,

then {X,:n > 0} has a unique invariant probability = on S = (0,1) and
(1/N)YN_ p™(x,dy) — m intotal variation distance, for every x € (0, 1).

Note that if the support of the distributiap of ¢4 is contained ifu, v], where
1< pu<v<4,then[a,b] =[min{l— % F,(3)}, 7] is an invariant interval for
the Markov process (2.1) [see Bhattacharya and Rao (1993) and Bhattacharya and
Waymire (2002)]. Since the transition probability has the Feller property, whatever
be Q, there exists an invariant probability with support containdd ] c (0, 1).
The result of Athreya and Dai (2000) is an important generalization of this.

We will need some lemmas for the proof of this theorem.

REMARK 2.1. Note that the tightness condition in Theorem 2.1, guaranteed,
for example, by (2.3), cannot be dispensed with. It has been shown by Athreya and
Dai (2000) that ifE loge; < 0, thenX,, converges in probability to O.

LEMMA 2.3. Suppose the distribution Q of ¢1 on (0,4) has a nonzero
absolutely continuous component (w.r.t. Lebesgue measure A) whose density %(6)
is bounded away from zero on aninterval [c,d], 1 < ¢ <d < 4. Thenthereexist a
nonempty open interval J C (0, 1), a number § > 0 and a positive integer m such
that

(2.4) infjp(m)(x, B)>58\M(B)  VBorel BCJ.
xe

PROOF  Firstassum@ is absolutely continuous with a continuous density
Let 6o € (1,4) be such that(6p) > 0 and Fy, has an attractive periodic orbit
of periodm. Such a pointg exists, since the set of poinfisfor which Fy has
an attractive fixed point or an attractive periodic orbit is dens€Oit), by a
result of Graczyk and Swiatek (1997). Thestep transition probability density
is continuous iNx, y) and is given recursively by

x(1—x)

1
(n+1) _ y )
(25) P (x’y) /(0,1) Z(l_Z)h<Z(1_Z)>p (X’Z)dz’

1
pen=pPe = =t

x,ye(0,1),n>1
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Let {xo0, x1,...,xn—1} be the attractive periodic orbit ofy,: Fy,x;—1 = x;,
i=1,...,m,x,; =x0. Then

1 X;
PP (i1, %) = h( )

xi—1(l—xi—1) \xi—1(1—x;—1)

:&>O, 1<i<m,

xi—1(l—x;—1)

sincex; = 6ox;—1(1 — x;_1) = Fy,x;—1. By (2.6) and the continuity ofx, y) —
pD(x, y), there exist; > 0 such that

(2.6)

g0 ym-1) = pP o, yD PP 1, y2) - PP D2, Y1) PP Y1, x0)
>0 Vyielxi—68,xi+381,1<i<m-—1,

so that
(2.7) p™ (x0, x0) Z/---/g(yl,...,ym—l)dyl---dym—1> 0,

where the integration is over the rectan@ile — 81, x1 + 61] X -+ X [xp—1 —
Sm—1, Xm—1+8m—1]. By the continuity of(x, y) — p™ (x, y), it follows that there
exists an open neighborhoddof xp such that

(2.8) p™(x,y) >8>0 Vx,yeld,

where J is the closure of/ in (0,1). This proves (2.4) assuming tha is
absolutely continuous with a continuous density. In the general, cabellét, 4)
be a nondegenerate closed interval such i@ > 6’ > 0 VO € I. There exists
a nonnegative continuous functignon (0, 4) such thatz(6) > 0 V0 € interior
of I, andh(6) < h(0) V6 € (0, 4). Definep™ (x, y) in place ofp™ (x, y), n > 1,
in (2.5) by replacing: by A. Let 6y be a point in the interior of such thatFy,
has an attractive periodic orbit of peried say,{xg, x1, ..., x,,—1}. Then the same
argument as given above shows that there exists an open neighbofhafach
such thatp™ (x,y) > 8 Vx,y e J, for somes > 0. Sinceh > h, p"(x, y) >
p™(x,y)>8 Vx,yeJ,and the proof of (2.4) is complete[

Our final lemma adds greater specificity to Lemma 2.3 and to the proof of
Theorem 2.1.

LEMMA 2.4. Assume the hypothesis of Lemma 2.3. There exist y1, v2,
c<y1<y2<d,andm > 1suchthat:

(a) Fy hasan attractive periodic orbit of period m for every 6 € (y1, y2), and
(b) if g(©) denotes the largest point of the attractive periodic orbit of Fy(6 €
(v1, v2)), then there exists an open interval J (0, 1) for which:

() (2.4) holds,
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(i) q0)€J VO e (y1,v2),
(i) 6 — q(0) isadiffeomorphismon (y1, y2) onto J.

PROOFE As in the proof of Lemma 2.3, l&k € (c, d) be such thaf7, has an
attractive periodic orbit of some period, say,Apply the inverse function theorem
to the function(é, x) — Fj"x — x in a neighborhood offo, ¢ (6p)). For this, note
that

d
(2.9) (—{Femx — x}) <0,
dx 6=60,x=q(60)

in view of the property% Fe’gx|x:q(90) < 1 [sinceg (Hp) is an attractive fixed point
of Fj]. Hence there existg§ < 6o < 6 such that) — ¢(0) is a diffeomorphism

on (6,6) onto an open interval c (0,1). Now apply Lemma 2.3 to find an
open intervald = (u1,u2) C I,u1 < q(6g) < uz, such that (2.4) holds, and let
vi=q *w),i=12. 0O

PROOF OF THEOREM 2.1. Letx be an ergodic (i.e., extremal) invariant
probability onS = (0, 1), which exists by the assumption of tightness. We will
first show thatr (J) > 0 for the set/ in Lemma 2.4. Fixx € (0, 1). There exists
a point in the interval F,, x, F,,x) which is attracted to the (attractive) periodic
orbit of Fy,, where6p is as in the proof of Lemma 2.4. Note that, outside a set
of Lebesgue measure zero, every point{@fl) is so attracted [see, e.g., Collet
and Eckmann (1980), page 13]. Thus there exisnd6?,62,...,60 e (y1, y2)
such thatFefFeg e Foox € J. Consider the open subset@ 1) x (y1, y2)" given

by {(y,61,62,...,6,): Fo,Fo,--- Fg,y € J}. Since(x, 62,69, ...,69) belongs to
this open set, there exists a neighborhood of this point,(sayy2) x (611, 612) X
<o X (6,1, 642) C (0,1) x (y1, y2)" suchthav¥ (v, 64, ..., 6,) in this neighborhood,
Fo, Fo,--- Fg,y € J. This implies that, for every initial state € (y1, y2) = Iy,
say, the probability that im steps the Markov process will reachis at least
cf (012 —011) - - - (On2 — Op1) = &, (x) > 0, wherecy := inf{h(0) :6 € [c,d]}. Now
choosex such that it belongs to the support of Thenn(l,) > 0 and, with
n =n(x) as above,

n(J)=/p(”)(y,J)n(dy)Z/[ p™(y, Hr(dy)

> ep(x)mw (1) > 0.

(2.10)

Also, by Lemma 2.3,
(2.11) n(B) 3/ p"™ (x, B)m(dx) > 8rx(B)7(J)  VBorelBC J.
J

In particular,7 has an absolutely continuous componentJjonv.r.t. Lebesgue
measure, with a density bounded belowda(J) > 0. Since the same argument
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would apply to every invariant ergodic probabilityy, and two distinct extremal
invariant measures are mutually singular, it follows that the unique invariant
probability.

Since we have argued above that for every S = (0, 1) there exists = n(x)
such thatp™ (x, J) > 0, we get, using (2.4),

PO (x, By = /J p™ (2, BYp™ (x, d2)

(2.12) > 81(B)p™ (x, )

>0 VxeS=(,1),YBCJ,A(B)>0.

Hence the Markov process isreducible with respect to the measu(B) :=

A(B N J), B Borelc (0,1). From the standard theory for Harris processes [see,
e.g., Meyn and Tweedie (1993), Proposition 10.1.1, page 231], it now follows that
the Markov process (2.1) is positive Harris recurrent. Part (ii) of Theorem 2.1 is
a consequence of this fact [see, e.g., Meyn and Tweedie (1993), Theorem 10.1.1,
page 230, and Orey (1971)]0

REMARK 2.2. Under the hypothesis of Theorem 2.1, the Markov process
is not in general aperiodic. For example, one may take the distributiep td
be concentrated in an interval such that, for ev@rin this interval, Fy has a
stable periodic orbit of periodk > 1. As may be seen from Lemma 2.4, one
may find an interval of this kind so that the process is irreducible and cyclical
of period m. If ¢, has a density component bounded away from zero on a
nondegenerate intervd containing astable fixed point, that is,B N (0, 3) # @,
then the process igperiodic and p® (x, -) converges in total variation distance
to a unique invariantr. Restrictive assumptions of this kind have been used by
Bhattacharya and Rao (1993) and Dai (2000).

REMARK 2.3. In the course of the proof of Theorem 2.1, we showed that
there exists an open intervalwhich is recurrent. An alternative way to complete
the proof, in presence of Lemma 2.3, would then be to prove thiatpositive
recurrent in the sense that s§igz; :x € J} < oo. Hererj :=inf{n > 1:X,, € J|
xo = x}. Under our general assumption, this last task appears elusive, compared to
the route via irreducibility.

REMARK 2.4. We do not know if the conclusion of Theorem 2.1 remains
valid under the assumption “the distributign (of ¢1) on (0, 4) has a nonzero
absolutely continuous component with respect to Lebesgue measutedri in
addition to (2.3). Note that such@ may assign its entire mass on the set oball
for which Fy is chaotic.



RANDOMLY PERTURBED QUADRATIC MAPS 1809

Acknowledgment. The authors wish to thank the referee for valuable sugges-
tions.

REFERENCES

ANANTHARAM, V. and KONSTANTOPOULOS T. (1997). Stationary solutions of stochastic
recursions describing discrete event systeftechastic Process. Appl. 68 181-194.
[Correction (199980 271-278].

ATHREYA, K. B. and Dn1, J. J. (2000). Random logistic maps—JI Theoret. Probab. 13 595-608.

ATHREYA, K. B. and Dui, J. J. (2002). On the nonuniqueness of theariant probability for i.i.d.
random logistic mapsAnn. Probab. 30 437—442.

BALA, V. and MAJUMDAR, M. (1992). Chaotic tatonnemetiEconom. Theory 2 437—-445.

BHATTACHARYA, R. N. and MAJUMDAR, M. (1999). On a theorem of Dubins and Freedman.
J. Theoret. Probab. 12 1165-1185.

BHATTACHARYA, R. N. and MAJUMDAR, M. (2002). Stalbity in distribution of randomly
perturbed quadratic maps as Markov processes. Center for Analytic Economics Working
Paper 02-03, Cornell Univ.

BHATTACHARYA, R. N. and Ro, B. V. (1993). Random iteration of two quadratic maps. In
Sochastic Processes: A Festschrift in Honour of Gopinath Kallianpur (S. Cambanis,

J. K. Ghosh, R. L. Karandikar and P. K. Sen, eds.) 13—-22. Springer, New York.

BHATTACHARYA, R. N. and WAYMIRE, E. C. (2002). An approach to the existence of unique
invariant probabilities for Markov processes. Lmmit Theorems in Probability and
Satistics (1. Berkes, E. Csaki and M. Csorgo, eds.). Janos Bolyai Soc., Budapest.

CARLSSON, N. (2002). A contractivity condition for iterated function systeinTheoret. Probab.
15613-630.

COLLET, P. and EKMANN, J.-P. (1980)lterated Maps on the Interval as Dynamical Systems.
Birkh&user, Boston.

Dal, J. J. (2000). A result regarding convergence of random logistic nSgisst. Probab. Lett. 47
11-14.

GRACZYK, J. and SVIATEK, G. (1997). General hyperbolicity in the logistic famifynn. Math. 146
1-52.

KATOK, A. and KIFER, YU. (1986). Random perturbations of transformations of an intelvahal.
Math. 47 193-237.

KIFER, YU. (1988).Random Perturbations of Dynamical Systems. Birkh&user, Boston.

MAJUMDAR, M. and MITRA, T. (2000). Robust ergodic chaos in discounted dynamic optimization
models. InOptimization and Chaos (M. Majumdar et al., eds.) 240-257. Springer, Berlin.

MEYN, S. P. and WEEDIE, R. L. (1993).Markov Chains and Sochastic Stability. Springer, New
York.

MITRA, K. (1998). On capital accumulation paths in a neoclassical stochastic growth model.
Econom. Theory 11 457-464.

OREY, S. (1971).Some Limit Theorems for Markov Chain Transition Probabilities. Van Nostrand,

New York.
DEPARTMENT OFMATHEMATICS DEPARTMENT OFECONOMICS
UNIVERSITY OF ARIZONA CORNELL UNIVERSITY
617 N. SANTA RITA AVENUE 460 URISHALL
TUuCsSON, ARIZONA 85721 ITHAKA, NEW YORK 14853
USA USA

E-MAIL : rabi@math.arizona.edu E-MAIL : mkm5@coruell.edu



