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We consider finite-state Markov chains that can be naturally decomposed
into smaller “projection” and “restriction” chains. Possibly this decomposi-
tion will be inductive, in that the restriction chains will be smaller copies
of the initial chain. We provide expssions for Poincaréesp. log-Sobolev)
constants of the initial Markov chain ietms of Poincaré (resp. log-Sobolev)
constants of the projection and restriction chains, together with further a pa-
rameter. In the case of the Poincaré constant, our bound is always at least
as good as existing ones and, depending on the value of the extra parameter,
may be much better. There appears to be no previously published decom-
position result for tk log-Sobolev constant. Oproofs are elementary and
self-contained.

1. Thesetting. In a number of applications, one is interested in finding tight,
nonasymptotic upper bounds on the mixing time, that is, rate of convergence
to stationarity, of finite-state Markov chains. One important example arises in
the analysis of Markov chain Monte Carlo algorithms. These are algorithms for
sampling and counting combinatorial structures that are founded on Markov chain
simulation. The efficiency of these algorithms depends crucially on the rate of
convergence to stationarity of the Markov chain being simulated.

In proving rapid convergence to stationarity, Poincaré and latterly log-Sobolev
inequalities have proved to be powerful tools. The larger the constants in these
inequalities, the faster the convergence to stationarity. (These and other informal
remarks are made rigorous in the following section.) Here we consider finite-state
Markov chains whose description suggests a natural state-space partition. This
partition naturally induces a number of reéstiion chains, in which transitions are
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restricted to occur within blocks of the partition, and a projection chain, whose
states are the blocks themselves. The hope is that by computing Poincaré or
log-Sobolev constants for the restriction and projection chains we can obtain a
Poincaré or log-Sobolev constant for the original chain. Various authors, including
Madras, Martin and Randall [13-15], have investigated this approach.

Sometimes it may be possible to apply the decomposition step inductively, as
was done by Cooper, Dyer, Frieze and Rue [4] in the context of spin models
on “narrow grids” and by Jerrum and Son [9] for the “bases-exchange walk”
for balanced matroids. In these applications, it is particularly important that our
arguments give as little as possible away at each decomposition step.

Clearly there is a need for general decompaosition theorems that relate, say, the
Poincaré constant of the original chain as tightly as possible to those of the
restriction and projection chains. The existing decomposition theorems of this sort
seem all to restltimately on anunpublishe result of Caraccia, Pelissetto and
Sokal [1]. (Note, however, that a statement of their result and a version of their
proof were published as an appendix to an article by Madras and Randall [13].)

Ouir first goal, then, is to provide an elementary, self-contained and accessible
account of the basic decomposition result. However, in developing the result
from first principles we find we can derive a statement that is considerably
sharper than the current ones in many situations. For example, in the context of
inductively defined Markov chains, existing decomposition results cannot yield
inverse polynomial bounds on(and hence polynomial bounds on mixing time),
even when the depth of the induction is logarithmic. In contrast, we are able to
give inverse polynomial bounds dnfor inductively defined Markov chains, and
are even able to recover the result of Jerrum and Son [9] on the bases-exchange
walk for balanced matroids, where the depth of the induction is linear in some
natural measure of the input size.

It transpires that the proof of the decomposition result for the Poincaré constant
carries over straightforwardly to the log-Sobolev constant. In many situations
the optimal log-Sobolev constant seems to be within a small constant factor of
the optimal Poincaré constant (spectral gap); the advantage of the log-Sobolev
constant in these situations is that it translates to a tighter bound on mixing time
(construed as the time to convergence to near stationarity fiorm). To the best
of our knowledge, this is the first general decomposition result for log-Sobolev
inequalities, although it should be meorted that Cesi [2] gave an argument that
applies when the state space is a Cartesian product.

We have stated our results for finite-state Markov chains, since that seems to
be the natural setting given the potential applications to Markov chain Monte
Carlo algorithms. However, everything extends (with no notational change) to
countably infinite state spaces and (with appropriate notational changes and
possible regularity conditions) to uncountable state spaces.
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2. Poincar é constant via decomposition. Consider an ergodic Markov chain
on finite state spac& with transition probabilitiesP:Q2 x © — [0,1] and
stationary distributionr : 2 — [0, 1]. We assume that the Markov chaintise-
reversible, that is to say, it satisfies tluetailed balance condition

7(x)P(x,y)=m(y)P(y, x) forall x,y € Q.

LetQ=QoU---UQ,_1 be a decomposition of the state space intalisjoint
sets. As usual, we uge:] := {0, ..., m — 1} to denote the first: natural numbers.
Following [15], we definet : [m] — [0, 1] by

mi)= Y ()

XGQ,‘
and defineP : [m] x [m] — [0, 1] by
PG, j)=7G)"" Y mx)P(x.y).

xEQ,‘
yer

The Markov chain on state spa¢e] and with transition probabilitiesP is
the projection chain induced by the partitiof2;}. Since the original Markov
chain is time-reversible, so is the projection chain. It is easy to check, using this
observation, that the projection chain hass a stationary distribution.

For each e [m] therestriction Markov chain on2; has transition probabilities
P;:Q; x Q; — [0, 1] defined by

P(x,y), if x #y,
Pi(x,y)=11— Z P(x,z2), if x=y.
z€;\{x}

Again, the restriction chain inherits time-reversibility from the original chain, and
so it hasr; : 2; — [0, 1] as a stationary distribution, wherg(x) = 7 (x)/7 (i).
In applications, we require the projection chain and all the restriction chains to be
irreducible; in which case the various stationary distributirendo, ..., 7,1
are unique.

Let f: Q2 — R be an arbitrary test function. The expectation and variancggé of
with respect tor are of course given by

Er fi=) 7n(x)f(x)

xeR
and

Var, f =Y 7(0)(fx) — Ex £)%,
xXeQ
respectively. Th®irichlet form associated withy and P is defined as
Ex(f.N)i=3 Y TP (f) - f)

Xx,yEQ
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Consider now dPoincaré inequality of the form

@ Ex(f, f) =1 Vary f

that holds uniformly over allf : 2 — R, with A > 0 being the corresponding
Poincaré constant. It is well known that a lower bound oh translates directly

to an upper bound on mixing time of a Markov chain. To avoid technical problems
associated with nearly periodic Markov chains, assume that loop probabilities are
uniformly bounded away from 0. [Alternatively, interprBt-, -) as the transition
rates of a continuous-time Markov chain én] Denote by P! (x, -) the ¢-step
distribution of the chain, given that € Q is the initial state. Then there is a
functionrz: 2 x (0, 1] — N with

(2) t(x,e):O(%(ln%-i-ln%))

such that] P'®-®) (x, ) — 7 ||1v < &, where]| - ||Tv is total variation norm (i.e., half
the£1 norm). For a proof of this claim that is valid for general (i.e., not necessarily
time-reversible) Markov chains, refer to [8], Section 5.2, interpretirthere as
the reciprocal of ouk.

Observe that in our notation for expectation, variance and so forth, we
make explicit the probability distributiorr as a subscript, because this varies
throughout our proofs. For example, we may write Poincaré inequalities for
the projection and restriction chains &s(f, f) > AVarz f and &, (f, f) >
A Vary, f, respectively. Naturallyy (resp.r;) is to be considered as a probability
distribution on[m] (resp.€2;), and f as a function orim].

Suppose the projection chain and the various restriction chains satisfy Poincaré
inequalities with constantg, and Ao, ..., A,,_1, respectively. Definéimin =
min; A;. We are interested in obtaining a Poincaré inequality for the original
Markov chain, with Poincaré constait= A (A, Amin, y), wherey is a further
parameter

3 = maxmax P(x,vy).
() Y ie[m]er,'yeg\:Qi ( y)

Of course, we would liken to be as large as possible. Informally, is the
probability of escape in one step from the current block of the partition, maximized
over all states. Given this interpretation, it is clear thatever exceeds 1, and may

be much smaller in many applications. It is in these applications that we improve
on existing decomposition bounds.

THEOREM 1. Consider a finite-state time-reversible Markov chain decom-
posed into a projection chain and m restriction chains as above. Suppose the
projection chain satisfies a Poincar é inequality with constant A, and the restriction
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chains satisfy inequalities with uniform constant Amin. Let  be defined asin (3).
Then the original Markov chain satisfies a Poincaré inequality with constant

PROOF Consider an arbitrary test functiof: 2 — R. Our starting point is
the decomposition of Varf with respect to the partitioR = Qo U --- U Q,,,_1,

4) Var, f= 3 7)Varg f+ Y 7#()(Ex, f —Ex £)%,

ie[m] ie[m]

and a similar decomposition of the Dirichlet form,

(5) Ex(f, )= 7DEx(f. H+35 Y. Cij
i€[m] i,j€[m]
e
where

Ciji= Y TP, y(f(x)— f()’))2~

XGQ,‘
yer

Identity (5) is almost content-free and comes from partitioning the terms in the
definition of & ; (f, f) according to whetherand; are in the same or in different
blocks of the partition. Identity (4) has a little more substance, but is nevertheless
standard and can be obtained through simple algebraic manipulation. It states
informally that the variance of may be obtained by summing the varianagin
blocks of the partition and the varianbetween blocks.

In summations and so forth, variablegnd j always range ovepn], so we
are not explicit about their range in what follows. For alj with i =£ j and
P(i, j) > 0, definer! : Q; — [0, 1] by

7T[ (x) Zyer P(x’ )’)

A.j = —
i) PG, j)

Note that:%l.j is a probability distribution o18; .
The first term on the right-hand side of (4) we simply bound as

1
DAty f <) —7 () Ex (f, )
(6) ’ }

min

=<

> 7(@) Ex, (f. f).
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The second term we transform, starting with an application of the Poincaré
inequality for the projection chain,

> #(0)(Ex, f ~ Ex f)?

L S PG j)(En f —Ex, f)?
i#]

Zn(z)P(z 7
i#]

< [(Ex, f = E4) £)+ By f = Eai f)* 4 (Egt f —Ex, f)7]

_ZA

_ZX

3
7 = 5[214% Yo+ X3,
where
Ty:=) #DPGD(Er f—Ey 2
i#j

We proceed to bounil,, o and X3 separately, noting that, and X3 are equal
by time-reversibility. For the second of these we have

Z 7 (x)P(x, y)

2
(8) 22=Zﬁ(i>F(i,J‘)[ (f( ) — f(y))}

Py o, TP,
yERQ;
P
) <Y rOPG ) Y TWEEY) y) (f) = F(1))?
i#j xe; (@) P,
YER;
=3 Y 2P () = FO)?
i#] x€Q;
yer
(10) =) Gy
i#]

where (8) uses the fact that(x) P (x, y)/7 (i) P(i, j) is a joint distribution on
Q; x Q; whose marginals arélzi andﬁ;., and (9) is seen to be Cauchy—Schwarz,
once we have noted that
)3 @) P, y) _
veq, TOP3E, )
VERQ;

’
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by definition.
Now for X1. Using standard facts about variance,

Var,f Var, (f Er, f)

(11) = > #/ () —Ex £)?— (E.i f —Ex, )2
XGQ,‘ !
so that certainly
(12) By f —En )7 = 2 #/ 0(F @) —Er, )7,
xe;

Thus we have the bound

S Y 7OPG ) Y # O (f () —Ex, f)?

i#] xeQ;
~AJ —-.. .
=350 Y m(f ) — By )2 Y HLET)
i XeQ; it 7i (x)
(13) _Zn(l) > @ (f(x) —Ex f)2 > P(x, Q)
*e ji
(14) <y @) Vary f
(15) ),

where (13) applies the definition ﬁt’ (14) applies the definition of and (15)
applies the Poincaré inequalities for the restriction chains.
Substituting (10) and (15) in (7), and recalling that= X3, we have

3
(16) Zn(z)E f—Exf)° _ZAZGZ,+M > 7@ Ex, (f. f).

i

Then substituting (6) and (16) into (4) yields

a7 Var, £ < 250+ LAY 20y 60, f .
=y Main

Finally, comparing (17) with (5), we see that

E(f, f)=AVary, f,
wherea is as in the statement of the theoreml

The first thing to note is thag < 1, so that always. = Q(Aimin), Matching
existing decomposition results (e.g., [1]). It may be the casejhiatindeed a
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constant (e.g., decompose a random wall:gninto k random walks orjn/ k],
where we assume for convenience thaividesn). In this casey = % and we get
no improvement over existing bounds.

At the other extreme, there are situations, for example, spin systems on
fragments of the Bethe lattice or narrow grids, wherand x are of the same
order of magnitude. Applying Theorem 1 inductively then yields bounds on the
spectral gap that are inverse polynomial in the problemssjzgovided the depth
of recursion isO (logn). Section 4.3 treats such an example.

This seems about the best that can be achieved using a parameter as “global
as y. To go further, we need a much stricter pointwise constraint on the

distributionsﬁlz’. For example, if we know that

(18) L—mm <7/ <@+,
pointwise, Wheneveftl.j is defined [i.e., whenever (i, j) > 0], then
(19) (Ex, f —E,; f)° <L+ Var, f —Var,; f

<@+ mVar, f—@=n 3w (f ) -E,j f)?

XEQ,‘
(20) = A+nVary, f — (1 —n)Vary, f
(22) = 2nVary, f,
where (19) comes from (11), and (20) from the fact that. 7; (x)(f (x) — )2
is minimized atu = E; f. Introducing the modified parameter

22 p = 21 max PG, j
(22) p = 2n max 2. PG

JiJj#i

we obtain:

COROLLARY 2. Supposethat (18)issatisfied for some»n > O and that y isas
defined asin (22). Then Theorem 1 holdswith p replacing y .

PrROOF Simply use (21) in place of (12) in the derivation of inequality (15).
O

Note thaty may even be 0 (which happensrif= 0), as in the case of the
n-dimensional Boolean cube. When that happeéhs= X3 = 0 and we save a
factor 3 in the argument, leading to:

COROLLARY 3. If p =0,then Theorem 1 holdswith A := min{A, Amin}-
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For the Boolean cube, Corollary 3 immediately gives the exact bound on
spectral gap. Even wheh> 0 we may be able to compare the given Markov chain
with one with reduced transition probabilities for whigh= 0. For example, in the
case of the bases-exchange walk on a balanced matroid, we may “thin down” the
transition probabilities betweeR; and2; until they form a fractional matching
(which is possible by a result in [7]). Thus we recover the known bound on the
spectral gap for balanced matroids. All this is covered in detail in Section 4.5.

3. Log-Sobolev constant via decomposition. The program described above
extends to the log-Sobolev constant with little work. Following Diaconis and
Saloff-Coste [5] (and others), define the entropy-like quantity

(23) L (f) :=Ex[f?(In f2=In(Ey £2))].

Again, we indicate the probability distributian explicitly as a subscript, so we
can talk aboutl, (f) and so forth. Alog-Sobolev inequality is an inequality of
the form

Ex(f, f)=adly(f)

that holds for all f:Q2 — R. The motivation for studying théog-Sobolev
constant « is the analogue of (2),

(24) t(x,s):O(%(lnlni—i—ln})),

T (x) £

which provides an estimate, this time in terms @f for the number of
steps sufficient to achievéP!®-8)(x,.) — 7|tv < €. [To avoid trivialities,
assumer (x) < e~1 in (24).] The estimate (24) of mixing time may be read
off from [5], equation (3.3), assuming loop probabilities are bounded away
from 0. (Diaconis and Saloff-Coste worked in continuous time, avoiding potential
problems associated with nearly periodic Markov chains.) The key point to note is
that In(1/7 (x)) in (2) is replaced by InlfiL/7 (x)) in (24). This may not seem like
a major improvement until we recall thatx) is typically exponentially small as
a function of instance size.

Our aim, then, is to find = (&, amin, v) that satisfies

gn(ﬁ f) > Ofecrr(f)'
Obviously we wantx to be as large as possible. Our analogue of Theorem 1 is:

THEOREM 4. The setting is exactly asin Theorem 1. Suppose the projection
chain satisfies a log-Sobolev inequality with constant @ and that the restriction
chains satisfy inequalities with uniform constant amin. Then the original Markov
chain satisfies a log-Sobolev inequality with constant

. [a  aomin
:=min{ =, L
* {3 3y+oe}
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PrROOF Just as with variance; (f) may be decomposed with respect to the
partitionQ2 = Qo U --- U £,,_1, the analogue of identity (4):

(25) Lx() =D 7D Lr,(f)+ D7) (Ex, fA(IN(Ex, £2) —INEx £2)).

SinceL; (f) is a less familiar quantity than variance, we offer, in an addendum,
a derivation not only of (25), but also of a number of other identities and
inequalities used in this section. By analogy with (4), the first term expresses the
entropy within blocks of the partition and the second term expresses the entropy
between blocks. [Compare the second term in (25) with the right-hand side of (23),
observing how E, 2 is now the appropriate “averaging ¢f over €;, taking
on the role of E, f in the earlier calculation.] The decomposition of entropy
expressed in (25) has been exploited by other authors (e.g., [12]).

We deal with the first term exactly as before:

1
DAL () =) —70) En(f. /)

(26) .

Umin

=

> 7)) Ex (. 1)

i

The second term we transform, in an analogous manner to (7), starting with an
application of the log-Sobolev inequality for the projection chain,

D7) (Ex; ) (IN(Ex, £2) —In(Ex 13))

< Zi_Zﬁ(i)F(i,j)(\/Em 12— VEq, 12
¥ iz

< 23 S 7P H[(VEx, f2—VE,; 12)?
oy ’

+ (VE, /2~ VE; £7)°
(27) i J

+ (VEzi f2 = VEx, f2)?]
(28) = —3_ (214 X2+ 23],
20

where

S1=Y 7 PG, H(VEr f2—VE,; f2)%....
i#] ’
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Tackling X» first, we have

(29) T2< Y 7#OPGH Y ”_(x)m y) (f() = ()2

i#j xe; m (@) P,

YER;
=3 3 PN — F(O))?
i#j xeQ;
yer

(30) =) Cyj.

i#]

where (29) is Jensen’s inequality applied to the convex fungtigns) := (V€ —
VT)? defined org, ¢ > 0. (This is an artifice borrowed from [11]; see Section 3.1
for details and see [12] for related applications.)

For 21 (which equalszs by time-reversibility), we have the bound

Bl) <Y AOPGH Y mWAH W) - f)

i#£] X, y€Q;
(32) =370 Y. m@mM© - fmPE Y PO.)
i X, yER; g
(33) <2y > 7(i)Vary, f
(34) : (£ )
min
(35) Zn(w Ex(f, ),

Olmln ;
where (31) recycles the Jensen artifice (see Section 3.1), (32) applies the definition
of 7%,:’, (33) applies the definition of, (34) applies the Poincaré inequalities for
the restriction chains and finally (35) applies the general inequalityr /2 (see,
e.g., [5]) that relates Poincaré and log-Sobolev constants. [Strictly speaking, we
must interpref.min here as the minimum over tloptimal Poincaré constants (i.e.,
spectral gaps) of the restriction Markov chains.]

Substituting (30) and (35) into (28), and recalling that= >3, we have

> #()(Ex, A (IN(Ex, £2) — IN(Ex £2))
(36)

(5 1)

ij
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Then substituting (26) and (36) into (25) yields

3
v ta Zn(z)é“n,(f .

(37) Lx(f) = 52 Z Cij+—
t#/

Finally, comparing (37) with (5), we see th&}, (f, f) > aL,(f), wherea is as
in the statement of the theorem

The remarks following the proof of Theorem 1 apply also to Theorem 4. In
particular, if (1 — n)m; <&/ < (1+ n)7;, then

(38) (VEx, f2—VE.; 12)? <2y Vary, f,

using Jensen’s inequality again, but this time with an optimal coupling of the two
random variables (r.v.'s) (see Section 3.1), yielding:

COROLLARY 5. Supposethat (18)is satisfied for somen > 0 and that y isas
defined asin (22). Then Theorem4 holdswith p replacing y .

Again, wheny = 0 we save a factor 3.
COROLLARY 6. If y =0, then Theorem4 holdswith « := min{a, omin}.

3.1. Addendum: proofs of an identity and some inequalities. This addendum
contains derivations of some of the possibly less obvious identities and inequalities
used above.

PROOF OF IDENTITY (25). By appropriate scaling of the functiofy it is
enough to establish (25) when, B2 = 1. With this simplification,

Lr(f)=Ex[f2In f21 =3 7)) Ex[f2In 2]

and

D)L, (f) = Zn(z)E 2(In f2 —In(Ex, £2))]-

Subtracting the latter from the former, we obtain
La(f) =Y 7L, (f) =Y 7@ (Exr, f2)IN(Ex, ).
i i
as required. O
PROOF OF INEQUALITY (29). Let X and Y be rv.'s taking values in
Q; and<;, respectively, and with joint distribution given by

7 (x)P(x,y)

P X=xAY = = — .
(X =x V= 0BG )
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Thus the marginal distribution of (resp.Y) is ﬁl.j (resp.y%‘j.). Since, by calculus,
g, 0) = (VE —J/T)?is convexing, ¢ > 0, Jensen’s inequality yields

(VE, f2 = VE; f2)" = (VELF (X)?] = VELf (1)2])*

<E[(f(X) - f(¥))?]

T(x)P(x,y) ,
p—v s a7 . ' D
2 Fapap T TIO)
yEQj

PROOF OF INEQUALITY (31). As above, but now withX and Y being
independent r.v.’s with the appropriate distributions[]

PROOF OF INEQUALITY (38). Assumer; # fri], otherwise there is nothing
to demonstrate. LetX and Y be r.v’s that take values if2;, with joint
distribution satisfying the following conditions: (§ has distributionr;, (ii) Y has
distribution; and (iii) PrX # Y) = ||n; — &/ [ty It is well known that such an
optimal coupling of two r.v.'s exists. Denote by

Y(x,y) =Pr(X=xAY=y)
the joint distribution ofX andY. Define
lﬁ( Y 0, if x=y,
= V(x,y),  otherwise.
Partition © into two setsQ = A U B such thatr;(x) — y%l.j(x) > 0 for all

X €A, andy%l:’ (y) —mi(y) > 0 for all y € B. By assumptionA and B are non-
empty. Optimality of the coupling ok andY entails}_, ¥ (x, y) = maxX{r; (x) —

ﬁl.j (x),0yandY", ¥ (x, y) = max{frij (y) — i (y), 0}. Thus, by Jensen’s inequality,
(VEr /2= VE,; /%)’
= (VELF ()2 - VELF ()21
<E[(f(0) - f(1)?]
= Y V(@ - o)

X, yER;
<2 3 G D(f®) —Ex £)2+ (F0) = Ex £)7]
X, yEQ;
<20 m@(f() —Ex £)2+20 Y 1) — Ex, f)°
xeA yeB

<2n\Vary, f,
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as required. [

4. Examples. In this final section we collect a number of illustrative exam-
ples. The aim is more to rederive a variety of existing results in a simple, uniform
manner than to obtain new results.

4.1. Toy example. Consider the symmetric random walk on the Zertex
“pince-nez” graph in Figure 1 obtained by joining two disjointycles by a single
edge. Suppose transitions withinobgs occur with probabilit%, while the unique
transition between cycles occurs with probability< % Loop probabilities are
defined by complementation. The transition probabilities are symmetric, so the
random walk is time-reversible and its stationary distribution is uniform.

Now decompose the set of vertices (states) into two disjoint sulsgetsdQ2y,
whereQg contains the: vertices in the first cycle ang; contains the: vertices
in the second cycle. The spectral gap for each cycle considered in isolation
is %(1 — co92r/n)). (Diaconis and Saloff-Coste treated this example in [5],
Section 4.2. The facto% arises because our transition probabilities ?Iiestead
of %.) Since 1— cosx > 2x2/5 for 0 < x < /2, we have that the spectral gap
for each restriction chain is at leastd%/15:2 (assuming: > 4), so we may take
Amin = 10n~2. The projection chain in this example is the symmetric two-state
chain with transition probability /n between states, so we take= 2p/n. Finally
y = p. (Recall thaty is the maximum, over all states, of the probability of exiting
from the current block of the partition of the states.) Theorem 1 yields, as Poincaré
constant for the random walk on the pince-nez,

A= min{ 2_p L}
3n’ 3n3+ 2n2
Note thath = Q(n~3) whenp = Q=2 andr = Q(pn~1) whenp = 0(n=?);
in the latter case, our estimate is tight to within a constant factor, and a factor

better than existing decomposition bounds which have the foea® (AAmin) =
O(pn=3).

% (all cycle edges)

wol—
ks

Qo 7

FiG. 1. Pince-nezgraph (n = 8).
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A log-Sobolev inequality may be obtained equally simply by using a similar
calculation. The restriction chains satisfy a log-Sobolev inequality with constant
1672/752 ([5], Section 4.2), so we may takenin = 22~2. The log-Sobolev
constant for the two-state projection chainads= p/n (see [5], Theorem A.2).
Thus, by Theorem 4,

o= min{£ L}

3n’ 3n3+n?

4.2. Product of two Markov chains. Consider two finite-state time-reversible
Markov chaing X, Px) and(Y, Py) with state space¥ andY. There are a number
of ways to define a product Markov chaif, P) on 2 = X x Y, but one which
suits our purpose is to define the transition probabiliftes terms of the transition
probabilitiesPy and Py as follows. For alx, y), (x', y) € ,

Px (x,x'), if x’#£x andy’ =y,
Py(y,y), if x’=x andy’ #y,

P((x,y), (x',y)) = L, ,
Px(x,x)+ Py(y,y) — 1, if x"=xandy =y,
0, otherwise.

For the loop probabilities to be nonnegative, we requiggx, x) + Py(y,y) > 1
for all (x, y) €  and we assume this from now on.

Our goal is to establish a Poincaré constanffor (2, P) in terms of
those for(X, Px) and (Y, Py): let us call themix and Ay, respectively. For
convenience, identifyX with [r]. Then, writing ; := {i} x Y, we have the
natural decompositiof2 = X x ¥ = ([, $2:- (Of course, we could have reversed
the roles ofX and Y, and indexed the restriction chains W) Each of the
restriction chains is isomorphic (@, Py) and so\min = Ay. The projection chain
is isomorphic to(X, Px) and sox = Ax. By symmetry,fri] = 7; whenever the
former is defined, and henge= 0 and we are in the situation of Corollary 3. We
obtainA = min{Ax, Ay} as the required Poincaré constant &, P), and this is
tight. Exactly the same argument applies to the log-Sobolev constant.

4.3. One-dimensional Ising model. Consider the path of length that is, the

graph with vertex sdiz] and edges joining vertices differing by Configurations
of the Ising model are just assignments[n] — {—1, +1} of &1 “spins” to the
vertices of the graph. Thidamiltonian of the Ising system on the path is defined
by

n—2

H(o):=) [1-0()o(i+1]/2

i=0
in other words, we count 1 for every pair of adjacent unlike spins. Denote
the set of all 2 configurations byQ2. We wish to sample configurations from
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the Boltzmann—Gibbs distribution (o) := exp(—B8H (0))/Z on 2, whereZ :=
Y seq €XP(—BH (0)) is thepartition function of the system ang € R™ is inverse
temperature. (What has been described is theeromagnetic Ising model, which
favors like spins; see [3] for background.)

One standard way to construct a Markov chainSerwith stationary distri-
bution 7 is through single-site heat-bath dynamics. Far [n] and o :[n] —
{—1, +1}, letoy; —+1) (resp.oji——1;) be the configuration that agrees wdthat all
vertices except possibly vertéxwhereoy; 17(i) = +1 [resp.ojj——1() = —1].
The transitions of our heat-bath Markov chain are defined by the following trial,
whereo is the current state:

1. Select € [n] uniformly at random.
2. Let
b= expi—BH (0(i—+1))} .
exp(—BH (0(i —+1))} + exp—BH (0i ——17)}
Then with probabilityp, the new state isf; 1j, and with probability 1- p,
the new state isy; —_1j.

For convenience, we imagine that there are extra vertices @ avith specified
fixed spins, so thap € {1, e#/(ef + ¢ 7P)).

Choose a vertexn € [n] as close to the midpoint of the path as possible
(e.g.,m = |n/2]) and partition the configurations into two se&¥s= Q. U Q_,
where Q2 (resp.2_) is the set of all configurations with o (m) = +1 [resp.

o (m) = —1]. Consider the restrictions of the Markov chain®® and2_, and
the corresponding projection chain (which in this case has just two states).

A little optimization gives the spectral gap of the projection chaim.as
1/(coshB)?n. The parametey satisfiesy < 1/(1+ e~ 2#)n. Thus

. Amin

o= m'n{ 3(cosh)2n’ 1+ (3/4)(e% 1 1) }
Each restriction chain is a direct product of two independent Ising systems on at
most [n/2] vertices: independent because we fixed a spin at the middle of the
path. The spectral gap of a direct product is the minimum of the spectral gaps of
the components, as we saw in Section 4.2. So, denotirig lblye spectral gap of
the ferromagnetic Ising system @k (with updates at any given site occurring at
rate/probability ¥n), we have the recurrence

. A
Ak > mln{ Lk/2] }

1
3(coshB)2n’ 1+ (3/4)(e?f + 1)
This has solutiork,, = Q(n~¢), wherec = 1+ log,{1 + %(ezﬁ + 1)}. So, at any
fixed temperature, the spectral gap is bounded by an inverse polynomiahose
exponent tends to 1+ Iogzg < 2.33 asp — 0. In light of (2), the mixing time
scales ag“*t?.
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A similar argument applies to the log-Sobolev constant. However, the bound
ona, the log-Sobolev constant of the two-state projection chain/2scbshs)2n
(see [5], Theorem A.2), which is worse than the bound we had foy a factor
of 2. As a result, we obtaia, = Q(n~), wherec’ = 1+ log, {1+ 3 (% + 1)}.
So at any fixed temperature the log-Sobolev constant is bounded by an inverse
polynomial inn whose exponent’ tends to 14+ log,4 = 3 asg — 0. Although
¢ > ¢, we recall that, by (24), the mixing time scales#slogn, which is an
improvement om<*! for small enoughg. In a sense, these are both poor results,
since the one-dimensional Ising model does not exhibit a phase transition and we
should expect mixing tim® (n logn) at any temperature (although with a constant
of proportionality depending oft). Note, however, that if we had used existing
decomposition theorems, we would have lost a fagtat each level of recursion,
leading to a bound on spectral gap that diminishes witaster than any inverse
polynomial.

When the temperature is sufficiently high (i.8.is sufficiently close to 0), we
get a better bound by switching to Corollaries 2 or 5. Indeed, sjhee 0 as
B — 0, the bounds on both spectral gap and log-Sobolev constant are of the form
Q(1/n1+%) with § tending to 0 ast — oo. (Very recent work [16] improved on
this result by showing that!*? may be replaced by (in the case of spectral gap)
andn logn (in the case of log-Sobolev constant) for glup to some critical value.
This remark applies equally to Section 4.4.)

4.4. 1sing and other spin models on trees. The calculation of Section 4.3
carries over, with very little change tmalanced trees of bounded degree. Thus
we can treat balls of given radius in the so-called Bethe lattice of coordination
numberr; loosely, the infinite regular tree of degreeAgain, for fixedr andg,
the Poincaré and log-Sobolev constants are inverse polynomial. This was already
known (see [10] for inverse polynomial bounds on spectral gap), although the fact
that spin systems in general and the Ising model in particular have polynomial
mixing time on trees is not so obvious.

4.5. Walks on the Boolean cube and balanced matroids. Consider the random
walk on then-dimensional Boolean cube in which transitions (including loops)
all occur with probability ¥(n 4+ 1). There is a natural decomposition of the
n-dimensional cube into twon — 1)-dimensional cubes connected by a perfect
matching. Clearlyy = 0 and we are in the situation of Corollary 3. Ther=
2/(n + 1) and, by induction = 2/(n + 1). Likewise,@ = 1/(n + 1) ([5],
Theorem A.2, again) and henae= 1/(n + 1). These results are of course well
known; see, for example, [5], Section 4.1.

More interestingly, there is a nontrivial Markov chain—the so-called bases-
exchange walk on a balanced matroid—which retains just enough of the properties
of the cube to be treatable by essentially the same approach. We shall be very brief
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in describing the setting; refer to [7] and [9] for a more expansive treatment. Let
E be afinite ground set and l& € 2F a nonempty collection of subsets Bf We
say thatB forms the collection obases of amatroid M = (E, 8B) if the following
“exchange axiom” holds: For every pair of basg€sY € 8 and every element
e € Y \ X, there exists an elemerfte X \ Y such thatX U {e} \ {f} € B. Itis
easy to show that every basis must have the same size, which is callemhkhe
of M. Denote bym = | E| the size of the ground set and byhe rank. A concrete
example of a matroid is provided by the set of spanning trees of a finite undirected
graphG. Here we interpreE as the set of edges @f and interpretB as the set
of all spanning trees. The rank is of course- n — 1, wheren is the number of
vertices ofG. The exchange axiom is easily checked.

Two absolutely central operations on matroids are contraction and deletion. If
e € E is an element of the ground set &f, then the matroid \ e obtained by
deleting e has ground seft \ {e} and baseB(M \e) ={X C E\{e}: X € B(M)};
the matroidM /e obtained bycontracting e has the same ground set#s\ e, but
basesB(M/e) = {X C E \ {e}: X U{e} € B(M)).

The exchange axiom suggests a very natural Markov chain on the set of
basesB. Suppose the state (basis) at tirrie X, € 8. Then the state at time+ 1
is obtained as the result of the following trial:

Stepl. Choose € E and f € X, independently and uniformly at random.
STEP2. If X, U{e}\{f} e B,thenX,; ;1 < X, U{e}\{f}elseX,i11 < X;.

It is straightforward to check, using the exchange axiom, that this Markov
chain(X;) isirreducible; furthermore, it is clearly time-reversible and has uniform
stationary distribution. It has been conjectured t{¥t) is rapidly mixing (i.e.,
achieves total variation distanee- 0 from the stationary distribution in a number
of steps polynomial im, r and loge ~1) for all matroidsM . Although thee is little
evidence in favor of this conjecture, there is at least an interesting class of matroids,
namely the “balanced” matroids, for which rapid mixing was established [7].
The class of balanced matroids includes all regular matroids, and hence graphic
matroids (i.e., ones whose set of bases may be realized as the set of all spanning
trees of a graph).

Fix anye € E. Since there is a natural isomorphism betw#€and the disjoint
union of M \ e and M /e, the bases-exchange walk is a natural candidate for the
decompositia method. Le2q (resp.£21) be the set of bases that does not congain
(resp. does contai#). Note thatQ2g is isomorphic toM \ e and£2; is isomorphic
to M /e, enabling us to argue inductively about the two restriction chains.

Rather than define the notion of balanced matroid explicitly here, let us just note
two of the consequences of balance:

1. Contractions and deletions of a balanced matroid are themselves balanced, in
particular,M \ e andM /e are balanced matroids.



BOUNDS ON POINCARE AND LOG-SOBOLEY CONSTANTS 1759

2. The transitions of the bases-exchange walk that cross fvbine to M/e
and vice versa support a fractional matching. That is, there is a function
w: Qo x 21 — R that satisfies:

e w(x,y)>0forallx,y;
e w(x,y) > 0entailsP(x, y) > 0;
o >, w(x,y)=m(Q) forall x and}_, w(x, y) = 7 (o) forall y.

Define a new Markov chain of2, with transition probabilitiesg, as follows.
Transition probabilities within2g and €1 are unchanged, so the restriction
chains are also unchapged. Tragsitions frora Q¢ to y € Q1 and vice versa
occur with probability P(x, y) = P(y,x) := w(x, y)/(rm). Note that nonzero
transition probabilities in the bases-exchange walk are/éiil) and that the new
Markov chain does not add any transitions to those already available. From these
observations it follows immediately that for any pair of distinct states it is the
case thaii’\(x, y) < P(x,y). Thus, it is enough to bound the Poincaré constant
for the Markov chain with modified transition probabilitigs (This is a trivial
application of the comparison method in [6].)

The key point abouf? is that it uses the fractional matching to spread the
transitions betwee®o and 2; evenly. It is easily checked that = 0 and that
we are in the situation of Corollary 3. The projection chain (derived frBm
by projection onto{Qg, 21}) has two stateq0, 1} with 7(0) = 7(20) and
7(1) = (). Its transition probabilities arg (0, 1) = 7 (1) /(rm) and P (1, 0) =
7(0)/(rm). A brief calculation establishes= 1/(rm). [This is directly from the
definition (1) usingf (0) = 7 (1) and f (1) = —7(0), a choice that is unique up to
scaling among functions with expectation 0.] By induction, Siht& e and M /e
are also balanced,= 1/(rm).

Almost the same argument applies to the log-Sobolev constaklowever,
there is a small technicality that arises from the asymmetry of the projection chain.
Specifically, we know only the two sides are balanced to the extent that

1_ 1ol _

= sr.
m — ||

Unfortunately, while the spectral gap is constant for the asymmetric two-state
Markov chain, this is no longer the case for the log-Sobolev constant. More
precisely, using [5], Theorem A.2, we have that

1
oo )
rmIn(w(Qo)~1 + 7(Q21)~1)
which worsens the bound by a facto(1ri(r + m)).
We can recover from this setback by noting thet, y) < min{r (Q20), 7 (21)}

for all x, y, so that we could have defingtlby

S S w(x,y)

P =P = .

= P00 = inie (@), 7 (20)
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This definition boosts the trani®n probabilities betweefq and$2; when either
7 (R0) or (1) is small, while leaving all trasition piobabilities bounded by
1/(rm), as required. This modification t8 more than compensates for the effect
just identified, and indeed the worst case (calculus) is whiky) = 7(21) = %
The bottom line is that we achiewe= 1/2(rm).

These bounds were recently obtained [9] using a longer and more complicated
argument tailored to the specific application.

4.6. Hard-core model on trees. We conclude with an example where off-
the-shelf decomposition results do not suffice. In this case, a reasonable bound
on spectral gap may be deduced from Theorem 1. However, the problem
that threatened to arise at the end of the previous example—namely that the
log-Sobolev constant of a highly asymmetric two-state Markov chain may be
arbitrarily close to 0—causes real problems here. Nevertheless, by tailoring our
decomposition tohe problem at hand, we obtaia reasonable bound on the
log-Sobolev constant. (Just before the final version of this article was prepared,
Martinelli, Sinclair and Weitz [16] announced substantially better bounds than
those obtained here. They were able to show optimal,@.6:/ogn), mixing over
a range of fugacities.)

Let T; denote the tree, rooted at of depthd and branching factoA. (Thus,
the degree of any vertex that is not the root or a leaf i$ 1. The degree of the
root v itself is A.) Consider the hard-core lattice gas model defined on th set
of independent sets df;. For a given fugacity. > 0 (note that in this section
only, A doesnot refer to spectral gap), we are interested in the Boltzmann-Gibbs
distributions defined or2, where

(o) o Al

and|o| denotes the cardinality of the independentset

Once again, a simple Markov chain with state spdzeand stationary
distribution 7 is the following single-site heat-bath dynamics known as the
Glauber dynamics. For technical reasons we define the chain with respect to a
parametelN > n, wheren denotes the number of verticeszp.

FromX; € Q:

e Choose a vertex uniformly at random.
e Set

¥ X\ {z}, with probability 1/(1+ 1),
X, U{z}, with probability 2 /(1 + 1).
o If X' € Q, setX,,1 = X" with probabilityn/N; otherwise, seX; 1 = X;.

In practice, we sel equal to the number of vertices in the tree at the top level of
the inductive argument; the extra parameter eliminates rescalings in the upcoming
analysis.



BOUNDS ON POINCARE AND LOG-SOBOLEY CONSTANTS 1761

We decompose the state spac&as Q21 U Q2 U Q3, where
Q:={c€eQ:veao},
Qo:={o e\ Q0 U{v}e}
Q3:=Q\ Q1\ Q0.

Also let Q4 := Qo U Q3.
Without loss of generality, assume F2 = 1. Using (25) twice,

3 3
Lr(f) =Y 7L, (f)+ D7) (Ex, f2)IN(Ex, £?)
=1 =1
(39) i i .
<ALy (f) + T B Ly (f) + Y 7 () (Ex; £2)IN(Ex, 7).
i=1

Observe that the restriction chain €3 with transition probabilitiesP; (whereN
is constant so that the transition probabilities are identic&himnd P) is simply
the product chain oA2 copies of the chain ofi;_». Similarly, the restriction chain
on Q4 is the product ofA copies of the chain off;_1. The projection chain also
has a simple structure. In particular, there is a bijectiof2; — €25 such that for
y =v(x) we haveP (x,y) =1/(1+A)N andP(y,x) = A/(1+ A)N. This perfect
matchingv captures the only transitions between the setand,.

Define a new chain on state spatk 2, 3} with stationary distributionz
(i.e., the same as that of the projection chain{én, 22, Q23}) with transition
probabilitiesP given by

P(1,2)=1/(1+1),

P2, 1)=1/(1+1),

P(2,3) =min{1, 7(3)/7(2)},
P(3,2) =min{1, 7(2)/7 (3)},
P(1,3)=P(3,1)=0.

(The fictional Markov chairP is a formal device: We establish and apply a log-
Sobolev inequality for? and then relate the various resulting terms to the actual
chainP.) Let & denote the log-Sobolev constant of this chain. From (39) and the
log-Sobolev inequality fo, we now have
(1) 7 (4)
Lr(f) = P Exi(fs )+ ——8Ex,(f. /)

(40) Fa-1

+% 3N 7@ PG, i+ D(VEg f2 = VEn, 7).

i=12
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We need to bound the last terms on the right-hand side. Beginning with
i =1, observe that(1,2) = N P(1, 2). Moreover, the bijectionv implies the
correspondingy = 0, and the following statement holds:
7P (L 2)(VEq, f2— VEr, f2)? < NC12.
Fori = 2 our bound proceeds as follows, starting with an inequality akin to (31):

#(2)P(2,3)(VEy, f2 = VEx, f2)?
<T@P23) Y m0)m()(f(x) — f()°

xeo
yeQ3

< min{7(2), 7 (3)} Varz, ()

< min{7 (2), 7 (3)} € (f. ).
od—1
Substituting these estimates into (40), we obtain
4 N7 (2). 7
£<ﬂ<ilaﬂfﬂ+<)@+mmﬂxf@}
o - 7(4)a

gmax{ 1 ’(1+mln{7f(2),jr(3)}) 1
od—2 T(4)a
leading to the recurrence

@12

)8mutﬂ+

ﬁkAﬁﬂ,

ag_1 «

_ in{7(2), 7(3)}\ 1 q
(41) oy > mln{ozd_z, <1+ mm{;i4)) &n( )}) -1, %}

To boundx, we use a result of Diaconis and Saloff-Coste ([5], Theorem A.1) on
the log-Sobolev constant of the chain Kig (the complete graph on three vertices)
with transition probabilitiesP (i, j) =7 (j) forall 1L < i, j < 3, that s,

K> 1 —_2nm,n > 1_ ’

IN(1/7min— 1 — 3IN(1/7min)
where min = min{z (1), 7(2), 7(3)}. Comparing our three-state chain (with
transition probabilities?) with K3, we obtain the following claim.

(42)

CLAIM 7. The quantities @ and ok, defined above are related by the
inequality & > ag,/2(1+ A).

PROOF  For succinctness, writg(i) := VEg 2. Suppose & & < 1. Then
(ﬂb—ﬂ%“ﬂ@@—f@)(ﬂa—ﬂmf
[ (FD—F@)+VI—&

2
J——(Q @)

(FD) - F@)* + 1§U® 73)2,

mua
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where the inequality is Cauchy—Schwarz. Now set
_ (T (1) + 7 (2))7 (3)
A2 +27(D)r @) +7 (27 (3)

Then
7 (DEQ)(F(D) — F(3)?
L 2e(RB)
S(]T(l)-{-w-{-ﬂ(?:))
ADAQ .. a2 7RG .. s 2}
TDTE) | mqy - Fo) e DT zo .
<[ (W = F@)+ 0TS (@) - F3)

Starting with the log-Sobolev inequality for the Diaconis—Saloff-Coste chain
on K3 and applying the above inequality, we obtain

ak, Lz () <FDFQ)(FQ) - F(2)°
+a2WAR(FD - FR)+773(F@ - F(3)°

FOEAN FDFQ 5. a2
52(“ =) )[ﬁ<1>+ﬁ<2>(f(1)_f(2))

T2 @) | - o2
IR £y
72+ 73 (/@ - 13) ]
FOTQ)N . s »
<21+ - )7 D
whereé: (f, f) is the Dirichlet form associated with the chain. Hence
& OK3 - OK3

>
20+ B3)/7T(2) ~ 2(1+1)’
as claimed, where the second inequality uses the facktfiat= A7 (2). O

Combined with our earlier estimate (42) i@k, Claim 7 gives
1
> —.
6(1+ 2) In(1/min)
By considering appropriate mappin@s— 2;, we see that

a

()= m(2) =

(1+A)A+1’ (1+)\)A+1’ T_[(S) = (1+A)A+2'

[For example, for the first of these, consider the mapping that fereeso U {v} \
I'(v), wherel' (v) denotes the set of neighborswf Thus

1 - (1+)»)A+2
Amin — min{1,A}
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In the other direction, similar arguments yield

7(2) < % 7(3) < @A+1)2 -1, T (4) > 1%

so that
min{7 (2), 7 (3)} < min{%, 1412 -1, 1}.

Combining these various inequalities yields
min{7 (2), 7 (3)} _6 min{7 (2), 7(3)} (1 + 1) IN(1/7min)
T (da - 7 (4)
<gad),

where

1+ k)A"_Z)

_ gmin| 2 a_ 2
(43) gA(A)—6mm{k’(1+A) 1’1}(”’\) '”( min(1, 1)

Returning to recurrence (41),
1/ag <max{(1+ga(r))/ag—1, N/a},
leading to

ol <n(l+ga(n) %"

— p1H10ga(I+ga )

To make sense of this bound on the log-Sobolev constanibserve that
ga(d) = O(Ar(1+ [logA))).

This estimate can be obtained from (43) by considering separately the ranges
r <A1 Al < <1andi> 1. In particular, we see that, (A) — 0 asx — 0

for any fixedA. In rough terms, the mixing time tends to be linear as the fugacity
tends to O.
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