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ELEMENTARY BOUNDS ON POINCARÉ AND LOG-SOBOLEV
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Technology and University of Chicago

We consider finite-state Markov chains that can be naturally decomposed
into smaller “projection” and “restriction” chains. Possibly this decomposi-
tion will be inductive, in that the restriction chains will be smaller copies
of the initial chain. We provide expressions for Poincaré(resp. log-Sobolev)
constants of the initial Markov chain in terms of Poincaré (resp. log-Sobolev)
constants of the projection and restriction chains, together with further a pa-
rameter. In the case of the Poincaré constant, our bound is always at least
as good as existing ones and, depending on the value of the extra parameter,
may be much better. There appears to be no previously published decom-
position result for the log-Sobolev constant. Ourproofs are elementary and
self-contained.

1. The setting. In a number of applications, one is interested in finding tight,
nonasymptotic upper bounds on the mixing time, that is, rate of convergence
to stationarity, of finite-state Markov chains. One important example arises in
the analysis of Markov chain Monte Carlo algorithms. These are algorithms for
sampling and counting combinatorial structures that are founded on Markov chain
simulation. The efficiency of these algorithms depends crucially on the rate of
convergence to stationarity of the Markov chain being simulated.

In proving rapid convergence to stationarity, Poincaré and latterly log-Sobolev
inequalities have proved to be powerful tools. The larger the constants in these
inequalities, the faster the convergence to stationarity. (These and other informal
remarks are made rigorous in the following section.) Here we consider finite-state
Markov chains whose description suggests a natural state-space partition. This
partition naturally induces a number of restriction chains, in which transitions are
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restricted to occur within blocks of the partition, and a projection chain, whose
states are the blocks themselves. The hope is that by computing Poincaré or
log-Sobolev constants for the restriction and projection chains we can obtain a
Poincaré or log-Sobolev constant for the original chain. Various authors, including
Madras, Martin and Randall [13–15], have investigated this approach.

Sometimes it may be possible to apply the decomposition step inductively, as
was done by Cooper, Dyer, Frieze and Rue [4] in the context of spin models
on “narrow grids” and by Jerrum and Son [9] for the “bases-exchange walk”
for balanced matroids. In these applications, it is particularly important that our
arguments give as little as possible away at each decomposition step.

Clearly there is a need for general decomposition theorems that relate, say, the
Poincaré constantλ of the original chain as tightly as possible to those of the
restriction and projection chains. The existing decomposition theorems of this sort
seem all to rest ultimately on anunpublished result of Caracciolo, Pelissetto and
Sokal [1]. (Note, however, that a statement of their result and a version of their
proof were published as an appendix to an article by Madras and Randall [13].)

Our first goal, then, is to provide an elementary, self-contained and accessible
account of the basic decomposition result. However, in developing the result
from first principles we find we can derive a statement that is considerably
sharper than the current ones in many situations. For example, in the context of
inductively defined Markov chains, existing decomposition results cannot yield
inverse polynomial bounds onλ (and hence polynomial bounds on mixing time),
even when the depth of the induction is logarithmic. In contrast, we are able to
give inverse polynomial bounds onλ for inductively defined Markov chains, and
are even able to recover the result of Jerrum and Son [9] on the bases-exchange
walk for balanced matroids, where the depth of the induction is linear in some
natural measure of the input size.

It transpires that the proof of the decomposition result for the Poincaré constant
carries over straightforwardly to the log-Sobolev constant. In many situations
the optimal log-Sobolev constant seems to be within a small constant factor of
the optimal Poincaré constant (spectral gap); the advantage of the log-Sobolev
constant in these situations is that it translates to a tighter bound on mixing time
(construed as the time to convergence to near stationarity in�1 norm). To the best
of our knowledge, this is the first general decomposition result for log-Sobolev
inequalities, although it should be mentioned that Cesi [2] gave an argument that
applies when the state space is a Cartesian product.

We have stated our results for finite-state Markov chains, since that seems to
be the natural setting given the potential applications to Markov chain Monte
Carlo algorithms. However, everything extends (with no notational change) to
countably infinite state spaces and (with appropriate notational changes and
possible regularity conditions) to uncountable state spaces.
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2. Poincaré constant via decomposition. Consider an ergodic Markov chain
on finite state space� with transition probabilitiesP :� × � → [0,1] and
stationary distributionπ :� → [0,1]. We assume that the Markov chain istime-
reversible, that is to say, it satisfies thedetailed balance condition

π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ �.

Let � = �0 ∪ · · · ∪ �m−1 be a decomposition of the state space intom disjoint
sets. As usual, we use[m] := {0, . . . ,m− 1} to denote the firstm natural numbers.

Following [15], we definēπ : [m] → [0,1] by

π̄(i) = ∑
x∈�i

π(x)

and define�P : [m] × [m] → [0,1] by

�P(i, j) := π̄(i)−1
∑
x∈�i

y∈�j

π(x)P (x, y).

The Markov chain on state space[m] and with transition probabilities�P is
the projection chain induced by the partition{�i}. Since the original Markov
chain is time-reversible, so is the projection chain. It is easy to check, using this
observation, that the projection chain hasπ̄ as a stationary distribution.

For eachi ∈ [m] therestriction Markov chain on�i has transition probabilities
Pi :�i × �i → [0,1] defined by

Pi(x, y) =


P (x, y), if x �= y,

1− ∑
z∈�i\{x}

P (x, z), if x = y.

Again, the restriction chain inherits time-reversibility from the original chain, and
so it hasπi :�i → [0,1] as a stationary distribution, whereπi(x) = π(x)/π̄(i).
In applications, we require the projection chain and all the restriction chains to be
irreducible; in which case the various stationary distributionsπ̄ andπ0, . . . , πm−1
are unique.

Let f :� → R be an arbitrary test function. The expectation and variance off

with respect toπ are of course given by

Eπ f := ∑
x∈�

π(x)f (x)

and

Varπ f := ∑
x∈�

π(x)
(
f (x) − Eπ f

)2
,

respectively. TheDirichlet form associated withf andP is defined as

Eπ(f,f ) := 1
2

∑
x,y∈�

π(x)P (x, y)
(
f (x) − f (y)

)2
.
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Consider now aPoincaré inequality of the form

Eπ (f,f ) ≥ λVarπ f(1)

that holds uniformly over allf :� → R, with λ > 0 being the corresponding
Poincaré constant. It is well known that a lower bound onλ translates directly
to an upper bound on mixing time of a Markov chain. To avoid technical problems
associated with nearly periodic Markov chains, assume that loop probabilities are
uniformly bounded away from 0. [Alternatively, interpretP (·, ·) as the transition
rates of a continuous-time Markov chain on�.] Denote byP t(x, ·) the t-step
distribution of the chain, given thatx ∈ � is the initial state. Then there is a
function t :� × (0,1] → N with

t (x, ε) = O

(
1

λ

(
ln

1

π(x)
+ ln

1

ε

))
(2)

such that‖P t(x,ε)(x, ·)−π‖TV ≤ ε, where‖ · ‖TV is total variation norm (i.e., half
the�1 norm). For a proof of this claim that is valid for general (i.e., not necessarily
time-reversible) Markov chains, refer to [8], Section 5.2, interpreting� there as
the reciprocal of ourλ.

Observe that in our notation for expectation, variance and so forth, we
make explicit the probability distributionπ as a subscript, because this varies
throughout our proofs. For example, we may write Poincaré inequalities for
the projection and restriction chains asE π̄ (f̄ , f̄ ) ≥ λ̄Varπ̄ f̄ and Eπi

(f, f ) ≥
λi Varπi

f , respectively. Naturally,̄π (resp.πi ) is to be considered as a probability
distribution on[m] (resp.�i ), andf̄ as a function on[m].

Suppose the projection chain and the various restriction chains satisfy Poincaré
inequalities with constants̄λ, and λ0, . . . , λm−1, respectively. Defineλmin =
mini λi . We are interested in obtaining a Poincaré inequality for the original
Markov chain, with Poincaré constantλ = λ(λ̄, λmin, γ ), whereγ is a further
parameter

γ := max
i∈[m] max

x∈�i

∑
y∈�\�i

P (x, y).(3)

Of course, we would likeλ to be as large as possible. Informally,γ is the
probability of escape in one step from the current block of the partition, maximized
over all states. Given this interpretation, it is clear thatγ never exceeds 1, and may
be much smaller in many applications. It is in these applications that we improve
on existing decomposition bounds.

THEOREM 1. Consider a finite-state time-reversible Markov chain decom-
posed into a projection chain and m restriction chains as above. Suppose the
projection chain satisfies a Poincaré inequality with constant λ̄, and the restriction
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chains satisfy inequalities with uniform constant λmin. Let γ be defined as in (3).
Then the original Markov chain satisfies a Poincaré inequality with constant

λ := min
{
λ̄

3
,

λ̄λmin

3γ + λ̄

}
.

PROOF. Consider an arbitrary test functionf :� → R. Our starting point is
the decomposition of Varπ f with respect to the partition� = �0 ∪ · · · ∪ �m−1,

Varπ f = ∑
i∈[m]

π̄(i)Varπi
f + ∑

i∈[m]
π̄(i)

(
Eπi

f − Eπ f
)2

,(4)

and a similar decomposition of the Dirichlet form,

Eπ (f,f ) = ∑
i∈[m]

π̄(i)Eπi
(f, f ) + 1

2

∑
i,j∈[m]

i �=j

Cij ,(5)

where

Cij := ∑
x∈�i

y∈�j

π(x)P (x, y)
(
f (x) − f (y)

)2
.

Identity (5) is almost content-free and comes from partitioning the terms in the
definition ofEπ (f,f ) according to whetheri andj are in the same or in different
blocks of the partition. Identity (4) has a little more substance, but is nevertheless
standard and can be obtained through simple algebraic manipulation. It states
informally that the variance off may be obtained by summing the varianceswithin
blocks of the partition and the variancebetween blocks.

In summations and so forth, variablesi and j always range over[m], so we
are not explicit about their range in what follows. For alli, j with i �= j and
�P(i, j) > 0, defineπ̂ j

i :�i → [0,1] by

π̂
j
i (x) := πi(x)

∑
y∈�j

P (x, y)

�P (i, j)
.

Note thatπ̂ j
i is a probability distribution on�i .

The first term on the right-hand side of (4) we simply bound as∑
i

π̄ (i)Varπi
f ≤ ∑

i

1

λi

π̄(i)Eπi
(f, f )

(6)

≤ 1

λmin

∑
i

π̄ (i)Eπi
(f, f ).
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The second term we transform, starting with an application of the Poincaré
inequality for the projection chain,∑

i

π̄ (i)
(
Eπi

f − Eπ f
)2

≤ 1

2λ̄

∑
i �=j

π̄(i)�P (i, j)
(
Eπi

f − Eπj
f

)2

≤ 3

2λ̄

∑
i �=j

π̄(i)�P (i, j)

× [(
Eπi

f − E
π̂

j
i

f
)2 + (

E
π̂

j
i

f − Eπ̂ i
j
f

)2 + (
Eπ̂ i

j
f − Eπj

f
)2]

= 3

2λ̄
[�1 + �2 + �3],(7)

where

�1 := ∑
i �=j

π̄(i)�P (i, j)
(
Eπi

f − E
π̂

j
i

f
)2

, . . . .

We proceed to bound�1, �2 and�3 separately, noting that�1 and�3 are equal
by time-reversibility. For the second of these we have

�2 = ∑
i �=j

π̄(i)�P (i, j)

[ ∑
x∈�i

y∈�j

π(x)P (x, y)

π̄(i)�P (i, j)

(
f (x) − f (y)

)]2

(8)

≤ ∑
i �=j

π̄(i)�P (i, j)
∑
x∈�i

y∈�j

π(x)P (x, y)

π̄(i)�P (i, j)

(
f (x) − f (y)

)2(9)

= ∑
i �=j

∑
x∈�i

y∈�j

π(x)P (x, y)
(
f (x) − f (y)

)2

= ∑
i �=j

Cij ,(10)

where (8) uses the fact thatπ(x)P (x, y)/π̄(i)�P (i, j) is a joint distribution on
�i × �j whose marginals arêπj

i andπ̂ i
j , and (9) is seen to be Cauchy–Schwarz,

once we have noted that ∑
x∈�i

y∈�j

π(x)P (x, y)

π̄(i)�P (i, j)
= 1,
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by definition.
Now for �1. Using standard facts about variance,

Var
π̂

j
i

f = Var
π̂

j
i

(
f − Eπi

f
)

= ∑
x∈�i

π̂
j
i (x)

(
f (x) − Eπi

f
)2 − (

E
π̂

j
i

f − Eπi
f

)2
,(11)

so that certainly(
E

π̂
j
i

f − Eπi
f

)2 ≤ ∑
x∈�i

π̂
j
i (x)

(
f (x) − Eπi

f
)2

.(12)

Thus we have the bound

�1 ≤ ∑
i �=j

π̄(i)�P (i, j)
∑
x∈�i

π̂
j
i (x)

(
f (x) − Eπi

f
)2

= ∑
i

π̄ (i)
∑
x∈�i

πi(x)
(
f (x) − Eπi

f
)2 ∑

j : j �=i

π̂
j
i (x)�P(i, j)

πi(x)

= ∑
i

π̄ (i)
∑
x∈�i

πi(x)
(
f (x) − Eπi

f
)2 ∑

j : j �=i

P (x,�j)(13)

≤ γ
∑
i

π̄ (i)Varπi
f(14)

≤ γ

λmin

∑
i

π̄ (i)Eπi
(f, f ),(15)

where (13) applies the definition ofπ̂ j
i , (14) applies the definition ofγ and (15)

applies the Poincaré inequalities for the restriction chains.
Substituting (10) and (15) in (7), and recalling that�1 = �3, we have∑

i

π̄(i)
(
Eπi

f − Eπ f
)2 ≤ 3

2λ̄

∑
i �=j

Cij + 3γ

λ̄λmin

∑
i

π̄ (i)Eπi
(f, f ).(16)

Then substituting (6) and (16) into (4) yields

Varπ f ≤ 3

2λ̄

∑
i �=j

Cij + 3γ + λ̄

λ̄λmin

∑
i

π̄(i)Eπi
(f, f ).(17)

Finally, comparing (17) with (5), we see that

Eπ (f,f ) ≥ λVarπ f,

whereλ is as in the statement of the theorem.�

The first thing to note is thatγ ≤ 1, so that alwaysλ = �(λ̄λmin), matching
existing decomposition results (e.g., [1]). It may be the case thatγ is indeed a
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constant (e.g., decompose a random walk on[n] into k random walks on[n/k],
where we assume for convenience thatk dividesn). In this case,γ = 1

2 and we get
no improvement over existing bounds.

At the other extreme, there are situations, for example, spin systems on
fragments of the Bethe lattice or narrow grids, whereγ and λ̄ are of the same
order of magnitude. Applying Theorem 1 inductively then yields bounds on the
spectral gap that are inverse polynomial in the problem sizen, provided the depth
of recursion isO(logn). Section 4.3 treats such an example.

This seems about the best that can be achieved using a parameter as “global”
as γ . To go further, we need a much stricter pointwise constraint on the
distributionsπ̂ j

i . For example, if we know that

(1− η)πi ≤ π̂
j
i ≤ (1+ η)πi,(18)

pointwise, whenever̂πj
i is defined [i.e., whenever�P (i, j) > 0], then(

Eπi
f − E

π̂
j
i

f
)2 ≤ (1+ η)Varπi

f − Var
π̂

j
i

f(19)

≤ (1+ η)Varπi
f − (1− η)

∑
x∈�i

πi(x)
(
f (x) − E

π̂
j
i

f
)2

≤ (1+ η)Varπi
f − (1− η)Varπi

f(20)

= 2η Varπi
f,(21)

where (19) comes from (11), and (20) from the fact that
∑

x∈�i
πi(x)(f (x) − µ)2

is minimized atµ = Eπi
f . Introducing the modified parameter

γ̂ := 2η max
i∈[m]

∑
j : j �=i

�P (i, j)(22)

we obtain:

COROLLARY 2. Suppose that (18) is satisfied for some η > 0 and that γ̂ is as
defined as in (22).Then Theorem 1 holds with γ̂ replacing γ .

PROOF. Simply use (21) in place of (12) in the derivation of inequality (15).
�

Note thatγ̂ may even be 0 (which happens ifη = 0), as in the case of the
n-dimensional Boolean cube. When that happens,�1 = �3 = 0 and we save a
factor 3 in the argument, leading to:

COROLLARY 3. If γ̂ = 0, then Theorem 1 holds with λ := min{λ̄, λmin}.
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For the Boolean cube, Corollary 3 immediately gives the exact bound on
spectral gap. Even when̂γ > 0 we may be able to compare the given Markov chain
with one with reduced transition probabilities for whichγ̂ = 0. For example, in the
case of the bases-exchange walk on a balanced matroid, we may “thin down” the
transition probabilities between�i and�j until they form a fractional matching
(which is possible by a result in [7]). Thus we recover the known bound on the
spectral gap for balanced matroids. All this is covered in detail in Section 4.5.

3. Log-Sobolev constant via decomposition. The program described above
extends to the log-Sobolev constant with little work. Following Diaconis and
Saloff-Coste [5] (and others), define the entropy-like quantity

Lπ(f ) := Eπ

[
f 2(lnf 2 − ln(Eπ f 2)

)]
.(23)

Again, we indicate the probability distributionπ explicitly as a subscript, so we
can talk aboutLπi

(f ) and so forth. Alog-Sobolev inequality is an inequality of
the form

Eπ (f,f ) ≥ αLπ(f )

that holds for all f :� → R. The motivation for studying thelog-Sobolev
constant α is the analogue of (2),

t (x, ε) = O

(
1

α

(
ln ln

1

π(x)
+ ln

1

ε

))
,(24)

which provides an estimate, this time in terms ofα, for the number of
steps sufficient to achieve‖P t(x,ε)(x, ·) − π‖TV ≤ ε. [To avoid trivialities,
assumeπ(x) ≤ e−1 in (24).] The estimate (24) of mixing time may be read
off from [5], equation (3.3), assuming loop probabilities are bounded away
from 0. (Diaconis and Saloff-Coste worked in continuous time, avoiding potential
problems associated with nearly periodic Markov chains.) The key point to note is
that ln(1/π(x)) in (2) is replaced by ln ln(1/π(x)) in (24). This may not seem like
a major improvement until we recall thatπ(x) is typically exponentially small as
a function of instance size.

Our aim, then, is to findα = α(ᾱ, αmin, γ ) that satisfies

Eπ (f,f ) ≥ αLπ (f ).

Obviously we wantα to be as large as possible. Our analogue of Theorem 1 is:

THEOREM 4. The setting is exactly as in Theorem 1. Suppose the projection
chain satisfies a log-Sobolev inequality with constant ᾱ and that the restriction
chains satisfy inequalities with uniform constant αmin. Then the original Markov
chain satisfies a log-Sobolev inequality with constant

α := min
{
ᾱ

3
,

ᾱαmin

3γ + ᾱ

}
.
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PROOF. Just as with variance,Lπ(f ) may be decomposed with respect to the
partition� = �0 ∪ · · · ∪ �m−1, the analogue of identity (4):

Lπ (f ) = ∑
i

π̄ (i)Lπi
(f ) + ∑

i

π̄ (i)
(
Eπi

f 2)(ln(
Eπi

f 2) − ln(Eπ f 2)
)
.(25)

SinceLπ (f ) is a less familiar quantity than variance, we offer, in an addendum,
a derivation not only of (25), but also of a number of other identities and
inequalities used in this section. By analogy with (4), the first term expresses the
entropy within blocks of the partition and the second term expresses the entropy
between blocks. [Compare the second term in (25) with the right-hand side of (23),
observing how

√
Eπi

f 2 is now the appropriate “averaging off ” over �i , taking
on the role of Eπi

f in the earlier calculation.] The decomposition of entropy
expressed in (25) has been exploited by other authors (e.g., [12]).

We deal with the first term exactly as before:

∑
i

π̄ (i)Lπi
(f ) ≤ ∑

i

1

αi

π̄(i)Eπi
(f, f )

(26)

≤ 1

αmin

∑
i

π̄ (i)Eπi
(f, f ).

The second term we transform, in an analogous manner to (7), starting with an
application of the log-Sobolev inequality for the projection chain,∑

i

π̄ (i)
(
Eπi

f 2)(ln(
Eπi

f 2) − ln(Eπ f 2)
)

≤ 1

2ᾱ

∑
i �=j

π̄(i)�P (i, j)
(√

Eπi
f 2 −

√
Eπj

f 2 )2

≤ 3

2ᾱ

∑
i �=j

π̄(i)�P (i, j)
[(√

Eπi
f 2 −

√
E

π̂
j
i

f 2 )2

+ (√
E

π̂
j
i

f 2 −
√

Eπ̂ i
j
f 2 )2

(27)
+ (√

Eπ̂ i
j
f 2 −

√
Eπj

f 2 )2 ]
= 3

2ᾱ
[�1 + �2 + �3],(28)

where

�1 = ∑
i �=j

π̄(i)�P (i, j)
(√

Eπi
f 2 −

√
E

π̂
j
i

f 2 )2
, . . . .
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Tackling�2 first, we have

�2 ≤ ∑
i �=j

π̄(i)�P (i, j)
∑
x∈�i

y∈�j

π(x)P (x, y)

π̄(i)�P (i, j)

(
f (x) − f (y)

)2(29)

= ∑
i �=j

∑
x∈�i

y∈�j

π(x)P (x, y)
(
f (x) − f (y)

)2

= ∑
i �=j

Cij ,(30)

where (29) is Jensen’s inequality applied to the convex functiong(ξ, ζ ) := (
√

ξ −√
ζ )2 defined onξ, ζ ≥ 0. (This is an artifice borrowed from [11]; see Section 3.1

for details and see [12] for related applications.)
For�1 (which equals�3 by time-reversibility), we have the bound

�1 ≤ ∑
i �=j

π̄(i)�P (i, j)
∑

x,y∈�i

πi(x)π̂
j
i (y)

(
f (x) − f (y)

)2(31)

= ∑
i

π̄ (i)
∑

x,y∈�i

πi(x)πi(y)
(
f (x) − f (y)

)2 ∑
j : j �=i

P (y,�j)(32)

≤ 2γ
∑
i

π̄ (i)Varπi
f(33)

≤ 2γ

λmin

∑
i

π̄ (i)Eπi
(f, f )(34)

≤ γ

αmin

∑
i

π̄ (i)Eπi
(f, f ),(35)

where (31) recycles the Jensen artifice (see Section 3.1), (32) applies the definition
of π̂

j
i , (33) applies the definition ofγ , (34) applies the Poincaré inequalities for

the restriction chains and finally (35) applies the general inequalityα ≤ λ/2 (see,
e.g., [5]) that relates Poincaré and log-Sobolev constants. [Strictly speaking, we
must interpretλmin here as the minimum over theoptimal Poincaré constants (i.e.,
spectral gaps) of them restriction Markov chains.]

Substituting (30) and (35) into (28), and recalling that�1 = �3, we have∑
i

π̄ (i)
(
Eπi

f 2)(ln(
Eπi

f 2) − ln(Eπ f 2)
)

(36)

≤ 3

2ᾱ

∑
i �=j

Cij + 3γ

ᾱαmin

∑
i

π̄(i)Eπi
(f, f ).
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Then substituting (26) and (36) into (25) yields

Lπ (f ) ≤ 3

2ᾱ

∑
i �=j

Cij + 3γ + ᾱ

ᾱαmin

∑
i

π̄ (i)Eπi
(f, f ).(37)

Finally, comparing (37) with (5), we see thatEπ (f,f ) ≥ αLπ(f ), whereα is as
in the statement of the theorem.�

The remarks following the proof of Theorem 1 apply also to Theorem 4. In
particular, if(1− η)πi ≤ π̂

j
i ≤ (1+ η)πi , then(√

Eπi
f 2 −

√
E

π̂
j
i

f 2 )2 ≤ 2η Varπi
f,(38)

using Jensen’s inequality again, but this time with an optimal coupling of the two
random variables (r.v.’s) (see Section 3.1), yielding:

COROLLARY 5. Suppose that (18) is satisfied for some η > 0 and that γ̂ is as
defined as in (22).Then Theorem 4 holds with γ̂ replacing γ .

Again, whenγ̂ = 0 we save a factor 3.

COROLLARY 6. If γ̂ = 0, then Theorem 4 holds with α := min{ᾱ, αmin}.
3.1. Addendum: proofs of an identity and some inequalities. This addendum

contains derivations of some of the possibly less obvious identities and inequalities
used above.

PROOF OF IDENTITY (25). By appropriate scaling of the functionf , it is
enough to establish (25) when Eπ f 2 = 1. With this simplification,

Lπ (f ) = Eπ [f 2 lnf 2] = ∑
i

π̄ (i)Eπi
[f 2 lnf 2]

and ∑
i

π̄ (i)Lπi
(f ) = ∑

i

π̄ (i)Eπi

[
f 2(lnf 2 − ln

(
Eπi

f 2))].
Subtracting the latter from the former, we obtain

Lπ (f ) − ∑
i

π̄ (i)Lπi
(f ) = ∑

i

π̄ (i)
(
Eπi

f 2) ln
(
Eπi

f 2),
as required. �

PROOF OF INEQUALITY (29). Let X and Y be r.v.’s taking values in
�i and�j , respectively, and with joint distribution given by

Pr(X = x ∧ Y = y) = π(x)P (x, y)

π̄(i)�P (i, j)
.
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Thus the marginal distribution ofX (resp.Y ) is π̂
j
i (resp.π̂ i

j ). Since, by calculus,

g(ξ, ζ ) := (
√

ξ − √
ζ )2 is convex inξ, ζ ≥ 0, Jensen’s inequality yields(√

E
π̂

j
i

f 2 −
√

Eπ̂ i
j
f 2 )2 = (√

E[f (X)2] −
√

E[f (Y )2] )2

≤ E
[(

f (X) − f (Y )
)2]

= ∑
x∈�i

y∈�j

π(x)P (x, y)

π̄(i)�P (i, j)

(
f (x) − f (y)

)2
. �

PROOF OF INEQUALITY (31). As above, but now withX and Y being
independent r.v.’s with the appropriate distributions.�

PROOF OF INEQUALITY (38). Assumeπi �= π̂
j
i , otherwise there is nothing

to demonstrate. LetX and Y be r.v.’s that take values in�i , with joint
distribution satisfying the following conditions: (i)X has distributionπi , (ii) Y has
distributionπ̂

j
i and (iii) Pr(X �= Y ) = ‖πi − π̂

j
i ‖TV. It is well known that such an

optimal coupling of two r.v.’s exists. Denote by

ψ(x, y) := Pr(X = x ∧ Y = y)

the joint distribution ofX andY . Define

ψ̂(x, y) :=
{

0, if x = y,

ψ(x, y), otherwise.

Partition � into two sets� = A ∪ B such thatπi(x) − π̂
j
i (x) > 0 for all

x ∈ A, andπ̂
j
i (y) − πi(y) ≥ 0 for all y ∈ B. By assumption,A andB are non-

empty. Optimality of the coupling ofX andY entails
∑

y ψ̂(x, y) = max{πi(x) −
π̂

j
i (x),0} and

∑
x ψ̂(x, y) = max{π̂ j

i (y)−πi(y),0}. Thus, by Jensen’s inequality,(√
Eπi

f 2 −
√

E
π̂

j
i

f 2 )2

= (√
E[f (X)2] −

√
E[f (Y )2] )2

≤ E
[(

f (X) − f (Y )
)2]

= ∑
x,y∈�i

ψ̂(x, y)
(
f (x) − f (y)

)2

≤ 2
∑

x,y∈�i

ψ̂(x, y)
[(

f (x) − Eπi
f

)2 + (
f (y) − Eπi

f
)2]

≤ 2η
∑
x∈A

πi(x)
(
f (x) − Eπi

f
)2 + 2η

∑
y∈B

πi(y)
(
f (y) − Eπi

f
)2

≤ 2η Varπi
f,
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as required. �

4. Examples. In this final section we collect a number of illustrative exam-
ples. The aim is more to rederive a variety of existing results in a simple, uniform
manner than to obtain new results.

4.1. Toy example. Consider the symmetric random walk on the 2n vertex
“pince-nez” graph in Figure 1 obtained by joining two disjointn cycles by a single
edge. Suppose transitions within cycles occur with probability13, while the unique
transition between cycles occurs with probabilityp ≤ 1

3. Loop probabilities are
defined by complementation. The transition probabilities are symmetric, so the
random walk is time-reversible and its stationary distribution is uniform.

Now decompose the set of vertices (states) into two disjoint subsets,�0 and�1,
where�0 contains then vertices in the first cycle and�1 contains then vertices
in the second cycle. The spectral gap for each cycle considered in isolation
is 2

3(1 − cos(2π/n)). (Diaconis and Saloff-Coste treated this example in [5],
Section 4.2. The factor23 arises because our transition probabilities are1

3 instead
of 1

2.) Since 1− cosx ≥ 2x2/5 for 0 ≤ x ≤ π/2, we have that the spectral gap
for each restriction chain is at least 16π2/15n2 (assumingn ≥ 4), so we may take
λmin = 10n−2. The projection chain in this example is the symmetric two-state
chain with transition probabilityp/n between states, so we takeλ̄ = 2p/n. Finally
γ = p. (Recall thatγ is the maximum, over all states, of the probability of exiting
from the current block of the partition of the states.) Theorem 1 yields, as Poincaré
constant for the random walk on the pince-nez,

λ = min
{

2p

3n
,

20

3n3 + 2n2

}
.

Note thatλ = �(n−3) whenp = �(n−2) andλ = �(pn−1) whenp = O(n−2);
in the latter case, our estimate is tight to within a constant factor, and a factorn2

better than existing decomposition bounds which have the formλ = �(λ̄λmin) =
�(pn−3).

FIG. 1. Pince-nez graph (n = 8).
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A log-Sobolev inequality may be obtained equally simply by using a similar
calculation. The restriction chains satisfy a log-Sobolev inequality with constant
16π2/75n2 ([5], Section 4.2), so we may takeαmin = 2n−2. The log-Sobolev
constant for the two-state projection chain isᾱ = p/n (see [5], Theorem A.2).
Thus, by Theorem 4,

α = min
{

p

3n
,

2

3n3 + n2

}
.

4.2. Product of two Markov chains. Consider two finite-state time-reversible
Markov chains(X,PX) and(Y,PY ) with state spacesX andY . There are a number
of ways to define a product Markov chain(�,P ) on � = X × Y , but one which
suits our purpose is to define the transition probabilitiesP in terms of the transition
probabilitiesPX andPY as follows. For all(x, y), (x′, y′) ∈ �,

P
(
(x, y), (x′, y′)

) :=


PX(x, x′), if x′ �= x andy′ = y,

PY (y, y′), if x′ = x andy′ �= y,

PX(x, x) + PY (y, y) − 1, if x′ = x andy′ = y,

0, otherwise.

For the loop probabilities to be nonnegative, we requirePX(x, x) + PY (y, y) ≥ 1
for all (x, y) ∈ � and we assume this from now on.

Our goal is to establish a Poincaré constantλ for (�,P ) in terms of
those for(X,PX) and (Y,PY ): let us call themλX and λY , respectively. For
convenience, identifyX with [n]. Then, writing �i := {i} × Y , we have the
natural decomposition� = X×Y = ⋃

i∈[n] �i . (Of course, we could have reversed
the roles ofX and Y , and indexed the restriction chains byY .) Each of the
restriction chains is isomorphic to(Y,PY ) and soλmin = λY . The projection chain
is isomorphic to(X,PX) and soλ̄ = λX. By symmetry,π̂ j

i = πi whenever the
former is defined, and hencêγ = 0 and we are in the situation of Corollary 3. We
obtainλ = min{λX,λY } as the required Poincaré constant for(�,P ), and this is
tight. Exactly the same argument applies to the log-Sobolev constant.

4.3. One-dimensional Ising model. Consider the path of lengthn, that is, the
graph with vertex set[n] and edges joining vertices differing by 1.Configurations
of the Ising model are just assignmentsσ : [n] → {−1,+1} of ±1 “spins” to the
vertices of the graph. TheHamiltonian of the Ising system on the path is defined
by

H(σ) :=
n−2∑
i=0

[1− σ(i)σ (i + 1)]/2;

in other words, we count 1 for every pair of adjacent unlike spins. Denote
the set of all 2n configurations by�. We wish to sample configurations from
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the Boltzmann–Gibbs distributionπ(σ ) := exp(−βH(σ))/Z on �, whereZ :=∑
σ∈� exp(−βH(σ)) is thepartition function of the system andβ ∈ R

+ is inverse
temperature. (What has been described is theferromagnetic Ising model, which
favors like spins; see [3] for background.)

One standard way to construct a Markov chain on� with stationary distri-
bution π is through single-site heat-bath dynamics. Fori ∈ [n] and σ : [n] →
{−1,+1}, let σ[i←+1] (resp.σ[i←−1]) be the configuration that agrees withσ at all
vertices except possibly vertexi, whereσ[i←+1](i) = +1 [resp.σ[i←−1](i) = −1].
The transitions of our heat-bath Markov chain are defined by the following trial,
whereσ is the current state:

1. Selecti ∈ [n] uniformly at random.
2. Let

p := exp{−βH(σ[i←+1])}
exp{−βH(σ[i←+1])} + exp{−βH(σ[i←−1])} .

Then with probabilityp, the new state isσ[i←+1], and with probability 1− p,
the new state isσ[i←−1].

For convenience, we imagine that there are extra vertices 0 andn with specified
fixed spins, so thatp ∈ {1

2, e±β/(eβ + e−β)}.
Choose a vertexm ∈ [n] as close to the midpoint of the path as possible

(e.g.,m = 
n/2�) and partition the configurations into two sets� = �+ ∪ �−,
where�+ (resp.�−) is the set of all configurationsσ with σ(m) = +1 [resp.
σ(m) = −1]. Consider the restrictions of the Markov chain to�+ and�−, and
the corresponding projection chain (which in this case has just two states).

A little optimization gives the spectral gap of the projection chain asλ̄ ≥
1/(coshβ)2n. The parameterγ satisfiesγ ≤ 1/(1+ e−2β)n. Thus

λ ≥ min
{

1

3(coshβ)2n
,

λmin

1+ (3/4)(e2β + 1)

}
.

Each restriction chain is a direct product of two independent Ising systems on at
most 
n/2� vertices: independent because we fixed a spin at the middle of the
path. The spectral gap of a direct product is the minimum of the spectral gaps of
the components, as we saw in Section 4.2. So, denoting byλk the spectral gap of
the ferromagnetic Ising system on[k] (with updates at any given site occurring at
rate/probability 1/n), we have the recurrence

λk ≥ min
{

1

3(coshβ)2n
,

λ
k/2�
1+ (3/4)(e2β + 1)

}
.

This has solutionλn = �(n−c), wherec = 1 + log2{1 + 3
4(e2β + 1)}. So, at any

fixed temperature, the spectral gap is bounded by an inverse polynomial inn whose
exponentc tends to 1+ log2

5
2 < 2.33 asβ → 0. In light of (2), the mixing time

scales asnc+1.
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A similar argument applies to the log-Sobolev constant. However, the bound
on ᾱ, the log-Sobolev constant of the two-state projection chain, is 1/2(coshβ)2n

(see [5], Theorem A.2), which is worse than the bound we had forλ̄ by a factor
of 2. As a result, we obtainαn = �(n−c′

), wherec′ = 1 + log2{1 + 3
2(e2β + 1)}.

So at any fixed temperature the log-Sobolev constant is bounded by an inverse
polynomial inn whose exponentc′ tends to 1+ log2 4 = 3 asβ → 0. Although
c′ > c, we recall that, by (24), the mixing time scales asnc′

logn, which is an
improvement onnc+1 for small enoughβ. In a sense, these are both poor results,
since the one-dimensional Ising model does not exhibit a phase transition and we
should expect mixing timeO(n logn) at any temperature (although with a constant
of proportionality depending onβ). Note, however, that if we had used existing
decomposition theorems, we would have lost a factorn at each level of recursion,
leading to a bound on spectral gap that diminishes withn faster than any inverse
polynomial.

When the temperature is sufficiently high (i.e.,β is sufficiently close to 0), we
get a better bound by switching to Corollaries 2 or 5. Indeed, sinceγ̂ → 0 as
β → 0, the bounds on both spectral gap and log-Sobolev constant are of the form
�(1/n1+δ) with δ tending to 0 asn → ∞. (Very recent work [16] improved on
this result by showing thatn1+δ may be replaced byn (in the case of spectral gap)
andn logn (in the case of log-Sobolev constant) for allβ up to some critical value.
This remark applies equally to Section 4.4.)

4.4. Ising and other spin models on trees. The calculation of Section 4.3
carries over, with very little change tobalanced trees of bounded degree. Thus
we can treat balls of given radius in the so-called Bethe lattice of coordination
numberr ; loosely, the infinite regular tree of degreer . Again, for fixedr andβ,
the Poincaré and log-Sobolev constants are inverse polynomial. This was already
known (see [10] for inverse polynomial bounds on spectral gap), although the fact
that spin systems in general and the Ising model in particular have polynomial
mixing time on trees is not so obvious.

4.5. Walks on the Boolean cube and balanced matroids. Consider the random
walk on then-dimensional Boolean cube in which transitions (including loops)
all occur with probability 1/(n + 1). There is a natural decomposition of the
n-dimensional cube into two(n − 1)-dimensional cubes connected by a perfect
matching. Clearlyγ̂ = 0 and we are in the situation of Corollary 3. Thenλ̄ =
2/(n + 1) and, by induction,λ = 2/(n + 1). Likewise, ᾱ = 1/(n + 1) ([5],
Theorem A.2, again) and henceα = 1/(n + 1). These results are of course well
known; see, for example, [5], Section 4.1.

More interestingly, there is a nontrivial Markov chain—the so-called bases-
exchange walk on a balanced matroid—which retains just enough of the properties
of the cube to be treatable by essentially the same approach. We shall be very brief
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in describing the setting; refer to [7] and [9] for a more expansive treatment. Let
E be a finite ground set and letB ⊆ 2E a nonempty collection of subsets ofE. We
say thatB forms the collection ofbases of amatroid M = (E,B) if the following
“exchange axiom” holds: For every pair of basesX,Y ∈ B and every element
e ∈ Y \ X, there exists an elementf ∈ X \ Y such thatX ∪ {e} \ {f } ∈ B. It is
easy to show that every basis must have the same size, which is called therank
of M . Denote bym = |E| the size of the ground set and byr the rank. A concrete
example of a matroid is provided by the set of spanning trees of a finite undirected
graphG. Here we interpretE as the set of edges ofG and interpretB as the set
of all spanning trees. The rank is of courser = n − 1, wheren is the number of
vertices ofG. The exchange axiom is easily checked.

Two absolutely central operations on matroids are contraction and deletion. If
e ∈ E is an element of the ground set ofM , then the matroidM \ e obtained by
deleting e has ground setE \{e} and basesB(M \e) = {X ⊆ E \{e} :X ∈ B(M)};
the matroidM/e obtained bycontracting e has the same ground set asM \ e, but
basesB(M/e) = {X ⊆ E \ {e} :X ∪ {e} ∈ B(M)}.

The exchange axiom suggests a very natural Markov chain on the set of
basesB. Suppose the state (basis) at timet is Xt ∈ B. Then the state at timet + 1
is obtained as the result of the following trial:

STEP 1. Choosee ∈ E andf ∈ Xt independently and uniformly at random.

STEP 2. If Xt ∪ {e} \ {f } ∈ B, thenXt+1 ← Xt ∪ {e} \ {f } elseXt+1 ← Xt .

It is straightforward to check, using the exchange axiom, that this Markov
chain(Xt ) is irreducible; furthermore, it is clearly time-reversible and has uniform
stationary distribution. It has been conjectured that(Xt ) is rapidly mixing (i.e.,
achieves total variation distanceε > 0 from the stationary distribution in a number
of steps polynomial inm, r and logε−1) for all matroidsM . Although there is little
evidence in favor of this conjecture, there is at least an interesting class of matroids,
namely the “balanced” matroids, for which rapid mixing was established [7].
The class of balanced matroids includes all regular matroids, and hence graphic
matroids (i.e., ones whose set of bases may be realized as the set of all spanning
trees of a graph).

Fix anye ∈ E. Since there is a natural isomorphism betweenM and the disjoint
union ofM \ e andM/e, the bases-exchange walk is a natural candidate for the
decomposition method. Let�0 (resp.�1) be the set of bases that does not containe

(resp. does containe). Note that�0 is isomorphic toM \ e and�1 is isomorphic
to M/e, enabling us to argue inductively about the two restriction chains.

Rather than define the notion of balanced matroid explicitly here, let us just note
two of the consequences of balance:

1. Contractions and deletions of a balanced matroid are themselves balanced, in
particular,M \ e andM/e are balanced matroids.
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2. The transitions of the bases-exchange walk that cross fromM \ e to M/e

and vice versa support a fractional matching. That is, there is a function
w :�0 × �1 → R that satisfies:

• w(x, y) ≥ 0 for all x, y;
• w(x, y) > 0 entailsP (x, y) > 0;
• ∑

y w(x, y) = π(�1) for all x and
∑

x w(x, y) = π(�0) for all y.

Define a new Markov chain on�, with transition probabilitieŝP , as follows.
Transition probabilities within�0 and �1 are unchanged, so the restriction
chains are also unchanged. Transitions fromx ∈ �0 to y ∈ �1 and vice versa
occur with probabilityP̂ (x, y) = P̂ (y, x) := w(x, y)/(rm). Note that nonzero
transition probabilities in the bases-exchange walk are all 1/(rm) and that the new
Markov chain does not add any transitions to those already available. From these
observations it follows immediately that for any pair of distinct statesx, y, it is the
case that̂P(x, y) ≤ P (x, y). Thus, it is enough to bound the Poincaré constantλ

for the Markov chain with modified transition probabilitieŝP . (This is a trivial
application of the comparison method in [6].)

The key point about̂P is that it uses the fractional matching to spread the
transitions between�0 and�1 evenly. It is easily checked that̂γ = 0 and that
we are in the situation of Corollary 3. The projection chain (derived fromP̂

by projection onto{�0,�1}) has two states{0,1} with π̄(0) = π(�0) and
π̄(1) = π(�1). Its transition probabilities are�P(0,1) = π̄(1)/(rm) and�P(1,0) =
π̄(0)/(rm). A brief calculation establishes̄λ = 1/(rm). [This is directly from the
definition (1) usingf (0) = π̄(1) andf (1) = −π̄(0), a choice that is unique up to
scaling among functions with expectation 0.] By induction, sinceM \ e andM/e

are also balanced,λ = 1/(rm).
Almost the same argument applies to the log-Sobolev constantα. However,

there is a small technicality that arises from the asymmetry of the projection chain.
Specifically, we know only the two sides are balanced to the extent that

1

m
≤ |�1|

|�0| ≤ r.

Unfortunately, while the spectral gap is constant for the asymmetric two-state
Markov chain, this is no longer the case for the log-Sobolev constant. More
precisely, using [5], Theorem A.2, we have that

ᾱ = �

(
1

rm ln(π(�0)−1 + π(�1)−1)

)
,

which worsens the bound by a factor ln(1/(r + m)).
We can recover from this setback by noting thatw(x, y) ≤ min{π(�0),π(�1)}

for all x, y, so that we could have defined̂P by

P̂ (x, y) = P̂ (y, x) = w(x, y)

rmmin{π(�0),π(�1)} .
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This definition boosts the transition probabilities between�0 and�1 when either
π(�0) or π(�1) is small, while leaving all transition probabilities bounded by
1/(rm), as required. This modification tôP more than compensates for the effect
just identified, and indeed the worst case (calculus) is whenπ(�0) = π(�1) = 1

2.
The bottom line is that we achieveα = 1/2(rm).

These bounds were recently obtained [9] using a longer and more complicated
argument tailored to the specific application.

4.6. Hard-core model on trees. We conclude with an example where off-
the-shelf decomposition results do not suffice. In this case, a reasonable bound
on spectral gap may be deduced from Theorem 1. However, the problem
that threatened to arise at the end of the previous example—namely that the
log-Sobolev constant of a highly asymmetric two-state Markov chain may be
arbitrarily close to 0—causes real problems here. Nevertheless, by tailoring our
decomposition to the problem at hand, we obtain a reasonable bound on the
log-Sobolev constant. (Just before the final version of this article was prepared,
Martinelli, Sinclair and Weitz [16] announced substantially better bounds than
those obtained here. They were able to show optimal, i.e.,O(n logn), mixing over
a range of fugacities.)

Let Td denote the tree, rooted atv, of depthd and branching factor�. (Thus,
the degree of any vertex that is not the root or a leaf is� + 1. The degree of the
root v itself is �.) Consider the hard-core lattice gas model defined on the set�

of independent sets ofTd . For a given fugacityλ > 0 (note that in this section
only, λ doesnot refer to spectral gap), we are interested in the Boltzmann–Gibbs
distributionπ defined on�, where

π(σ ) ∝ λ|σ |

and|σ | denotes the cardinality of the independent setσ .
Once again, a simple Markov chain with state space� and stationary

distribution π is the following single-site heat-bath dynamics known as the
Glauber dynamics. For technical reasons we define the chain with respect to a
parameterN ≥ n, wheren denotes the number of vertices inTd .

FromXt ∈ �:

• Choose a vertexz uniformly at random.
• Set

X′ =
{

Xt \ {z}, with probability 1/(1+ λ),

Xt ∪ {z}, with probabilityλ/(1+ λ).

• If X′ ∈ �, setXt+1 = X′ with probabilityn/N ; otherwise, setXt+1 = Xt .

In practice, we setN equal to the numbern of vertices in the tree at the top level of
the inductive argument; the extra parameter eliminates rescalings in the upcoming
analysis.
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We decompose the state space as� = �1 ∪ �2 ∪ �3, where

�1 := {σ ∈ � :v ∈ σ },
�2 := {σ ∈ � \ �1 :σ ∪ {v} ∈ �},
�3 := � \ �1 \ �2.

Also let�4 := �2 ∪ �3.
Without loss of generality, assume Eπ f 2 = 1. Using (25) twice,

Lπ (f ) =
3∑

i=1

π̄(i)Lπi
(f ) +

3∑
i=1

π̄(i)
(
Eπi

f 2) ln
(
Eπi

f 2)
(39)

≤ π̄(1)Lπ1(f ) + π̄(4)Lπ4(f ) +
3∑

i=1

π̄(i)
(
Eπi

f 2) ln
(
Eπi

f 2).
Observe that the restriction chain on�1 with transition probabilitiesP1 (whereN

is constant so that the transition probabilities are identical inP1 andP ) is simply
the product chain of�2 copies of the chain onTd−2. Similarly, the restriction chain
on �4 is the product of� copies of the chain onTd−1. The projection chain also
has a simple structure. In particular, there is a bijectionν :�1 → �2 such that for
y = ν(x) we haveP (x, y) = 1/(1+ λ)N andP (y, x) = λ/(1+ λ)N . This perfect
matchingν captures the only transitions between the sets�1 and�4.

Define a new chain on state space{1,2,3} with stationary distributionπ̄
(i.e., the same as that of the projection chain on{�1,�2,�3}) with transition
probabilitiesP̂ given by

P̂ (1,2) = λ/(1+ λ),

P̂ (2,1) = 1/(1+ λ),

P̂ (2,3) = min{1, π̄(3)/π̄(2)},
P̂ (3,2) = min{1, π̄(2)/π̄(3)},
P̂ (1,3) = P̂ (3,1) = 0.

(The fictional Markov chain̂P is a formal device: We establish and apply a log-
Sobolev inequality for̂P and then relate the various resulting terms to the actual
chain �P .) Let α̂ denote the log-Sobolev constant of this chain. From (39) and the
log-Sobolev inequality for̂P , we now have

Lπ (f ) ≤ π̄(1)

αd−2
Eπ1(f, f ) + π̄(4)

αd−1
Eπ4(f, f )

(40)

+ 1

α̂

∑
i=1,2

π̄(i)P̂ (i, i + 1)
(√

Eπi
f 2 −

√
Eπi+1 f 2 )2

.
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We need to bound the last terms on the right-hand side. Beginning with
i = 1, observe that̂P(1,2) = N �P(1,2). Moreover, the bijectionν implies the
correspondingη = 0, and the following statement holds:

π̄(1)P̂ (1,2)
(√

Eπ1 f 2 −
√

Eπ2 f 2 )2 ≤ NC12.

For i = 2 our bound proceeds as follows, starting with an inequality akin to (31):

π̄(2)P̂ (2,3)
(√

Eπ2 f 2 −
√

Eπ3 f 2 )2

≤ π̄(2)P̂ (2,3)
∑

x∈�2
y∈�3

π2(x)π3(y)
(
f (x) − f (y)

)2

≤ min{π̄(2), π̄(3)}Varπ4(f )

≤ min{π̄(2), π̄(3)}
αd−1

Eπ4(f, f ).

Substituting these estimates into (40), we obtain

Lπ (f ) ≤ π̄(1)

αd−2
Eπ1(f, f ) + π̄(4)

αd−1

(
1+ min{π̄(2), π̄(3)}

π̄(4) α̂

)
Eπ4(f, f ) + NC12

α̂

≤ max
{

1

αd−2
,

(
1+ min{π̄(2), π̄(3)}

π̄(4) α̂

)
1

αd−1
,
N

α̂

}
Eπ (f,f ),

leading to the recurrence

αd ≥ min
{
αd−2,

(
1+ min{π̄(2), π̄(3)}

π̄(4) α̂

)−1

αd−1,
α̂

N

}
.(41)

To boundα̂, we use a result of Diaconis and Saloff-Coste ([5], Theorem A.1) on
the log-Sobolev constant of the chain onK3 (the complete graph on three vertices)
with transition probabilitiesP (i, j) = π̄(j) for all 1 ≤ i, j ≤ 3, that is,

αK3 ≥ 1− 2π̄min

ln(1/π̄min − 1)
≥ 1

3 ln(1/π̄min)
,(42)

where π̄min = min{π̄(1), π̄(2), π̄(3)}. Comparing our three-state chain (with
transition probabilitieŝP ) with K3, we obtain the following claim.

CLAIM 7. The quantities α̂ and αK3 defined above are related by the
inequality α̂ ≥ αK3/2(1+ λ).

PROOF. For succinctness, writēf (i) :=
√

Eπi
f 2. Suppose 0< ξ < 1. Then(

f̄ (1) − f̄ (3)
)2 ≤ [(

f̄ (1) − f̄ (2)
) + (

f̄ (2) − f̄ (3)
)]2

=
[√

ξ
1√
ξ

(
f̄ (1) − f̄ (2)

) + √
1− ξ

1√
1− ξ

(
f̄ (2) − f̄ (3)

)]2

≤ 1

ξ

(
f̄ (1) − f̄ (2)

)2 + 1

1− ξ

(
f̄ (2) − f̄ (3)

)2
,
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where the inequality is Cauchy–Schwarz. Now set

ξ = (π̄(1) + π̄(2))π̄(3)

π̄(1)π̄(2) + 2π̄(1)π̄(3) + π̄(2)π̄(3)
.

Then

π̄(1)π̄(3)
(
f̄ (1) − f̄ (3)

)2

≤
(
π̄(1) + 2π̄(1)π̄(3)

π̄(2)
+ π̄(3)

)

×
[

π̄(1)π̄(2)

π̄(1) + π̄(2)

(
f̄ (1) − f̄ (2)

)2 + π̄(2)π̄(3)

π̄(2) + π̄(3)

(
f̄ (2) − f̄ (3)

)2
]
.

Starting with the log-Sobolev inequality for the Diaconis–Saloff-Coste chain
onK3 and applying the above inequality, we obtain

αK3Lπ̄ (f̄ ) ≤ π̄(1)π̄(2)
(
f̄ (1) − f̄ (2)

)2

+ π̄(1)π̄(3)
(
f̄ (1) − f̄ (3)

)2 + π̄(2)π̄(3)
(
f̄ (2) − f̄ (3)

)2

≤ 2
(

1+ π̄(1)π̄(3)

π̄(2)

)[
π̄(1)π̄(2)

π̄(1) + π̄(2)

(
f̄ (1) − f̄ (2)

)2

+ π̄(2)π̄(3)

π̄(2) + π̄(3)

(
f̄ (2) − f̄ (3)

)2
]

≤ 2
(

1+ π̄(1)π̄(3)

π̄(2)

)
E π̄ (f̄ , f̄ ),

whereE π̄ (f̄ , f̄ ) is the Dirichlet form associated with thêP chain. Hence

α̂ ≥ αK3

2(1+ π̄(1)π̄(3)/π̄(2))
≥ αK3

2(1+ λ)
,

as claimed, where the second inequality uses the fact thatπ̄(1) = λ π̄(2). �

Combined with our earlier estimate (42) forαK3, Claim 7 gives

α̂ ≥ 1

6(1+ λ) ln(1/π̄min)
.

By considering appropriate mappings� → �i , we see that

π̄(1) ≥ λ

(1+ λ)�+1 , π̄(2) ≥ 1

(1+ λ)�+1 , π̄(3) ≥ λ

(1+ λ)�+2 .

[For example, for the first of these, consider the mapping that forcesσ �→ σ ∪{v} \
�(v), where�(v) denotes the set of neighbors ofv.] Thus

1

π̄min
≤ (1+ λ)�+2

min{1, λ} .
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In the other direction, similar arguments yield

π̄(2) ≤ 1

λ
, π̄(3) ≤ (1+ λ)� − 1, π̄(4) ≥ 1

1+ λ
,

so that

min{π̄(2), π̄(3)} ≤ min
{

1

λ
, (1+ λ)� − 1,1

}
.

Combining these various inequalities yields

min{π̄(2), π̄(3)}
π̄(4)α̂

≤ 6 min{π̄(2), π̄(3)} (1+ λ) ln(1/π̄min)

π̄(4)

≤ g�(λ),

where

g�(λ) = 6 min
{

1

λ
, (1+ λ)� − 1,1

}
(1+ λ)2 ln

(
(1+ λ)�+2

min{1, λ}
)
.(43)

Returning to recurrence (41),

1/αd ≤ max
{(

1+ g�(λ)
)
/αd−1, N/α̂

}
,

leading to

α−1 ≤ n
(
1+ g�(λ)

)log� n

= n1+log�(1+g�(λ)).

To make sense of this bound on the log-Sobolev constantα, observe that

g�(λ) = O
(
�λ(1+ | logλ|)).

This estimate can be obtained from (43) by considering separately the ranges
λ < �−1, �−1 ≤ λ < 1 andλ ≥ 1. In particular, we see thatg�(λ) → 0 asλ → 0
for any fixed�. In rough terms, the mixing time tends to be linear as the fugacityλ

tends to 0.
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