
The Annals of Applied Probability
2004, Vol. 14, No. 4, 1698–1740
DOI 10.1214/105051604000000936
© Institute of Mathematical Statistics, 2004

EXPONENTIAL PENALTY FUNCTION CONTROL OF
LOSS NETWORKS

BY GARUD IYENGAR1 AND KARL SIGMAN 2

Columbia University

We introduce penalty-function-based admission control policies to ap-
proximately maximize the expected reward rate in a loss network. These con-
trol policies are easy to implement and perform well both in the transient
period as well as in steady state. A major advantage of the penalty approach
is that it avoids solving the associated dynamic program. However, a disad-
vantage of this approach is that it requires the capacity requested by indi-
vidual requests to be sufficiently small compared to total available capacity.
We first solve a related deterministic linear program (LP) and then translate
an optimal solution of the LP into an admission control policy for the loss
network via an exponential penalty function. We show that the penalty pol-
icy is a target-tracking policy—it performs well because the optimal solution
of the LP is a good target. We demonstrate that the penalty approach can
be extended to track arbitrarily defined target sets. Results from preliminary
simulation studies are included.

1. Introduction. We consider the following dynamic stochastic allocation
problem (details in Section 2). The stochastic system consists of a network of
resources (facilities), each with a known fixed capacity. Requests for using this
network belong to a diverse set of request classes, differing in the arrival rate, the
service duration, the resource requirements and the willingness to pay. There is no
waiting room (queue), therefore an arriving request must be either admitted into
the system for service and assigned an appropriate resource allocation or rejected
(lost) at the instant it arrives. An admitted request occupies the allocated resources
for the service duration and releases all the resources simultaneously. The objective
of the system controller is to design an admission control policy that optimizes
an appropriate performance measure of the revenue generated.

The stochastic model detailed above is known as aloss network. Loss
networks model a wide variety of applications where a diverse user population
shares a limited collection of resources, for example, telephone networks, local
area networks, multiprocessor interconnection architectures, data base structures,
mobile radio and broadband packet networks [see Ott and Krishnan (1992), Hui
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(1990), Kelly (1985), Lagarias, Odlyzko and Zagier (1985), Mitra and Weinberger
(1987) and Mitra, Morrison and Ramakrishnan (1996), for details]. Kelly (1991)
gave an excellent review of results for loss networks. For a discussion of a related
model with loss queues in series, see Ku and Jordan (1997).

A loss network with a single resource is known as astochastic knapsack [Ross
and Tsang (1989b)]. Optimality results have been obtained for several restricted
classes of admissible policies: complete partitioning policies [Ross and Tsang
(1989b)], coordinate convex policies [Foschini and Gopinath (1983), Ross and
Tsang (1989b) and Jordan and Varaiya (1994)] and restricted complete sharing
policy [Gavois and Rosberg (1994)]. Ross and Yao (1990) discussed monotonicity
properties for the stochastic knapsack. See Ross (1995) for a summary of these
results.

When capacity requests and service durations of all the request classes are
identical, the optimal policy for the stochastic knapsack problem has the following
simple form: Accept classi requests if there are at leastδi units of capacity free.
Such a policy is called atrunk reservation policy and the parametersδi are called
trunk reservation parameters. This result was established by Miller (1969) [see
also Lippman and Ross (1971)]. Several approaches to compute (approximately)
optimal trunk reservation parametersδi were discussed by Key (1990), Bean,
Gibbens and Zachary (1995) and Reiman and Schwartz (2001). Trunk reservation
policies are not optimal when the capacity request or service duration is class
dependent [Ross and Tsang (1989a)] nor are they optimal for networks [Key
(1990)]. The asymptotic optimality of trunk reservation policies under a limiting
regime where the arrival rates and capacity increase together, the Halfin–Whitt
regime [Halfin and Whitt (1981)], was established by Hunt and Laws (1993,
1997). For asymptotic optimality results under different limiting regimes, see Kelly
(1991), Hunt and Kurtz (1994) and Key (1994).

The optimal capacity allocation problem has also been extensively studied in
the revenue management literature. For a recent overview, see McGill and van
Ryzin (1999). Unlike the model introduced here, capacity allocation models in the
revenue management literature typically assume that there is a finite time horizon
over which the capacity must be allocated and that capacity once allocated never
becomes available again. Our model is closer to that developed by Savin, Cohen,
Gans and Katalan (2000) in the context of the rental industry.

In all previous works on related stochastic allocation models, the associated
optimization problem is formulated as a dynamic program (DP), and the optimal
policy is the solution of the associated Bellman equation. However, solving
the Bellman equation quickly becomes computationally intractable and is, in
many cases, EXP-complete [Papadimitriou and Tsitsiklis (1999) and Blondel
and Tsitsiklis (2000)]. In practice, therefore, the DP formulation is only used to
characterize certain qualitative structural properties of the optimal policy, which
then form the basis for heuristic approaches for solving the problem. Optimal DP
policies are very sensitive to the time horizon of the problem. Due to end-effects,
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the optimal DP policies that correspond to different time horizons are usually not
compatible. Also, there is no guarantee that steady state optimal policies [e.g.,
the independent thinning policy; Kelly (1991)], will perform well in the transient
period.

In this article, we explore alternative simpler techniques for characterizing
approximately optimal policies. We replace the stochastic optimization problem
by a suitably constructed linear program (LP). The optimal solution of this LP
yields a target point that is translated into an admission control policy using an
exponential penalty function. We show that this policy is approximately optimal
in the limit where individual resource requests are small compared to the total
capacity [Halfin and Whitt (1981)]. Moreover, we show that this penalty policy
performs well in the transient period as well.

Our penalty-based approach builds on several disparate research ideas: con-
vex programming bounds for stochastic problems [Gibbens and Kelly (1995),
Bertsimas, Paschalidis and Tsitsiklis (1994), Bertsimas and Niño Mora (1999a, b)
and Bertsimas and Chryssikou (1999)], asymptotically optimal policies for con-
trol and scheduling problems via “fluid” relaxations [Maglaras (2000), Bertsimas
and Sethuraman (2002) and Bertsimas, Sethuraman and Gamarnik (2003)] and
exponential penalty-based approximation algorithms for linear programming
[Shahronki and Matula (1990), Plotkin, Shmoys and Tardos (1991) and Bienstock
(2002)]. Exponential penalty functions have also proved useful for admission con-
trol and load balancing in an adversarial setting [Aspnes, Azar, Plotkin and Waarts
(1997), Azar, Kalyanasundaram, Plotkin, Pruhs and Waarts (1997) and Kamath,
Palmon and Plotkin (1998)]. Of this, Kamath, Palmon and Plotkin (1998) is the
most relevant to the discussion here.

The summary of our contributions in this article is as follows:

(i) We develop explicit upper bounds for the maximum achievable revenue
rate for any timet ≥ 0. This extends the analysis in Gibbens and Kelly (1995).

(ii) We construct an exponential penalty-based admission control policy that
is provably approximately optimal for all timest ≥ 0 in the Halfin–Whitt limiting
regime [Halfin and Whitt (1981)]. The policy is a simple threshold-type policy in
an expanded state space. Preliminary simulation studies (see Section 3.4) suggest
that the state space expansion is the key to the success of the penalty policy.

(iii) We demonstrate that our approach can be extended to track arbitrary
polyhedral target sets.

The organization of this article is as follows. In Section 2 we formulate the
admission control problem for a loss network. The framework is Markovian, that
is, the arrivals are Poisson and service times are exponentially distributed. In
Section 3 we study the single resource model and its various variants. Section 3.4
contains simulation results for this special case and Section 3.5 extends some of the
results to the case of general service time distributions. In Section 4 we extend the
single-resource results to the network problem. Section 5 presents an extension to
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control problems where the objective is to ensure that the state of the network lies
in a specified target set. Section 6 has some concluding comments and discussion.

2. Admission control in loss networks. The stochastic system under consid-
eration consists of a network ofs resources (facilities) with capacityb ∈ Rs+, where
b(k) ≥ 0 is the capacity of resourcek = 1, . . . , s. Requests for using this network
belong tom independent Poisson arrival classes. Classi requests have an arrival
rateλi and a service durationSi ∼ exp(µi); that is,Si is exponentially distributed
with rateµi (with the exception of Section 3.5). Classi requests are willing to ac-
cept any capacity allocation from the setBi = {bi1, . . . ,bili }, bij ∈ Rs+, and payri
per unit time for the (random) service durationSi . There is no waiting room in the
system; therefore, each arriving classi request must either be accepted and admit-
ted into the system (i.e., assigned an admissible capacity allocationbij ∈ Bi) or
be rejected at the instant it arrives. When an accepted request departs after service
completion, it releases all the allocated resources simultaneously.

We assume that the system is initially empty, that is,x(0−) = 0 (see Remark 1
in Section 3.1 for a discussion on nonzero initial states). Letxij (t) denote the
number of classi requests currently in the system that are assigned to the allo-
cationbij ∈ Bi . Definexi(t) = (xi1(t), . . . , xili (t)) ∈ Zli+ andx(t) = (x1(t), . . . ,

xm(t)) ∈ Zl+, wherel =∑m
i=1 li . A request of classi can be assigned a capacity

allocationbij only if there is sufficient capacity to accommodate it, that is,

m∑
i′=1

li′∑
j ′=1

xi′j ′(t)bi′j ′ + bij ≤ b,(1)

where the inequality is interpreted component by component. The system
controller is permitted to reject requests even if there is sufficient capacity to
accommodate them. The instantaneous reward rateR(t) at timet is given by

R(t) =
m∑

i=1

ri

(
li∑

j=1

xij (t)

)
=

m∑
i=1

ri
(
1T xi(t)

)
.(2)

This stochastic model is called aloss network [Kelly (1991)].
Let T(i, n), i = 1, . . . ,m, n ≥ 1, denote the arrival epoch of thenth classi

request. Since all admission decisions are made at arrival epochs, a feasible
admission control policyπ is described as follows:

(a) A policy π is a collection of random variablesπ = {π(i,n) : i = 1, . . . ,m,

n ≥ 1}, with π(i,n) ∈ {0,1, . . . , li}, whereπ(i,n) = 0 denotes that classi request
arriving at the epochT(i,n) is rejected andπ(i,n) = j (≥ 1) denotes that the request
is assigned tobij ∈ Bi .

(b) The random variableπ(i,n) is measurable with respect to theσ -algebra
generated by the past arrival epochs{T(p,q) :p = 1, . . . ,m, q ≥ 1, T(p,q) ≤ T(i,n)},
the past actions{π(p,q) :p = 1, . . . ,m,q ≥ 1, T(p,q) ≤ T(i,n)} and the state process
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{xπ(t) : t ≤ T(i,n)}, where the notationxπ emphasizes that the state process is itself
a function of past actions.

(c) The state process{xπ(t) : t ≥ 0} does not violate capacity constraints, that
is,
∑m

i=1
∑li

j=1xπ
ij (t)bij ≤ b for all t ≥ 0. (Rejection is the only feasible action

when adequate capacity is not available.)

Let Rπ(t) = ∑m
i=1 ri(1T xπ

i (t)) denote the instantaneous reward rate of the
policy π at time t . The objective of the controller is to choose a feasi-
ble policy π that maximizes some performance measure on the reward rate
process{Rπ(t) : t ≥ 0}. Appropriate performance measures for finite time horizon
problems are either expected total rewardE[∫ T

0 Rπ(s) ds] or expected discounted
rewardE[∫ T

0 e−βsRπ(s) ds], β > 0; for the infinite time horizon problems, the ap-
propriate measures are either expected discounted rewardE[∫∞

0 e−βsRπ(s) ds],
β > 0, or long-run average reward limT →∞ 1

T
E[∫ T

0 Rπ(s) ds].
As mentioned in Section 1, our goal is to construct feasible policies that perform

well both in the transient period as well as in steady state. We first establish an
upper boundR∗(t) on the achievable expected reward rateE[Rπ(t)] and then
construct a feasible policȳπ with expected reward rateE[R̄(t)] ≈ R∗(t). Thus,
the policyπ̄ satisfies

E
[∫ T

0
e−βsRπ(s) ds

]
≤
∫ T

0
e−βsR∗(s) ds ≈ E

[∫ T

0
e−βsR̄(s) ds

]
, β ≥ 0,

that is, the policyπ̄ is approximately optimal for any finite time horizon, and

lim
t→∞

1

T
E
[∫ T

0
Rπ(s) ds

]
≤ lim

T →∞
1

T

∫ T

0
R∗(s) ds ≈ lim

T →∞
1

T
E
[∫ T

0
R̄(s) ds

]
,

that is, the policyπ̄ is approximately optimal in the steady state as well.

3. Single-resource model. This section focuses on the loss network with
s = 1 (i.e., the stochastic knapsack). The details of the single-resource model are
as follows. The system is assumed to be initially empty [i.e.x(0−) = 0]. Requests
belong tom Poisson arrival classes. Request classi has arrival rateλi , capacity
requestbi (without loss of generality, one can assume that the setBi is a singleton),
service durationSi ∼ exp(µi), and reward rateri per unit time. All the requests
arrive at a common resource with capacityb ∈ (0,∞). There is no waiting space
(queue); therefore, each arriving request must either be admitted into service or
rejected at the instant it arrives [see Cosyn and Sigman (2004) and Cosyn (2003)
for extensions to queues]. Requests may be rejected even if there was adequate
capacity available.

Note that if the total capacityb is an integer andbi = 1, 1 ≤ i ≤ m, thenb can
be identified as the number of servers in a standard queuing model. In particular,
if requests are always served when capacity exists, then this is simply anM/M/b

loss queue. Thus, it helps to imagine that each accepted request has its own server.
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In this light, the loss network introduced in Section 2 can be viewed as a collection
of such server models, all working together in parallel.

The layout of this section is as follows. In Section 3.1 we develop an upper
bound on the achievable reward rate. In Section 3.2 we construct an approximately
optimal penalty-based policy. Section 3.3 investigates the penalty policy in the
Halfin–Whitt limiting regime [Halfin and Whitt (1981)]. In Section 3.4 we
simulate the transient behavior of the proposed control policy and compare its
performance to thinning policies introduced by Kelly (1991). Section 3.5 discusses
the extension to general service times.

3.1. Upper bound on the achievable reward rate. Let π denote any feasible
control policy for the single-resource model. Letxπ

i (t) denote the number of the
classi requests in service at timet . Since feasibility implies that

∑m
i=1 bix

π
i (t) ≤ b,

we have
m∑

i=1

biE[xπ
i (t)] ≤ b.(3)

Moreover,E[xπ
i (t)] ≤ E[qi(t)], whereqi(t) is the number of classi requests as

time t in an infinite capacity system with no admission control. Recall that we
assume that the system is initially empty, therefore [see, e.g., page 75 in Wolff
(1989)],E[qi(t)] = ρi(1− exp(−µit)). Hence,

α =
(

1

ρ1
E[xπ

1 (t)], . . . , 1

ρm

E[xπ
m(t)]

)
is feasible for the linear program

maximize
n∑

i=1

riρiαi

(4)
subject to

m∑
i=1

biρiαi ≤ b,

0≤ αi ≤ 1− exp(−µit), i = 1, . . . ,m.

Let α∗(t) denote an optimal solution and letR∗(t) denote the optimal value of (4).
Then

E[Rπ(t)] =
m∑

i=1

riρi

(
1

ρi

E[xπ
i (t)]

)
≤ R∗(t).(5)

In the next section we propose a policy that controls the system by penalizing
deviations from a desired target state. From (4) and (5), it follows that for
a policy π to be approximately optimal, the expected numberE[xπ

i (t)] of
accepted classi requests must be approximatelyx∗

i (t) = α∗
i (t)ρi . Thus,x∗(t) =

(x∗
1(t), . . . , x∗

m(t))T would be the natural target state for the penalty policy.
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Unfortunately we are only able to establish that a penalty policy can successfully
track a fixed target. The natural fixed target isx∗

i = α∗
i ρi , i = 1, . . . ,m, where

α∗ = (α1, . . . , αm)T is an optimal solution of the “steady state” analog of (4):

maximize
n∑

i=1

riρiαi

(6)
subject to

m∑
i=1

biρiαi ≤ b,

0 ≤ αi ≤ 1, i = 1, . . . ,m.

Let R∗ denote the optimal value of (6). Next, we boundR∗(t) in terms of the
steady state quantitiesα∗, R∗ and the problem parameters. Sinceα feasible for (4)
must satisfyαi ≤ 1− e−µit , i = 1, . . . ,m, it follows that

R∗(t) ≤
m∑

i=1

riρi

(
1− exp(−µit)

)
.(7)

The linear programming dual of (4) is

minimize ub +
m∑

i=1

vi

(
1− exp(−µit)

)
(8) subject to vi + biρiu ≥ riρi, i = 1, . . . ,m,

v ≥ 0, u ≥ 0.

Taking the limitt → ∞ in (8) we get the dual of the steady state LP (6):

minimize ub + 1T v

subject to vi + biρiu ≥ riρi, i = 1, . . . ,m,(9)

v ≥ 0, u ≥ 0.

Let (u∗,v∗) denote any optimal solution of (9),U = {i :α∗
i = 1} and Uc =

{i : i /∈ U }. Then it follows that

R∗(t) ≤ u∗b +
m∑

i=1

v∗
i

(
1− exp(−µit)

)
(10)

=
m∑

i=1

riρiα
∗
i −∑

i∈U

v∗
i exp(−µit)(11)

=
m∑

i=1

riρiα
∗
i −∑

i∈U

(riρi − biρiu
∗)α∗

i exp(−µit)(12)
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=
m∑

i=1

riρiα
∗
i

(
1− exp(−µit)

)+ u∗
(

m∑
i=1

biρiα
∗
i exp(−µit)

)
(13)

≤
m∑

i=1

riρiα
∗
i

(
1− exp(−µit)

)+ u∗b exp(−µmint),(14)

where (10) is implied by the fact that(u∗,v∗) is feasible for the dual LP (8);
(11)–(13) all follow from complementary slackness conditions [Luenberger
(1984)]; andµmin = min1≤i≤m{µi}. From (7) and (14) we have the following
result.

THEOREM 1. The reward rate Rπ(t) of any feasible policy π satisfies

E[Rπ(t)] ≤ R∗(t)

≤ min

{
m∑

i=1

riρi

(
1− exp(−µit)

)
,(15)

m∑
i=1

riρiα
∗
i

(
1− exp(−µit)

)+ u∗b exp(−µmint)

}
,

where R∗(t) is the optimal value of the LP (4), α∗ is an optimal solution of the
steady state LP (6) and (u∗,v∗) is an optimal solution of the steady state dual
LP (9).

The first term in the upper bound onR∗(t) is active for t ≤ 1/µmax, where
µmax= max1≤i≤m{µi}, whereas the second is active fort ≥ 1/µmin.

REMARK 1. Although we assume that the system is initially empty, all the
results in this article extend to the case where the initial statex(0−) 
= 0. For
example, whenx(0−) = x0 
= 0, the bound analogous to (15) is given by

R∗(t) ≤ min

{
m∑

i=1

riρi

(
1− exp(−µit)

)+ m∑
i=1

rix
0
i exp(−µit),

m∑
i=1

riρiα
∗
i

(
1− exp(−µit)

)+ u∗b exp(−µmint)

+
m∑

i=1

v∗
i x0

i

ρi

exp(−µit)

}
.

The results in this section bear close resemblance to the notion of fluid operating
points introduced by Harrison (2003). However, unlike the development here,
Harrison employed the fluid model only to define a nominal operating point—the
control policy is designed using a heavy-traffic limit associated with this operating
point.
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3.2. Exponential penalty function and penalty control policy. Kelly (1991)
established that, under fairly general conditions, an independent thinning policy
that accepts each incoming classi request with probabilityα∗

i , provided there
is enough capacity, approximately optimizes the expected reward rate in steady
state. However, for smallt , thinning underutilizes the capacity and, therefore, the
expected reward rate of the thinning policy is significantly smaller than the upper
bound (7). Moreover, since thinning only changes the effective arrival rate, it is not
able to effectively control the variance of the reward rate. Our goal is to construct a
policy that does not suffer from these drawbacks. We will first informally motivate
the structure of the policy and then establish its properties rigorously.

Consider the following modification to the original system. Suppose each
rejected classi request, instead of immediately leaving the system, is assigned
to an alternate infinite capacity server where it lives out its service time and then
leaves. [In practice, each time a request is rejected the policy will add one request
to the alternate server with a service timeSi ∼ exp(µi).]

From the analysis leading to the LP (4), it follows that for the expected reward
rateE[R(t)] to be close to the bound (15), one requiresE[xi(t)] ≈ x∗

i (t) = αi(t)ρi ,
i = 1, . . . ,m. Let yi(t) denote the number of classi requests in the alternate
server at timet . Then E[xi(t)] + E[yi(t)] = E[qi(t)] = ρi(1 − exp(−µit)).
Thus, an equivalent condition for optimality is thatE[yi(t)] ≈ y∗

i (t) = ρi(1 −
exp(−µit) − αi(t)). Let �i(xi, yi) be a penalty function that penalizes deviations
from the desired target state(x∗

i (t), y∗
i (t)). Since keeping(xi, yi) ≈ (x∗

i (t), y∗
i (t))

is equivalent to minimizing the penalty function, a control policy that accepts
a request, provided there is adequate capacity and�i(xi + 1, yi) ≤ �i(xi, yi + 1),
may be close to optimal. Such a policy can be thought of as iteratively solving the
nonlinear optimization problem minx,y �i(x, y) with the added restriction that it
can take a step only when there is an arrival and the step length is restricted to 1.
Moreover, periodically the state(xi, yi) gets perturbed in a uncontrollable manner
by requests leaving the system. From related results in the nonlinear optimization
literature [see, e.g., Luenberger (1984)], it follows that such a penalty-based
control policy is likely to be successful provided the gradient of the penalty�i

is sufficiently “large” around the target state(x∗
i , y∗

i ), the step length of 1 is a
“small” step in an appropriately defined norm and the frequency of correcting
steps is sufficiently higher than the frequency of the perturbing steps (i.e.,ρi =
λi/µi � 1). The relationship of penalty function and nonlinear optimization is
further discussed in Section 6.

In this article, we use a penalty function of the form

�i(xi, yi) = exp
(
β

xi(t)

x∗
i (t)

)
+ exp

(
β

yi(t)

y∗
i (t)

)
.

This choice is motivated by the fact that the exponential function is an eigenfunc-
tion of the underlying Markov process and that, for this choice, moment generating
functions can be used to characterize the behavior of the penalty policy. Note that
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although the penalty method can be formulated without any reference to the re-
jected requestsyi , the form that we propose does not permit us to do so. In our
penalty function we needyi to ensure that the number of accepted requestsxi does
not drop too low. In the rest of this section, we rigorously establish these informal
ideas.

Since we are interested in approximating the upper bound (15), we drop from
consideration all those classes withα∗

i = 0. As proposed above, we add a fictitious
infinite capacity system. We will refer to the original system as system 0 and the
fictitious system as system 1. The state of the augmented network at timet is
s(t) = (x(t),y(t)) ∈ Z2m+ . The state vectorx(t) = (xi(t), . . . , xm(t)), wherexi(t) is
the number of classi requests in system 0 at timet , describes the state of system 0.
Similarly, y(t) = (y1(t), . . . , ym(t)) describes the state of the fictitious system 1 at
time t .

The states = (x,y) is assigned a penalty�(s) given by

�(s) =∑
i=1

[
exp
(
β · bixi

c0
i

)
+ exp

(
β · biyi

c1
i

)]
︸ ︷︷ ︸

�i(si )

,(16)

where(c0, c1) ∈ R2m+ andsi = (xi, yi) denotes the components ofs that correspond
to classi. There are two competing requirements on the multiplierβ: we needβ to
be large to ensure that the penalty function�(s) is sufficiently steep; on the other
hand, we also have to ensure that the impact of a single arrival or departure on the
penalty value is sufficiently small. The precise bound onβ is given by (22). The
capacities(c0, c1) determine the “steady-state” target state of the penalty policy. As
mentioned previously, we choose a fixed target because we are unable to establish
that penalty policies can track time-varying targets. The transient performance is
controlled by suitably initializing the fictitious system 1.

The penalty policyπ̄ is defined as follows. Let{s̄(t) = (x̄(t), ȳ(t)) : t ≥ 0}
denote the state process under the controlπ̄ . At time t = 0−, the state of the
original systemx(0−) = 0, the state of the fictitious infinite capacity system 1
is initialized to ȳ(0−) [the precise value of̄y(0−) is specified later] and a service
time Si ∼ exp(µi) is generated for each of thēyi(0−) classi requests in system 1,
i = 1, . . . ,m.

At time t ≥ 0, an arriving classi request is accepted by the control policyπ̄
(i.e., routed to system 0) provided

∂�i(s̄i(t))

∂xi

≤ ∂�i(s̄i(t))

∂yi

(17)

and the capacity constraint on system 0 is not violated, that is,

m∑
i′=1

bi′ x̄i′(t) + bi ≤ b;(18)
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otherwise it is rejected (i.e., routed to system 1) and the policyπ̄ attaches to it
a service timeSi ∼ exp(µi) independent of everything else. Since the admission
condition (17) is equivalent to

x̄i (t)

c0
i

≤ ȳi (t)

c1
i

+ 1

βbi

log
(

c0
i

c1
i

)
,(19)

it is clear that the policȳπ is a threshold-type policy in the expanded state space
s = (x,y) ∈ Z2m+ .

The capacities(c0, c1), the parameterβ and the initial statēy(0−) are defined in
terms of a perturbation parameterε ∈ (0, 1

4). Define anε-perturbation of the steady
state LP (6) as

maximize
m∑

i=1

riρiαi

(20)
subject to

m∑
i=1

biρiαi ≤ b

1+ 4ε
,

0 ≤ αi ≤ 1, i = 1, . . . ,m.

Let αε denote an optimal solution of this perturbed LP (20). Then the capacities
(c0, c1) are given by

c0
i = (1+ 4ε)αε

i biρi, c1
i = (1+ 4ε)(1− αε

i )biρi, i = 1, . . . ,m,(21)

andβ must satisfy

β ≤ ε min
{

min{i : 1≤i≤m}

{
c0
i

bi

}
, min{i : i∈Uc

ε }

{
c1
i

bi

}}
(22)

= ε(1+ 4ε)min
{

min{i : 1≤i≤m}{α
ε
i ρi}, min{i : i∈Uc

ε }{(1− αε
i )ρi}

}
,(23)

whereUc
ε = {i :αε

i < 1, i = 1, . . . ,m}. The bound (22) formalizes the notion that
the change in the penalty value associated with a single arrival or departure must
be small [the bounds (22) and (23) are identical]. Since parameterβ must be
sufficiently large for the penalty policy to perform well, the bound (23) implies that
penalty policy is likely to perform well when the incoming loadρi � 1. Although
the request sizesbi are not explicitly present, the bounds (22) and (23) impose an
implicit upper bound on thebi ’s via the capacity constraint

∑
i biρiαi ≤ b.

We establish a lower bound on the expected reward rateE[R̄(t)] of the policy
π̄ by comparing it to a related infeasible policyπ̃ . The policyπ̃ is identical toπ̄
except that it does not respect the system 0 capacity constraints; that is, the policy
π̃ routes an incoming classi request to system 0 whenever

∂�i(s̃i(t))

∂xi

≤ ∂�i(s̃i(t))

∂yi

,(24)
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where {s̃(t) = (x̃(t), ỹ(t)) : t ≥ 0} denotes the state process that corresponds to
the policyπ̃ . Since the various request classes interact only through the capacity
constraints, the policỹπ controls each class independently.

We establish a bound on the total derivative(d/dt)E[�(s̃(t))], which implies
that if the initial stateỹ(0−) is suitably chosen, the penaltyE[�(s̃(t))] is
a uniformly bounded function of time.

LEMMA 1. Suppose ε < 1
4, (c0, c1) are given by (21) and β satisfies (22).

Then, for all i = 1, . . . ,m and t ≥ 0,

d

dt
E
[
�i

(
s̃i(t)

)]≤ (1− ε)µi

(
2e(1−ε/2)β − E

[
�i

(
s̃i(t)

)])
.

PROOF. Fix a request classi. DefineEt [�i(s̃i(u))] = E[�i(s̃i(u)) | Ft ], u ≥ t ,
whereFt is the filtration generated by events up tot . Then

d

dt
Et

[
�i

(
s̃(t)

)]= A�i

(
s̃(t)

)
,

whereA is the generator of the stochastic process{s̃(t) : t ≥ 0}. Let π̃i(t) denote
the routing decision of the policỹπ at timet , that is,

π̃i(t) =

1,

∂�i

∂xi

≤ ∂�i

∂yi

,

0, otherwise.

Then

A�i

(
s̃(t)

)= λi

[(
�i

(
x̃i + π̃i(t), ỹi

)− �i(x̃i, ỹi)
)

+ (�i

(
x̃i , ỹi + (1− π̃i(t)

))− �i(x̃i , ỹi)
)]

+ µi

[
xi

(
�i(x̃i − 1, ỹi) − �i(x̃i, ỹi)

)
+ yi

(
�i(x̃i , ỹi − 1) − �i(x̃i , ỹi)

)]
,

where we have suppressed the time dependence of(x̃i , ỹi). From the Taylor series
expansion, it follows thatex ≤ 1+ x + x2 for all |x| ≤ 1 and from the bound (22)
we have that max{βbi/c

0
i , βbi/c

1
i } ≤ ε. Therefore,

A�i

(
s̃(t)

) ≤ (1+ ε)µi

(
∂�i

∂xi

· π̃i(t)ρi + ∂�i

∂yi

· (1− π̃i(t)
)
ρi

)

− (1− ε)µi

(
∂�i

∂xi

· x̃i(t) + ∂�i

∂yi

· ỹi (t)

)
.

Sinceπ̃i(t) minimizes the increase in penalty, it follows that

∂�i

∂xi

· π̃i(t)ρi + ∂�i

∂yi

· (1− π̃i(t)
)
ρi ≤ ∂�i

∂xi

· xε
i + ∂�i

∂yi

· yε
i
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for anyxε
i + yε

i = ρi , xε
i , y

ε
i ≥ 0. In particular, choose

xε
i = αε

i ρi, yε
i = (1− αε

i )ρi .(25)

Then, we have

A�i

(
s̃(t)

) ≤ (1+ ε)µi

(
∂�i

∂xi

· xε
i + ∂�i

∂yi

· yε
i

)

− (1− ε)µi

(
∂�i

∂xi

· x̃i(t) + ∂�i

∂yi

· ỹi(t)

)

= (1− ε)µi

[
∂�i

∂xi

(
(1+ ε)

(1− ε)
xε
i − x̃i(t)

)
+ ∂�i

∂yi

(
(1+ ε)

(1− ε)
yε
i − ỹi(t)

)]

≤ (1− ε)µi

[
�i

(
(1+ ε)

(1− ε)
sε
i

)
− �i(s̃)

]
(26)

≤ (1− ε)µi

[
�i

(
(1+ 3ε)sε

i

)− �i(s̃)
]
,(27)

where (26) follows from the convexity of�i and (27) holds because1+ε
1−ε

≤ 1+ 3ε

for all ε < 1
4. From (21) and (25), it follows that(1+3ε)max{bix

ε
i /c

0
i , biy

ε
i /ci} =

1+3ε
1+4ε

≤ 1− ε
2. Consequently,

d

dt
Et

[
�i

(
s̃i(t)

)]≤ (1− ε)µi

[
2e(1−ε/2)β − �i

(
s̃(t)

)]
.

The result can now be concluded from the Lebesgue bounded convergence
theorem by recognizing that for all sufficiently closes ≥ t , (Et [�i(s̃i (s))] −
�i(s̃i(t)))/(s − t) can be bounded above by a fixed random variable.�

LEMMA 2. Suppose ε < 1
4, (c0, c1) are given by (21), β satisfies (22) and

the initial state s̃i(0−) = (0, ỹ(0−)) satisfies �i(s̃i (0−)) ≤ 2 exp((1 − ε/2)β),
i = 1, . . . ,m. Then, for all i = 1, . . . ,m and t ≥ 0,

E
[
�i

(
s̃i(t)

)]≤ 2e(1−ε/2)β.(28)

PROOF. Fix a request classi. Suppose the conclusion does not hold. Define
fi(t) = E[�i(s̃i (t))] andf ∗ = 2 exp((1 − ε/2)β). Then Lemma 1 implies that
df (t)
dt

≤ (1− ε)µi(f
∗ − fi(t)).

Let τ be any time instant whenf (τ ) > f ∗. Sincef (t) is a continuous function
of t andf (0−) ≤ f ∗, there existss < τ such thatf (s) = f ∗ andf (t) ≥ f ∗ for all
s ≤ t ≤ τ . By construction,f (τ ) > f ∗ = f (s), but by the fundamental theorem of
calculus, we have

f (τ ) − f (s) =
∫ τ

s

df (u)

du
du ≤

∫ τ

s
(1− ε)µi

(
f ∗ − f (u)

)
du ≤ 0,

a contradiction. �
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The bound (28) implies the following results.

LEMMA 3. Suppose ε < 1
4, (c0, c1) are given by (21) and β satisfies (22).

(i) Let w̃(t) = ∑m
i=1 bi x̃i(t) and suppose �i(s̃i (0−)) ≤ 2 exp((1 − ε/2)β),

i = 1, . . . ,m. Then

E
[(

w̃(t) − b
)+]≤ (1+ 4ε) · 2e−εβ/2

β
· b.(29)

(ii) Suppose ỹi (0−) = (1− αε
i )ρi , i = 1, . . . ,m. Then the reward rate R̃(t) of

the policy π̃ satisfies

E[R̃(t)] ≥
m∑

i=1

αε
i riρi(1− e−µit ) − ζ

m∑
i=1

(1− αε
i )riρi,(30)

where αε is an optimal solution of the perturbed LP (20) and

ζ =
(

log(2)

β
+ 1− ε

2

)
(1+ 4ε) − 1.

PROOF. Let Vt = {w̃(t) =∑m
i=1 bix̃i(t) > b}. Then

exp
(

β

b
· E
[(

w̃(t) − b
)+]) ≤ E

[
exp
(

β

b

(
w̃(t) − b

)+)](31)

= P(V c
t ) + E

[
exp
(

β

b
· (w̃(t) − b

));Vt

]

≤ 1+ E
[
exp
(

β

b
· (w̃(t) − b

))]

= 1+ e−β
∏

1≤i≤m

E
[
exp
(
β · bix̃i(t)

b

)]
,(32)

where (31) follows from Jensen’s inequality. Moreover,

E
[
exp
(
β · bix̃i(t)

b

)]
= E

[(
exp
(
β · bixi(t)

c0
i

))c0
i /b
]

≤
(

E
[
exp
(
β · bix̃i(t)

c0
i

)])c0
i /b

(33)

≤ [
�i

(
s̃i(t)

)]c0
i /b(34)

≤ (
2e(1−ε/2)β

)c0
i /b,(35)
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where (33) follows from Jensen’s inequality applied to the concave function
xa , a ≤ 1; (34) holds becausexa is monotonically increasing fora > 0 and
(35) follows from (28). From (32) and (35), we have

exp
(

β

b
· E
[(

w̃(t) − b
)+])≤ 1+ e−β

∏
1≤i≤m

(
2e(1−ε/2)β

)c0
i /b

≤ 1+ e−β(2e(1−ε/2)β)(36)

≤ 1+ 2e−(ε/2)β,

where (36) follows from the bound
∑m

i=1 c0
i = (1 + 4ε)

∑m
i=1 biρiα

ε
i ≤

(1+ 4ε)( b
1+4ε

) = b. Part (i) follows by taking logarithms.
A similar argument establishes that

exp
(
β · biE[ỹ(t)]

c1
i

)
≤ E

[
eβ(biỹ(t))/c1

i
]≤ 2e(1−ε/2)β.

Therefore,

E[ỹ(t)] ≤
(

log(2)

β
+ 1− ε

2

)
c1
i

bi

≤ (1+ ζ )(1− αε
i )ρi,(37)

where

ζ =
(

log(2)

β
+ 1− ε

2

)
(1+ 4ε) − 1.

Let qi(t) denote the number of classi requests at timet in an infinite capacity
system with no admission control and letỹ0

i (t) denote the number of requests
surviving from theỹi(0−) classi requests initially loaded into system 1. Then
conservation implies

qi(t) + ỹ0
i (t)

d= x̃i (t) + ỹi (t),(38)

where d= denotes equality in distribution. [Note that the surviving requestsỹ0
i (t)

are also counted as part ofỹi (t).] Suppose the initial load̃yi(0−) = (1 − αε
i )ρi ,

i = 1, . . . ,m. Then

bi ỹi(0−)

ci

= 1

1+ 4ε
≤ 1− ε

2
∀ i = 1, . . . ,m;

that is, the hypothesis of Lemma 2 holds for alli = 1, . . . ,m. Therefore, (37) and
(38) imply that

E[x̃i(t)]
≥ ρi

(
1− exp(−µi(t))

)+ (1− αε
i )exp(−µit) − (1+ ζ )(1− αε

i )ρi(39)

= αε
i ρi

(
1− exp(−µit)

)− ζ(1− αε
i )ρi .
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Thus,

E[R̃(t)] =
m∑

i=1

riE[x̃i(t)] ≥
m∑

i=1

αε
i riρi

(
1− exp(−µit)

)− ζ

m∑
i=1

(1− αε
i )riρi.(40)

�

Lemma 3 establishes that ifβ � 1 is admissible, the policỹπ does not
significantly violate the capacity constraint and the associated reward rateE[R̃(t)]
is close to the upper bound (15). The following result establishes that, on average,
the policyπ̃ admits more requests thanπ̄ .

LEMMA 4. Fix ε, β, (c0, c1) and the initial state ỹ(0−) = ȳ(0−). Let π̃ and π̄
be the policies that correspond to these parameters. Then

x̄i(t)
d≤ x̃i(t), ỹi(t)

d≤ ȳi(t), i = 1, . . . ,m,

where X
d≤ Y denotes that, for all u ≥ 0, we have P(X ≥ u) ≤ P(Y ≥ u).

PROOF. The result is established by a coupling argument that employs another
infeasible policyπ̂ as a comparison policy.

The policiesπ̃ , π̄ and π̂ act on the same labeled Poisson arrival streams. Let
the kth classi arrival be labeled(i, k). Let X̄i(t) [resp.X̂i(t)] denote the set of
labels of all classi requests routed to system 0 by policyπ̄ (resp.π̂ ) and still in
service at timet .

The routing decision of the comparison policyπ̂ is identical to that of the
policy π̃ unless policyπ̃ routes to system 1 (i.e., rejects) but policyπ̄ routes the
arrival to system 0 (i.e., accepts). Lett be any time instant when this event occurs
and suppose the arriving request has the label(i, k). Since the policyπ̂ does not
face any capacity constraints, it must be thatx̂i(t

−) > x̄i(t
−), that is, there exists a

request with label(i, l) ∈ X̂i(t)\X̄i (t). The policyπ̂ admits the incoming request
(i, k) into system 0 by relabeling it(i, l) and moves the job previously labeled
(i, l) to systemi and relabels it(i, k). Clearly the policyπ̂ is infeasible since the
requests once routed to system 0 cannot be removed.

From the definition of the policŷπ it is clear that̂xi(t) ≥ x̄i (t) andŷi(t) ≤ ȳi(t).
Notice that every time the policŷπ removes a request before completion, the
remaining service duration is exp(µi), that is, the service duration of the request
that replaces the removed request is, in distribution, identical to the remaining
service duration. Therefore, the performance of the policyπ̂ is, in distribution,
identical to the policyπ̃ . Thus, for allu ≥ 0, we have

P
(
x̃i(t) ≥ u

)= P
(
x̂i(t) ≥ u

)≥ P
(
x̄i(t) ≥ u

)
,

P
(
ỹi(t) ≥ u

)= P
(
ŷi(t) ≥ u

)≤ P
(
ȳi(t) ≥ u

)
. �
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Let ξi(t) [resp. ηi(t)] denote the number of classi requests in system 1 at
time t that were rejected by the penalty function (resp. the capacity constraint).
The expected valueE[ξi(t)] is bounded as follows.

E[ξi(t)] =
∫ t

0
λiP

(
∂�i(s̄i(u))

∂xi

>
∂�i(s̄i(u))

∂yi

)
e−µ(t−u) du

=
∫ t

0
λiP

(
x̄i (u)

c0
i

− ȳi(u)

c1
i

>
1

βbi

log
(

c0
i

c1
i

))
e−λ(t−u) du

≤
∫ t

0
λiP

(
x̃i (u)

c0
i

− ỹi(u)

c1
i

>
1

βbi

log
(

c0
i

c1
i

))
e−λ(t−u) du(41)

=
∫ t

0
λiP

(
∂�i(s̃i(u))

∂xi

>
∂�i(s̃i(u))

∂yi

)
e−µ(t−u) du

= E[ỹi (t)],(42)

where (41) follows from(x̄i(u))/c0
i − (ȳi(u))/c1

i

d≤ (x̃i(u))/c0
i − (ỹi(u))/c1

i .
The expected valueE[ηi(t)] is bounded as follows:

E[ηi(t)] ≤
∫ t

0
λiP

(
m∑

i=1

x̄i (u) ≥ b − bi

)
e−µ(t−u) du

≤
∫ t

0
λiP

(
m∑

i=1

x̃i (u) ≥ b − bi

)
e−µ(t−u) du(43)

≤ e−β(1−bi/b)
∫ t

0
λiE

[
e(β/b)x̃(u)

]
exp
(−µi(t − u)

)
du

≤ 2e−β(1−bi/b)eβ(1−ε/2)
∫ t

0
λi exp

(−µi(t − u)
)
du(44)

≤ 2ρie
−ε/2(β−4)

(
1− exp(−µit)

)
,(45)

where (43) follows from Lemma 4, (44) follows from an argument similar to that
in the proof of part (i) of Lemma 3 and (45) follows from the bound onbi implied
by (23). From (42) and (45) it follows that

E[x̄i (t)] = E[qi(t)] + E[y0,i(t)] − E[ȳi(t)]
= E[qi(t)] + E[y0,i(t)] − (E[ξi(t)] + E[ηi(t)])
≥ E[qi(t)] + E[y0,i(t)] − E[ỹi(t)] − 2ρie

−ε/2(β−4)
(
1− exp(−µit)

)
(46)

= E[x̃i (t)] − 2ρie
−ε/2(β−4)

(
1− exp(−µit)

)
≥ αε

i ρi

(
1− exp(−µit)

)− ζ(1− αε
i ) − 2ρie

−ε/2(β−4)
(
1− exp(−µit)

)
,
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where (46) follows from the bound (39) andζ = (
log(2)

β
+ 1 − ε

2)(1 + 4ε) − 1.
Thus, we have the following result.

THEOREM 2. Suppose ε < 1
4, (c0, c1) are given by (21), β satisfies (22) and

the initial state s̄(0−) = (0, ȳ(0−)), with ȳi (0−) = (1− αε
i )ρi , i = 1, . . . ,m. Then

the reward rate R̄(t) of the penalty policy π̄ satisfies

E[R̄(t)] ≥ max

{
m∑

i=1

αε
i riρi

(
1− exp(−µit)

)− ζ

m∑
i=1

(1− αε
i )riρi

(47)

− 2e−ε/2(β−4)
m∑

i=1

riρi

(
1− exp(−µit)

)
,0

}
,

where αε is an optimal solution of the perturbed LP (20) and

ζ =
(

log(2)

β
+ 1− ε

2

)
(1+ 4ε) − 1.

Let L(t) denote the lower bound in (47). Then (15) and (47) imply that

limt→∞ L(t)

R∗
(48)

≥
∑m

i=1 αε
i riρi − ζ

∑m
i=1(1− αε

i )riρi − 2e−ε/2(β−4)
∑m

i=1 riρi

R∗ .

Recall that(u∗,v∗) denotes an optimal solution of dual LP (9). From the duality
theory for LPs it follows that(u∗,v∗) is optimal for the dual of the perturbed
LP (20) for all sufficiently smallε [Luenberger (1984)], that is,

ε0 = max{ε : (u∗,v∗) is optimal for the dual of (20)} > 0.(49)

Thus, for allε ≤ ε0,
m∑

i=1

αε
i riρi =

m∑
i=1

v∗
i + u∗b

1+ 4ε
(50)

=
(

m∑
i=1

v∗
i + u∗b

)
− 4ε

1+ 4ε
(u∗b) ≥ (1− 4ε)R∗.

Sinceζ ≤ 8ε + 2 log(2)
β

, (48) and (50) imply the following.

COROLLARY 1. Suppose ε < min{ε0,
1
4}, where ε0 is given by (49),

(c0, c1) are given by (21),β satisfies (22) and ȳi(0−) = (1 − αε
i )ρi , i = 1, . . . ,m.

Then L̄ = limt→∞ L(t) satisfies

L̄

R∗ ≥ 1− 12ε − 2 log(2)

β
−
(

2eε/2(β−4) + 8ε + 2 log(2)

β

)∑m
i=1 riρi

R∗ .(51)
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The term
∑m

i=1 riρi in (51) would appear, at first glance, to be large. However,
recall that we had dropped from consideration all classes withα∗

i = 0; therefore,∑m
i=1 riρi = ∑

{i : α∗
i >0} riρi , that is, the total incoming revenue rate of only the

admitted classes.
Sinceε andβ cannot be chosen independently, the lower bound (51) implies

that for every given loadρ there is an optimalε∗(ρ) and a corresponding optimal
lower boundL̄∗(ρ). The boundL̄∗(ρ)/R∗ → 1 asρ ↑ ∞, that is, the penalty
policy is optimal in the Halfin–Whitt limiting regime. This limiting result is further
discussed in Section 3.3.

Next, we numerically compare the transient performance of the penalty policyπ̄
with the upper bound (15) for a three-class admission control problem defined by

λ =

40

80
60


, µ =


0.5

2.0
0.3


,

(52)

r =

1.00

0.25
0.75


, b =


0.10

0.15
0.55


, b = 100.

The optimal solution of the corresponding steady state LP (6) isα∗ = [1,1,

0.7818]T and the optimal steady state rewardR∗ = 207.2727. The approximation
parameterε was chosen by settingβ equal to the upper bound (23) and optimizing
the bound (51) as a function ofε. The row marked Scaleη = 1 in Table 1 displays
the optimalε, and the steady state and transient error of the optimized penalty
policy. Since the lower boundL(t) = 0 for all sufficiently smallt [i.e., error
1 − ((L(t))/(R∗(t))) is 100%], we defined transient error= max{(L(t))/R∗ : t ≥
0.1/µmin}.

TABLE 1
Comparison of bounds

Error (%)

Scale η Optimal ε Steady state Transient

1 0.2500 51.3195 88.6202
2 0.2500 21.8708 61.7278
4 0.1838 17.1644 48.7918
8 0.1422 12.7112 39.3613

16 0.1100 9.3599 32.2373
32 0.0851 6.8943 26.9023
64 0.0659 5.1143 22.9311

128 0.0437 4.0341 19.2897
256 0.0338 2.8049 17.0118
512 0.0236 2.1991 15.2632

1024 0.0183 1.4909 14.1900
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These numerical computations were repeated for the scaled admission control
problem defined byλ(k) = kλ, r(k) = 1

k
r andb(k) = 1

k
b. The corresponding results

are shown in the row marked Scaleη = k in Table 1.
From the numerical results, it is clear that as the loadρ ↑ ∞, both the steady

state and the transient error improve. Although the steady state error appears to
converge to zero, the transient error appears to level off at approximately 15%.
We believe that this is a consequence of the fact that the “target”(c0, c1) is fixed
instead of time-varying.

Regressing the scaleη on the steady state errorL̄, we obtain that

η = 4157.1L̄−2.1101.(53)

This power law paints quite a dismal picture: for steady state performance within
1% of the upper bound, the loadρ = O(104). Thus, the lower bound (51) suggests
that the penalty policy is impractical for all but a small fraction of admission
control applications. Fortunately, simulations (see Section 3.4) reassure us that the
lower bound is quite weak and, in fact, the performance of the penalty is close to
the upper bound even for moderate loads.

The numerical comparison of the bounds for a specific example is certainly
not as conclusive and convincing as an analytical comparison. Nevertheless, we
believe that the insights derived from this simple example would survive analytical
scrutiny.

3.3. Limiting regimes. In this section, we investigate the performance of the
policy π̄ in the Halfin–Whitt limiting regime [Halfin and Whitt (1981)]. The
regime of interest here is defined in terms of a scale parametern and the limiting
regime is obtained asn ↑ ∞. In thenth system,

system capacity b(n) = b,

classi arrival rate λ
(n)
i = nλi, i = 1, . . . ,m,

classi service rate µ
(n)
i = µi, i = 1, . . . ,m,(54)

request size b
(n)
i = bi

n
, i = 1, . . . ,m,

reward rate r
(n)
i = ri

n
, i = 1, . . . ,m.

Note that the service ratesµ(n)
i remain constant, that is, the system exhibits

transient behavior even in the limit. In the regime defined by (54) the incoming
workload b

(n)
i ρ

(n)
i and the total reward rater(n)

i ρ
(n)
i of each request class

i = 1, . . . ,m are independent of the scale parametern, whereas the individual
request sizeb(n)

i and reward rater(n)
i scales down. An equivalent regime is one

in which the request size remains constant but the system capacityb(n) scales up.
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While it is plausible that appropriately thinning the incoming requests is a
steady state optimal policy in the limit [Kelly (1991)], it is unlikely that thinning
will perform well in the transient period. We show that the penalty policyπ̄ is able
to control transient behavior without sacrificing steady state performance.

We will need some notation and preliminary results to enable us to state the
main result of this section. Letπ (n) be any feasible policy for thenth system.
Sinceb

(n)
i ρ

(n)
i = biρi , for all i = 1, . . . ,m, the upper bound in (15) is still valid,

that is,

E
[
Rπ(n)

(t)
]≤ min

{
m∑

i=1

riρi

(
1− exp(−µit)

)
,

(55)
m∑

i=1

riρiα
∗
i

(
1− exp(−µit)

)+ u∗b exp(−µmint)

}
.

Duality theory for LP [Luenberger (1984)] guarantees that
m∑

i=1

αε
i riρi

(
1− exp(−µit)

)≥ m∑
i=1

α∗
i riρi

(
1− exp(−µit)

)− O(ε)(56)

for all ε ≤ ε0, whereε0 is given by (49). Fixε < min{ε0,
1
4}. Set(c0, c1) using (21),

set

β = 2

ε
log
(

2

ε

)
+ 4

and set

yi(0
−) = (1− αε

i )ρi, i = 1, . . . ,m.

Define

n0(ε) = min
{
n ≥ 1 :β = 2

ε
log
(

2

ε

)
+ 4 satisfies(23)

}
.(57)

Then, for alln ≥ n0(ε), the bounds (56) and (47) imply that

L(t) ≥
m∑

i=1

riρiα
∗
i (1− e−µit ) − O(ε).(58)

Let s̄(n)(t) = (x̄(n)(t), ȳ(n)(t)) denote the state process and letR̄(n)(t) denote the
reward rate that corresponds toπ̄ in thenth system. Then

x̄
(n)
i (t) = x̄(n)(0−)

+ Ax
i

(∫ t

0
ν

(n)
x,i

(
1

n
s̄(n)(s)

)
ds

)
− Dx

i

(∫ t

0
κ

(n)
x,i

(
1

n
s̄(n)(s)

)
ds

)
,

(59)
ȳ

(n)
i (t) = ȳ(n)(0−)

+ A
y
i

(∫ t

0
ν

(n)
y,i

(
1

n
s̄(n)(s)

)
ds

)
− D

y
i

(∫ t

0
κ

(n)
y,i

(
1

n
s̄(n)(s)

)
ds

)
,
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where{(Ax
i ,A

y
i ,D

x
i ,D

y
i ) : 1= 1, . . . ,m} are independent rate 1 Poisson processes,

the departure rates(κ(n)
x,i (·), κ(n)

y,i (·)), i = 1, . . . ,m, are given by

κ
(n)
x,i (s) = nµixi,

(60)
κ

(n)
y,i (s) = nµiyi

and the arrival rates(ν(n)
x,i (·), ν(n)

y,i (·)), i = 1, . . . ,m, are given by

ν
(n)
x,i (s) =


nλi,

∂�i

∂xi

≤ ∂�i

∂yi

and
m∑

j=1

bjxj (t) + 1

n
bi ≤ b,

0, otherwise,
(61)

ν
(n)
y,i (s) =




nλi,
∂�i

∂xi

>
∂�i

∂yi

or

∂�i

∂xi

≤ ∂�i

∂yi

and
m∑

j=1

bjxj (t) + 1

n
bi > b,

0, otherwise.

Fix time t and defineXn = R̄(n)(t). Then

Xn =
m∑

i=1

r
(n)
i x̄

(n)
i ≤

m∑
i=1

r
(n)
i

(
b

b
(n)
i

)
= b

(
m∑

i=1

ri

bi

)
.(62)

From the dynamics (59) it follows that

var(Xn) =
m∑

i=1

(
r
(n)
i

)2[var
(
Ax

i

(∫ t

0
ν

(n)
x,i

(
1

n
s̄(n)(s)

)
ds

))

+ var
(
Dx

i

(∫ t

0
κ

(n)
x,i

(
1

n
s̄(n)(s)

)
ds

))]
(63)

≤
m∑

i=1

ri

n2

(
nλt + nµi

b

bi

t

)
.

The upper bounds (62) and (63) imply that the family of random variables
{Xn :n ≥ 1} is tight and all its limit points are nonrandom.

To show that the sequences{Xn :n ≥ 1} have a limit, we need new notation.
Let X

p
q denote the reward rate at timet when the policyπ̄ is employed in an

admission control problem where the arrival ratesλ
(p)
i = pλi , i = 1, . . . ,m, the

capacity isqb and the individual rewardsri are unscaled. ThenXn = 1
n
Xn

n and, for
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all n ≥ m, one has the inequality

E[Xn] = 1

n
E[Xn

n] ≥ 1

n
E[Xn

m](64)

≥ 1

n
E[Xm

m] = m

n
E[Xm].(65)

Intuitively, inequality (64) follows from the fact that the expected reward rate is a
nondecreasing function of capacity, and (65) follows from the fact that, since no
costs are incurred for rejecting customers, the expected reward is a nondecreasing
function of the arrival rate. A formal proof of this statement requires a coupling
argument very similar to that in Lemma 4.

Let γi , i = 1,2, denote two distinct limit points of the sequence{Xn :n ≥ 1} and
choose subsequencesXnk

→ γ1 andXmk
→ γ2. From (62), we haveE[Xnk

] → γ1
andE[Xmk

] → γ2. By possibly choosing subsequences, ensure thatmk + √
mk ≥

nk ≥ mk . Then (65) implies thatγ1 ≥ γ2. Since the order of theγi was arbitrary, it
follows thatγ1 = γ2, that is, limn→∞ Xn = X, whereX is nonrandom. Thus, we
have the following result.

THEOREM 3. Suppose ε < min{ε0,
1
4}, where ε0 is given by (49), (c0, c1)

are given by (21), β = 2
ε

log(2
ε
) + 4 and yi(0−) = (1 − αε

i )ρi , i = 1, . . . ,m.
Let R̄(n)(t) denote the reward rate of the policy π̄ in the nth system. Then
R̄∞(t) = limn→∞ R̄(n)(t) exists a.s. and is nonrandom. Moreover,

R̄(∞)(t) ≥
m∑

i=1

riρiα
∗
i

(
1− exp(−µit)

)− O(ε),(66)

where α∗ is an optimal solution of the LP (6).

Since the control is a discontinuous function of the state, we cannot assert that
the process{R(n)(t) : t ∈ [0, T ]} converges to the process{R∞(t) : t ∈ [0, T ]}.

3.4. Numerical experiments. In this section we report the results of some
preliminary simulation studies of the penalty policy. The objectives of these
simulation experiments were to investigate the following:

(i) The quality of the lower bound (47): The numerical computations in
Section 3.2 imply thatρi = O(L̄−2.11) for the penalty policy to be able achieve
a steady state error of order̄L. If the lower bound were tight, this would
imply that the penalty policy is impractical for all but a fraction of admission
control applications. We compared the lower bound with simulated performance
to evaluate the quality of the bound.

(ii) Comparison with the thinning policy [Kelly (1991)]: We compared the
performance of the penalty and thinning policies in reward maximization and load
balancing scenarios.
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3.4.1. Comparison with bounds. We arbitrarily chose the following three
scenarios.

SCENARIO 1.

λ =

4

8
6


, µ =


0.5

2
0.3


,

(67)

r =

 1

0.25
0.75


, b =


 0.1

0.015
0.055


, b = 1.

SCENARIO 2.

λ =

4

8
6


, µ =


 1

2
0.3


,

(68)

r =

 1

0.25
0.75


, b =


 0.01

0.015
0.055


, b = 1.

SCENARIO 3.

λ =




4
8
6
4


, µ =




0.5
2

0.3
0.2


,

(69)

r =




1
0.25
0.75
0.67


, b =




0.02
0.015
0.055
0.045


, b = 1.

For each of the scenarios, the optimal solutionα∗ and the maximum rewardR∗
are determined by solving the LP (6). The approximation parameterε was set
to the value that minimized the steady state error (51) andβ was set equal to
the bound (23). The performance of the penalty policy was simulated over the
period [0, tmax = 10/µmin] and the reward rates were averaged overp = 100
independent simulation runs. The simulation was repeated for scaled systems
(λ(n) = nλ, µ(n) = µ, b(n) = 1

n
b, r(n) = 1

n
r) n = 10,100,1000 (see Section 3.3

for details).
Figures 1–3 compare the simulation estimates with the upper bound (15) and the

lower bound (47) for the three scenarios. In the plots, the reward rate is normalized
by R∗ and time is in units of 1/µmin.

From the plots, it is obvious that the lower bound is quite weak, particularly so
for small values of the scale parametern. The performance of the penalty policy
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FIG. 1. Comparison with bounds: Scenario 1.

FIG. 2. Comparison with bounds: Scenario 2.
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is, in fact, quite close to the upper bound. Although the transient performance of
the penalty policy is significantly superior to the lower bound, it is clear that there
remains a gap that needs to be bridged. Comparing the plots for different scalesn,
we see that the performance of the penalty policy is not very sensitive to the scale
parametern. In summary, the performance of the penalty policy, even for small
loads, is remarkably good.

3.4.2. Comparison in reward maximization scenarios. The thinning policy
is defined as follows [Kelly (1991)]. Letα∗ denote an optimal solution of the
steady state LP (6). The thinning policy admits an arriving classi request with
probabilityα∗

i , provided there is adequate capacity to serve the request.
Figures 4–6 plot the average performance of the penalty policy and the thinning

policy as a function of the scale parametern for the three scenarios. As before,
the performance was simulated over the period[0, tmax = 10/µmin] and reward
rates averaged overp = 100 independent simulation runs. In these simulation
experiments both the penalty policy and the thinning policy saw the same sample
path of Poisson arrivals. Also, a request accepted by both policies had the same
service time in both cases.

The simulation results suggest the following conclusions. The variance of the
reward rate of the thinning policy is significantly larger than the variance of the
reward rate of the penalty policy. This is particularly the case for small loads.
As the load increases, the steady state behavior of the thinning and penalty
policies converges; however, the penalty policy remains significantly superior in
the transient period.

3.4.3. Comparison with thinning in load balancing scenarios. The objective
here is to maintain the load of the various classes close to a prescribed fractionf,
that is, classi load has to be maintained close tobfi , i = 1, . . . ,m. We considered
the following two scenarios:

SCENARIO 4.

λ =
(

1000
1000

)
, µ =

(
10
10

)
,

(70)

b =
(

1
1

)
, α =

(
0.1
0.9

)
, b = 100.

SCENARIO 5.

λ =
(

100
100

)
, µ =

(
0.1
1

)
,

(71)

b =
(

1
1

)
, α =

(
0.1
0.9

)
, b = 190.
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FIG. 3. Comparison with bounds: Scenario 3.

FIG. 4. Comparison with thinning policy: Scenario 1.
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FIG. 5. Comparison with thinning policy: Scenario 2.

FIG. 6. Comparison with thinning policy: Scenario 3.
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The two scenarios differ only in the fact that in Scenario 4,µ1 = µ2, whereas in
Scenario 5,µ2 = 10µ1.

The load balancing is achieved via an appropriate admission control policy.
Suppose a fractionαi of all incoming classi requests is admitted into the system.
Then the steady state classi load is biρiαi . Thus, if αi = bfi/biρi , then the
steady state classi load will be fib. In this set of simulation experiments, we
compared the performance of the thinning and penalty policies constructed from
the computed admission ratioα.

The results for the two scenarios are shown in Figures 7 and 8. The top plot
corresponds to the penalty policy and the bottom plot corresponds to the thinning
policy. In both plots, thex-axis is time (here time is not normalized) and they-axis
is the fraction of the resource utilized by the requests. As before, the results are
averaged overp = 100 iterations.

In steady state, the performance of the thinning and penalty policies is almost
identical. However, the transient performance of the penalty policy is significantly
superior to that of the thinning policy: In Scenario 5, whereµ1 
= µ2, the resource
sharing that corresponds to the penalty reaches steady state levels att = 0.2 =
2µmin, whereas the resource sharing associated with the thinning policy does not
reach steady state levels even byt = 2 = 20µmin.

This example illustrates the target-tracking nature of the penalty policy. The
policy merely tracks the target set by the capacities(c0, c1). It is approximately
optimal in the revenue maximization scenario because the LP sets an appropriate
target to track. It could just as easily track a target set by other considerations.

3.5. General service times. In this section, we assume that the service duration
Si has a general distribution with mean1

µi
, i = 1, . . . ,m. Let gi denote the

density and letGi denote the cumulative distribution function (CDF) of the service
durationSi , i = 1, . . . ,m.

Since the steady state LP (6) and its dual (9) depend only on the mean service
time µi , they still remain the same. As before, letR∗ denote the optimal value,
let α∗ denote an optimal solution of the primal LP (6) and let(u∗,v∗) denote an
optimal solution of the dual LP (9).

Let qi(t) denote the number of active classi requests at timet in an infinite
capacity system service timeSi ∼ gi and no admission control. It is well known
that [see, e.g., Wolff (1989)]

E[qi(t)] = ρi

(
1− Ḡe

i (t)
)
,(72)

whereḠe
i (t) is the tail of the equilibrium CDF of the classi service distribution.

Thus,Ḡe
i (t) plays the role of the tail exp(−µit) of the exponential service time

distribution. This observation leads to the following extension of Theorem 1.
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FIG. 7. Comparison in load balancing: Scenario 4.

FIG. 8. Comparison in load balancing: Scenario 5.
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THEOREM 4. The reward rate Rπ(t) of any feasible policy π satisfies

E[Rπ(t)] ≤ min

{
m∑

i=1

riρi

(
1− Ḡe

i (t)
)
,

(73)
m∑

i=1

α∗
i riρi

(
1− Ḡe

i (t)
)+ u∗b

(
max

1≤i≤m
Ḡe

i (t)

)}
,

where α∗ is an optimal solution of (6), (u∗,v∗) is an optimal solution of (9)
and Ḡe

i (·) is the tail of the equilibrium CDF of the class i service duration,
i = 1, . . . ,m.

Note that

lim
t→∞

(
m∑

i=1

riρiα
∗
i

(
1− Ḡe

i (t)
)+ u∗b max

1≤i≤m
Ḡe

i (t)

)
=

m∑
i=1

riρiα
∗
i = R∗,

that is, the steady state reward rate of any admissible policy is bounded above by
the optimal value of the steady state LP (6).

REMARK 2. Note that in evaluating the upper bound (74), we use only the fact
that the policyπ is feasible and use the bounds on the population of anM/G/∞
queue [see, e.g., Wolff (1989)].

Next, we characterize the performance of the penalty policyπ̄ in this model.
Recall that admission decisions of the policyπ̄ depend only on the load of
requests of each class that have been assigned to the original system and the
fictitious infinite capacity system. In particular, the policy does not keep track of
the remaining service times of the requests in the system.

Let gt
i andGt

i denote, respectively, the density and the CDF of the remaining
service time of a classi request conditioned on the fact that it has been in service
for t time units. Then the tail

Ḡt
i(s) = 1− Gt

i(s) = Ge
i (t + s) − Ge

i (s)

Ge
i (t)

(74)

and, therefore,

gt
i (s) = −dḠt

i(s)

ds
= ge

i (s) − ge
i (t + s)

Ge
i (t)

.(75)

We make the following assumption about the rate functiongt
i (0).

ASSUMPTION 1. The functiongt
i (0) is a decreasing function oft for all

i = 1, . . . ,m, that is,gt
i (0) ≥ limu→∞ gu

i (0) = ge
i (0) = µi for all i = 1, . . . ,m.
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REMARK 3. The exponential distribution satisfies this assumption as does the
heavy-tailed CDFG(s) = (1− (1/(1+ s)2))1{s ≥ 0}.

Under Assumption 1, we have the following analog of Theorem 2.

THEOREM 5. Suppose ε < 1
4, (c0, c1) are given by (21), β satisfies (22) and

ȳi(0−) = (1 − αε
i )ρi , i = 1, . . . ,m. Suppose also that Assumption 1 holds. Then

the reward rate R̄(t) of the penalty policy satisfies

E[R̄(t)] ≥
m∑

i=1

riρiα
ε
i

(
1− Ḡe

i (t)
)− m∑

i=1

riρi(1− αε
i )
(
Ḡe

i (t) − Ḡi(t)
)

− ζ

m∑
i=1

(1− αε
i )riρi − 2e−ε/2(β−4)

m∑
i=1

riρi(1− e−µit ),(76)

where αε is an optimal solution of the perturbed LP (20) and

ζ =
(

log(2)

β
+ 1− ε

2

)
(1+ 4ε) − 1.

REMARK 4. Unlike the lower bound (47), the bound (76) has a term∑m
i=1 riρi(1−αε

i )(Ḡ
e
i (t)− Ḡi(t)) that does not vanish asε → 0, that is, no matter

how small the request size, this error cannot be surmounted. This term appears
because the policȳπ does not account for the remaining service times of the
requests in the system.

4. Extension to loss networks. In this section, we extend the results of
Section 3 to the network model introduced in Section 2. Recall that the stochastic
system under consideration consists of a network ofs resources with capacity
b ∈ Rs+, whereb(k) is the capacity of resourcek = 1, . . . , s, and the system is
initially empty. Requests for using this network of resources belong tom Poisson
arrival classes. Classi requests have an arrival rateλi and a service duration
Si ∼ exp(µi). They are willing to accept any capacity allocation from the set
Bi = {bi1, . . . ,bili }, bij ∈ Rs+, and payri per unit time for the period the request
is in the system.

4.1. Upper bound on expected reward rate. Let π be any feasible control
policy for the stochastic problem. Letxπ

ij (t) denote the number of classi requests
in the system at timet that were assigned the capacity vectorbij ∈ Bi .
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The analog of (4) for the network setting is given by

maximize
m∑

i=1

riρi

(
li∑

j=1

αij

)

subject to
m∑

i=1

ρi

(
li∑

j=1

bij αij

)
≤ b,

(77)
li∑

j=1

αij ≤ 1− e−µit , i = 1, . . . ,m,

αij ≥ 0, j = 1, . . . , li , i = 1, . . . ,m.

Let R∗(t) denote the optimal value of this LP. Taking the limitt → ∞ in (77), we
get the steady state LP

maximize
m∑

i=1

riρi

(
li∑

j=1

αij

)

subject to
m∑

i=1

ρi

(
li∑

j=1

bij αij

)
≤ b,

(78)
li∑

j=1

αij ≤ 1, i = 1, . . . ,m,

αij ≥ 0, j = 1, . . . , li , i = 1, . . . ,m.

Let α∗ = (α∗
ij ){j=1,...,li , i=1,...,m} denote an optimal solution and letR∗ denote the

optimal value of (78). The dual of the steady state LP is given by

minimize bT u + 1T v

subject to ρiri ≤ vi + ρiuT bij , j = 1, . . . , li , i = 1, . . . ,m,(79)

v ≥ 0, u ≥ 0.

Let (u∗,v∗) denote an optimal solution of the dual LP (79). Then we have the
following extension of Theorem 1.

THEOREM 6. The reward rate Rπ(t) of any feasible policy π satisfies

E[Rπ(t)] ≤ R∗(t)

≤ min

{
m∑

i=1

riρi

(
1− exp(−µit)

)
,(80)

m∑
i=1

riρiα
∗
i

(
1− exp(−µit)

)+ (u∗)T b exp(−µmint)

}
,
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where α∗
i = ∑li

j=1α∗
ij , i = 1, . . . ,m, α∗ is an optimal solution of steady state

LP (78) and (u∗,v∗) is an optimal solution of steady state dual LP (79).

4.2. Penalty function and ε-feasible control policy. As in the single-resource
case, we drop from considerations all those capacity vectorsbij which have
the correspondingα∗

ij = 0 and augment the network of systems by adding one
additional fictitious infinite capacity system. The states(t) of the augmented
network is given by

s(t) = (
x1(t), . . . ,xm(t),y(t)

)
.(81)

The state vector

xi(t) = (
xi1(t), . . . , xili (t)

) ∈ Zli+(82)

describes the accepted requests, wherexij (t) is the number of active classi request
that have been assigned tobij ∈ Bi . The state vectory(t) = (y1(t), . . . , ym(t)) ∈
Zm+, whereyi(t) is the number of classi requests in the fictitious system.

The penalty function�(s) is given by

�(s) =
m∑

i=1

[
s∑

k=1

exp

(
β ·
∑li

j=1xij bij (k)

c0
ik

)
︸ ︷︷ ︸

�ik(xi )

+exp
(
β · yi

c1
i

)
︸ ︷︷ ︸

�i(yi)

]
,(83)

where β, (c1
i , {c0

ik}sk=1), i = 1, . . . ,m, are appropriately chosen constants. Let
si = (xi, yi) denote the components of the state vector that correspond to classi,
let C0 ∈ Rm×s denote the matrix[c0

ik] and let c1 ∈ Rm denote the vector
(c1, . . . , c1

m)T .
The penalty policyπ̄ for a loss network is defined as follows. Lets̄(t) =

(x̄1, . . . , x̄m(t), ȳ(t)) denote the stochastic state process that corresponds to the
policy π̄ and lets̄i = (x̄i , ȳi). At time t = 0−, the policy loads the infinite capacity
system to the level̄y(0−). An incoming classi request is conditionally accepted if

min
1≤j≤li

{
s∑

k=1

∂�ik

∂xij

}
≤ ∂�i

∂yi

.

A conditionally accepted request is accepted and assigned tobij ∈ Bi provided

j ∈ arg min
1≤j ′≤li

{
s∑

k=1

∂�ik

∂xij ′

}

and there is adequate capacity [i.e.,
∑m

i′=1
∑li

j ′=1 bi′j ′ x̄i′j ′(t)+bij ≤ b]. Otherwise
the request is routed to the fictitious system and is assigned a service duration
Si ∼ exp(µi) that is independent of everything else.
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As in the case of the single-resource problem discussed in Section 3, the
capacities(C0, c1) determine the following perturbed version of the steady state
LP (78):

maximize
m∑

i=1

riρi

(
li∑

j=1

αij

)

subject to
m∑

i=1

ρi

(
li∑

j=1

bij αij

)
≤ 1

1+ 4ε
b,

(84)
li∑

j=1

αij ≤ 1, i = 1, . . . ,m,

αij ≥ 0, j = 1, . . . , li , i = 1, . . . ,m.

Let αε = {αε
ij : j = 1, . . . , li , i = 1, . . . ,m} denote an optimal solution of (84). The

capacities(C0, c1) are given by

c1
i = (1+ 4ε)

(
1−

li∑
j=1

αε
ij

)
ρi, i = 1, . . . ,m,

(85)

c0
ik = (1+ 4ε)νk

(
li∑

j=1

αε
ij bij (k)

)
ρi, k = 1, . . . , s, i = 1, . . . ,m,

whereνk is given by

νk = (1/(1+ 4ε))bk∑m
i=1
∑li

j=1αε
ij ρibij (k)

, k = 1, . . . , s.(86)

The parameterβ must satisfy the bound

β ≤ ε min
{

min{(i,k) : 1≤i≤m,1≤k≤s}

{
c0
ik

bij (k)

}
, min{i : i∈Uc

ε }{c
1
i }
}
,(87)

whereUc
ε = {i :

∑li
j=1αε

ij < 1, i = 1, . . . ,m}.
A simple extensions of the techniques developed in Section 3 allows one to

establish the following analog of Theorem 2.

THEOREM 7. Suppose ε < 1
4, (C0, c1) are given by (85),β satisfies (87) and

ȳi (0−) = (1−αε
i )ρi , i = 1, . . . ,m. Then the reward rate R̄(t) of the penalty policy
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π̄ satisfies

E[R̄(t)] ≥
m∑

i=1

αε
i riρi

(
1− exp(−µit)

)− ζ

m∑
i=1

(1− αε
i )riρi(88)

− (s + 1)2e−ε/2(β−4)
m∑

i=1

riρi

(
1− exp(−µit)

)
,

where αε
i = ∑li

j=1αε
ij , i = 1, . . . ,m, αε is an optimal solution of the perturbed

LP (84) and

ζ =
(

log(s + 1)

β
+ 1− ε

2

)
(1+ 4ε) − 1.

5. Extension to general polytopic constraints. In this section we generalize
the penalty approach for admission control to a related problem of state control.
Although we discuss this problem in the context of a single-resource model, the
results easily extend to networks.

The stochastic model is similar to that in Section 3. Requests belong tom

Poisson arrival classes. Classi requests have arrival rateλi and service duration
Si ∼ exp(µi). All the requests arrive at a common infinite capacity system.

Let x(t) = (x1(t), . . . , xm(t)) ∈ Rm+ denote the number of requests of each
class in the system at timet . If no control is exercized, then the expected
numberE[xi(t)] of classi requests evolves according toE[xi(t)] = ρi(1− e−µit ),
i = 1, . . . ,m. Therefore, the expected steady state load isρ, where ρ = (ρ1,

. . . , ρm)T ∈ Rm+.
Let S ⊂∏

1≤i≤m[0, ρi] be a polytope defined as

S = {x : 0 ≤ x ≤ ρ,Dx ≤ h},(89)

whereD ∈ Rs×m andh ∈ Rs+. We assume, without loss of generality, thath ≥ 0.
We also assume that the interiorint(S) 
= ∅; that is, there existsx ∈ S such that
Dx < d. In this section the objective is to construct an admission control policy
that ensures thatx(t) ∈ S with high probability.

Define the “lifted” set

S̃ = {
(x,y) : 0 ≤ x ≤ ρ, 0 ≤ y ≤ ρ, D+x + D−y ≤ h + D−ρ

}
,(90)

where D+ ∈ Rs×m with D+
ij = max{Dij ,0} and D− ∈ Rs×m with D−

ij =
max{−Dij ,0}. It is clear thatx ∈ S implies (x,ρ − x) ∈ S̃. The “lifting” of the
state space introduces a state space expansion that is mimicked by the control
policy by adding a fictitious system to the network.

Define(x∗,y∗) ∈ S̃ as

(x∗,y∗) = arg min
(x,y)∈S̃

max
1≤j≤s

{d+
j x + d−

j y

hj + d−
j ρ

}
,(91)
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whered+
j (resp.d−

j ) is thej th row of D+ (resp.D−). Define

γ ∗ = max
1≤j≤s

{d+
j x∗ + d−

j y∗

hj + d−
j ρ

}
= min

(x,y)∈S̃
max

1≤j≤s

{d+
j x + d−

j y

hj + d−
j ρ

}
(92)

and

�∗ = �

(
(1+ 3ε)µmax

µmin
(x∗,y∗)

)
.(93)

CLAIM 1. The violation γ ∗ < 1.

PROOF. By assumption, there existsx ∈ S such thatDx < d, that is,(d+
j −

d−
j )x < hj ∀ j = 1, . . . , s or, equivalently,(d+

j x + d−
j (ρ − x))/(hj + d−

j ρ) < 1

∀ j = 1, . . . , s. The result follows from the fact thatx ∈ S implies (x,ρ − x) ∈ S̃.
�

The quantityγ ∗ is a measure of the size of the setS̃: the smaller is the value
of γ ∗, the larger is the size of the setS̃.

ASSUMPTION 2. The ratio of µmin = min1≤i≤m{µi} to µmax =
max1≤i≤m{µi} is bounded below byγ ∗, (i.e.,µmin/µmax≥ γ ∗).

This assumption essentially requires that the size of the target setS̃ be
comparable to the rate mismatch. If the rate mismatch is large, then the target
setS̃ cannot be too small. In particular, if all the departure ratesµi are identical,
then Assumption 2 is always satisfied. All the results in this section assume that
µi , i = 1, . . . ,m, satisfy Assumption 2.

As in all the previous sections, we add one fictitious system that tracks the
rejected requests. Letx(t) [resp.y(t)] denote the state of the original system (resp.
fictitious system) at timet , and lets(t) = (x(t),y(t)). The control policyπ̃ uses
a penalty function to balance the loads of accepted and rejected customers to
control the state of the system to lie inS. The penalty function�(s) is defined
as

�(s) =
s∑

j=1

exp
(
β · d+

j x + d−
j y

hj + d−
j ρ

)
,(94)

where the multiplierβ satisfies

β ≤ ε

(
min

1≤j≤s
{hj + d−

j ρ}
)
.(95)

The policyπ̃ accepts a classi request if

∂�

∂xi

≤ ∂�

∂yi

;
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otherwise, the request is routed to the fictitious system and the policyπ̃ attaches
to it a fictitious service timeS ∼ exp(µi) that is independent of everything else.

We have the following analog of Lemma 2.

THEOREM 8. Suppose ε < 1
4, β satisfies (95) and E[�(s̃(0))] ≤ �∗, where

�∗ is given by (93).Suppose also that Assumption 2 holds. Then

E
[
�
(
s̃(t)

)]≤ �∗ ∀ t ≥ 0.

The following result establishes that the policyπ̃ ensures that the expected value
E[s̃(t)] of the corresponding state vector lies in anε-inflation of the target set̃S.

THEOREM 9. Suppose ε < 1
4, β satisfies (95) and the initial state ỹ(0−) is

chosen to ensure that �((0, ỹ(0−)) ≤ �∗, where �∗ is given by (93). Suppose
also that Assumption 2 holds. Then, for all t ≥ 0,

dj E[x̃(t)] ≤ hj + ζd−
j ρ + d−

j e−Mt
(
ρ − ỹ(0−)

)
, j = 1, . . . , s,(96)

where

ζ =
(

log(s)

β
+ 3ε

)
and M = diag(µi).

PROOF. Repeated application of Jensen’s inequality implies

exp
(
β max

1≤j≤s
E
{d+

j x̃(t) + d−
j ỹ(t)

hj + d−
j ρ

})

≤ exp
(
βE
[

max
1≤j≤s

{d+
j x̃(t) + d−

j ỹ(t)

hj + d−
j ρ

}])
(97)

≤ E
[
exp
(
β max

1≤j≤s

{d+
j x̃(t) + d−

j ỹ(t)

hj + d−
j ρ

})]

≤ E�
(
s̃(t)

)
≤ �∗

≤ seβ(1+3ε),

where (97) follows from the definition ofγ ∗ in (92). Taking logarithms, we get

d+
j E[x̃(t)] + d−

j E[ỹ(t)] ≤
(

log(s)

β
+ 1+ 3ε

)
(hj + d−

j ρ)

≤ (1+ ζ )(hj + d−
j ρ).

The result follows by recognizing thatE[x̃(t)] + E[ỹ(t)] = (I − e−Mt )ρ +
e−Mt ỹ(0−), whereM = diag(µi). �
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Theorem 9 leaves the choice of the initial loading of the fictitious systemsỹ(0−)

open. One possible choice forỹ(0−) is an optimal solution of the LP

minimize max
1≤j≤s

djM(ρ − y)

(98)
subject to dj y ≤ (hj + d−

j ρ)�∗, j = 1, . . . , s,

where�∗ is given by (93). The LP (98) minimizes the tracking error subject to the
constraint that�(0, ỹ(0−)) ≤ �∗.

Our objective in this section was to demonstrate a policyπ that ensures that the
statexπ(t) ∈ S with high probability. Since0 ≤ E[x] ≤ (I − e−Mt )ρ, Theorem 9
states thatE[x̃(t)] lies in the set

S̃ε(t) = {
x : 0 ≤ x ≤ ρ,Dx ≤ h + ζ(h + D−ρ) + D−e−Mt

(
ρ − ỹ(0−)

)}
,(99)

whereζ = (
log(s)

β
+ 3ε) andM = diag(µ). Suppose the loadsρ are high enough

such thatβ = log(s)
ε

satisfies (95). TheñSε(t) is anε-blowup of the target set.
One might be tempted to convert this expected value result into a sample-path

result by using Markov’s inequality. However, such an attempt will be futile. The
essential problem is that, although the policyπ̃ is able to control the accepted
load, the total load of classi requests is uncontrollable on a sample-path basis.
Therefore, one can expect a sample-path result only if the total load is well
behaved. The rest of this section investigates a limiting regime where this is the
case.

Consider the limiting regime defined by (54) in Section 3.3. Chooseε < 1
4 and

setβ = 1
ε

log(s). Define

n0(ε) =
⌈

β

ε min1≤j≤s{hj + d−
j ρ}

⌉
.(100)

Then, for all n ≥ n0(ε), the hypotheses of Theorems 8 and 9 are true and the
corresponding bounds hold. Let{s̃(n)(t) : t ≥ 0} be the state process when the
control policyπ̃ is employed in thenth system. The results in Section 3.3 imply
that

s̃∞(t) = lim
n→∞ s̃(n)(t)(101)

exists and is nonrandom. The uniform bound on the penalty function�(s(n)(t)) ≤
�∗ implies that the sequence{s̃(n)(t) :n ≥ n0(ε)} is uniformly integrable;
therefore,

s̃(∞)(t) = E
[
s̃(∞)(t)

]= lim
n→∞ E

[
s̃(n)(t)

]
,(102)

leading to the following result.
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THEOREM 10. Fix ε < 1
4, β ≥ 1

ε
log(s) and ỹ(0−) such that �(0, ỹ(0−)) ≤

�∗. Then, for all t ≥ 0,

x̃(∞)(t) ∈ S̃ε(t)
{
x : 0 ≤ x ≤ ρ,Dx ≤ h + 4ε(h + D−ρ)

(103) + D−e−Mt
(
ρ − ỹ(0−)

)}
,

where M = diag(µi).

A possible choice for̃y(0−) is an optimal solution of the LP (98).

6. Concluding remarks. In this article, we combined several disparate
research ideas—mathematical programming bounds [Bertsimas, Paschalidis and
Tsitsiklis (1994), Gibbens and Kelly (1995), Bertsimas and Sethuraman (2002),
Bertsimas and Niño Mora (1999b) and Bertsimas and Chryssikou (1999)], state-
space expansion [Kamath, Palmon and Plotkin (1998)], exponential penalty
functions [Bienstock (2002)] and target tracking—to construct admission control
policies. These penalty-based policies are approximately optimal when the request
are sufficiently granular, that is, when the resource requested by a single request is
small compared to the total capacity. The policies perform well both in the transient
period as well as in steady state. The steady state performance of the penalty
policy is controlled by the target supplied by a linear program, while the transient
performance is controlled by a fictitious system or, equivalently, by expanding the
state space. The penalty-based policies are also able to track arbitrary polyhedral
target sets.

There are several issues that still remain open. From the numerical comparison
of the bounds in Section 3.2 and the simulation results in Section 3.4, it is clear that
in the transient period there is a gap between the performance of the control policy
and the upper bound on achievable performance. This gap is probably because
the capacity of the fictitious systems is too high for the transient period and, as
a result, a larger fraction of the arriving requests get rejected. Thus, a possible
solution would be to dynamically adapt the capacity of the fictitious systems.
While this approach appears to perform well in simulation, we do not have an
analytical justification for it. Also, it is unsatisfying that in the Halfin–Whitt regime
we are not able to prove the convergence of the process over compact intervals (see
Section 3.3). While it appears that this ought to be the case, the discontinuity in
the control makes such a result hard to establish.

From the simulation results for the single-resource problem, it appears that
all the benefits of the penalty policy are simply a consequence of the state
space expansion that results from the addition of the fictitious systems. Further
simulation experiments are planned to test this hypothesis. In any case, state space
expansion is a new technique that is worth exploring further.

In addition, there is always the issue of queuing. Building on the results
developed here, Cosyn and Sigman (2004) [see also Cosyn (2003)] proposed



1738 G. IYENGAR AND K. SIGMAN

penalty-based control policies for a finite capacity model that allows waiting and
reneging. The extension to queuing networks with feedback is still open.

There are also several unresolved issues at the theoretical level. Although
the exponential function allows the proofs to go through, it is not clear if it
is essential to the problem. Young (1995) showed that the exponential penalty
approach for packing and covering problems [see, e.g., Chapter 3 in Hochbaum
(1996)] can be viewed as a derandomization approach, where, at every stage of
the derandomization, one is picking a decision that minimizes a Hoeffding-type
exponential bound on the probability of failure. Something similar might be at
work here; that is, the admission control policy could be minimizing the worst
case bound of leaving the target set. This interpretation opens the possibility that
the penalty policy works because the exponential function is twisting the dynamics
to make the worst sample paths most likely.

Acknowledgment. The authors thank the anonymous referee for helpful
comments.
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