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EXPONENTIAL PENALTY FUNCTION CONTROL OF
LOSS NETWORKS

BY GARUD IYENGAR! AND KARL SIGMAN?2
Columbia University

We introduce penalty-function-based admission control policies to ap-
proximately maximize the expected reward rate in a loss network. These con-
trol policies are easy to implement and perform well both in the transient
period as well as in steady state. A major advantage of the penalty approach
is that it avoids solving the associated dynamic program. However, a disad-
vantage of this approach is that it requires the capacity requested by indi-
vidual requests to be sufficiently small compared to total available capacity.
We first solve a related deterministic linear program (LP) and then translate
an optimal solution of the LP into an admission control policy for the loss
network via an exponential penalty function. We show that the penalty pol-
icy is a target-tracking policy—it performs well because the optimal solution
of the LP is a good target. We demonstrate that the penalty approach can
be extended to track arbitrarily defined target sets. Results from preliminary
simulation studies are included.

1. Introduction. We consider the following dynamic stochastic allocation
problem (details in Section 2). The stochastic system consists of a network of
resources (falities), each with a known fixed capacity. Requests for using this
network belong to a diverse set of request classes, differing in the arrival rate, the
service duration, the resource requirements and the willingness to pay. There is no
waiting room (queue), therefore an arriving request must be either admitted into
the system for service and assigned an appropriate resource allocation or rejected
(lost) at the instant it arrives. An admitted request occupies the allocated resources
for the service duration and releases all the resources simultaneously. The objective
of the system controller is to design an admission control policy that optimizes
an appropriate performance measure of the revenue generated.

The stochastic model detailed above is known asoss network. Loss
networks model a wide variety of applications where a diverse user population
shares a limited collection of resources, for example, telephone networks, local
area networks, multiprocessor interconnection architectures, data base structures,
mobile radio and broadband packet networks [see Ott and Krishnan (1992), Hui
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(1990), Kelly (1985), Lagarias, Odlyzko and Zagier (1985), Mitra and Weinberger
(1987) and Mitra, Morrison and Ramakrishnan (1996), for details]. Kelly (1991)
gave an excellent review of results for loss networks. For a discussion of a related
model with loss queues in series, see Ku and Jordan (1997).

A loss network with a single resource is known asazhastic knapsack [Ross
and Tsang (1989b)]. Optimality results have been obtained for several restricted
classes of admissible policies: complete partitioning policies [Ross and Tsang
(1989b)], coordinate convex policies [Foschini and Gopinath (1983), Ross and
Tsang (1989b) and Jordan and Varaiya (1994)] and restricted complete sharing
policy [Gavois and Rosberg (1994)]. Ross and Yao (1990) discussed monotonicity
properties for the stochastic knapsack. See Ross (1995) for a summary of these
results.

When capacity requests and service durations of all the request classes are
identical, the optimal policy for the stochastic knapsack problem has the following
simple form: Accept classrequests if there are at leastunits of capacity free.
Such a policy is called &runk reservation policy and the parameteés are called
trunk reservation parameters. This result was established by Miller (1969) [see
also Lippman and Ross (1971)]. Several approaches to compute (approximately)
optimal trunk reservation parameteis were discussed by Key (1990), Bean,
Gibbens and Zachary (1995) and Reiman and Schwartz (2001). Trunk reservation
policies are not optimal when the capacity request or service duration is class
dependent [Ross and Tsang (1989a)] nor are they optimal for networks [Key
(1990)]. The asymptotic optimality of trunk reservation policies under a limiting
regime where the arrival rates and capacity increase together, the Halfin—Whitt
regime [Halfin and Whitt (1981)], was established by Hunt and Laws (1993,
1997). For asymptotic optimality results under different limiting regimes, see Kelly
(1991), Hunt and Kurtz (1994) and Key (1994).

The optimal capacity allocation problem has also been extensively studied in
the revenue management literature. For a recent overview, see McGill and van
Ryzin (1999). Unlike the model introduced here, capacity allocation models in the
revenue management literature typically assume that there is a finite time horizon
over which the capacity must be allocated and that capacity once allocated never
becomes available again. Our model is closer to that developed by Savin, Cohen,
Gans and Katalan (2000) in the context of the rental industry.

In all previous works on related stochastic allocation models, the associated
optimization problem is formulated as a dynamic program (DP), and the optimal
policy is the solution of the associated Bellman equation. However, solving
the Bellman equation quickly becomes computationally intractable and is, in
many cases, EXP-complete [Papadimitriou and Tsitsiklis (1999) and Blondel
and Tsitsiklis (2000)]. In practice, therefore, the DP formulation is only used to
characterize certain qualitative structural properties of the optimal policy, which
then form the basis for heuristic approaches for solving the problem. Optimal DP
policies are very sensitive to the time horizon of the problem. Due to end-effects,
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the optimal DP policies that correspond to different time horizons are usually not
compatible. Also, there is no guarantee that steady state optimal policies [e.g.,
the independent thinning policy; Kelly (1991)], will perform well in the transient
period.

In this article, we explore alternative simpler techniques for characterizing
approximately optimal policies. We replace the stochastic optimization problem
by a suitably constructed linear program (LP). The optimal solution of this LP
yields a target point that is translated into an admission control policy using an
exponential penalty function. We show that this policy is approximately optimal
in the limit where individual resource requests are small compared to the total
capacity [Halfin and Whitt (1981)]. Moreover, we show that this penalty policy
performs well in the transient period as well.

Our penalty-based approach builds on several disparate research ideas: con-
vex programming bounds for stochastic problems [Gibbens and Kelly (1995),
Bertsimas, Paschalidis and Tsitsiklis (1994), Bertsimas and Nifio Mora (1999a, b)
and Bertsimas and Chryssikou (1999)], asymptotically optimal policies for con-
trol and scheduling problems via “fluid” relaxations [Maglaras (2000), Bertsimas
and Sethuraman (2002) and Bertsimas, Sethuraman and Gamarnik (2003)] and
exponential penalty-based approximation algorithms for linear programming
[Shahronki and Matula (1990), Plotkin, Shmoys and Tardos (1991) and Bienstock
(2002)]. Exponential penalty functions have also proved useful for admission con-
trol and load balancing in an adversarial setting [Aspnes, Azar, Plotkin and Waarts
(1997), Azar, Kalyanasundaram, Plotkin, Pruhs and Waarts (1997) and Kamath,
Palmon and Plotkin (1998)]. Of this, Kamath, Palmon and Plotkin (1998) is the
most relevant to the discussion here.

The summary of our contributions in this article is as follows:

(i) We develop explicit upper bounds for the maximum achievable revenue

rate for any time > 0. This extends the analysis in Gibbens and Kelly (1995).

(i) We construct an exponential penalty-based admission control policy that
is provably approximately optimal for all times> O in the Halfin—Whitt limiting
regime [Halfin and Whitt (1981)]. The policy is a simple threshold-type policy in
an expanded state space. Preliminary simulation studies (see Section 3.4) suggest
that the state space expansion is the key to the success of the penalty policy.

(i) We demonstrate that our approach can be extended to track arbitrary
polyhedral target sets.

The organization of this article is as follows. In Section 2 we formulate the
admission control problem for a loss network. The framework is Markovian, that
is, the arrivals are Poisson and service times are exponentially distributed. In
Section 3 we study the single resource model and its various variants. Section 3.4
contains simulation results for this special case and Section 3.5 extends some of the
results to the case of general service time distributions. In Section 4 we extend the
single-resource results to the network problem. Section 5 presents an extension to
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control problems where the objective is to ensure that the state of the network lies
in a specified target set. Section 6 has some concluding comments and discussion.

2. Admission control in lossnetworks. The stochastic system under consid-
eration consists of a network efesources (facilities) with capacitye R’ , where
b(k) > 0 is the capacity of resourde=1, ..., s. Requests for using this network
belong tom independent Poisson arrival classes. Classquests have an arrival
ratei; and a service duratiofy ~ exp(u;); that is, S; is exponentially distributed
with rateu; (with the exception of Section 3.5). Claseequests are willing to ac-
cept any capacity allocation from the s&t= {b;1, ..., by}, b;; € R, and pay;
per unit time for the (random) service durati§n There is no waiting room in the
system; therefore, each arriving clasgquest must either be accepted and admit-
ted into the system (i.e., assigned an admissible capacity allodatien;) or
be rejected at the instant it arrives. When an accepted request departs after service
completion, it releases all the allocated resources simultaneously.

We assume that the system is initially empty, thaki®~) = 0 (see Remark 1
in Section 3.1 for a discussion on nonzero initial states).d:gt) denote the
number of clasg requests currently in the system that are assigned to the allo-
cationb;; € B;. Definex;(t) = (x;1(t), ..., xi; (t)) € Zi andx(t) = (xX1(0), ...,
Xm(1)) € ZL_, wherel = > 11i. A request of class can be assigned a capacity
allocationb;; only if there is sufficient capacity to accommodate it, that is,

m L
(1) > xivpHbyj+bij <b,

i'=1j'=1

where the inequality is interpreted component by component. The system
controller is permitted to reject requests even if there is sufficient capacity to
accommodate them. The instantaneous rewardRéteat timer is given by

m li m
(2) R(1) =ZU(ZXU(1)> => ri(1"x@).
i=1 \j=1 i=1
This stochastic model is called@ss network [Kelly (1991)].
Let T, n), i =1,...,m, n > 1, denote the arrival epoch of theh classi
request. Since all admission decisions are made at arrival epochs, a feasible
admission control policyr is described as follows:

(a) A policy = is a collection of random variables = {7 ) :i =1,...,m,
n > 1}, with 7 »,) € {0, 1,...,[;}, wheren ,) = 0 denotes that classrequest
arriving at the epocly; , is rejected ana; ,y = j (> 1) denotes that the request
is assigned th;; € B;.

(b) The random variabler;; ,) is measurable with respect to tleealgebra
generated by the past arrival epodlfis, ,):p=1,....,m, ¢ > 1, T(, o) < Tim}s
the past action§r(,.):p=1,...,m,q > 1, T, 4 < T n} and the state process
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{X*(t) : t < T4 n}, where the notatior”™ emphasizes that the state process is itself
a function of past actions.

(c) The state proceds™(¢) :¢t > 0} does not violate capacity constraints, that
is, 'L 12] 1x”(z)b,, < b for all + > 0. (Rejection is the only feasible action
when adequate capacity is not available.)

Let R7(t) = > " 1 (1Tx§’ (1)) denote the instantaneous reward rate of the
policy = at time ¢t. The objective of the controller is to choose a feasi-
ble policy = that maximizes some performance measure on the reward rate
procesgR™(¢) .t > 0}. Appropriate performance measures for finite time horizon
problems are either expected total rewEn[gfoT R™ (s) ds] or expected discounted

rewardE[[T e PSR (s)ds], B > 0; for the infinite time horizon problems, the ap-
propriate measures are either expected discounted refgll e =7 R™ (s) ds],
B > 0, or long-run average reward lim, o, TE[fo R™(s)ds].

As mentioned in Section 1, our goal is to construct feasible policies that perform
well both in the transient period as well as in steady state. We first establish an
upper boundR*(¢) on the achievable expected reward r&eR”™ (¢)] and then
construct a feasible policg with expected reward raté[R(r)] &~ R*(¢). Thus,
the policyr satisfies

T T T
E|:/(; e_ﬁSR”(s)ds]S/(; e_ﬁsR*(s)ds%E[/(; e_ﬁSR(S)ds], B >0,

that is, the policyr is approximately optimal for any finite time horizon, and

1 T 1 T _
lim —EU R”(s)ds]< lim —/ R*(s)ds ~ lim —EU R(s)ds],
t—>oo T T—oo T Jo T—oo T 0

that is, the policyr is approximately optimal in the steady state as well.

3. Single-resource model. This section focuses on the loss network with
s =1 (i.e., the stochastic knapsack). The details of the single-resource model are
as follows. The system is assumed to be initially empty ¥(6-) = 0]. Requests
belong tom Poisson arrival classes. Request clabss arrival rate,;, capacity
requesb; (without loss of generality, one can assume that theBsét a singleton),
service duratiors; ~ exp(u;), and reward rate; per unit time. All the requests
arrive at a common resource with capaditg (0, o). There is no waiting space
(queue); therefore, each arriving request must either be admitted into service or
rejected at the instant it arrives [see Cosyn and Sigman (2004) and Cosyn (2003)
for extensions to queues]. Requests may be rejected even if there was adequate
capacity available.

Note that if the total capacity is an integer and; =1, 1 <i < m, thenb can
be identified as the number of servers in a standard queuing model. In particular,
if requests are always served when capacity exists, then this is simpiyy afy b
loss queue. Thus, it helps to imagine that each accepted request has its own server.
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In this light, the loss network introduced in Section 2 can be viewed as a collection
of such server models, all working together in parallel.

The layout of this section is as follows. In Section 3.1 we develop an upper
bound on the achievable reward rate. In Section 3.2 we construct an approximately
optimal penalty-based policy. Section 3.3 investigates the penalty policy in the
Halfin—Whitt limiting regime [Halfin ad Whitt (1981)]. In Section 3.4 we
simulate the transient behavior of the proposed control policy and compare its
performance to thinning policies introduced by Kelly (1991). Section 3.5 discusses
the extension to general service times.

3.1. Upper bound on the achievable reward rate. Let = denote any feasible
control policy for the single-resource model. L€t(z) denote the number of the
classi requestsin service at timeSince feasibility implies thaf_;” ; b;x7 (1) < b,
we have

m
(3) Y bEXT ()] <b.

i=1
Moreover,E[x] (1)] < E[g;(¢)], whereg; (¢) is the number of classrequests as
time ¢ in an infinite capacity system with no admission control. Recall that we
assume that the system is initially empty, therefore [see, e.g., page 75 in Wolff
(1989)],Elg; (t)] = pi (1 — exp(—pu;t)). Hence,

1 1
o= (—E[xf 01, ..., —E[x}, (t)])
o1 Pm

is feasible for the linear program
n
maximize > ripic;
i=1

(4) =
subjectto > " b;pia; <b,

i=1
O<a; <1—exp(—u;t), i=1...,m.

Leta™(z) denote an optimal solution and IRt () denote the optimal value of (4).
Then

m
(5) ER" (0] =Y rip (%E[x;’ <r>]) < R*().

i=1 t

In the next section we propose a policy that controls the system by penalizing

deviations from a desired target state. From (4) and (5), it follows that for
a policy = to be approximately optimal, the expected numigr? ()] of
accepted classrequests must be approximatedj(t) = «; (1) p;. Thus,x*(r) =
(xI(t),...,x,fl(t))T would be the natural target state for the penalty policy.
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Unfortunately we are only able to establish that a penalty policy can successfully
track a fixed target. The natural fixed targetxjs= o p;, i = 1,...,m, where
o = (a1, ...,0,)] is an optimal solution of the “steady state” analog of (4):

n
maximize ) _ripie;
i=1

(6) m
subjectto > b;pja; <b,

i=1
O<ag; <1, i=1,...,m.
Let R* denote the optimal value of (6). Next, we bouRd(z) in terms of the

steady state quantities’, R* and the problem parameters. Sircéeasible for (4)
must satisfyy; <1—e %', i =1,..., m, it follows that

(7) R*(l‘)fzri,oi(l—exﬂ—uil‘))-
i=1
The linear programming dual of (4) is

m
minimize  ub+ Y v;i(1—exp(—pu;1))
i=1

(8) subjectto v + b;piu > rip;, i=1...,m,
v >0, u>0.
Taking the limitz — oo in (8) we get the dual of the steady state LP (6):
minimize  ub+17v
9) subjectto  v; + b;piu > rip;, i=1,...,m,
v >0, u=>0.

Let (u*,v*) denote any optimal solution of (9)/ = {i:a) =1} and U =
{i:i ¢ U}. Then it follows that

(10)  R*(1) <u*b+ ) vi(1l—exp(—u;1))
i=1

m
(11) =Y ripiaf — Y v exp(—puit)
i—1 iU
m
(12) =Y ripiaf =Y _(ripi — bipiu*)o;S exp(—pu;r)
i—1 icU
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(13) _Zrllol 1 exp(— I’th) (Zbllola exp(— I’th)>

i=1
(14) <Zmol (1 — exp(—p;t)) + u*b exp(—umint),

where (10) is |mpI|ed by the fact thau*, v*) is feasible for the dual LP (8);
(11)-(13) all follow from complementary slackness conditions [Luenberger
(1984)]; andpumin = mMini<;j<,{pi}. From (7) and (14) we have the following
result.

THEOREM1. Therewardrate R (¢) of any feasible policy = satisfies
E[R™ (1] < R*(1)

(15) <min{ Y ripi(1— exp(—uit)),
i=1

Zrlpl 1 exp(— M,t))+u*beXﬂ Mmint)

where R*(¢) is the optlmal value of the LP (4), a™ is an optimal solution of the
steady state LP (6) and (u*, v*) is an optimal solution of the steady state dual
LP (9).

The first term in the upper bound ak*(¢) is active fort < 1/umax, Where
Umax= MaxXi<;<m{ui}, whereas the second is active for 1/min.

REMARK 1. Although we assume that the system is initially empty, all the
results in this article extend to the case where the initial stdde) # 0. For
example, whex(0~) = x° £ 0, the bound analogous to (15) is given by

m m
R*(t) < mind Y rip; (1 — exp(—in)) + > rix? exp(—pit),
i=1 i=1

Zrlpl (1 — exp(—u;t)) + u*b eXp(—mint)

m vf"x.o
+ Y L exp(—pit) |-

i=1 Iol

The results in this section bear close resemblance to the notion of fluid operating
points introduced by Harrison (2003). However, unlike the development here,
Harrison employed the fluid model only to define a nominal operating point—the
control policy is designed using a heavy-traffic limit associated with this operating
point.
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3.2. Exponential penalty function and penalty control policy. Kelly (1991)
established that, under fairly general conditions, an independent thinning policy
that accepts each incoming classequest with probabilityx;, provided there
is enough capacity, approximately optimizes the expected reward rate in steady
state. However, for small thinning underutilizes the capacity and, therefore, the
expected reward rate of the thinning policy is significantly smaller than the upper
bound (7). Moreover, since thinning only changes the effective arrival rate, it is not
able to effectively control the variance of the reward rate. Our goal is to construct a
policy that does not suffer from these drawbacks. We will first informally motivate
the structure of the policy and then establish its properties rigorously.

Consider the following modification to the original system. Suppose each
rejected class request, instead of immediately leaving the system, is assigned
to an alternate infinite capacity server where it lives out its service time and then
leaves. [In practice, each time a request is rejected the policy will add one request
to the alternate server with a service tije~ exp(u;).]

From the analysis leading to the LP (4), it follows that for the expected reward
rateE[R(¢)] to be close to the bound (15), one requiis; (1)] ~ x () = a; (1) p;,
i=1,...,m. Let y;(t) denote the number of clagsrequests in the alternate
server at timer. Then E[x; (1)] + E[y;(©)] = Elgi(1)] = p; (1 — exp(—u;t)).
Thus, an equivalent condition for optimality is th&fy; (1)] ~ y; () = p;i(1 —
exp(—u;t) —a;(1)). Let W; (x;, y;) be a penalty function that penalizes deviations
from the desired target state’ (1), y/(1)). Since keepingx;, y;) ~ (x}(t), y/ (1))
is equivalent to minimizing the penalty function, a control policy that accepts
arequest, provided there is adequate capacityaind + 1, y;) < W¥; (x;, y; + 1),
may be close to optimal. Such a policy can be thought of as iteratively solving the
nonlinear optimization problem min, ¥; (x, y) with the added restriction that it
can take a step only when there is an arrival and the step length is restricted to 1.
Moreover, periodically the state;, y;) gets perturbed in a uncontrollable manner
by requests leaving the system. From related results in the nonlinear optimization
literature [see, e.g., Luenberger (1984)], it follows that such a penalty-based
control policy is likely to be successful provided the gradient of the penglty
is sufficiently “large” around the target state’, y*), the step length of 1 is a
“small” step in an appropriately defined norm and the frequency of correcting
steps is sufficiently higher than the frequency of the perturbing stepsgj.e-,
Ai/ui > 1). The relationship of penalty function and nonlinear optimization is
further discussed in Section 6.

In this article, we use a penalty function of the form

xi (1) Yi (1)
W (x;, yi) = exp( —) +exp( )
g P g
This choice is motivated by the fact that the exponential function is an eigenfunc-

tion of the underlying Markov process and that, for this choice, moment generating
functions can be used to characterize the behavior of the penalty policy. Note that




PENALTY FUNCTION CONTROL 1707

although the penalty method can be formulated without any reference to the re-
jected requests;, the form that we propose does not permit us to do so. In our
penalty function we neeg to ensure that the number of accepted requesises

not drop too low. In the rest of this section, we rigorously establish these informal
ideas.

Since we are interested in approximating the upper bound (15), we drop from
consideration all those classes with= 0. As proposed above, we add a fictitious
infinite capacity system. We will refer to the original system as system 0 and the
fictitious system as system 1. The state of the augmented network at igne
S(t) = (X(2),y(@®)) € Zi’”. The state vectot(r) = (x; (1), ..., x,» (@), wherex; (¢) is
the number of classrequests in system 0 at timedescribes the state of system 0.
Similarly, y(¢) = (y1(8), ..., ym (t)) describes the state of the fictitious system 1 at

timez.

The states= (x, y) is assigned a penalty/(s) given by

(16) LCEDY [exp(ﬂ : b’?) + eXp(ﬂ e )]

i=1 Ci ¢i

i(s)

where(c?, ¢t) e Rim ands; = (x;, y;) denotes the componentssthat correspond
to class. There are two competing requirements on the multigliene need to
be large to ensure that the penalty functib(s) is sufficiently steep; on the other
hand, we also have to ensure that the impact of a single arrival or departure on the
penalty value is sufficiently small. The precise boundsois given by (22). The
capacitiegc?, cl) determine the “steady-state” target state of the penalty policy. As
mentioned previously, we choose a fixed target because we are unable to establish
that penalty policies can track time-varying targets. The transient performance is
controlled by suitably initializing the fictitious system 1.

The penalty policyr is defined as follows. Lefs(¢) = (X(¢),y(t)):t > 0}
denote the state process under the conirolAt time ¢ = 0~, the state of the
original systemx(0™) = 0, the state of the fictitious infinite capacity system 1
is initialized toy(0™) [the precise value of(07) is specified later] and a service
time S; ~ exp(u;) is generated for each of thg(0™) classi requests in system 1,
i=1....,m.

At time ¢ > 0, an arriving clasg request is accepted by the control poliey
(i.e., routed to system 0) provided

Wi (5(1) _ V(s @)
ox; Oy

(17)

and the capacity constraint on system O is not violated, that is,

m
(18) > bk (t) + b <b;
i'=1
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otherwise it is rejected (i.e., routed to system 1) and the pati@attaches to it
a service timeS; ~ exp(u;) independent of everything else. Since the admission
condition (17) is equivalent to
0 o 1 (cQ)

19 <+ ——log( % |.
(19) o B TV
it is clear that the policyt is a threshold-type policy in the expanded state space
S=(X,y) € Z%".

The capacitiesc?, c), the parametes and the initial stat§(0~) are defined in
terms of a perturbation parametet (0, ;11). Define are-perturbation of the steady
state LP (6) as

m
maximize Y _ripie;
i=1

(20) b

m
subjectto > bipia; < Tiae

i=1
O<u; <1, i=1...,m.

Let «® denote an optimal solution of this perturbed LP (20). Then the capacities
(%, c1) are given by

Q1) P=1+4e)efbipi,  ct=A+4)A—aDbip;,  i=1....m,

andp must satisfy

c.o c.l
(22) ﬁsemin{ min {—’} min {—’”
{i:1<i<m}| b; ) li:ieUs}| b;

(23) —c(+domin| min {afp). min ((L-a))p)),

whereU{ ={i:af <1,i=1,...,m}. The bound (22) formalizes the notion that
the change in the penalty value associated with a single arrival or departure must
be small [the bounds (22) and (23) are identical]. Since paranfetaust be
sufficiently large for the penalty policy to perform well, the bound (23) implies that
penalty policy is likely to perform well when the incoming load>> 1. Although
the request sizds are not explicitly present, the bounds (22) and (23) impose an
implicit upper bound on thé;’s via the capacity constraint; b; pio; < b.

We establish a lower bound on the expected rewardEgi )] of the policy
7 by comparing it to a related infeasible poligy The policyx is identical tox
except that it does not respect the system 0 capacity constraints; that is, the policy
7 routes an incoming claggequest to system 0 whenever

Wi (&) _ V(s @)

24
(24) 0x; dyi
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where {8(¢) = (x(¢), y(¢)) :t > 0} denotes the state process that corresponds to
the policyx. Since the various request classes interact only through the capacity
constraints, the policg controls each class independently.

We establish a bound on the total derivativlgdr)E[¥ (3(¢))], which implies
that if the initial statey(0™) is suitably chosen, the penaltg[W(5(¢))] is
a uniformly bounded function of time.

LEMMA 1. Suppose e < 2, (c% ct) are given by (21) and g satisfies (22).
Then,foralli=1,...,mand¢ >0,

d
B[ 0)] = (A —e)pi (20772 — E[Wi(50)))).

PROOF FixarequestclassDefinek,[V; (5 ())] = E[V¥; (5 (w)) | F:],u > t,
where¥; is the filtration generated by events up td@hen

d
EEt[qji (8()] = AV (30)),

wherewx is the generator of the stochastic procggs) :+ > 0}. Let 7;(¢) denote
the routing decision of the policy at timer, that is,

AV, AV

~ 1 < ,
i (1) = dx; — dy;
0, otherwise

Then
AW; (3(1)) = A [(Wi (% + 7 (0), 3i) — Wi (Xi, §i))
+ (Wi (%, 3i + (1= 7 (0))) — Wi (X, 50))]
+ wi[xi (Wi G — 1, 5) — Wi (%, 50))
+ i (Wi (X, 3 — D) — Wi (X3, 3) ],

where we have suppressed the time dependen@g,of;). From the Taylor series
expansion, it follows that® < 1+ x + x2 for all |x| < 1 and from the bound (22)
we have that ma{>ﬁb,-/c?, ﬂb,-/cil} < ¢. Therefore,

" ov; ov; -
AW E0) = @t (G F O+ (L T0)0)

i Vi

ov; ow;
- (1—8)Mi<—8 X () + Vi (t)>.
X; 0

l l

i

Sincer; (t) minimizes the increase in penalty, it follows that
&

L RSN L BV L
. 7'[- . . —_ 7'['- . X . .
aXI l Iol ayl 1 Iol f— aXl 1 ayl y[
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for anyx? + y; = p;, x7, y{ > 0. In particular, choose
(25) xi =af pi, i =1 —af)p;.
Then, we have

ow;

. IW;
AU(E0) = At e G oxf + 50

ow; owy;
— (- ( g0+ (r))
Xi ay;

1

i on [ ) ()

A+e¢)
26 1- ; W,
@)  =a-ou|w(Gos)-we)]
(27) <(1-9o)ui[¥(1+3e)s) — ¥ (9],

where (26) follows from the convexity of; and (27) holds becau%é_f <1+43¢
forall ¢ < ;11. From (21) and (25), it follows thafl + 3¢) max{bl-xf/c?, biy?/ci} =

14+3¢ £
Trae = 1-53. Consequently,

%Et[% GE0)] < A —e)ui[2e2F —w;(3(0))].

The result can now be concluded from the Lebesgue bounded convergence
theorem by recognizing that for all sufficiently close> ¢, (E;[W¥; (5 (s))] —
W; (5(2)))/(s —t) can be bounded above by a fixed random variakle.

LEMMA 2. Suppose ¢ < 3, (c%, cl) are given by (21), B satisfies (22) and
the initial state §(0~) = (0, y(O )) satisfies ¥;(5(07)) < 2exp(1 — €/2)B),
i=1,..., m.Then,foralli=1,...,mandt >0,

(28) E[w; (s,- (1))] < 2e1-#/28,

PROOF Fix a request class Suppose the conclusion does not hold. Define
fi(t) = E[¥; (& ()] and f* = 2exp(1 — ¢/2)B). Then Lemma 1 implies that
U0 < Q=) (f* = fi ().

Let r be any time instant whefi(t) > f*. Sincef (¢) is a continuous function
of randf(07) < f*, there exists < t suchthatf(s) = f*and f () > f* for all
s <t < t.Byconstructionf(t) > f* = f(s), but by the fundamental theorem of
calculus, we have

‘L'd T
f(r)—f(s)z/ &d </ L—e)ui(f*— f(u)du <0,

a contradiction. [J
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The bound (28) implies the following results.

LEMMA 3. Supposee < 1, (c°, ct) aregiven by (21)and g satisfies (22).

(i) Let w(r) =3 i_1b;x;(t) and suppose ¥;(5(07)) < 2exp(1l — &/2)p),
i=1..., m. Then

26_8/3/2

(29) E[(w(r) — b)) < (1+4e) -

(i) Supposey;(07) =1 —a)p;,i=1,..., m. Then the reward rate R(¢) of
the policy & satisfies

(30) EIRO]1= ) ofripi(L—e ) = > (L—af)rip;,
i=1 i=1

where ¢ is an optimal solution of the perturbed LP (20) and

(Iog/;;Z)

+1-5)4de -1
PROOR  LetV, = {i(r) = /L, bi%i(r) > b}. Then
@Y exa(y - El@0 —5)*]) = E[ex( 50— )7 )|
=P +E[exe( 5 - (50)-5) ) v

<1+ E[exp(g (W) — b))}

(32) =1+ef J] E[exp(ﬂ-@)},

1<i<m

where (31) follows from Jensen’s inequality. Moreover,

o 242 o 5))
(33) < (E[exp(ﬁ . biﬁzo (t))DC?/b

(34) < [Wi (& 0))]7"”

0
Ci

(35) (2e4#/2P) T /b,

[A
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where (33) follows from Jensen’s inequality applied to the concave function
x4, a < 1; (34) holds because“ is monotonically increasing for > 0 and
(35) follows from (28). From (32) and (35), we have

exp(g-E[(ﬁ)(t) _b)+]) <14ef [ (3280
1<i<m
(36) <1+ e P (217¢/2P)
< 1+26_(8/2)ﬂ,
where (36) follows from the bound:” ;c? = (1 + 4e) Y7 bipiaf <

(1+ 4e) (1) = b. Part (i) follows by taking logarithms.
A similar argument establishes that

exp(,g . &f(”]) < E[POTONE] < 2p0-c/28

G

Therefore,
log(2 1
(37) ELH()] < ( 002 |4 _ f)c—’ <@+ —ad)p,
B 2/ b;
where
B log(2) I3
g“—( 5 +1—§>(1+4e)—1.

Let g;(¢) denote the number of clagsequests at time in an infinite capacity
system with no admission control and @Q(t) denote the number of requests
surviving from they; (07) classi requests initially loaded into system 1. Then
conservation implies

(38) ai (1) + 500 L5 (1) + 51 (1),

where< denotes equality in distribution. [Note that the surviving requ@,%(s)
are also counted as part 9f().] Suppose the initial load; (07) = (1 — «f)p;,
i=1,...,m.Then
biyi@) 1 4 ¢ vis1m
Ci 1+4e 2
that is, the hypothesis of Lemma 2 holds foriad 1, ..., m. Therefore, (37) and
(38) imply that

E[x; ()]
(39) > pi(1—exp(—pi(1))) + (L —af) exp(—uit) — (L+ )1 —af) pi
=af pi(1—exp(—uit)) — (1 —af)p;.
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Thus,

(40) E[R(]=)_rE&®O]1= Y afripi(l—exp(—uwin) —¢ Y (L—a))rip;.

i=1 i=1 i=1
O

Lemma 3 establishes that g > 1 is admissible, the policyt does not
significantly violate the capacity constraint and the associated rewarH[rRte)]
is close to the upper bound (15). The following result establishes that, on average,
the policyzr admits more requests than

LEMMA 4. Fixe, B, (c%, cl) and theinitial state ¥(0~) = y(0~). Let # and &
be the policies that correspond to these parameters. Then

d d
xi(t) < x;(1), yi(t) < yi(1), i=1...,m,
d
where X <Y denotesthat, for all u > 0, wehave P(X > u) <P(Y > u).

PrRoOOE Theresultis established by a coupling argument that employs another
infeasible policyz as a comparison policy.

The policiesz, # andz act on the same labeled Poisson arrival streams. Let
the kth classi arrival be labeledi, k). Let X;(¢) [resp.f(i (1)] denote the set of
labels of all clas$ requests routed to system 0 by poliey(resp.z) and still in
service at time.

The routing decision of the comparison poligy is identical to that of the
policy & unless policyr routes to system 1 (i.e., rejects) but polieyroutes the
arrival to system 0O (i.e., accepts). Lidbe any time instant when this event occurs
and suppose the arriving request has the lah&). Since the policyr does not
face any capacity constralnts it must be that~) > x; (), that is, there exists a
request with labeli, 1) € X;(t)\X; (r). The policyz admits the incoming request
(i, k) into system O by relabeling iti,/) and moves the job previously labeled
(i,1) to system and relabels iti, k). Clearly the policyz is infeasible since the
requests once routed to system 0 cannot be removed.

From the definition of the policy it is clear thatt; (1) > x; (r) andy; (¢) < y;(¢).
Notice that every time the policg removes a request before completion, the
remaining service duration is ep;), that is, the service duration of the request
that replaces the removed request is, in distribution, identical to the remaining
service duration. Therefore, the performance of the paticig, in distribution,
identical to the policyz . Thus, for allu > 0, we have

PXi(t) = u) =P(x; (1) = u) = P(x;(t) > u),
P(3i (1) = u) =P(3i(t) = u) < P(3; (1) > u). O
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Let & (¢) [resp.n;(r)] denote the number of clagsrequests in system 1 at
time ¢ that were rejected by the penalty function (resp. the capacity constraint).
The expected valug[g; (¢)] is bounded as follows.

IW; (5 (w)) a\IJ-(S-(u))) —u(t—u) g,

( 0 0
(

t
El&(1)] = / 3P

)Z,- (Lt

2iP(

Ci

y,(u) 1 Iog )) —\(t—u) du
Xi(u)

X
(&
R '09( e
(=)

(41) < | AP

i
b

i
b
IV; (5 (u)) OV (Sz ()

—p(t—u) du
0

t
e
0

(42) =EDi(®],

where (41) follows fromt; (u)) /c? — (5 () /c} < (%)) /e — i@ /ck-
The expected valug[»; (¢)] is bounded as follows:

Elni ()] < f A p<2x1<u)>b b) - g,

i=1

t
(43) < /0 k,-P(Zic’,- (u)>b— b,-)e_“(’_”) du
i=1
t ~
< o—PA—bi/b) / ME[eP/P ] expl— i (1 — w)) du
0
t

(44) < 2e_ﬁ(l_bf/b)eﬁ(l_s/2)/ Liexp(—ui(t —u))du

0
(45) < 2p;e” PP (1 — exp(—pit)),

where (43) follows from Lemma 4, (44) follows from an argument similar to that
in the proof of part (i) of Lemma 3 and (45) follows from the boundspimplied
by (23). From (42) and (45) it follows that

E[% (1] = Elg; ()] + Elyo, ()] — E[7: (1)]
= Elgi ()] + Elyo.i ()] — (EL& ()] + Elni (1)])
(46)  >Elgi(0]+ Elyo.i ()] — E[Fi (0] — 201~ */2F~Y (1 — exp(— ;1))
= E[% ()] — 2pie~ /2P~ (1 — exp(—p;1))
> of pi (1— exp(—pit)) — ¢(1—of ) — 2pe /2P~ (1 — exp(—p;1)),
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where (46) follows from the bound (39) argd= ('OQ’T@ +1-5)(1+4e) - 1.
Thus, we have the following result.

THEOREM 2. Supposee < %, (c°, ct) are given by (21), g satisfies (22) and
theinitial state S(07) = (0, y(07)), with y;(07) = (1 — o) p;, i =1,...,m. Then
the reward rate R(r) of the penalty policy 7 satisfies

E[R(1)] = maX{Zozfripi(l —exp(—uit)) —¢ Y (A —a))rip;
(47) i=1 i=1

m
i=1

where ¢ is an optimal solution of the perturbed LP (20) and

log(2) £
= 1——-)(1+4e)—-1.
¢ ( 5 + 2)( + 4e)
Let L(z) denote the lower bound in (47). Then (15) and (47) imply that
Iiml‘—)OO L(t)

R*
48
“o _ i1 9irioi = § 3 (A —a)ripi — 2¢7¢/2B=D Y| rip;

> R .

Recall that(u*, v*) denotes an optimal solution of dual LP (9). From the duality
theory for LPs it follows thatu*, v*) is optimal for the dual of the perturbed
LP (20) for all sufficiently smalk [Luenberger (1984)], that is,

(49) o =maxe: (u*,v*) is optimal for the dual of (2Q)> 0.
Thus, for alle < ¢,

m m u*b
£ k

doairipi =) v +

= = 14 4e

(50) ”
=(> v +u'b| - ae (u*b) > (1 — 4¢)R*
= ! 1+ 4e - '

Since¢ < 8¢ + 2%92., (48) and (50) imply the following.

COROLLARY 1. Suppose ¢ < min{eo,%l}, where ¢o is given by (49),
(c, cl) are given by (21), 8 satisfies (22) and 3;(07) = (1 — &) p;, i = 1,...,m.
Then L = lim,_, o, L(¢) satisfies

(61) L >1_12 2102 _ (268/209—4) P 2|09(2)) Siaripi
R* B 5 R
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The term)_" ; r; p; in (51) would appear, at first glance, to be large. However,
recall that we had dropped from consideration all classes ayitk O; therefore,
Ygrip = Z{i:a;ﬁw} ri pi, that is, the total incoming revenue rate of only the
admitted classes.

Sincee and g cannot be chosen independently, the lower bound (51) implies
that for every given loa@ there is an optimad*(p) and a corresponding optimal
lower boundL*(p). The boundL*(p)/R* — 1 asp +t oo, that is, the penalty
policy is optimal in the Halfin—Whitt limiting regime. This limiting result is further
discussed in Section 3.3.

Next, we numerically compare the transient performance of the penalty policy
with the upper bound (15) for a three-class admission control problem defined by

40 0.5
A‘ == 80 N IL = 20 ’
60 0.3

1.00 0.10
r=1025], b=1]0.15], b =100
0.75 0.55

The optimal solution of the corresponding steady state LP (&@*is= [1, 1,
0.7818" and the optimal steady state rewattl = 207.2727. The approximation
parametet was chosen by setting equal to the upper bound (23) and optimizing
the bound (51) as a function ef The row marked Scale= 1 in Table 1 displays

the optimale, and the steady state and transient error of the optimized penalty
policy. Since the lower bound. () = O for all sufficiently smallz [i.e., error

1— ((L@))/(R*(@))) is 100%], we defined transient errermax{(L(¢))/R* .t >

0.1/ umin}-

(52)

TABLE 1
Comparison of bounds

Error (%)

Scale n Optimal & Steady state  Transient
1 0.2500 513195 886202

2 0.2500 218708 617278

4 0.1838 171644 487918

8 0.1422 127112 393613
16 01100 93599 322373
32 00851 68943 269023
64 00659 51143 229311
128 Q0437 40341 192897
256 Q0338 28049 170118
512 Q00236 21991 152632

1024 00183 14909 141900
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These numerical computations were repeated for the scaled admission control
problem defined bx ® =k, r® = Ir andb® = Ib. The corresponding results
are shown in the row marked Scaje= k in Table 1.

From the numerical results, it is clear that as the lpadoo, both the steady
state and the transient error improve. Although the steady state error appears to
converge to zero, the transient error appears to level off at approximately 15%.
We believe that this is a consequence of the fact that the “tatg&tt?) is fixed
instead of time-varying.

Regressing the scalgon the steady state errdr, we obtain that

(53) n=41571L %1101

This power law paints quite a dismal picture: for steady state performance within
1% of the upper bound, the load= @ (10%). Thus, the lower bound (51) suggests
that the penalty policy is impractical for all but a small fraction of admission
control applications. Fortunately, simulations (see Section 3.4) reassure us that the
lower bound is quite weak and, in fact, the performance of the penalty is close to
the upper bound even for moderate loads.

The numerical comparison of the bounds for a specific example is certainly
not as conclusive and convincing as an analytical comparison. Nevertheless, we
believe that the insights derived from this simple example would survive analytical
scrutiny.

3.3. Limiting regimes. In this section, we investigate the performance of the
policy & in the Halfin—Whitt limiting regime [Halfin and Whitt (1981)]. The
regime of interest here is defined in terms of a scale parameted the limiting
regime is obtained as 1 oco. In thenth system,

system capacity b™ =b,

classi arrival rate AE”) =nh;, i=1,...,m,

(54) classi service rate Mf”) = Wi, i=1...,m,
requestsize b = % i=1...,m,

reward rate " = :1—’ i=1...,m.

Note that the service ratesl(”) remain constant, that is, the system exhibits

transient behavior even in the limit. In the regime defined by (54) the incoming
workload b o™ and the total reward rate/”p{" of each request class
i=1,...,m are independent of the scale parameiewhereas the individual

request sizebi(”) and reward rate” scales down. An equivalent regime is one

i

in which the request size remains constant but the system capétiscales up.
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While it is plausible that appropriately thinning the incoming requests is a
steady state optimal policy in the limit [Kelly (1991)], it is unlikely that thinning
will perform well in the transient period. We show that the penalty paiidg able
to control transient behavior without sacrificing steady state performance.

We will need some notation and preliminary results to enable us to state the
main result of this section. Let™ be any feasible policy for theth system.
Slnceb(”) (”) =b;p;, foralli =1,...,m, the upper bound in (15) is still valid,
that is,

E[R"" (1)] < min) > ripi (1 — exp(—pin)),
(55) i=1
anl (1—exp(—uit)) + u*b exp(—mint) ¢ -

Duality theory for LP [Luenberger (1984)] guarantees that

(56) Y airipi(1—exp(—uit)) =Y ofripi(1—exp(—pit)) — O(e)

i=1 i=1
forall ¢ < gg, wheregq is given by (49). Fix < min{eg, ;11}. Set(c?, c1) using (21),
set
2 2
B=- Iog(—) +4
& &
and set
@) =A-af)p;, i=1...m.
Define
) 2 2 -
(57) no(e) = mm{n >1:8=- Iog(—) +4 SatISerS(23)}.
& &

Then, for alln > ng(e), the bounds (56) and (47) imply that
(58) L) =) ripiaf(L—e ") — O(e).
i=1

Let 3™ (1) = (X" (1), y*™ (1)) denote the state process and Rt (1) denote the
reward rate that correspondsstan thenth system. Then

50 =3 0)

+Af</ot vi’f?(ls(")(s)> ds) (/0 (n)<1§(n)(s)> ds>,

(1) =5 (07)

(o)) -or( o))

(59)
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where{(AY A;.V, Df, Diy) :1=1,...,m}areindependentrate 1 Poisson processes,

i°

the departure rate(scif‘l.)(-), K;’fi)(-)), i=1,...,m,are given by

k" (9) = npuix;,
(60) o
Ky i (8) =np;yi

and the arrival ratee;)(cf’,?(-), v;f’?(-)), i=1,...,m, are given by

ov; 0y, " 1
Ais < and bixi(t —-b; <b,
v)(:’l,-)(S): i ox; — dy; ]X::l Jx]()+n "=
0, otherwise
(61)
ov;, oY,
ni;, > or
dx;  dy;
(n) . . m
™M (g) = Y, AW, 1
R < and bixi(t —-b; > b,
axl_ — 8)’1 /2::1 ]x]()+n i >
0, otherwise

Fix time r and defineX,, = R™(¢). Then

=) _ N~ o P Z’"r-

n)-n n 1

(62) Xn=2, i <2 " <b,(”)>:b< b_,->'
1= 1= i

i=1

From the dynamics (59) it follows that

N ()2 NEROTE ) ))
var (X,) =Y _(r; )[var(Al (/O vx’l.<ns (s) ) ds

i=1

t 1
(63) + var <Dlx (/ K)Enl-) <—§(")(s)> a’s))]
0 TA\n
o b
< ;n—’z<nm it

The upper bounds (62) and (63) imply that the family of random variables
{X, :n > 1} is tight and all its limit points are nonrandom.

To show that the sequencék,, .n > 1} have a limit, we need new notation.
Let Xé’ denote the reward rate at timewhen the policyz is employed in an
admission control problem where the arrival ra,té@ =pr,i=1...,m, the
capacity isgb and the individual rewards are unscaled. Thek,, = %X,’; and, for
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all n > m, one has the inequality

(64) EX,] = SE[X"] > SE[x" ]
n n

(65) > e = MEx,
n n

Intuitively, inequality (64) follows from the fact that the expected reward rate is a
nondecreasing function of capacity, and (65) follows from the fact that, since no
costs are incurred for rejecting customers, the expected reward is a nondecreasing
function of the arrival rate. A formal proof of this statement requires a coupling
argument very similar to that in Lemma 4.

Lety;,i =1, 2, denote two distinct limit points of the sequer&g, : n > 1} and
choose subsequenckEs, — y1 andX,,, — y2. From (62), we hav&[X,, ] — y1
andE[X,,, ] — y2. By possibly choosing subsequences, ensurenihaf ,/mj >
ni > my. Then (65) implies thag, > y». Since the order of theg; was arbitrary, it
follows thaty1 = y», that is, lim,_,» X, = X, whereX is nonrandom. Thus, we
have the following result.

THEOREM 3. Suppose ¢ < min{eg, 711}, where ¢ is given by (49), (%, c1)
are given by (21), g = 2log(?) + 4 and y;(07) = (L — af)p;, i = 1,...,m.
Let R™(r) denote the reward rate of the policy @ in the nth system. Then
R (1) =1im,_.oc R" (1) exists a.s. and is nonrandom. Moreover,

(66) RO () =y " ripia (1 — exp(—pit)) — O(e),
i=1

where a* is an optimal solution of the LP (6).

Since the control is a discontinuous function of the state, we cannot assert that
the proces$R"™ (1) :¢ € [0, T]} converges to the procegB>(r):t € [0, T1).

3.4. Numerical experiments. In this section we report the results of some
preliminary simulation studies of the penalty policy. The objectives of these
simulation experiments were to investigate the following:

(i) The quality of the lower bound (47): The numerical computations in
Section 3.2 imply thap; = © (L~ for the penalty policy to be able achieve
a steady state error of order. If the lower bound were tight, this would
imply that the penalty policy is impractical for all but a fraction of admission
control applications. We compared the lower bound with simulated performance
to evaluate the quality of the bound.

(i) Comparison with the thinning policy [Kelly (1991)]: We compared the
performance of the penalty and thinning policies in reward maximization and load
balancing scenarios.
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3.4.1. Comparison with bounds. We arbitrarily chose the following three

scenarios.

SCENARIO 1.

(67)

r

SCENARIO 2.

(68)

SCENARIO 3.

(69)

1
0.251,
0.75

4
()
6
1
(0.25),
0.75

r

H O Db

1
0.25
0.75 |’
0.67

0.5
=\ 2|,
0.3

0.1
b=1]0.015], b=1.
0.055

1
=\ 2 |,
0.3

0.01
b=10.015), b=1

0.055

0.5

2
03Y)
0.2

0.02
0.015
b=100s5| =1

0.045

For each of the scenarios, the optimal soluttdhand the maximum rewarg*

are determined by solving the LP (6). The approximation parameteas set

to the value that minimized the steady state error (51) gngas set equal to

the bound (23). The performance of the penalty policy was simulated over the
period [0, fmax = 10/umin] and the reward rates were averaged oyex 100
independent simulation runs. The simulation was repeated for scaled systems
A® =nk, p™ = p, b® = 1p r® = 1), = 10,100 1000 (see Section 3.3

for details).

Figures 1-3 compare the simulation estimates with the upper bound (15) and the
lower bound (47) for the three scenarios. In the plots, the reward rate is normalized

by R* and time is in units of Amin.

From the plots, it is obvious that the lower bound is quite weak, particularly so
for small values of the scale parameterThe performance of the penalty policy
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is, in fact, quite close to the upper bound. Although the transient performance of
the penalty policy is significantly superior to the lower bound, it is clear that there
remains a gap that needs to be bridged. Comparing the plots for differentscales
we see that the performance of the penalty policy is not very sensitive to the scale
parameter. In summary, the performance of the penalty policy, even for small
loads, is remarkably good.

3.4.2. Comparison in reward maximization scenarios. The thinning policy
is defined as follows [Kelly (1991)]. Lek™* denote an optimal solution of the
steady state LP (6). The thinning policy admits an arriving classjuest with
probabilityc, provided there is adequate capacity to serve the request.

Figures 4—6 plot the average performance of the penalty policy and the thinning
policy as a function of the scale parametefor the three scenarios. As before,
the performance was simulated over the pefiodmax = 10/umin] and reward
rates averaged ovegr = 100 independent simulation runs. In these simulation
experiments both the penalty policy and the thinning policy saw the same sample
path of Poisson arrivals. Also, a request accepted by both policies had the same
service time in both cases.

The simulation results suggest the following conclusions. The variance of the
reward rate of the thinning policy is significantly larger than the variance of the
reward rate of the penalty policy. This is particularly the case for small loads.
As the load increases, the steady state behavior of the thinning and penalty
policies converges; however, the penalty policy remains significantly superior in
the transient period.

3.4.3. Comparison with thinning in load balancing scenarios. The objective
here is to maintain the load of the various classes close to a prescribed friaction
that is, class$ load has to be maintained closeitfy,i =1, ..., m. We considered
the following two scenarios:

SCENARIO 4.
- 1000 (10
=\1000)° *~\10)
(70) 1 0.1
o—(1). «=(31). o100
SCENARIO 5.
- 100 (01
=\100)> *=\1)
(71)

o
Il
/N
[EnN

1 0.1
), a=(0'9), b =190
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The two scenarios differ only in the fact that in Scenarigqu4d = 2, whereas in
Scenario 52 = 10u1.

The load balancing is achieved via an appropriate admission control policy.
Suppose a fractioa; of all incoming class requests is admitted into the system.
Then the steady state clasdoad is b; p;«;. Thus, if o; = bf;/b;p;, then the
steady state classload will be f;b. In this set of simulation experiments, we
compared the performance of the thinning and penalty policies constructed from
the computed admission rato

The results for the two scenarios are shown in Figures 7 and 8. The top plot
corresponds to the penalty policy and the bottom plot corresponds to the thinning
policy. In both plots, ther-axis is time (here time is not normalized) and thaxis
is the fraction of the resource utilized by the requests. As before, the results are
averaged ovep = 100 iterations.

In steady state, the performance of the thinning and penalty policies is almost
identical. However, the transient performance of the penalty policy is significantly
superior to that of the thinning policy: In Scenario 5, wheke# 12, the resource
sharing that corresponds to the penalty reaches steady state levelsOa? =
2umin, Whereas the resource sharing associated with the thinning policy does not
reach steady state levels evenrly 2 = 20umin.

This example illustrates the target-tracking nature of the penalty policy. The
policy merely tracks the target set by the capacite®scl). It is approximately
optimal in the revenue maximization scenario because the LP sets an appropriate
target to track. It could just as easily track a target set by other considerations.

3.5. General servicetimes. Inthis section, we assume that the service duration
S; has a general distribution with meaf}l}, i=1,...,m. Let g; denote the
density and leG; denote the cumulative distribution function (CDF) of the service
durationS;, i =1, ..., m.

Since the steady state LP (6) and its dual (9) depend only on the mean service
time u;, they still remain the same. As before, IRt denote the optimal value,
let «* denote an optimal solution of the primal LP (6) and(et, v*) denote an
optimal solution of the dual LP (9).

Let g;(¢) denote the number of active classequests at time in an infinite
capacity system service tim® ~ g; and no admission control. It is well known
that [see, e.g., Wolff (1989)]

(72) Elg:(H)] = pi(1— G{ (1)),

whereG¢(z) is the tail of the equilibrium CDF of the clagsservice distribution.
Thus,C_}f(t) plays the role of the tail exp-u;t) of the exponential service time
distribution. This observation leads to the following extension of Theorem 1.
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THEOREM4. Thereward rate R™ (¢) of any feasible policy = satisfies

m
E[R™ ()] =min{ > " rip;i(1— G{ (1)),
i=1
(73) N
> alripi(1-Gi(0) + u*b< max Gf(t)) }
-1 1<i<m
where a* is an optimal solution of (6), (u*,Vv*) is an optimal solution of (9)
and G{(-) is the tail of the equilibrium CDF of the class i service duration,
i=1...,m.

Note that

m m
i (1 — G * e — o = R*
tleoo(;rl,olal (1-G¢) +u blrg_a;; G (t)) ;rl,olal R*,
that is, the steady state reward rate of any admissible policy is bounded above by
the optimal value of the steady state LP (6).

REMARK 2. Note that in evaluating the upper bound (74), we use only the fact
that the policyr is feasible and use the bounds on the population a¥&it; /oo
gueue [see, e.g., Wolff (1989)].

Next, we characterize the performance of the penalty patian this model.
Recall that admission decisions of the poligy depend only on the load of
requests of each class that have been assigned to the original system and the
fictitious infinite capacity system. In particular, the policy does not keep track of
the remaining service times of the requests in the system.

Let g/ andG! denote, respectively, the density and the CDF of the remaining
service time of a classrequest conditioned on the fact that it has been in service
for ¢ time units. Then the tail

GS(t +5) — G4(s)
G (1)

(74) Gi(s)=1-Gi(s) =

and, therefore,

_dGis) _ gf(s) — gl +5)

1 —
(75) 8 (s) = ds Gf )

We make the following assumption about the rate funcgai®).

AssuMPTION 1. The functiong!(0) is a decreasing function af for all
i=1,...,m,thatis,g/(0) > 1lim,_ o g'(0) =gf(0)=p; foralli=1,...,m.
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REMARK 3. The exponential distribution satisfies this assumption as does the
heavy-tailed CDFG(s) = (1 — (1/(1+ 5)%)1{s > O}.

Under Assumption 1, we have the following analog of Theorem 2.

THEOREM 5. Supposee < 1, (c, ¢t are given by (21), 8 satisfies (22) and
yi(0)=A—-af)p;, i =1,...,m. Suppose also that Assumption 1 holds. Then
the reward rate R(¢) of the penalty policy satisfies

E[RM] =) ripiaf (L= G{() = D ripi(L—af)(G{ (1) — Gi(1))
i=1 i=1

m m
(76) — Y (A —afyrip; —2¢ PPV N " rip (1 — e,
i=1 i=1

where ¢ is an optimal solution of the perturbed LP (20) and

log(2) £
e —< 5 +1- §>(1+48) -1

REMARK 4. Unlike the lower bound (47), the bound (76) has a term
S ripi(L—af)(G4(t) — Gi (1)) that does not vanish as— 0, that is, no matter
how small the request size, this error cannot be surmounted. This term appears
because the policyg does not account for the remaining service times of the
requests in the system.

4. Extension to loss networks. In this section, we extend the results of
Section 3 to the network model introduced in Section 2. Recall that the stochastic
system under consideration consists of a network ofsources with capacity
b € RY, whereb(k) is the capacity of resourde=1,...,s, and the system is
initially empty. Requests for using this network of resources belomg Rpisson
arrival classes. Class requests have an arrival ratg and a service duration
S; ~ exp(u;). They are willing to accept any capacity allocation from the set
B; ={bi1,...,b;;}, b;; € R, and payr; per unit time for the period the request
is in the system.

4.1. Upper bound on expected reward rate. Let &= be any feasible control
policy for the stochastic problem. Leg. (r) denote the number of classequests
in the system at time that were assigned the capacity vedigre B;.
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The analog of (4) for the network setting is given by

m Ii
maximize Z}’i,oi<z Ofij)
i=1 j=1

m li
subject to Zpi (Z bl‘jO(ij) <b,
i=1 \j=1
(77)

l;
Zozijfl—e_’m, i=1....,m,
j=1

Ot,'jZO, j:l,...,l,-,i:l,...,m.

Let R*(¢) denote the optimal value of this LP. Taking the limit> co in (77), we
get the steady state LP

m Ii
maximize Z}’i,oi<z Ofij)
i=1 j=1

m li
subjectto > p; (Z bijaij) <b,
i=1  \j=1

(78) )
Zaij§1’ i=1....,m,
j=1

ai]'ZO, j:l,...,li,i=1,...,m.

Leta™ = (a)(j=1,..1,i=1,..m) denote an optimal solution and |8t denote the
optimal value of (78). The dual of the steady state LP is given by

minimize  bTu+17v
(79) subjectto  pir; <v; + piu’ by, j=1...,L,i=1....m,
v >0, u=>0.
Let (u*, v*) denote an optimal solution of the dual LP (79). Then we have the
following extension of Theorem 1.
THEOREM6. Thereward rate R™ (¢) of any feasible policy = satisfies
E[R™ (1] < R*(1)

m

(80) <min{ Y ripi(1— exp(—uit)),
i=1

m
> ripio (L —exp(—puit)) + (U*) b exp(—umint) |
i=1
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where o = Z’]lea;"j, i=1...,m, a® is an optimal solution of steady state
LP (78)and (u*, v*) isan optimal solution of steady state dual LP (79).

4.2. Penalty function and e-feasible control policy. As in the single-resource
case, we drop from considerations all those capacity vedigravhich have
the correspondingc;fj = 0 and augment the network of systems by adding one
additional fictitious infinite capacity system. The state) of the augmented
network is given by

(81) S(t) = (X1(1), -, X (1), Y(©)).
The state vector
(82) Xi (1) = (xi1 (1), ..., xip, (1)) € Z"%

describes the accepted requests, whgie) is the number of active clagsequest
that have been assignedlig € B;. The state vectoy(r) = (y1(t), ..., yu(t)) €
Z"!, wherey; (¢) is the number of classrequests in the fictitious system.

The penalty functionw (s) is given by

l;
0 vo-3]Forls ERIO), ol 2]

i=1L k=1

Wi (X;) Wi (yi)

where 8, (cl.l, {c?k}izl), i =1 ...,m, are appropriately chosen constants. Let
s = (X;, y;) denote the components of the state vector that correspond tai class
let C® € R™*S denote the matrixc%] and letct € R™ denote the vector
(cl, cee, c%)T.

The penalty policyr for a loss network is defined as follows. Lstr) =
(X1, ..., %, (?),y(@)) denote the stochastic state process that corresponds to the
policy & and lets; = (X;, y;). Attime r = 0™, the policy loads the infinite capacity
system to the level(0™). An incoming clasg request is conditionally accepted if

. 0w, oW,
min 1> ikl 270
1=jsli | = 0xij dyi

A conditionally accepted request is accepted and assigngg &8; provided

< oy
jearg mm{ ) ik
1=j/<; | =g 9%

and there is adequate capacity [i7_ 12 Y1 bir /xlr]r(t)—i-bl] < b]. Otherwise
the request is routed to the fictitious system and is assigned a service duration
S; ~ exp(u;) that is independent of everything else.
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As in the case of the single-resource problem discussed in Section 3, the
capacitiesC?, c1) determine the following perturbed version of the steady state
LP (78):

m Ii
maximize Z}’i,oi<z Ofij)
i=1 j=1

m I;
! 1
subject to ; bija;i | < b,
u J ;,0 (; ]O(]> 1+48
(84)

li

Zaij§1’ i=1....,m,

j=1

Ot,'jZO, j:l,...,l,-,i:l,...,m.

Leta® = {ozfj :j=1,...,0;,i=1,...,m}denote an optimal solution of (84). The
capacitiegC?, c1) are given by

li
Ci1:(1+48)(1_ O{fj)p,‘, i=1,....,m,
j=1
(85) z
c?k=<1+4s>vk(2af,~bi,~<k>)pi, k=1..si=Ll..m,

j=1
wherevy is given by

(1/(1+4e))by

(86) v = . ,
ity lezl af; pibij (k)

The parametef must satisfy the bound

(87) B < emin { Cik min }{cil}},

0
min {—}
{(ik): 1<i<m,1<k<s}| D;j (k) ) {itieU¢
whereUS = {i: Y _jof; <1i=1,....m}.
A simple extensions of the techniques developed in Section 3 allows one to
establish the following analog of Theorem 2.

THEOREM 7. Supposee < %, (CO, cl) are given by (85), 8 satisfies (87) and
yi(0)=A—a))p;i, i =1,...,m. Thentherewardrate R(¢) of the penalty policy
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7 satisfies

(88) E[RO] =Y ofripi(1—exp(—uit)) — ¢ Y (L —af)rip;
i=1 i=1

m
— (s + D% 2PN " r 0y (1 — exp(—pit)),
i=1

where of = Zl]f:lafj, i=1,...,m, af is an optimal solution of the perturbed

LP (84)and
_ (log(s + 1)
= ( B

5. Extension to general polytopic constraints. In this section we generalize
the penalty approach for admission control to a related problem of state control.
Although we discuss this problem in the context of a single-resource model, the
results easily extend to networks.

The stochastic model is similar to that in Section 3. Requests belong to
Poisson arrival classes. Classequests have arrival ratg and service duration
S; ~ exp(u;). All the requests arrive at a common infinite capacity system.

Let X(t) = (x2(?), ..., x,(¢)) € R% denote the number of requests of each
class in the system at time If no control is exercized, then the expected
numberE[x; (r)] of classi requests evolves accordingBdx; (1)] = p; (1 — e '),

i =1,...,m. Therefore, the expected steady state loag,isvhere p = (p1,
—oom)T €RT.
Let 8 C [[1<;<[0, pi] be a polytope defined as

(89) $={x:0=<x<p,Dx=<hj,

+1—g>(1+48)—1.

whereD e R**™ andh e RY,. We assume, without loss of generality, that 0.
We also assume that the interiont (§) # @; that is, there existg € § such that
Dx < d. In this section the objective is to construct an admission control policy
that ensures that(r) € § with high probability.
Define the “lifted” set

(90) 8={(x,y):0<x<p, 0<y<p, D'x+D"y<h+D p},

where Dt € R with D; = maxD;;,0} and D~ € R™™ with D;; =
max{(—D;;, 0}. It is clear thatx € 8 implies (x, p — x) € 8. The “lifting” of the
state space introduces a state space expansion that is mimicked by the control
policy by adding a fictitious system to the network.

Define(x*,y*) € 8 as

(91) (x*, y*) = arg min max
; 1<j<s

+ J—
{djx-i-djy}
(x,y)es

hj+d;p
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whered;.r (resp.d]f) is the jth row of D (resp.D™). Define

dfx* 4 d7y* dfx+d;
(92) y = max{i" E Y } = min max{ij ~ y}
1<j=sU hj+ dj P xyesl=jssl hj+ dj P
and
143
Mmin

CLAIM 1. Theviolation y* < 1.

PROOF By assumption, there exiskse $ such thatDx < d, that is,(d;.r —
d)x<h; Vj=1,...,s or equivalently(d x +d; (o —x)/(h; +d;p) <1

Vj=1,...,s. The result follows from the fact thate § implies(x, p — X) € 5.
O

The quantityy* is a measure of the size of the setthe smaller is the value
of y*, the larger is the size of the sét

ASSUMPTION 2. The ratio of umin = MiNi<i<p{ni} 10 pmax =
maxi<i<m {1ti} is bounded below by*, (i.e., umin/tmax> ¥ *).

This assumption essentially requires that the size of the targe# dee
comparable to the rate mismatch. If the rate mismatch is large, then the target
set$ cannot be too small. In particular, if all the departure rateare identical,
then Assumption 2 is always satisfied. All the results in this section assume that
Wi, i =1,...,m, satisfy Assumption 2.

As in all the previous sections, we add one fictitious system that tracks the
rejected requests. L&tr) [resp.y(¢)] denote the state of the original system (resp.
fictitious system) at time, and lets(r) = (x(¢), y(z)). The control policyz uses
a penalty function to balance the loads of accepted and rejected customers to
control the state of the system to lie #1 The penalty functionl(s) is defined
as

dix+d7y
(94) U(s) = Zexp(ﬂ y +d_ )

where the multiplie satisfies
(95) ﬁ§e< min {hj+d7p}>.
1<j<s 4

The policyn accepts a classrequest if
o 8\11
axl ayl
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otherwise, the request is routed to the fictitious system and the pblaetyaches
to it a fictitious service time§ ~ exp(w;) that is independent of everything else.
We have the following analog of Lemma 2.

THEOREM 8. Suppose ¢ < ;11, B satisfies (95) and E[W¥ (5(0))] < ¥*, where
W* is given by (93). Suppose also that Assumption 2 holds. Then
E[V(31)]<wv*  Vi>0.

The following result establishes that the polieyensures that the expected value
E[S(r)] of the corresponding state vector lies inamflation of the target sef.

THEOREM 9. Suppose ¢ < 711, B satisfies (95) and the initial state ¥(07) is
chosen to ensure that W ((0, ¥y(07)) < ¥*, where ¥* is given by (93). Suppose
also that Assumption 2 holds. Then, for all r > 0,

(96) d;EIX()]<hj+¢djp+die™(p—y(00).  j=L...s
where

;= (IO%(S) + 38) and M =diag(u;).

PROOF Repeated application of Jensen’s inequality implies

drx@) +d;y(
exp(ﬂ maxE{ ;X0 _"y( )})
l<j=s hj +dj-p

dix@) +d; @) ”)

(97) Sexp(ﬁE[ maX{ hj+d7p
J

1<j=s

+~ —_~
< E[exp(ﬂ max { dj O d_j ye })]
l<j=s hj+ dj P

<EV(3(1))
<"
S Seﬁ(1+38),

where (97) follows from the definition gf* in (92). Taking logarithms, we get
log(s)
B

dEX(1)]+d;E[Y®)] < ( +1+ 38) (hj+d;p)

< (1+0)(hy +d7 p).

The result follows by recognizing thaE[X(r)] + E[J(1)] = (I — e MH)p +
e~M1§(07), whereM =diag(y;). O
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Theorem 9 leaves the choice of the initial loading of the fictitious sysjgtn
open. One possible choice f@¢0™) is an optimal solution of the LP

minimize maxd;M(p —Y)
1<j<s

(98)
subjectto  d;y < (h; +d;p)\IJ*, j=1,...,s,

wherew™ is given by (93). The LP (98) minimizes the tracking error subject to the
constraint thatv (0, y(07)) < ¥*.

Our objective in this section was to demonstrate a potidipat ensures that the
statex” () € 8 with high probability. Sinced < E[x] < (I — e~M")p, Theorem 9
states thaE[X(¢)] lies in the set

(99) B.(t)={x:0<x<p,Dx<h+¢h+D"p)+D e ™M (p—-y0))},

where¢ = ('OQT(S) + 3¢) andM = diag(n). Suppose the loads are high enough

such thatg = '09% satisfies (95). Thed, (¢) is ane-blowup of the target set.

One might be tempted to convert this expected value result into a sample-path
result by using Markov’s inequality. However, such an attempt will be futile. The
essential problem is that, although the poligyis able to control the accepted
load, the total load of classrequests is uncontrollable on a sample-path basis.
Therefore, one can expect a sample-path result only if the total load is well
behaved. The rest of this section investigates a limiting regime where this is the
case.

Consider the limiting regime defined by (54) in Section 3.3. Ch(mse}i and

setp = Llog(s). Define

(100) no(e) = { P W

emini<j<s{h;j + d;/’}

Then, for alln > ng(e), the hypotheses of Theorems 8 and 9 are true and the
corresponding bounds hold. L&™ (r):r > 0} be the state process when the
control policyx is employed in the:th system. The results in Section 3.3 imply
that

(101) () = lim_ 8 (1)

exists and is nonrandom. The uniform bound on the penalty fungtig (1)) <
w* implies that the sequenc&"™(r):n > ng(e)} is uniformly integrable;
therefore,

(102) 89 (1) =E[8¥ (] = lim E[5" 1],

leading to the following result.
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THEOREM 10. Fixe < , B > 2log(s) and §(0~) such that ¥(0, §(07)) <
w* Then, for all t > 0,

%) (1) € 8.(1){x:0<x < p,Dx<h+4e(h+D p)

103
(109) +D e ™M (p —y(0M))},

where M = diag(u;).
A possible choice fof(07) is an optimal solution of the LP (98).

6. Concluding remarks. In this article, we combined several disparate
research ideas—mathematical programming bounds [Bertsimas, Paschalidis and
Tsitsiklis (1994), Gibbens and Kelly (1995), Bertsimas and Sethuraman (2002),
Bertsimas and Nifio Mora (1999b) and Bertsimas and Chryssikou (1999)], state-
space expansion [Kamath, Palmon and Plotkin (1998)], exponential penalty
functions [Bienstock (2002)] and target tracking—to construct admission control
policies. These penalty-based policies are approximately optimal when the request
are sufficiently granular, that is, when the resource requested by a single request is
small compared to the total capacity. The policies perform well both in the transient
period as well as in steady state. The steady state performance of the penalty
policy is controlled by the target supplied by a linear program, while the transient
performance is controlled by a fictitious system or, equivalently, by expanding the
state space. The penalty-based policies are also able to track arbitrary polyhedral
target sets.

There are several issues that still remain open. From the numerical comparison
of the bounds in Section 3.2 and the simulation results in Section 3.4, it is clear that
in the transient period there is a gap between the performance of the control policy
and the upper bound on achievable performance. This gap is probably because
the capacity of the fictitious systems is too high for the transient period and, as
a result, a larger fraction of the arriving requests get rejected. Thus, a possible
solution would be to dynamically adapt the capacity of the fictitious systems.
While this approach appears to perform well in simulation, we do not have an
analytical justification for it. Also, it is unsatisfying that in the Halfin—Whitt regime
we are not able to prove the convergence of the process over compact intervals (see
Section 3.3). While it appears that this ought to be the case, the discontinuity in
the control makes such a result hard to establish.

From the simulation results for the single-resource problem, it appears that
all the benefits of the penalty policy are simply a consequence of the state
space expansion that results from the addition of the fictitious systems. Further
simulation experiments are planned to test this hypothesis. In any case, state space
expansion is a new technique that is worth exploring further.

In addition, there is always the issue of queuing. Building on the results
developed here, Cosyn and Sigman (2004) [see also Cosyn (2003)] proposed
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penalty-based control policies for a finite capacity model that allows waiting and
reneging. The extension to queuing networks with feedback is still open.

There are also several unresolved issues at the theoretical level. Although
the exponential function allows the proofs to go through, it is not clear if it
is essential to the problem. Young (1995) showed that the exponential penalty
approach for packing and covering problems [see, e.g., Chapter 3 in Hochbaum
(1996)] can be viewed as a derandomization approach, where, at every stage of
the derandomization, one is picking a decision that minimizes a Hoeffding-type
exponential bound on the probability of failure. Something similar might be at
work here; that is, the admission control policy could be minimizing the worst
case bound of leaving the target set. This interpretation opens the possibility that
the penalty policy works because the exponential function is twisting the dynamics
to make the worst sample paths most likely.

Acknowledgment. The authors thank the anonymous referee for helpful
comments.
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