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We study pathwise approximation of scalar stochastic differential equa-
tions at a single point. We provide the exact rate of convergence of the mini-
mal errors that can be achieved by arbitrary numerical methods that are based
(in a measurable way) on a finite number of sequential observations of the
driving Brownian motion. The reding lower error bounds hold in particu-
lar for all methods that are implementable on a computer and use a random
number generator to simulate the driving Brownian motion at finitely many
points. Our analysis shows that approximation at a single point is strongly
connected to an integration problem for the driving Brownian motion with a
random weight. Exploiting general ide&®m estimation of weighted inte-
grals of stochastic processes, we introduce an adaptive scheme, which is easy
to implement and performs asymptotically optimally.

1. Introduction. We consider a scalar stochastic differential equation
(1) dX(t)=a(t, X)) dt +o(t, X(2))dW (),  tel0,1],

with initial value X (0). HereW denotes a one-dimensional Brownian motion, and
a:[0,1] x R — R ando : [0, 1] x R — R satisfy standard smoothness conditions.

In most cases an explicit solution of (1) will not be available so that an
approximationX must be used. Assume that the driving Brownian moti&n
may be evaluated at a finite number of points. Then the following questions are
of interest:

1. Where in the unit interval should these evaluations be made and how should the
resulting data be used in order to obtain the best possible approximation to the
solution?

2. What is the minimal error that can be achieved if at mésvaluations ofW
are made on the average?

The analysis of these problems clearly needs the specification of an error criterion.
The two main approaches in the literature are:

() approximation at a finite number of pointthat is, X is compared to the
solution X at finitely many points in the unit interval,
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(i) global approximationthat is, X is compared to the solutiok globally on
the unit interval.

First results for global approximation are due to Pardoux and Talay (1985) who
studied almost surely uniform convergence of specific approximations. Faure
(1992) determines an upper bound with an unspecified constant for the average
Lo-error of a Euler scheme with piecewise linear interpolation. Complete answers
(in an asymptotic sense) to the questions 1 and 2 above are given in Hofmann,
Muller-Gronbach and Ritter (2001) for the averdgeerror and Muller-Gronbach
(2002b) for the averagk.-error. In these papers the exact rate of convergence of
the minimum error is determined and adaptive methods are presented that are easy
to implement and perform asymptotically optimally.

Much less is known for the problem of approximation at a finite number of
points. Here, the majority of results deal only with upper bounds for the error
of specific schemes at the discretization points; see, for example, Kloeden and
Platen (1995) for an overview. Lower bounds for approximation &tl were
first presented in Clark and Cameron (1980) who considered an autonomous
equation (1) with constant diffusion = 1 and determined the rate of convergence
of the minimal mean squared error that can be obtained by equidistant evaluation of
the driving Brownian motior#v. Rimelin (1982) studied autonomous equations
with a nonconstant diffusion coefficient and presented the order of the minimal
error that can be obtained by Runge—Kutta methods based on equidistant
evaluation of W. The most fargoing result is due to Cambanis and Hu (1996)
who analyzed the mean squared error of the conditional expectatiof(Df
given observations oW at points that are regularly generated by some density.
They provided the rate of convergence of the corresponding mean squared error
and determined the optimal density. Clearly, all these results only provide partial
answers to the above questions 1 and 2. For instance, the implementation of a
conditional expectation will be a hard task in general. Furthermore, considerations
are restricted to numerical methods that are based on samplatgrefixed points
in the unit interval (either equidistant or regularly generated by some density).
Adaptive methods which take into account the particular trajectory of the solution
are not covered. See Remarks 1 and 3 for a discussion.

In the present paper we provide a detailed analysis of approximatios: at
with respect to the questions 1 and 2. Our results cover all numerical methods that
are based on the initial value(0) and finitely many sequential observations

W(ty),..., W(ty)

of the driving Brownian motioriw. Except for measurability conditions, we do
not impose any further restrictions. Théh evaluation point; may depend on
the previous evaluation¥ (0), W(t1), ..., W(tx—1) and the total numbep of
observations oV may be determined by a stopping rule. Finally, the resulting
discrete data may be used in any way to generate an estimator

XQ)=¢(W(r1), ..., W(t))
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of X (1), the solution at = 1. For example, the adaptive Euler—Maruyama scheme
recently introduced in Lamba, Mattingly and Stuart (2003) is of this type.
The error ofX (1) is defined by

ep(X(D) = (E|1X (1) — X(D)|")"7,

wherep € [1, oo[, ande(X (1)) = E(v) is the average number of evaluationsof
used byX (1).

Our analysis shows that the problem of pathwise approximatian=at is
strongly connected to an integration problem for the driving Brownian md#ion
with the random weight

Y@) = M@, 1) 4(r, X (1)), t €10, 1],

whereg =6a©D — 610 _ 460D _1/2. 52502 jnyolves partial derivatives
of a ando, and the one-dimensional random fieldis given by

Mt,5) = exp( | "(@©Y Z1/2. (6 ODY) (u, X () du

QPR
+<[ o (u,X(u))dW(u))

for 0 <t <s < 1. Roughly speakingM (¢, -) is the Lo-derivative of the solution
X with respect to its state at timesee Remark 6.
To give a flavor of our results, lget = 2, and consider the minimal error

e3*(N) =inf{ea(X (D) :¢(X (1)) < N}

that can be achieved by numerical methods using at mNostaluations of the
driving Brownian motion on the average. By Theorem 1(i),

2) Jim N3t (N) = 1/4/12. (E(/Ol|y(z)|2/3dz>)3/2,

which answers question 2 in an asymptotic sense.

For answering question 1 we exploit general ideas from estimation of weighted
integrals of stochastic processes; see, for example, Ritter (2000) and the references
therein. We construct an easy to implement adaptive scrfémewith step-size
roughly proportional tq¥,,(r)|~%/3, where¥y, is a suitable approximation to the
random weigh®y. The resulting approximatioﬁ;fn(l) atr = 1 satisfies

. . 1 3/2
3) nleooc(ngn(l))-ez(ngn(l))zl/«/Tz-(E(/O |y(z)|2/3dz)> ;

see Theorem 2(i). Consequently, by (2) this method performs asymptotically
optimally for every equation (1) with a nonzero asymptotic constant on the right-
hand side above.
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A natural question is whether the asymptotic constantin (3) can also be achieved
by a numerical method based on a prefixed discretization. The answer turns out to
be negative in general. In fact, consider the minimal error

e2(N) =infle2( E(X (D)W (t1), ..., W(tn))):0<n <--- <ty <1}

that can be obtained if the driving Brownian moti#nis evaluated alv prefixed
points in the unit interval. By Theorem 1(iii),

1 3/2
(4) Jm N e = VT2 ([ (EyoR Par)

Thus the order of convergence is stilf X but the asymptotic constant in (4)
may be considerably larger than the asymptotic constant in (2); see Example 1.
Somewhat surprisingly, as a by-product of (4), it turns out that in general the
Milstein scheme does not perform asymptotically optimally; see Remark 7.

In Section 2 we state our assumptions on equation (1). We use global Lipschitz
and linear growth conditions on the drift coefficientthe diffusion coefficient
and partial derivatives of these coefficients, as well as a moment condition on the
initial value X (0).

Best rates of convergence for approximationatl based on point evaluations
of W are stated in Section 3. More specifically, we analyze the minimal errors that
can be achieved iW is evaluated at:

(&) sequentially chosen points, ..., t, with E(v) <N,
(b) sequentially chosen points, ..., 7, withv < N,

(c) prefixed pointsy, ..., ty,

(d) equidistant points/IV, 2/N, ..., 1.

In Section 4 we introduce a new class of numerical schemes, which leads to
asymptotically optimal approximations for each of the cases (a)—(d) above.
Proofs are postponed to Section 5 and the Appendix.

2. Assumptions. We will use the following Lipschitz and linear growth
conditions on functiong : [0, 1] x R — R.
(L) There exists a constaiit > 0 such that
|lft,x) = fe, I <K-|x—yl|

forall r € [0, 1] andx, y € R.
(LG) There exists a constait > 0 such that

[f(t, 0] <K -1+ |x])
forall ¢ € [0, 1] andx € R.
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(LLG) There exists a constaiif > 0 such that
[f(s,x)— f@&,0) <K -1+ [x])|s —1]
forall s, €[0, 1] andx € R.

Throughout this paper we impose the following regularity conditions on the
drift coefficienta, the diffusion coefficient and the initial valuex (0).

(A) () Botha ando satisfy (L) as well as (LLG).
(i) The partial derivatives

410 40D 02 L0 0D ;02

exist and satisfy (L) as well as (LLG).
(iii) The functionso2a®? ando 20 (-2 satisfy (LG).
(iv) The functiono o ©-2 satisfies (L).
(B) The initial valueX (0) is independent ofv and satisfie€ | X (0)|1%” < co.

For instance, (A) is satisfied if the partial derivatives
a®d, gD, i=0,1,2 j=0,123,

exist and are continuous and bounded.

Note that (A) together with (B) implies that a pathwise unique strong solution of
the equation (1) with initial valu& (0) exists. In particular, the conditions assure
that

(5) E( sup |X(t)|16”> <00
O<r<1

as well as

(6) E|X(s)— X(0)**P <c-|s —1[®P,

where the constart> 0 only depends op and the constants from (A) and (B).

3. Best rates of convergence. We consider arbitrary numerical methods for
pathwise approximation of the solutioxi at the pointz = 1 that are based on
a realization of the initial valu& (0) and a finite humber of observations of a
trajectory of the driving Brownian motioW at points in the unit interval. The
formal definition of the class of these methods and subclasses of interest is given
in Section 3.1. Section 3.2 contains the analysis of the corresponding minimal
errors.

3.1. General methods for approximationat 1. A general adaptive approx-
imation X (1) of X (1) is defined by three sequences

V¥ = (Vn)neN, X = (Xn)neN, ¢ = (Pn)nen,
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of measurable mappings
Y, 1 R" =10, 1],
xn (R (STOR GO},
¢n RIS R,

The sequence determines the evaluation sites of a trajectaryof W in the
interval 10, 1]. The total number of evaluations to be made is determined by
the sequence of stopping rules. Finallyp is used to obtain the real-valued
approximation to the solutioX ats = 1 from the observed data.

To be more precise, the sequential observation of a trajeatorstarts at
the knot y1(x), where x denotes the realization of the initial value. After
n steps we have obtained the daly (x, w) = (x, y1,...,y»), Where y; =
wr1(x)), ..., yp = wW,(x, ¥1, ..., yu—1)), and we decide to stop or to further
evaluate w according to the value ofy,(D,(x,w)). The total number of
observations is thus given by(x, w) = min{n € N: x,,(D, (x, w)) = STOR. If
v(x, w) < 0o, then the whole dat®(x, w) = D, (x,w)(x, w) are used to construct
the estimatep, (., (D (x, w)) € R.

For obvious reasons we requir€X (0), W) < oo with probability 1. Then the
resulting approximation is given by

X (1) = pux©.w)(D(X(0), W)).
As a rough measure for the computational cost ¢f) we use
c(X(D) = E((X(0), W)),
that is, the expected number of evaluations of the driving Brownian mad#on
Clearly, a more realistic measure also involves, for example, a count of the

arithmetical operations needed to compktd).
Let X** denote the class of all methods of the above form and put

B =X (1) e X (X)) <N}
Then
s (N) =infle, (X (1) : X (1) € X3}

is the minimal error that can be obtained by approximations that use at¥ost
sequential observations @f on the average.

The number and the location of the evaluation sites that are used by an
approximationX (1) € X** depend on the respective realizatiorof the initial
value X (0) and the pathw of the driving Brownian motiori¥. It is natural to ask
whether, in general, the minimal errary* (V) can (asymptotically) be achieved
by methods that use the same evaluation sites for every trajectd¥y of order
to investigate questions of this type, we introduce the following subclassé§*of
that are subject to certain restrictions on the choice of evaluation sites.

The subclassX* c X** consists of all approximations that use the same
number of observations for every and w. Formally, this means that the



POINTWISE APPROXIMATION OF SDEs 1611

mappingsy,, are constant and=min{n € N: y,, = STOR.

Additionally, we consider the subcla®s c X* of all approximations that
evaluateW at the same points for every and every pathw. Formally, the
mappingsy,, and yx, are constant so that = min{n € N: x, = STORB and
D(x,w) = (x,w(¥1), ..., w()). For instance, if the discretization is fixed, then
the corresponding Euler scheme and the Milstein scheme=ét belong to the
classX. _

Finally, the classx®9'c X consists of all approximations that use equidistant
evaluation sites for the driving Brownian motion.

The definition of the respective cIasSE;, XN, Xy

minimal errorse’ (N), e, (N) ande2?(N) is canonical.

We stress that the clas¥** contains all commonly studied methods for
approximation at = 1 that are based on function values of the driving Brownian
motion. Formally, the corresponding sequengesy and¢ then depend on the
respective drift coefficierd and diffusion coefficient. In the majority of cases,
partial information about the coefficients, for example, finitely many function
values or derivative values, are sufficient to compute the approximatighs

In the present paper we present (asymptotically) sharp upper and lower bounds
for the minimal errors defined above. The upper bounds are achieved by methods
that also need only partial information abautand o. On the other hand, no
restriction on the available information abautindo is present in the definition
of the classX**. Therefore, the lower bounds hold even for strong approximations
that may specifically be tuned to the respective coefficients. As an example,
consider an approximation of the form

X()=EXQIW@), ..., Wiy)),
which belongs to the clask y and might even not be implementable.

®4Ul and the corresponding

3.2. Analysis of minimal errors. Let m, denote thepth root of the pth
absolute moment of a standard normal variable, that is,

00 1/p
mp= ([ @0t e ay)

Recall the weighting procegs from Section 1 and define the constants

1 23 3p/2(p+D\ (p+D)/p
c;;*=mp.(E(/o Y1) dt) ) :

1 3p/2\1/p
Cy=m,- (E( [ yo@ear) )

Co= (/ (EIY 02 ar ) v

p/2\1/p
equi__ . 2
CoM=m, (E(/O 1Y(1)] dz) ) .
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THEOREM 1. The minimal errors satisfy
() iMy—oo N - e (N) = C/v/12,

(i) M y—oo N - €5(N) = C%/V/12,

(iii) 1im y_ oo N - e2(N) = C2/+/12,

(V) M yooe N - S() = 50 V12

Clearly, the asymptotic constants vanish altogetherCffqui = 0. Thus, if

ng“i > 0, then the order of convergence of the minimal errorg 1§ for all of the
above classes. However, note that

ok * equi ok * equi
Crr<Ch=<Cyi, C3r<C5<Cr=<C, ",

with strict inequality in most cases. See Remark 2 for the @gs"a‘ =0 and
Remark 4 for a characterization of equality of the asymptotic constants.

ExAMPLE 1. Consider the linear equation
dX(@t)=a@) - X(@t)dt + B(t) - X (@) dW(t)

with initial condition X (0) = 1. Clearly, condition (A) is satisfied i& and
have Lipschitz continuous derivatives and 8/, respectively. The corresponding
field M is given by

N N

M1, 5) = exp(/ (@ —1/2- B () du +/ Bu) a’W(u)),
t t

and we haveX(t) = M(0,r). Moreover, 4(t,x) = —p'(¢r) - x, so that the
weighting proces$ satisfiesy(r) = —p'(t) - M(0,1) - M(t,1) = —p'(t) - X (1).
Straightforward calculations yield fgre R \ {0},

(E|X (D)]1)Y7 = eleli=L/21813 . /21813,
Thus
C¥=m,- lelli=1/21815 . 1B 123 P12+ D11IBI3
Ct=m, ellelli=1/2:0B15 . 18 12/ ePI2Z1BI5.
Cor= C;,
ngui: m, - ell=Y21BI5 | g/, - P/ P13,
If « =0andB() =b -t with b € R, then
and
Cy* =1b|- e 2°/°,
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which shows that adapting the number of evaluationdtofto the particular
trajectory of the solutionX is essential in this case. Note that the constajit
is achieved by the adaptive method to be introduced in Section 4.3.1. Thus, if, for
exampleb = 5, then, asymptotically, the error of this method is at leg&58
times smaller than the error of any approximation based on a fixed number of
evaluations ofW.
REMARK 1. Clark and Cameron (1980) consider the autonomous equation
dX () =a(X (1) dt +dW (@), X(0)=xeR,
wherea has bounded derivatives up to order 3. They obtain
lim N (E[X(1) ~ EXDIWA/N). ... w(D)[)*?
1/2

_ (/01E<(a/(X(t)))2-exp(Z-/tla/(X(s))ds))dt) /V12

Note that the corresponding weighting process is given by

1
Y@t)=a (X)) - exp(/t a'(X(s)) a’s)

so that the above result is a consequence of Theorem 1(iv).
More generally, Cambanis and Hu (1996) study autonomous equations

dX(@)=a(X@)dt +o(X(®)dW (), X0)=xeR,

wherea ando have bounded derivatives up to order 3. They analyze the minimum
error that can be achieved by methods from the cdasisat are based on so-called
regularly generated discretizations.

To be more precise, lét be a strictly positive density ofD, 1] and define the
discretization

O<t{h)<---<t1(\fl):1

by taking thel / N-quantiles corresponding fq that is,

t(h)

h(t)dt =1/N, I=1,...,N.
Consider the optimal approximation in the mean squared sense
P =Ex@wE), ..., W)

that is based on the observatidﬁfs{t{h)), e W(t,(\f’)) and put

1 1/2
c<h>=(/0 E|y<z)|z/h2<r>dz) .
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If &~ has a bounded derivative, then
Jim N e2(XP (1) = C(h)/V12
Takingh = 1 yields Theorem 1(iv) in the cage= 2, since
e2(XP (D) =eSMN) and (1) =S
Taking

1
() = (E1Y () 12)Y3 E 21/3
0 = (EYORY/ [(EryoR s
yields the minimal constant
Co=C(h") = ir}:fC(h).

Thus, by Theorem 1(iii), the approximatid?%‘*)(l) is asymptotically optimal in

the classX if C> > 0. However, note that the metho?#’*)(l) is much harder to
implement than the asymptotically optimal method introduced in Section 4.

REMARK 2. Theorem 1 determines the rates of convergence of the minimal
errors only in the case of nonzero asymptotic constants. Clearly, these constants
vanish altogether iff with probability 1,

(7) 4(t,X(1))=0  foreveryr [0, 1].

For alarge class of equations, it turns out that (7) holds iff there exists a measurable
function f : R x [0, 1] x R — R such that, with probability 1,

(8) X(@) = f(X(0),1, W(r)) for everyr € [0, 1].

Obviously, if (8) holds, therX (1) can be simulated exactly. Thus (8) implies (7)
by Theorem 1.

Clark and Cameron (1980) provide sufficient conditions for the equivalence
of (7) and (8) in the case of autonomous equations. Slightly modifying their
approach, one can also treat general equations. If, additionally to assumption (A),
the conditions

() a andoX-9 are bounded,
(i) inf; s |o(, x)| >0,

are satisfied, then (7) and (8) are equivalent.

The equivalence of (7) and (8) also holds for the linear equation from
Example 1. Note that condition (ii) above must not be satisfied in this case.
However, (7) implieg8’ = 0 and therefore

X)) = exp(/oz(oe — 1/2-/32)(14) du+ () - W(t)), t €0, 1].
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Finally, assume thai ando have partial derivatives of any order. Then, by a
general result of Yamato (1979), (8) is equivalent to

(6) =0,

which clearly implies (7).
Note that (6*) implies that the Wagner—Platen scheme only uses function values
of the driving Brownian motion; see Section 4. Thus the order of convergence of

the minimal error&f,q“i(N) is at least YN%/2 in this case.

REMARK 3. Rumelin (1982) analyzes a clas of Runge—Kutta methods
based on an equidistant discretization, that is,

X C xequi’

with respect to the mean squared errortat 1, that is, p = 2. For this
class Riumelin shows that, under stronger conditions: and o, the order of
convergence of the corresponding minimal errors &7 1ff ¢ # 0. Moreover,
if g =0, then the order is at least ¥/%/2.

REMARK 4. We briefly comment on equality of the asymptotic constants in
equi

the casg = 2. Clearly,C> = C, " iff there existsy € R such that
EY@®)2=y  forallte[0,1].

Furthermore C3 = C iff there existzg € [0, 1] and a functiony € C([0, 1])
such that, with probability 1,

Yi) =y @) - Y(to) forall r € [0, 1].

Note that the latter condition holds for the linear equation from Example 1 with
y =—B/8'(1) andto = 1.

Finally, by the Markov property o, we haveC;* = C7 iff there exists a
functiony € C([0, 1]) such that, with probability 1,

Y=y @) forallr € [0, 1].

In particular, ifa ando are state independent, thég* =C5 = C> = ||a/||2/3.
REMARK 5. Theorem 1 shows that pathwise approximation at a single point
is strongly connected to weighted integration of a Brownian motion. To be

more precise, lep: [0, 1] — [0, co[ be continuous, and consider the problem of
estimating the weighted integral

1 -
I =f0 o(t) - W(t)dt
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of a Brownian motiori¥ on the basis ofV observations of¥ in the unit interval.
The corresponding minimum mean squared error

e(N) =inf{(E(I — Eq|W (1), .... Wan))H)Y?:0<n <+ <1y <1}
satisfies
Jim N e(N) = 1/v/12- ¢,
where

1 3/2
cp=(/o (p(t))”’*dr) :

see Ritter (2000) and the references therein.
Taking the weight

p(t) = (E(¥2(1)))

yields the constard@; in Theorem 1(iii).
Using the random weight/|, we obtain the random constany, and

Y2 tel0,1],

2/3\\3/2
Gy = (E(C\}Q|)) .
As an illustrating example, consider the linear equation with additive noise
dX(t)=a(t)dt+o(t)dW(t).

Then
1 1
X(1)=X(0)+/0 a(t)dt—i—a(l)-W(l)—/o o'(t) - W(t)dt.

Since X (0) ando (1) - W(1) can be observed, we are basically dealing with the
approximation of the last integral on the right-hand side above. Clearly, in this
case the weighting proceysis nonrandom withlf = —o”’.

REMARK 6. Consider, for every € R andz < [0, 1], the solutionX; , of the
equation
dX;x(s)=al(s, X; x(s))ds +o(s, X;x(s))dW(s), t<s<l1,

with initial value X, , (r) = x. As a well-known fact, the distribution of the process
X:.x on C([t, 1]) coincides with the conditional distribution of the solutidfs),

t <s <1, givenX(t) = x. Due to condition (A), for every > ¢, there exists the
Lz—derivativexg’x(s) of X; . (s) with respect to the initial value, that is,

im E(U/h - (Xpn(5) = X1.4() = X, ,(5))° =0
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Moreover, the procesk; , is the unigue solution of the equation
dX, () =a %Y (s, X, () - X, () ds + 0OV (s, X, 1 (5)) - X] () dW(s),
t<s<l,

with initial value X; () = 1, and is explicitly given by
N
X;’x (s) = exp(/ (a(o’l) -1/2. (0(0’1))2)(u, X x(u))du
t

+f RECE Xf,x<u>)dW<u>);
t

see, for example, Friedman (1975) and Karatzas and Shreve (1991). Replacing
X x by the solutionX yields the defining equation for the field .

4. Asymptotically optimal adaptive schemes. Let k € N and consider the
equidistant discretization

9) t=1/k, 1=0,... k.

Our adaptive method basically works as follows. First, we evaluate the driving
Brownian motion at a coarse grid (9), and we compute a corresponding truncated
Wagner—Platen scheme as well as a discrete approximation to the weighting
processy. Following the main idea for nonrandom weighted integration, the latter
estimate determines the number and the location of the additional evaluation sites
for the driving Brownian motion. The resulting observations are then used to obtain
a suitable approximation of the difference between the Wagner—Platen scheme and
its truncated version. Finally, we update the truncated Wagner—Platen scheme by
adding this approximation.

For convenience we briefly recall the definition of the Wagner—Platen scheme
)A(,‘!‘;P cor(;esponding to the discretization (9). This scheme is definéd\(’l{)DxO) =
X(0) an

X040 = X @) +a(t, XP @) - (e — 1)
+o (1, X)) - (Wtip) — W)
+1/2- (a0 OV) (1, XYP@) - (W (1) — W) = (41 — 1)
+ (010 4 400D _1/2.6(cOD)?)
x (11, XP (1)) - (W(tr41) — W) - (41 — 1)
+1/6- (0(0OD)2 + 026 02) (1, XP(1) - (W (t142) — W(1))°
+1/2- (a®? +aa®Y +1/2. 0242 (14, XPW)) - (11 — 1)?

+ g(tl, )?]\CNP(IZ)) . /

1

141
(

W(s) — W) ds
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fori=0,...,k — 1; see Wagner and Platen (1978). For the definition of this

scheme in the case of a general system of equations, we refer to Kloeden and
Platen (1995).

We stress that in general the Wagner—Platen approximﬁ)ﬁﬁ(l) atr=1
does not belong to the clasé since function values as well as integrals of the
trajectories of the driving Brownian motion are used.

4.1. The truncated Wagner—Platen scheﬁ}(‘@"t. Dropping the last summand
in the definition of the scheme above, we obtain a truncated verglH of
the Wagner—Platen scheme that is based, only on function values of the driving
Brownian motion. FormallyX VPt is defined byX}'"'(0) = X (0) and

Xy ) = X + alo, X)) - (141 — 1)
+o (1, X)) - (W) — W)
+1/2- (00 O) (1, XVPw)) - (W40 — W) = (t102 — 1)
+ (0?9 +40@b —1/2. 0(0(0,1))2)
x (11, X)) - (W (1) = W) - (41 — 1)
+1/6- (0(0OD)2 + 025 02) (1, XVPU1)) - (W ti1) — W(t)°
+1/2- (@9 +aa®Y 1+ 1/2- 6% @2 (14, X)) - (411 — 1)?
forl=0,...,k—1.
4.2. The discrete approximatiof);, of the random weighy. Note that the
random fieldM satisfies the stochastic differential equations
10) dM(t,5) =a®V(s, X (5)) - M(t,5)ds + OV (s, X (5)) - M1, 5)dW (s),
t<s<l,
with initial value
M, t)=1
for everyr € [0, 1].
Using the truncated Wagner—Platen estimates, we thus obtain the following
Euler-type approximation to the fieltl. Put
i = (1+a%Y @, X)) - 01— 1) +0 OV (1, X)) - (W (he1) — W (@)
and define the schem# by

my---My_1, ifl+1<r<k,
1

m(tlatr)z{ ifr=1.
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Now, forl =0, ...,k — 1, we take
Yelt) = Miti1, 1) - § (1, X' @)
as an approximation td(r). Note that, in general, all of the observations
W(t1), ..., W(1) are needed to compute the estimyiigr;).
EXAMPLE 2. Considerthe linear equation with additive noise from Remark 5.

In this case, we have

M, 1) = M, 1) = 1
and

Ye(t) = Y(t)) = =o' (1),
For the linear equation from Example 1, we obtain

Y = =@ - X' w)

k=1

x [T @+a@)- i1 —1)+BE) - (Wtr11) — W)
r=I+1

4.3. The basic adaptive scher®’. Choose measurable functions
f:R¥ - N
for/=0,...,k— 1. The numbers
= fi( Y o), - - -, Yu(te—1))
determine the adaptive equidistant discretizations
u,=n+r/(k - (u+1), r=0,...,u+1,

of the subinterval$s, #;11].

Next, the totality of observation¥ (z;,) is used to estimate the difference
XVP — X"PU Puty = (no. ..., uk—1), and letW# denote the piecewise linear
interpolation ofW at the sites; ,. Define the schem@) by 0/ (0) =0 and

’Q\g (f1+1) = (1 +a®V (1, X)) - (41— 1)
+ 0O (1, X)) - (W (t12) = W) ) - OF (@)
g0 ZPw) - [T - W) ds

1

fori=0,...,k— 1. Note that

—~ -1 —~ r41
(11) 0L =Y Fultr) - / (Wr () — W) dr.
r=0 r
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Finally, the basic schemﬁ,’j is defined by
Xy =X + 0wy,  1=0,... k.

The resulting approximatioﬁ,‘(’“(l) belongs to the clas¥** and is determined up
to the parameterk and . Clearly, the numbek of the nonadaptive evaluation
points should be small compared to the total numpg,; of the adaptively
chosen points in order to keep track of the random welgh®n the other hand,
k must be large enough to obtain a sufficiently good approxima§iprto Y.
Finally, the numben; of observations oW in the intervally, ;1] should be
chosen according to the respective local sizeyofWe present three versions
of X} (1) that are based on this principle.

4.3.1. The schem&;‘,”jn with varying number of observationswf. Choose a
sequenceé, € N such that

(12) lim &, /n = lim_ n/k¥2=0

and put

. 1 kn—1 R 2/3 3/2
Wi, = (k— PREAG] ) :

n =0
Let
o3 Mt 2/3\ & 1 —
n _ Ln' <|%kn(fz)| / / > |G, 0 )'(}S‘kn)p/(p+ )J, if Y, >0,
M= r=0
0, otherwise
and define
~ AIJ_(n)
Xy =Xt
where

(n) = () (n) ).

M Mo oeees Mg -1

Note that the numbeusl(”) crucially depend on the error paramegeif p = 2,
then

w" = n/ky - |G, o |?3).

If p=#£2,then all of the approximation}‘.fkn (t;) have to be computed beforehand
in order to determine the adaptive discretization.

Finally, we mention that the total number of evaluationdiothat are used to
obtain the approximatioﬂ?;* (1) is roughly given by - §P/(P+D where

R/

B 1 2/3 3/2
S_</O 1Y) dt)
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is the pathwise 23-seminorm of the weighting proceYs In general, this quantity
depends on the trajectory gfso that there is no a priori bound on the computation
time available for the user. If all approximations have to be computed in the same
amount of time, the following versioi* of the basic adaptive scheme can be
used. However, note that a price has to be paid for this property; see Theorem 2.

4.3.2.The schemé(* with fixed number of observations 8f. In contrast
to the schemé(** the adaptive discretization used by the schéﬁj,iedoes not
depend on the error paramejerlLet

kn—1

L L(n —kn) - |, (f1)|2/3/ > 1%, (tr)|2/3J’ if Y, > O,
I r=0

L(n —ky)/kn], otherwise

and defineX* = )A(k , wherep ™ is determined by.{", M,((”)_

By definition,
kn—1
n—ky, <k,+ Z M(n) =n
1=0
holds for the total number of observations, so that the resulting approximation
X (1) belongs to the clasX;.

4.33.The schemeX,, with prefixed discretization. Replacing the quantities
| Yk, (t1)| by
1/2

(E1%@)?)

in the definition of the number/s(”) in Section 4.3.2, we obtain the scherg,
which uses the same discretization for every trajectory of the weighting prcess
The resulting approximatio,, (1) thus belongs to the class,. Note that this
method requires the computation of the second momenfs wfiich might be a
difficult task in general.

4.4. Error analysis of the adaptive scheme&low we investigate the asymp-
totic performance of the approximatioﬂ(%fn(l), X (1) and X, (1). Additionally,
we consider the scheme

X‘equi: )’(‘O
which only uses the observatio®(1/n), W(2/n),..., W(1) of the driving
Brownian motionW . Thus Xeq“'(l) e %20 Note thatXeq 'is given by
-1

X2 /ny = XVPYI/n) + Z U (ty) - (W((r +1)/n) — W(r/n))

r=0
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forl=0,...,n.
Recall the constants}*, C3, Cz andCeq“'from Section 3.2.

THEOREM 2. The adaptive schemeK:;*n, Xj;, )?n and the equidistant
schemeX 2 satisfy

(i) im0 (X355, (D) - € (X3 <1)>—1/f2 C,
(i) iMoo - ep(X,*;(l))_l/ﬁ

(iii) 1im - o071 - €2(X,, (1)) = 1/v/12- Co,

(V) lim,_oon - e, (XeM(1)) = 1/v/12. C5M

Combining Theorem 2 with Theorem 1 from Section 3.2, we immediately
obtain

THEOREM 3. AssumeCs®' > 0. Then the scheme®;”,, X and X2 are

asymptotically optimal for pathW|se approximation at= 1 in the respective
classes of methods&**, X* and X9, Moreover if p = 2, then X,, is
asymptotically optimal for pathwise approximatiorvat 1 in the classX.

REMARK 7. We stress that, in general, the asymptotic constésts’12 and
€%/ /12 cannot be achieved by the Milstein scheme. As an example, consider
the equation

dX(t)=o(t)dW (),  X(0)=0,
with o € C1([0, 1]). For a discretization
O=n<---<t, =1,

the corresponding Milstein scheme is glven)og’ ;,(0)=0and

.....

M=) W) - W), I=1...n.
r=0

Straightforward calculations yield

[REN

n—

L) =33"(0"E) (1 —0)°

=0

(13) (ea(X

.....

n—1 3
n?- (XM, (D)= %(Z(G/(Sl))m (141 — n))

=0
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by the Holder inequality. Consequently,

liminf inf M (1) = — (/1| /(;)|2/3dt)3/2 c2

. — o =—.
n—00 " 0<zl<---<t,,:le2 MLseensln - ﬁ 0 ﬁ
Thus, whatever the discretization, the resulting Milstein scheme asymptotically
performs suboptimally with respect to pathwise approximation=at.

Similarly, for the equidistant Milstein schem?ej,” we obtain from (13) that

1/2 equi
I|m n-ex(XM (1) = J:Tg (/ |o/(t)|2dt) :%.

5. Proofs. We introduce an auxiliary schemﬁiuX corresponding to the
equidistant discretization =1/k, 1 =0, ..., k, and separately analyz)é(l) —

< aux ~-aux

X, (DandX; (1) - X foramethodX(l) € X**.The schemak *is defined
by

~-aux

X)) =X ) + 0wy,  1=0,... k.

Here )A(,‘(Npt is the truncated Wagner—Platen scheme (see Section 4.1) and the
schemeQ, is given byQ,(0) =0 and

Qi (t141) = (1 +a%V(y, X)) - (1 — 1)

+o OV (5, X)) - (Wt — WU’») - Qxlan)

~ 1
+ (. XVP ) - f (W) - W) ds

1
fori=0,...,k— 1. Note that
-1

(14) () = Z D (ty) - / (W) — W) dt

Due to Lemma 12 in the Appendlx we have
(15) EIX(D) - X, W)|P = 0(3P/?).

Thus, asymptoticaIIyE|Y2u (@B —AX(1)|P will be the dominating term if is
chosen suitable as a functionafX (1)).

We briefly outline the structure of this section. Basic facts on moments of
integrated Brownian bridges are stated in Section 5.1. Section 5.2 contains error
bounds for the discrete approximatidfy of the random weigh¥. The lower
bounds in Theorem 1 are proven in Section 5.3. The matching upper bounds in
Theorem 2 are proven in Section 5.4.

Throughout the following we use to denote unspecified positive constants
that only depend on the error paramegierand the constants from conditions
(A) and (B) in Section 2.
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5.1. Moments of integrated Brownian bridged.et B denote a Brownian
bridge on an intervdlS, T'] C [0, 1]. Straightforward calculations yield

T 2
(16) E( / B(t)dt) —1/12.(T — $)°.
S
Furthermore, if
S=1w<--<1,,=T

and By, ..., B, are independent Brownian bridges on the interyajs 1], ...,
[tu—1, .1, respectively, then

n—1 7 2

(17) E(Z/ o B,(t)dt) > 1/12- (T — §)3- 1/n?
r=0"7r

by the Holder inequality.

5.2. Error bounds for the estimate;sk. Recall the discrete approximatiowt
of the field .M from Section 4.2.

LEMMA 1. ForO<I<k—1,itholds

E|M(11,1) — M1, )% < c/kP.

PrROOF Note that, by boundednessaf D ando @D,
(18)  E|M(t1, s1) — M(t2, 52)|7 < c-c(q) - (max(|ty — ta], |s1 — s2[))4/?

forallg >1,0<t <s1<1,0<1 <s2<1,wherec(qg) only depends op.
Fix [ and define the proces (1, -) on [z, 1] by My (4, ) = 1 and

M, 1) = My, 1) - (1400 (o, X)) - 0 = 1)
+ 0OV (1, XPY1) - (W) - W)

fort e[t t,y1],r =1,...,k—1.Clearly,M,(1,t,) = M (1), t) forr=1,... k,
and boundedness of®D ando @V implies

(19) E( sup [ M (t, z)|‘1) <c-c(q)

n<t<1l

for everyg > 1, where the constamtqg) only depends o0g.



POINTWISE APPROXIMATION OF SDEs 1625
Letr €[, 1]. Due to (10) we have

| M1, 1) — M (1, 1)[?P

k=1
Sc/ 3 1a©D (s, X (5)) M1, )
-
a®D (1, XVPY) ) My (1, 1) PP 1y 1,11 (5) ds
k-1
/ 3 (0O (s, X () M1, 5)
1

r=I

+c

2p
o 7 r kU, Iy 1ty tr41] S S
( )(t Xl\(N t(t ))J\/{ (t t))]l ( )dW( )

PutV (1) = sup, s, |:M(t, s) — Mi (11, s)|. By the Burkholder inequality,

(k=1
E|V(H)|? < c/ > Ela©V(s, X () M (1, 5)

0=y

a®D (1, XVP) My (1, 1) PPy 1,11 (5) ds
+c ZE|0(0 D(s, X () M1, 5)
=i
o O (1, XVP)) M, 1) Ly, 1,11 () ds.
Lets € [t, ;41]. By (A),
a@V(s, X (5)) - M1, 5) —a®V (e, XVPU,)) - M (11, 1)

< [a®V (s, X (5)) - (M(11, 8) — M(11, 1,))]

+[(@®V(s, X () —a OV (5, X(5))) - M(t1, 1,))|

+ @@V, X(5)) —a®V (5, X1,))) - M1, 1,)]

+1@®V(,, X 1)) —a®P (1, X)) - My, 1)

+1a©@V (6, KPP - (M 1) — Mty 1))
<c-[M(1,s) — M, )]

c-(L+1XI) - s —1r)

+1X () = X ()] + 1X (1) — XP ) - M@, 1)
+c-V(s).
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Observing (5), (6), Lemma 10 and (18), we thus obtain
Ela®Y(s, X(5)) - M(11.5) — a®D (1, XPY1)) - M, 1)

<c-(EIX@t)[* 4+ E|X(s) — X(1,)|*

1/2 1/2

+ EIX (1) — X)PU)4P) Y (E\M @1, 1,)|*P)

+c-E|V($)?
<c/kP +c E|V($),
and the same inequality holds wigh®? in place ofa @Y.
Consequently, for evenye [1, 1],
t
EIVDOI?? <c/kP +c- / E|V(s)|?" ds.
/]
Moreover, by (18) and (19),

E( sup |V(t)|2”> < o0.
n<t<l
Thus, Gronwall's lemma yields

sup E|V(1)|?F <c/kP,

n<t<1l

which completes the proof.(J

LEMMA 2. ForO<I[<k—1,itholds

E|Yi(t) — Y|P < c/kP/2.

PrROOF  Due to (A),
9. X)) — §(0. X)) | = L+ X @) P+ 1XP ) 1?) - 1XP ) — X 1)
and

1.1, XP) | < - A+ 1P @) 1?).
Hence, by (5), (18), Lemmas 1 and 10,
E|Ye(t) — Y@)?
< E|(Mi(tp1. D) — M1, D) - §(0. X™@)|”
+c- E|[(Mu, 1) - (9, X)) — (0, X @))]”

<c (E|My(t141. 1) — M, DIPPY2 - (E@+ | XVP ) %))
1/2

1/2

+c- (EIM@, D)4 (EIX @) [* + EIXPa))*)
x (EIX{P 1) — X (i)1*7)

<c/kP/?,
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which completes the proof.(]

Put

| =

1k—l . k—1 .
R=2 1Y@ R=2 Y [Ju
1=0 =0

LEmMmA 3. If 1< p <2, then
|E(§3p/2(p+1)) _ E(R3p/2(p+1))| < c/kp/Z(p+1).
If p>2,then
|(E(§3p/2(p+1)))2(17+1)/317 _ (E(R3p/2(p+1)))2(17+1)/317| < c/k1/3.

Furthermore
|(E(ﬁ3p/2))2/3p _ (E(RSp/Z))2/3p| S C/kl/s.

PrROOFE Clearly,
k—1

~ 1 ~
IR =Rl <23 1J@) — Y.

1=0
Assume 1< p < 2. Then 3/2(p + 1) <1 and we obtain
E|§3P/2(P+1) _ R3P/2(P+1)| < E|§— R|3P/2(17+1)

k=1 3p/2(p+1)
< E(E > 1Yk t) — y(rz>|2/3>
[=0

k=1 3p/2(p+1)
< <% > ElY(m) — y(fz)|2/3>
[=0

< c/kp/Z(p—l-l)

by Lemma 2, which proves the first inequality.
Next, letp > 2. Then $/2(p + 1) > 1. By Lemma 2,

|(E(§3P/2(p+l)))2(l7+l)/3p _ (E(R3p/2(P+1)))2(P+1)/3p|
< (E|ﬁ_ R|3P/2(p+1))2(p+1)/3p

k-1

= Y 2p+1)/3
=% S (EIGrt) — Yo P/ 0 HD)2eDe
1=0

<c/kY3,

which shows the second inequality. The third inequality is established in the same
way. O
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5.3. Proof of the lower bounds in Theoreln Consider an arbitrary sequence
of methodsX y (1) € XN - Take a sequence of positive integkksthat satisfies

2 l ¥2_ i =
(20) im N/ky NinookN/N 0

N—o0

and assume without loss of generality ttag (1) uses in particular the evaluation
sites

l1=l/kN, l=0,...,kN.

Let a’,(N) denote the number of evaluation points that are used byl) in the
intervally, ;+1[ and put

ky—1 p/2
Ay = ( 3 (Y /(@™ + 1)>2) -

=0
LEMMA 4.
liminf N - e,(Xy (1)) = m,/12Y2 - liminf N/k3/%. (E(An))Y?.
N—o0 N—o0

PROOF By (15),

~aux

(21) ep(Xn(D) = (E[XeX(D) — XnP)Y? — ek,

Let 2y denote they-algebra that is generated by the data use&le) and put
Z=W— E(W|y) as well as
o SWPt et fi+1
V=XyD-X P = > Yy @) /t (E(W®0)IAy) — W) dt.
=0 !

By definition on,f;X and (14), we have
ky—1
~-aux

~ ~ f1+1
Xy =Xy = > ykN(tl)-/ Z(t)dt —V.
1=0 f

Note thatV and the numberd,(N) arefy-measurable. Conditioned &y, the

evaluation sites used U?/N(l) are fixed and the proce&sconsists of independent
Brownian bridges corresponding to the respective subintervals. Hence, by (17),

)

~-aux

E(| Xy, D - Xnv(@)|P|2Ay)

- e

(22) =m/- (E(

kn—1

~ I+
S Gy (1) - / T zwar
=0 u

p

kn—1

—~ f+1
Yy (1) - Z(t)dt
> B |




POINTWISE APPROXIMATION OF SDEs 1629

(S wr ([ zoa) )

=0

Il
3
<%

<

kv—1 p/2
=M ( 3 (Fry @))% - (1245 - (@™ + 1)2)_1>

=0
3,0 k-1 ) p/2
—mb /122 1713 .(Z (Yay /(@™ + 1)) ) .
=0
Combine (21) with (22) to obtain
I]ivm inf N -e,(Xy (1))
ky—1 p/2\ 1/p
>\/_1_2 I|m|an/k3/2 ( (§<gkN<tl>/<d,<N>+1>)2) ) .

Letq = max2, p). Lemma 2 implies

5 <klNZ°l(ykN(W(d(N) ))2)p/2)1/p—(E<AN>)”"

kv—1 p/2\ 1/p
( (Z kam)—y(n)lz) )

ky—1 q/2\ 1/q

(Z Y (1) — Y@ ) )

N— 1/q
( Z (E| Yy (1) — y(f1)|q)2/q)
C.

A

A

Thus, by (20),

ky—1

r/2\ 1/p
liminf N/ ky/? - ( (Z(ykNm)/(d(N) ))2) )

[=0
> liminf N/k32. (E(An) Y,
N—o0

which completes the proof..

Now, we analyze the classg&™, X*, X®% and the class¢ in the casg = 2.
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LEMMA 5.
(i) If Xn(1) € X% for everyN, then
A 3/2 1/p
liminf N/ ky/” (E(An)™" = C3* /m,.
(i) If Xu (1) € X7 for everyN, then
o 3/2 1/p *
liminf N/ k- (E(AN))™? = C/mp.
(iiy If p=2andXy(1) € Xy for everyN, then

liminf N/k2 . (E(An)Y? > Co.
N—o00

(iv) If Xy (1) e %5 for everyN, then
P 3/2 1/p i
liminf N/ky (E(AN)T" = CyM/m,.

PrROOF By definition of X3 and the Holder inequality,

NP/(P+1) . (E(AN))l/(p+l)

ky—1 p/(p+1) L L
=0

ky—1 p/(p+1D
> E (( (@ + 1)) : A,lv/“’“))

=0

kn—1 2/3  jky-1 1/3\ 3p/(2(p+1)
E(( 3 @™+ 1)) - ( S (Y /@ + 1))2) )

1=0 =0

ky—1 03 3p/(2(p+1))
zE(ZIy(n)I/) .
=0

Hence (i) follows from

L 3/2 1/p
liminf N /ky” (E(A))

1 k-t 3p/Q(p+D)\ (p+1)/p
> liminf( E[ = %3
> lir OO( (kN glwm

—

7 kvt 3p/Q(p+D)\ (p+1)/p
> [ E(liminf — m)|?3
_( (N%O . IZZO %)

=C,"/mp.
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By definition of X¢%,,

N EAN = B ((kNi(dz(N) + 1))2 - (kNZl(yu /(@™ + ))2))p/2

1=0 =0

kn—1 3p/2
> E( > |y(n)|2/3) :

1=0
so that

3/2

liminf N/ky (EAn)Y?

1 k-t 3p/2\ 1/p
3Iiminf<E<— 3 |y<tz)|2/3) )
e

N—o0

1 kvl 3p/2\ 1/p
> E[liminf = m)|%3
_< <N%@ . EO Y@

=Cp,/mp,

which proves (ii).
Next, assume = 2. By definition of X y, the numberﬂ,(N) are deterministic.
Thus

ky—1 ky—1
N2.E(Ay) > ( S (@™ + ) (Z E(M@)?/ (@™ +1) )
[=0

ky—1 3
> ( > <E<y<tz>>2>”3) :
1=0
It follows that
kv—1

3/2
||mmfN/k3/2 (E(An))Y >|.m.2§ (kl Y (E (y(tl))2)1/3) = Cy,

N =0
which shows (iii).
Finally, by definition of%5™ the numberg" are deterministic with

) _ (V)
dO - de—l

Hence,

ky—1 p/2\ 1/p
N-(E(AN>)1/”sz(E<Z(m))z) ) .

=0
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Consequently,

o 32 Y o 1 kv=1 X p/2\ 1/p
liminf N/ky® - (E(AN)) pZ'k@ﬁ('E(a g(y(n))) )

1 kvl ) p/2\ 1/p
> | E(liminf — t
_< (;Vnygo o, lgo(y(z))) )
:ngUi/mp,
which completes the proof.(J

Combine Lemma 4 with Lemma 5 to obtain the lower bounds in Theorem 1.
Clearly, these lower bounds yield the lower bounds from Theorem 2.

5.4. Proof of the upper bounds in Theorén Letk € N and consider a basic
schemeX}'; see Section 4.3. Put

k=1 p/2
By = (Z(%k(n)/(uz + 1))2) -

1=0
LEMMA 6.

ep(X1“(1) <m,/12Y2. 1/k%2  (EB))Y? + ¢/k¥/2.

PrROOF Due to (15), we have

~-aux

(23) ep(X (D) < (X — XE1P)YP 4 ¢/k32.
By (11) and (14),

~-aux

X, (D)= XD =0k — 0r(D)
k—1A 4 -
= Yt / +1(W(t) — WH@))d:s.
1=0 i

LetB denote ther-algebrathat is generated By(0), W (z1), ..., W(1), and recall
that the adaptive discretization determined jpyconsists of theéB-measurable
points

‘El’rztl—{-r/(k'(ﬂlﬁ—l)), r=0,...,u+1

Conditioned ornB, the discretization is fixed and the procd¥s— WH consists
of independent Brownian bridges corresponding to the respective subintervals.
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Using (16), we thus obtain
E(IX; (1) — X} (D|”|B)
(24)
k—1

p/2
=mb/12°/2. 1/k%/%. (Z(gkm)/(m + 1))2) .

1=0
Combine (23) with (24) to obtain the desired resulil

Now we turn to the specific schem&$?, , X7, X,, andx&"

LEMMA 7. The schem&;‘,fn satisfies

_ 1 3p/2(p+1)
limsup(c(x;’j‘n(l)))/ngEUO |y(t)|2/3d;> e

and

1 3p/2(p+1)\ /P
limsupn - e, (X5, (1)) <m,/12Y2. (E(/ |y(z)|2/3dz) ) .
0

n— o0

PROOF By definition,

1 3p/2(p+1)
(X35, (1) <kn +n- E( Z |yk<n>|2/3)

kn 125
Observe (12) and use Lemma 3 to get

R 1 3p/2(p+1)
limsup(c (X5, (1)) /n < IimsupE( Z |yk(z,)|2/3>

n—o00 nlO

1 ke 1 3p/2(p+1)
< E(Ilmsup— > |y(z,)|2/3)

’

) 3p/2(p+1)
_ E(/O |y(z)|2/3dz)

which proves the first inequality.
Next, observe that, for the schem@”, ,

kn—1 5 kn—1 3/(p+1)
S (G /(1w +1))? < n?- 2P/ P+ ( 3 |yk<n>|2/3)
1=0 =0
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Hence,

>3P/2(P+1)

1 kn—1 N
1/k3P/%. By, < 1/nP - (k— I AGES
n =0

Using Lemmas 6 and 3, we thus conclude that

_ 1 ka1 3p/2(p+1)\ 1/p
limsupn - e, (X3, (1)) <m,/12"/2. Iimsup(E(k— 3 |‘},£(tl)|2/3> )
n—>oo

oo =0
- mp/121/2 . (E(/Ol |%(t)|2/3dl‘)3p/2(17+1)) 1/17’
which completes the proof.[]
Clearly, Lemma 7 implies the upper bound in Theorem 2(i).
LEMMA 8. The schemeX* and X, satisfy
Iirrln_>solgpn cep(X; (1) < C/V/12
and

limsupn - e2(X,, (1)) < C2/v/12

n—oo

PROOF. By definition of X*(1),

kn—1 kn—1 3
S (G (11” + 1) < 1/ (0 — ky)?- (Z |%<n>|2/3) :

=0 =0
Thus,
kn—1 3p/2
1/k3P/2. By, < 1/(n — k)P - (Z |yk<n)|2/3) :
=0

Use Lemmas 6 and 3 to obtain

R 1 k=1 3p/2\ 1/p
limsupn - e, (X*(1)) <m,/12Y2. Iimsup(E(k— > |y(z,)|2/3> )

n—o0 n—o0 n 1—0

1 3p/2\1/p
<mp/122 (B( [ 1yrean) )

which establishes the first inequality.
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By definition of X, the numbersul(”) are deterministic with

kn—1 kn—1 3
S EIY@) P/ (1™ + 1) < 1/(n — k)2 (Z (E|y<n>|2)1/3) :
=0 =0

Furthermore, Lemma 2 implies

kn—1 5 2\ 1/2 kn—1 2\ 1/2
(Z E|(§c)k<n>| ) S(Z E!gmn ) e

i—o (" +1)? i—o (" +1)?
Hence, by Lemma 6,
kn—1 3
n-ea(Xn () <mp,/12%2 . n/(n — ky) - (é IX(:) (E|y(tl)|2)1/3) te-n/kd?

Observing (12), we get

= 3/2
limsupn - e2(X,, (1)) < m,/12Y2. lim sup(k— > (E|y(tl)|2)1/3>

3/2

=m,/122. (/01(15|y(z)|2)1/3) :

which completes the proof.(]

Lemma 8 yields the upper bounds in Theorem 2(ii), (iii). It remains to establish
the upper bound in Theorem 2(iv).

LEMMA 9. The schem&®% satisfies

limsupn - e, (X$9(1)) < C5/v/12

n—oo

PROOF Lemma 6 yields

_ n—-1 p/2\ 1/p
ep(ffsqu'm)smp/lzl/z-l/n‘*/z-(E(Z@n(mz) ) +c/n3/2,
=0

Hence, by Lemma 2,

) 1 n—1 p/2\ 1/p
n-ep(X3D) < m)y /1272 (E(; 2 |y<1/n>|2) ) +e/nt2.
=0
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We conclude

limsupn - e, (X(1))

n—oo

qn-1 p/2\ 1/p
<m,/12Y2 . lim sup(E(— 3 |y(l/n)|2> )
n—00 n =0

1 /2\ 1/
<m,/1272- (E( [ |y<r>|2dr)p ) "

which completes the proof.(J
The upper bounds from Theorem 2 imply the upper bounds from Theorem 1.
APPENDIX

The goal of this appendix is to establish the error bound (15) for the auxiliary
schemex; " from Section 5. Throughout, we fix a discretization
O=n<---<t=1,

and we put

Ap=rt41—1, Amax=_max A.

.....

Moreover, we usé; to denote the -algebra that is generated By(0) and W (s),
0 < s <t. Finally, we put

Y, = (E|Y|9)Y4

for a random variabl& andg > 1.

We start with error bounds on continuous versions of the Wagner—Platen
scheme and its truncated version. Define proceX¥88 and XWP by XWP{0) =
xWP(0) = X(0),

xWP) = XWPU ) + a(t, X VP @) - (= 1) + o (6, X VP ) - (W) — W)
+1/2- (00 V) (1, XWPw) - (W) = W) = (t — 1)
+ (0(1,0) +ac©D _ 1/2‘0(0(0,1))2)
x (1, XVP') - (W) — W) -t — 1)
+1/6- (0(0©@D)2 + 020D (1, xVPU1)) - (W (1) — W(ty)®
+1/2- (@9 +4a©V +1/2. 62402 (1, XVPU1y)) - (¢ — 11)?
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and

XWPt) = XxWP(t) +a(t, XP)) - (¢ — 1) + o (61, XWVP() - (W () — W(1)
+1/2- (00O (1, xXWP@)) - (W) — W) = (t — 1))
+ (00 a6 @Y —1/2. 5 (cOV)?)
< (11, XVP(e)) - (W(6) = W) - (t — 1)
+1/6- (0 (0 OD)2 + 025 02) (1, XWP(1y)) - (W(t) — W(tp)®
+1/2- (@9 +aa®V +1/2. 62492 (1, xVP(1y)) - (t — 1)?
+ 60, XVP(1)) - /J(W(s) — W) ds

fort ey, 541],1=0,...,k—1.

LEMMA 10. The processex"WPtand XxWP satisfy

0 sup E|XWPn) 1 <,
te[0,1]
(ii sup E|XVP@0)|* <,
tel0,1]
as well as
(i) sup E|X(1) — XWP) % <c- Al
t€[0,1]
() sup E|X(1) — XV <c. A%,
te[0,1]

See Kloeden and Platen (1995) for a proof of (ii) and (iv) under much stronger
assumptions on ando than stated in (A) in Section 2. For a proof of Lemma 10
under condition (A), we refer to Muller-Gronbach (2002b).

Next, define the proces3 by Q(0) =0 and

0 = (1+a®Y (1, X"Pw) - (t — 1)

+ O (5, x WPy - (W () — WUI))) Q@)

t
+6.(1n, XWPa) - f (W(s) — W) ds

1

fort e [1, 1,41]. Note thatQ (1)) = Q, (1)) for an equidistant discretization (9).

LEMMA 11. The proces® satisfies

sup E|Q(0)[* <c- A%,
t€[0,1]
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and
sup E|Q@t) — Q)|* <c- A8,

tely, 11l

PROOF Fixt e[y, f;41] and let
U=2+a%Y, x"@)- ¢ —n)-0w)., V=00-U.

Putg = [2p] and note that 4 <2 < 8p. Letr € {1, ..., 2¢}. Observing (A), we
have

(25) E(VI'NF,) <c- 10| - —0)"?+c- 1+ 1X"PapI") - (¢ —)>7?
as well as
UI"<(14c-t—1n)-10@]".
Moreover, ifr is odd, then
E(V"|F,)=0.
Hence,

2q
E((Q)X|F,) =U% + ) (2:1) U E(VT|F)
r=1

<(A+c-(t—m)-10u)*

q
rer 3 (B) 0@ - (141X P ) - ).
r=1
Use Lemma 10(i) to obtain
q
IOWI5; = (L+c- (=) - QW5+ (é‘r’ ) ez -« —m*
r=1

<(A+c-t-mw): |||Q(tz)|||2 +e =) (102 + (¢ — 1))

< (Ltc-(t—m)- QW5 +c- (¢t — )+,

so that the first inequality follows from Gronwall’s lemma.
Due to (25) and Lemma 10(i),

E\VP <c-E|Q@)* - (t — 1) +c- (t —1)>.
Thus, by (A) and the first inequality,
E|Q() — QW)I* <c- (t —1)® - E|Q(@)*! +c- E|V? < ¢+ Ay,
which proves the second inequality]

Finally, we consider the process
xaux _ XWPt+ 0.
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LEMMA 12. The proces 2" satisfies

sup E|IX(1) — X2X0)|P <c- A2,
1€[0.1]

Note that Xa¥(#) = qux(tl) for an equidistant discretization (9). Conse-
quently, Lemma 12 immediately implies (15).

PROOF OFLEMMA 12. In view of Lemma 10(iv), it is enough to show

(26) sup EIX"P(r) — X2X0)|P < - A2,
te[0,1]

Let
g1=1/2000,
g =019 1 460D _1/25 (0(0’1))2,
g3=1/6(c (0(0’1))2 +02%602),
ga=1/2(a*? + aa® 4 1/252402),
g5 =9.
Fix ¢ € [, ;41] and put
A=a(h, XVP)) —a(y, XVPY 1))
—a®%P (1, X)) - (xPa) — xVPw)),
B=o(n, X"P1)) — o (1, xVP1))
0(0,1) (tl, XWPt(tl)) . (XWP(IZ) _ XWPt(tl))
as well as
U= (X"P) — x2Xw) - (1+a%Y (14, xVP'@)) - (¢ — 1)
and
V=A-(t—1)
+ (e @V (e, xWP) - (XYP) — X31)) + B) - (W (1) — W (1))
g1(t, X)) - (W) = W) — (¢t — 1)
— ga(t1, XYPa)) - (W) = W) - (t — 1)
(W) — W)
(t —1))?

+(

(a(, XVP() — g1t

(g2(tr, X"P(1) — ga2(t

(ga(t, X"P() — ga(er, X*VP't)
(8a( ) — gl

(s5( ) — gs(

ga(tr, XVP(1)) — galtr, XP(ty)

t

gs(t, XP()) — gs (11, XWPy) f (W(s) — W) ds

1

+ o+ + +

)-
)
)
)
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By definition,
XWPr) — X3 =U + V.
Due to (A), we have
|gn (t1, XVP(1)) — gn(tr, X VP1)) |
<c (141X P) - 1xVP@) — x VP
forn=1,...,5,and
Al <c- 1 XYPa) — xVP a2, 1Bl < e 1XYPa) — XV 12,
Putg = [p/2] and note thap <29 <2p. Forr=1,..., 29, we obtain
U1 < @+c- =) 1XVP@) — X2 X))
as well as
E(IVI"|F) < c- 1XYPa) — X3 - (t — )2
+e- | XYP() — XVP) - (1 — )72
+e- (L+ XY - 1 x VP — XV =)
Moreover,
|E(VIF)| =A@ — 1)+ (ga(tr. XV (1) — gatr, XVP'@))) - (¢ — 1)?]
<c 1XWP) — XV P (- 1)
+o- (L4 1XYPa)1?) - 1X WP ) — XVP)) - @ — )2,
Hence,
E(Xx"P(t) — X1 |%| 7,)

2 Zq 2q—r r
= (%) vr B )
r=0
<(L4c-—n) 1XVPa) — X314
<l 2q WP aux 2q r/2
+e- Yo ( ) 1X @) = XEa)* -« — )
r=2

+c-2q- U (14 1xXYPap ?) - 1 xWPa) — x WP - (0 — 1)?

<! 2q 2q—r WP, \ 2
+c- ) C )1l (41X

r=2
x | XWP() — xWPYa) |- — )"
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2q
2 _
+e ), ( r") AU P XY @) — XV (- 0)T?
r=1

<(A4c-(t—1) 1XVP@y) — X3 |%
2q

2 _
+c-2( r") AU (14 1 XVP @)
r=1
x | XWP@) — xRN - (0 — )2
2q 2
+C . Z ( FQ) . |U|2q—r . |XWP(tl) _ XWPt(l,l)|2r . (t _ tl)max(l,r/Z)
r=1

By Lemma 10, we get
E(UIP™ - (14 XY@ ) - 1xYP @) — x VPl
<UL (E(@+1XVPan ™) - 1xWP(e) — x WP %))
< IUIE" - @+ 1XYPa ) - 1XWPwm) — XVl

<c- IXYP@) — Xx*u)liss ™" - Aax

and similarly
E(UIP™ - 1xYP(0) — x VP 7))
< WUl ™ - 1xWPa) — x WP g,
< e IXWP@) — XA 5 A
Thus,

2
(R OED GOl

< (1t —m) - 1XWP@m) — X2@)|)5!
2q 2
fet—1)- Y ( r") IXYP@) = XAX a5~ - AFLE
r=1

< (Lt —m)- 1X"Pw) — X35
et =) - (IXWP@) — X2%0)llzg + AY2)
< (e @ —m) - IXWP@) — X)L +c - (c — 1) - A,

Now apply Gronwall's lemma to complete the proof]
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