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Let A, = (“ij)z"l,jzl be ann x n positive matrix with entries in
[a,b], 0 <a <b. Let X;, = (Wxij);szl be a random matrix, where
{x;;} are iid. N(0O,1) random variables. We show that for large

det(XnTX,,) concentrates sharply at the permanentgf in the sense that

n~Llog(det X[ X,,)/ perAy,) —n—so0 O in probability.

1. Introduction. For asetF C R and integera > m, denote byM (n, m, F)
the set ofs x m matrices with entries iF'. PutM (n, F) =M (n,n, F). Let 8, be
the symmetric group of permutations acting{dn...,n}. For A € M (n, C), the
permanent oA is defined as

perA = Z Alo(1)425(2) " * " Ano(n)-
oed,

The permanent of a 0—1 matrix is of fundamental importance in combinatorial
counting problems. The computation of the permanent of a 0—1 matrix was shown
to be a #-complete problem [15], and, hence, (under standard complexity-
theoretical assumptions) not possible in polynomial time. Since then the focus
has shifted to randomized approximation methods. The most fruitful method
available at present is that of the Markov chain Monte Carlo. In a recent paper
Jerrum, Sinclair and Vigoda [10] refined the Markov chain Monte Carlo method
to obtain a fully-polynomial randomized approximation scheme for computing the
permanents of arbitrary nonnegative matrix.

A second probabilistic method was derived from the following basic observa-
tion. Assume

{x;;} are independent random variables satisfying
(1.2)

E(xi;) =0, E(xf) =1.
ForAeM(n,R,), let

(1.2) X(A) = (Vayxi)); o ZA)=XA)X(A).
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Then (see [2]),
1.3) E(detZ(A)) = perA.

In other words, def(A) is an unbiased estimator of the permanent. The
computational advantage of this estimator lies in the well-known fact that
the determinant of a large matrix is fast (polynomial) to computex; \fare
Bernoulliwithx;; € {1, —1}, then the above estimator is called the Godsil-Gutman
estimator [7]. In [2], Barvinok considers the concentration of the estimator (1.3)
in the casex;; are Gaussian, complex Gaussian and quaternionic Gaussian. (Of
course, moving from real to complex, quaternion or higher-dimensional Gaussians
entails some adjustments in the algorithm’s description. Namely;f}rm)pearing

in (1.1) should be replaced witlxij|2 for an appropriate norm-square, and the
determinant which makes up the basic estimator should be redefined accordingly.
We refer to [3] for a complete discussion of this point.) More precisely, for any

3 > 0, Barvinok shows that

P(} log detZ(A,)

su
P n perA,

¢ llog y,al) .o,
AneM (n,[0,b]) n—00

wherey ~ 0.28 if x;; are Gaussiany ~ 0.56 if x;; are complex Gaussian and
y ~ 0.76 if x;; are quaternionic Gaussian. In a more recent preprint [3], Barvinok
suggests the possibility of taking lpgany small negative number if eaaty is
replaced by & x k random matrix with Gaussian entries provided thats a
large enough integer. Along these lines, the work of [4] choase® be random
signed basis elements of a Clifford algebra (of dimension on the orde?) aind
proves that in this case[@etZ(A,)?]/E[detZ(A,)]? is bounded independently
of n. Such control of the second moment of the estimator provides concentration
via Chebyshev’s inequality. Further, since Clifford algebras have representations
in terms of real, complex or quaternion matrices of appropriate size, the results
of [4] imply that there is very good concentration for real matrices of dimension
polynomial in» when the matrices are selected from a set of basis matrices.
However, it remains an open question whether this Clifford algebra estimator can
be efficiently computed at large dimension. In a sense, both [3] and [4] are guided
by the same principle: introducing more randomness at the level of the entries
should produce additional averaging and so sharpen the concentration.

In the present note we take a different approach. Our goal is to show that, in
fact, good concentration is already present witk 1, if one is willing to look at
a restricted class of matrices. In particular, we consider the case where the entries
of A, are uniformly bounded both from above and away from zero. We do this
in a slightly more general framework, considering rectangular as well as square
matrices. A consequence of our main result, Theorem 2.1, is the following:
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COROLLARY 1.1. Let 0 <a < b be given. Assume {x;;} are independent
identically distributed N (0, 1) randomvariables. Then, for any § > 0,

detZ(Au)| _ 5) o

perA,

Note that while the restrictiom > 0 is stronger than one would like (it precludes
the important 0—1 matrices), some sort of condition on the entries of the matrices
is needed as the the example4f = I,, shows. We will have more to say on this
point later on.

It has recently been pointed out to us that for the case considered here, namely,
with entries bounded above and below, the algorithm of [11] can be adapted
to yield a polynomial time @ (n#)) algorithm with polynomially bounded error
for computing the permanent. Still, we believe there is an intrinsic interest in
the present analysis of Barvinok’s algorithm. On one hand, there is the inherent
simplicity of the algorithm, with worst case performance bounds, and our results
give improved performance for a restricted class of matrices. On the other hand,
a study of the algorithm’s performance leads directly to rather delicate questions
regarding the spectrum of a certain class of random matrices. Indeed, our proof of
the above corollary is based on recent concentration resultsiderfunctionals
of the spectral measure of random matrices [8]. However, since the function
log() is not nice enough (it is not globally Lipschitz), a more detailed analysis
has to be performed to evaluate the behavior of the bottom or so-called hard
edge of the spectrum af (A,). This analysis, which is inspired by ideas of
Bai [1], introduces some refinements of current concentration techniques which,
we believe, are interesting in their own right and may be applied in other contexts.
Indeed, followers of the random matrix theory literature will recognizezhg,,)
matrices considered here as a natural class of perturbations of the well-known
Wishart or Laguerre ensembles.

The structure of the paper is as follows. In Section 2 we introduce our
general model of rectangular matrices, state our main theorem, present the basic
concentration result we need, and show how the main theorem follows as soon as
an integrability condition of the lower tail of the spectrumfA,,) is verified,
see Condition 2.1. Section 3 is devoted to the verification of Condition 2.1 under
appropriate assumptions on the entriesApf In Section 4 we study théat
case Ju; ;= M(n,m,[1,1]), n > m. Of course, in this case péf,, = (nf—Ln),

Our purpose is to point out that for rectangulgy,, wherem < 6n, 6 < 1, one
immediately gets better concentration than Corollary 1.1. For general;, we
show that a simple polynomial sampling approximates/pgrto within an error

of order one, also tighter than the resultin Corollary 1.1. Finally, in the Appendix,
we present a more complete study of the lower tail of the spectrud(dy)

. 1
lim sup P(— log
=00 4, eM(n,la,b]) \I

where Z(A,,) isdefined by (1.2).
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by taking advantage of its integrable structure. This analysis, which possesses
independent interest, reveals that our Condition 2.1 needed in the course of the
proof of Theorem 2.1 is arguably a mild condition.

2. Preliminaries and main result. Let A € M(n,m,Ry) (recall that then
m < n). Let also Q,, , denote the set of all strictly increasing sequenges
{a1, ..., 0} C (n), where (n) = {1,2,...,n} and setAla, (m)] = (aq;;) €
M (m,R,). Then, we define thpermanent of A as

perA= Y perAfe, (m)].
aeQm,n

If Aisa0-1matrix,then pet counts the matchings ofétcorresponding bipartite
graph.

ForA € M(n, Ry), and random variables;;} satisfying (1.1), the identity (1.3)
is immediate, see, for example, [2]. In fact, (1.3) extends to the rectangular case.
Indeed, forA € M (n, m, Ry), defineX (A) = (/a;;xij) andZ(A) = X (A)T X (A)
as before. Then, using the Cauchy-Binet formula, one finds

E(detZ(A)):E( 3 detX[a, (m))” X[a, <m>]>

a€Qm,n

= Y  E(detX[x, (m)]" detX[a, (m)])

aeQm,n

= Y perAla, (m)] = perA,

aeQm,n

proving that (1.3) holds true in this case as well.
Our main theorem can now be stated:

THEOREM 2.1. Let 0 < a < b be given. Assume x;;,i,j =1,..., are
independent identically distributed N (0, 1) random variables. Then

1
(2.1) lim sup P(—| logdetZ (A, ) —logperA, ,| > 8) =0,

"0 Ay meM(nm,la,b)) \T

for any § > 0.

Part of the proof of Theorem 2.1 hinges on tailoring certain concentration of
measure results to the present setting. To describe these results we must introduce
a variety of notations. First, foB(m, R) C M (m, R), the set of (real) symmetric
matrices, let, for anyB € S(m, R), denote byr1(B) < A2(B) < --- < A, (B) the
eigenvalues oB counted with their multiplicities. Recall the spectral factorization
B = 0D QT with orthogonal Q, its adjoint 97 and D the diagonal matrix
of eigenvalues. This allows one to view a real valued functforon R as a
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function from S(m, R) into S(m,R) via f(B) = Qf(D)QT, where f(A) is

again diagonal with entrieg (A1(B)), f(A2(B)), and so on. And so, along with
traceB =" ; A;(B), we may define

tracef(B) =) f(x(B)),  detf(B)=][]sf(n(B)).

i=1 i=1
Next, for f : R+ R, bring in the Lipschitz norm
x) = f»)
7 =sup! FOI.
x<y =yl

a function f being referred to as Lipschitz whefy: < oco. Lastly, recall that a
measure onRR is said to satisfy the logarithmic Sobolev inequality with constant
if, for any differentiable functiory,

2

2.2) /_Z leogffzdv

The general concentration result of [8], which makes up the backbone of our proof
may now be introduced.

Assume thatX € M(n,m,R) with all x;; mutually independent with laws
satisfying the logarithmic Sobolev inequality with uniformly bounded constant

o0
dv < 2c/ | £/ 12dv.
—o0

ForZ = (%X)T(%X) and f Lipschitz, Corollary 1.8(b) of [8] states that
1 1 2 2
(2.3) P(‘— tracef (Z) — E[— tracef(Z)]‘ > 8" + m) < ZGX{—M]
n n n 2cf;

for any$ > 0. For us the individual entries af = X (A) are Gaussian, which are
well known to satisfy (2.2). On the other hand, we would like to apply (2.3) with
f = the logarithm which is not Lipschitz. This is circumvented by introducing a
cutoff: for fixede > 0, define

log® x =log(x Vv ¢),

which you will note is Lipschitz. Along with this we set deB) =[]/ (A (B) Ve).
Finally, for A = (a;;) € M(n,m,R;), we defineA = A//n + m and remark that
since

detZ(A)  detZ(A)
perA ~ perA

it is enough, when proving Theorem 2.1, to consider matriggs, € M (n, m,
la//n+m,b//n+m]).

With that said, the form of the general concentration result (2.3) that we will
need is stated next as a lemma, the proof of which is deferred to the end of the
section.
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LEMMA 2.1. Under the assumptions of Theorem 2.1, let ¢ € (0, 8b2) and

O<s,,n=1,..., beaseguencedivergingto co. Then, for any § > 0,
. 1 ~
lim sup P(—| logdet Z(A,.m)

(2_4) n—>OOAn.meM(n,m,[0,b]) Sn

— log E[det Z(A, »)]| > 3) =0.

The statement remainstrueif e = ¢, — 0asn — oo, solong aSS,,e,f — 0.

That is, concentration holds at any rate if the small eigenvalues are ignored by
way of the cutoff logarithm. Extending beyond the cutoff requires the following
integrability condition alluded to above.

Let A, C M(n,m, [0, b]).

ConDITION 2.1. There exist sequences — 0, s, — oo, such that

spe2 — oo and

1 1
(2.5) limsup sup P(— > log—————— 8):0.

= >
n—00 An,mefAn.m Sn )\i(Z(An.m))<5n )LI(Z(An,m))

Theorem 2.1 is a direct consequence of the following two propositions.

PROPOSITION2.1. Fixb < oo and assumethat 4, ,, satisfies Condition 2.1.
Then, for any é§ > 0,

(2.6) lim sup P<1|IogdetZ(An,m)—IogE[detZ(An,m)]|>5>:0.
n— sn

o0
An,m eeA’n,m

PrROPOSITION2.2. For 0 <a <b < o0, theclass of matricesM (n, m, [a, b])
satisfies Condition 2.1with s, = n and ¢, = (logn) .

Certainly it is of theoretical interest to extend the result of Proposition 2.2 and,
thus, Theorem 2.1 to classes of matrices allowing some number of zero entries. As
indicated above, there also exist important applied problems for which such aresult
would be of great use. In this direction we have only the following observation in
the case of what we refer to as strictly rectangular matrices. It was pointed out to
us, together with its proof, by Silverstein.

PrROPOSITION 2.3. Consider the class of matrices contained in M (n, m,
[0, b]) such that m = m,, satisfieslim,_.,(m/n) =0 < 1. Restrict further to the
subset of those matrices such that the maximum number of zero entries in any
column is bounded by [yn] for all large n with all other entries contained an
interval [a, ] bounded away from zero. If, moreover, y < 1—6, then Condition 2.1
is satisfied with s,, =n and any ¢, — 0.
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We conclude this section with the proofs of Proposition 2.1 and its supporting

Lemma 2.1. The proofs of Propositions 2.2 and 2.3 are deferred to Section 3.

PROOF OFPROPOSITION2.1. Take an elemem, ,, € 4, , and for fixed
8 > 0 define the numbers

gn(&n, 8) = P<i| log de'gnZ(A,,,m) —log E[detan(A,,,m)H > 8)
Sn

and
1

Sn

= P(i > log—— " 5)

= >
1 3 (Z Kpm) <t i (Z(Anm))

hp(gn, 8) i= P( (logdet, Z(A, ) —logdetZ(A, ) > 5)

appearing in the simple bound
2.7) P<$| logdetZ(A, ) —logE[det, Z(A, »)]| > 28)
< 8n(en, ) + hy(en, ).
Next note that, as long as pé&s , > 0, one may apply Chebyshev’s inequality to
the ratio %8 Ann) 14 produce
perA

1 - -
(2.8) P(—(Iog detZ(A,. ) — logpera, ,) > 28) <e P
Sn

forn=1,2,.... Both here and above we are interestes,in co while ¢,, | 0.
Now take a small positive’ < 1/4 and notice that by Condition 2.1 and
Lemma 2.1, there exists a large enough integet, ¢’) so that

sup  {gn(en,8) +hn(en,8)} <& and e <¢  foralln>N(,é).
An,meﬁn,m

Hence, for eacit,, ,, € A, ., and eacl > N (3, ¢'), the set oiZ(A,,,m) satisfying
both inequalities

1 - -
—|logdetZ (A, m) — logE[det, Z(A,..)]| < 25,
Sn

1( logdetZ (A, ) — logpera, ) < 23

Sn

has probability at least & 2¢’. Further, since pet, , = E[detZ(A, ] <
E[det, Z(A, )], it follows that

1 1 1 /
—|logperA, ,, — logE[det, Z(A, )] <48 forn > N(,¢').
Sn
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(Note that we deal here with a deterministic difference, hence, if it is bounded
above with a positive probability then it is actually bounded above.) Combining
the above inequalities with (2.7) we deduce that

1 - -
sup P(—| logdetZ(A, ) — logperA, )| > 66) <¢

Ap.m€Anm Sn
forn > N, ¢,
completing the proof of Proposition 2.100

PROOF OFLEMMA 2.1. Applying (2.3) with the choicg = log®, we obtain

L S ogt o (70A 1 [
P( m—_HlZIOQ )Li(Z(An,m)) - m—_'_nE[Zlog Ai (Z(An,m)):| = 8)

i=1 i=1
The particular form of the right-hand side rests on the readily che@kegt) » =
1/¢ and the well-known fact that a centered Gaussian distribution has logarithmic
Sobolev constant equal to its variance. Next set

U =logdet Z(A, ) — Eltracelod Z(A, )],
and note that (2.9) yields for any- 0,
P(U| > 1) < 21/ @),

(29) < 26—(m+n)28252/(8b2)'

Thus,
0
EleV]1 <E[V] < 1+/ SPU| > 1) dt
0

<1+ Zfooet—eztz/(8b2) dr <1+ 262[?2/82.
= 0 =

We conclude, together with Jensen’s inequality, that
Eflogdet Z(A, )] < log E[det Z(A,.n)]

< Ellogdet Z (A, )] + log (1 + 2627/%%).

This, together with (2.9), yields immediately Lemma 2.1 in the case of fixed
But by inspecting the above bound, one sees that eves if, | 0, the statement
holds so long as the conditimﬁsn — oo is respected. [

REMARK 2.1. Itis natural to ask what can be said about the performance of
the Godsil-Gutman algorithm under the same conditions on the mtiikat is,
whether the Gaussians in our statement can be replacgd Bernoullis. Toward
that, it is true that other concentration results of [8] provide a statement similar
to (2.3) as long as the individual laws of the entries{odire compactly supported.
However, as we will see in the next section, the isotropic property of the Gaussian
is essential in our proof of Proposition 2.2.
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3. Controlling the small eigenvalues. We now remove the cutoff introduced
in the logarithm necessary to go from the concentration inequality of Lemma 2.1
to our main result. That is, the proof of Proposition 2.2 is carried out. In fact, we
prove the following slightly stronger statement.

PropPoOSITION3.1. For all £ small enoughand all n > m + 3, it holds that
1 1

lo
(3.1) sup E[— > log _ } < elloge| (n+mm
An€M (n,m,[a,b]) n 2 (Z(Ay)) <e ri(Z(Ay)) a nn—m+1)

Further, for any n > m,

1 1
(3.2)  limsup sup E[— > Iogi} =0

100 ApmeM@mlab) LM, oo Ai(Z(An)
assoonase, = (logn)~%.

Indeed, Proposition 2.2 follows from @. by Chebyshev’s inequality. Note
also that in the strictly rectangular case, limsup, (m/n) < 1, (3.1) shows that
&, may be taken to go to zero arbitrarily slowly. The proof of Proposition 2.3 uses
a variant of (3.1); the details are reported at the end of this section.

The proof of Proposition 3.1 makes essential use of the following simple
observations.

LEMMA 3.1. Let V be an element of M (n, m, R) with statistically indepen-
dent entries drawn from continuous distributions. Denote by vy the kth column
of V and by V; the matrix formed by deleting v, from V. Then, de(V’ V) % 0 and
det V! Vi) #0, as. Further,

detvTv) = det V! Vi)[vl (I — Vi (VI Vi)~V )]
(3.3) T T
=:det(V; Vi)lv; Prucl,
fromwhich it follows that [(VT V)~ = (] Prvr) L. Py isa projection, almost
surely onto a subspace of dimensionn — m + 1, and P and v are independent.
When V = X(A) for A € M(n, m, [a, b]), one has that v, = Dyx; with Dy =

diag(/ax1, ..., /ar ), and
n—m+1

(3.4) vl Peok =x{ Dk PiDexk = Y higm—1(Dix Py D)3,

i=1
wherethe {%;¢};;, areindependent standard Gaussiansand, for each k, {%ix}7_;
and {; (D Px Dy)}_, are also independent. Furthermore, we have the bound

n—m+1 n—m+1 n—m+1

35  a Y #h< Y hiwmu(DkPDOiR <b Y i
i=1 i=1 i=1
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PrROOF The representation (3.3) is commonly exploited in the type of random
matrix estimates required below. See, for example, [1] where it is used repeatedly.
To understand it, recall the interpretation of #étV as the square of the volume
of the parallelepiped spanned by the column vecigys. ., v,,. Clearly, this is the
same as défkTVk times the square of the length of the projectiorvpfonto the
space orthogonal to the span of the column#jgfbut this is just what (3.3) says.
That P, andv; are independent is clear from the definitions.

Now in the case ofV = X(A), one simply notes that the quadratic form
kaDkPkaxk may be diagonalized by setting, = Qx; with an appropriate
orthogonal matrixQ. By isotropy, the entries of the vectdf remain independent
standard Gaussians. The bound on the eigenvalues follows from considering the
Rayleigh quotient: withy = Dk_lz,

' Pz _y'DiPDyy ' Pz 2T Pz
a < = <b :
'z yTy D% T e

From the min—-max theorem, one sees that for,all
aki(Py) < A (D PyDy) < bA;(Py).

As Py is a projection onto an — m + 1 dimensional subspacg;(P;) = 0 for
i <m—21andi;(Py) =1fori >m — 1, completing the statement

PROOF OF PROPOSITION 3.1. We begin with the rectangular casg; <
M(n, m,[a, b]), n > m + 3 (for economy of space, we will omit the subscript
from A, ,,). By the monotonicity ofx log(1/x) for x € [0, %], it follows that for

. 1
any positives < =,

1 1
DY o9 7@
n ~ .
M(ZA)<s i(Z(Ap))
(36 e|loge| & 1 ¢|loge| &
< = [Z(An) i = My
n ,;M(Z(An)) n ,:2;

By Lemma 3.1 eachZ(A,)~1];; is stochastically bounded as in

[Z(A) i <a  (n+m)Uj .,
whereU; , is distributed as one overé random variable witl — m + 1 degrees
of freedom, the mean of which one can compute exactly:
fooor(n—m—3)/26—r/2dr 1

Uil = e D22y = =4 1

Thus, one finds that for < 1,
elloge| (n+m)m
a m—m+DLn’

E[M,] <
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which explains the bound (3.1).

To complete the proof of the proposition, it is enough to consider 2m.
Take A, € M(n, m, [a,b]), and denote the columns of(A,) by %1,...,%n
[%; = (n +m)~Y2D,;x; in previously used notation]. Recall the following identity
for the determinant from Lemma 3.1:

det(Z(A,)) = det(Z((A,)1))[x] Pix1].

By (A,)1 we mean the matrix formed by the lagt— 1 columns ofA,. The
matrix P1 projects onto thén — m + 1)-dimensional space orthogonal to the span
of the columns ofX ((A4,,)1); it is independent of the vectay.

The above may be iterated: first applying the identity taq AdétA,)1)) and so
on. We take a positivé = 6, < 1, and after carrying out this proceduied, |
times, we write the outcome as follows:

[n6y,]
det(Z(A,)) =det(Z(By) [ [%] Pexr]-
k=1
Here B, € M (n,my, [a, b]) is the matrix formed by the lask, = m — [n6,]
columns of4,,, and eachP; is an(n — m + k)-dimensional projection independent
of x;. The above equality is re-expressed as

1 1
= ) log———
M ZGy<ey  Mi(Z(An)
1 1 1M
= — IO _— — = IO _'TPi_i
-2 9 GG ; 9 Pixi)

2i(Z(By))<en
(3.7)

+ %[ Yo loghi(Z(AD) - Y |09Xi(Z(l~3n))}

M (Z(Ap)=en 2 (Z(Bn))>en
=1, +1l,+1l,.

The point is that the estimates obtained for the strictly rectangular case may be
directly applied toB,, and so tol,,. That is, we know from (3.1) that there exists a
numerical constanf'; such that

Jlloge,
(3.8) E1,] < ¢ 09!

n
for all sufficiently largen. The termlIl,, may also be handled by previous
considerations. From Lemma 3.1 it follows that: withe y; < b for all i and{x;}
independent standard Gaussians,

yl)?f—i----—l-yk)?,f)}
n+m

—Ellog(x} Prix)] = —E[Iog(

<log(n +m) — loga — E[log£?].
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The last expectation is certainly finite and so there is a conslarjtlepending
ona only) such that

52
(3.9) Elll,] < —(w)E[Iog ] ] < C26, logn.
n +m

n

As for the last term to be bounded)],, first note that by the interlacing
inequalities for any < m,,,

M(Z(AR) < M(Z(By)) < Mo, (Z(An)).

Thus, ifl* is t~he smallest such that; (Z(B,)) > ¢,, theni«_1(Z(A,)) < &, and
}Vl*—i—[nén] (Z(Ap)) = &y. _ _
Now for eachl such that;(Z(A,)) > ¢,, the term containing lo&; (Z(A,)) is
paired with the corresponding object in tBg sum. The contribution tdll, is
1 M(Z(AW)

—log—————= <0.
n.— x(Z(By))

In this manner it is possiple that the largdsat,] of the 1;(Z(A,))’s and the
smallest[n6,] of the;(Z(B,))’s in lll,, remain unpaired. That is,

1 m - 1 l*+rn9n] »
My<= > |loghi(Z(A)|+= > [logk(Z(By))|
i=m—[n6y] LA

(3.10) -
< 46, max(|loge,|. logi,(Z(A,)))

for all n large enough. The random variable remaining on the right-hand side is, in
turn, controlled by

- ~ 1
E[*.(Z(Ay))] < E[traceZ(A,)] = n_'_—mE|:§:aijxi2ji| <bn,
an admittedly crude but sufficient bound.
Lastly, (3.8)—(3.10) are combined to produce

{3 ot

0g -
0 (ZAy<en M2 (AR)

&,|l0ge
_ ¢ 011008

+ C26, logn + C36,(|loge, | + logn)

n

for all large enough. The proof is then finished by choosifig= (logn)~2 and
en = (logn)™. O
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PROOF OFPROPOSITIONZ2.3. For simplicity taken = m,, = [n6]. Tracing
the proof of the bound (3.1), one comes to the inequality: with agais A, ,

%E[ > log ;}

mZAm<e  (Z(An))

elloge| ] ~
(3.11) < 098 S e 2, U
no
_ elloge|(n + [161) “’Z‘”E[ 1 ]
n =1 ka(DkPka)xk '

Further bounding above requires controlling the eigenvalué¥,. &, D, from be-

low. This was previously accomplished by a Raleigh—Ritz argument (Lemma 3.1).

In the case that there are some number of zero entries this needs to be replaced by
the more sophisticated inequalities of Fan [6].

Note that with the number of zeros in any column boundedy], P, still
projects onto arnin — [n67] + 1)-dimensional subspace (a.s.). The problem lies in
the zeros on the diagonal &f.

Now for any invertible nonnegative Hermitian matri¥; and nonnegative
Hermitian M», Fan [6] gives us that

M—l
(3.12) M S M
in which AIM is theith largest eigenvalue of the matr (twice). By continuity
this inequality still holds whed/; has some zero eigenvalues. It is to be applied
in this setting withM1 = P, andM, = D? (the eigenvalues aby P, Dy and Py D?
being the same). With that, (3.12) reduces to

Dy Py Dy

D?
k
<Aiv1

nol1+i =
Therefore, ifD;, hasn — [yn] eigenvalues larger than(or thekth column ofA,,
has at least that many entries similarly bounded below), iheP, D, has at least
(n — [ny] — [n6]) eigenvalues larger than

By assumption the above holds for eaddind 1— y —6 > 0. Thus, the Gaussian
quadratic form in the denominator of (3.11) is stochastically larger éhtmes a
x2 random variable of degree at lea4y2)(1 — 6 — y)n for all large enough.
The right-hand side of (3.11) is then bounded by a constant (dependiagyon
andg) timese| loge| and the statement follows.(]

A

4. The flat case. This section is devoted to a study of the flat case-
Jum, n > m. This special case is typically referred to as the Laguerre or Wishart
Ensemble in the random matrix theory literature. Of course Jpgeris easily
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computed, and there is no need for an approximate algorithm. However, we
wish to emphasize two points in this simpler setting which suggest our general
concentration result for the permanent may not be optimal.
The first point focusses on the strictly rectangular case. We have the following:
PrRoPOSITION4.1. Letn > m,, n,m, € N and assume that {xij};f’]@l are
independent identically distributed N (0, 1) random variables. Suppose that

(4.2) lim supﬂ <6<l
n—oo N
Then for any sequence s,, diverging to oo,

1
lim P(—| log detZ (Jum,) — log perdum, | > 8) =0.

n—oo Sn

On the other hand, for flat matrices of more general shape we introduce a new
polynomial-time estimator that approximates the permanent to within order one
error. The statement follows.

PROPOSITION4.2. Défine ¥, = n=@+P) Y"1/ x1 in which each X7 is an
independent copy of det(Z (J,,,,)) with n > m and p > 0. It holds that

(4.2) P((1 =8 pertum = Yp < (1+8) persum) =z 1 — 5=

for all n > 2.

Both propositions are easily explained. The first is a consequence of the
nice result of Silverstein [13] which says that if (4.1) holds, tb\an(fnmn))
converges in probability to a positive constantias> co. In other words, in this
setting Condition 2.1 trivially holds for all small enough.

Proposition 4.2 makes use of the well-known result (see again [13]) that
the determinant ofZ(J,,) has the distributiony2x2 ;- x2_,,,,. Here the
notation refers to the distribution of the product of independent random variables
with the indicatedy? distributions. A proof of this fact may be drawn from
revisiting Lemma 3.1, as follows: Let denote an element &l (n, m, R, ) and
Ay the matrix formed by removing theth column. Again bring in the random
matrix X (A) with columns byx, ..., X, with X = Dix;. Lemma (33) provides
that

det(Z(A)) = det(Z(An))[x] Dy P Dyx]
(4.3)

m m [[n—k+1
= [ [x{ DiPcDixi] = [ | [ > Ki+k—1(DkPka)fi2k}’
k=1 k=1L i=1
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in which the last equality is in law with thgg;;} independent standard Gaussians.
In the flat caseA = J,,, is affected byD; = I for all k, which is to say that
i (Pr) = 1 wheni > k. The advertised distributional identity follows.

The use of this is in computing moments of @gt,). That is,

" n!
pert,, = E[detZ(J,,)] = E[ I sz} -
k=n—m+1 (I’l - m)!
which we knew before, but now also
E[detZ (Jum)1* = E[ I1 (xkz)z}

k=n—m+1

I N 2
= J] « +2k)_[7(n_m)!] I <1+%)

k=n—m+1 k=n—m+1

n! 2 "2 (n+1)2 n! 2
S[m—m)!} exp(,ZE>5 4 [m—m)!}'

=k
With this estimate, the proof of Proposition 4.2 follows easily from Chebychev’s
inequality.

The guestion posed here is whether either approach [taking advantage of either
the restrictive geometry as in (4.1) or the determinantal formula (4.3)] might lead to
similarly sharp concentration in the more genéviah, m, [a, b]) case. Believing
that this should be so really comes down to believing that the bottom of the
spectrum ofZ(A) for A € M (n, m, [a, b)) is not much worse than that &f(J,,,,,).

Of course, providing support for the latter statement has been the main technical
goal of the present work.

APPENDIX

A large part of the above argument entailed proving a certain integrability of
the logarithm of the small eigenvalues of a Wishart-type matrix. It is interesting
that the issue of controlling the bottom of the spectrum comes up in a great many
problems (see, once more, [1] for an example). While not directly relevant for
the study of the permanent, we wish to point out in this appendix that an exact
analysis of the flat casd,() reveals a much stronger integrability than that proved
in Proposition 3.1. It is natural (and an underlying theme of this paper) to suppose
the actuality of the more general cddén, [a, b]) is similar. For brevity we present
the computation in the complex setting (the computation in the real case employs

B Ry /—1xl
Pfaffians and requires nontrivial modifications), whete/,);; = (%)

with xi]j-’l independent standard Gaussians. In fact, we note that in this case [12]

have computed the law of the determinantaf/,)*Y (J,).
Our result is the following.
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PROPOSITIONA.1. For Y(J,), an n x n matrix with entries independent
complex Gaussians of mean O and variance 1/./n, the eigenvalues A; of
Y (J,)*Y (J,) satisfy

. . 1
lim lim E[— Z ){“} =0
8_)011—)00 n

ri<e

forany o < 1/2.

PROOF The present ensemble is integrable in the sense that the joint density
of the eigenvalues,, ..., A, is known explicitly [9]:

P()\'lv )\'25 ’)\'Vl)

_ N 2
A1) _C,,exp[ nZk,}H(A, Aj)

i=1 i<j

’

1 n—1
== det[e—’”f/z"“f/2 > \/ELQ(nM)\/ﬁLQ(nM)}
n: k=0 0<i,j<n—1
where L9 denote the Laguerre polynomials: the famil ’3} orthogonalized
k g poly k g

xk*Be=* 0on [0, oo). From the determinantal formula (A.1), you may derive the
eigenvalue density

1 n n—1
pn(x) = E|:— Z Sap (x):| = ¥ Z (Lg(nx))z.
= k=0

By Christoffel-Darboux and the rules

d 1 1 1
L@ =-Ly and L) = LT+ L0,

there is also the form
pn(x) =ne™™ [j—ng(nx)Lg_l(nx) - Lg(nx)%LS_l(nx)]
=ne " [LEmx)LE ,(nx) — (L1 ;(nx))?).
Thus, the integral to be examined is
(A.2) n /0 (LA ) LY (nx) — (LEy(nx))2]e " dx.

Near zero, it is known [14] that~/?L1(x) < Cnx? for 0 < x < K /n with a large
constantk , which allows you to dispel of the integral (A.2) fer< K /n?: either
term is of order

K/n2 K/n
n/ x ¢ (e_"x/erll(nx))zdx < Cn2+°‘/ x4 dx = 032,
0 0
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For what remains, one needs the following (see [5]): uniformly oa £ < cv
(c<l,v=4n+4),

e"2L ()

(A.3) 1 1/2

=02 ( L) [a0vem)+o(tuem)]

wherey (1) = (1/2)vt — 12 + (1/2) sin" L /7, f(t) =1 for r < 1,1~ Y/2 otherwise

and J; is the Bessel function. We consider= nx,x < ¢ <« 1, on which
V' /Y (z/n) ~ /x. Note also that

w/2J1(2) ~ \/iZ coSz — 3 /4) for z 1 oo.

Substituting (A.3) into the restricted integral (A.2), we first consider terms
involving the second factor in (A.3). On the randgé/n® < x < ¢ we have
n3—‘//22f(vw(z/n)) < en™32xY% and J1 (v (z/n)) < ¢/+/nx, yielding the contri-
butions of order

&
”/ XV ¥R dx = 0 (22
K/n
and
&
”/ X NE A/ @AY dx = 0 (),
K/n
both vanishing fon — oo as soon a& < 1/2. That leaves us with

&
/ X “pu(x)dx
0

[ x_“%[ll((n + DVE) (= DVE) — J2(nx )] dx

K/n?

_}/s x—“%]l((n-i-l)«/;)./l((n—1)ﬁ)dx+O(n—1+2a)'

n JK/n?
For the first term on the right-hand side, the integrand is overestimated as in
|cog(n+1)/x)cog(n —1)/x)—cog(ny/x)| < x for0 < x < e. The remaining
integral is then controlled by a constant multiplefgf, . xV2Zma gy — gl/2—a _
0 (n?*~1). The second term is even easier: the boup@z) < C/./nz shows it
to be of orden1/n?) fg o x~¥% *dx ~n*~1 O
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