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Let X = {X,:n =0,1,2,...} be an irreducible, positive recurrent
Markov chain with invariant probability measure. We show that ifX
satisfies a one-step minorization condition, thercan be represented as
an infinite mixture. The distributions in the mixture are associated with the
hitting times on araccessible atom introducedavihe splittirg construction
of Athreya and Ney Trans. Amer. Math. So@45 (1978) 493-501] and
Nummelin [Z. Wahrsch. Verw. Gebiet8 (1978) 309-318]. When the small
set in the minorization condition is the entire state space, our mixture
representation af reduces to a simple formula, first derived by Breyer and
Roberts Methodol. Comput. Appl. ProbaB. (2001) 161-177] from which
samples can be easily drawn. Despite the fact that the derivation of this
formula involves no coupling or backward simulation arguments, the formula
can be used to reconstruct perfect sampling algorithms based on coupling
from the past (CFTP) such as Murdoch and GreeS&ahd. J. Statis25
(1998) 483-502] Mltigamma Coupler and Wilson'sRandom Structures
Algorithms 16 (2000) 85-113] Read-Once CFTP algorithm. In the general
case where the state space is not necessarily 1-small, under the assumption
that X satisfies a geometric drift condition, our mixture representation can be
used to construct an arbitrarily accurate approximation twom which it
is straightforward to sample. One potential application of this approximation
is as a starting distribution for a Markov chain Monte Carlo algorithm based
onX.

1. Representingr asamixture. Let P(x,dy) be a Markov transition kernel
on a general state space, B(X)) and write the associated discrete time Markov
chain asX = {X,:n=0,1,2,...}. Fort e N:={1,2,3,...}, let P'(x,dy)
denote the-step Markov transition kernel correspondingRo Then forn € N,

x € X and a measurable sgt P'(x, A) = Pr(X;,, € A|X, = x). Throughout the
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paper we assume thatis w-irreducible and positive Harris recurrent wheres
the invariant probability measure; for definitions see Meyn and Tweedie [(1993),
Part I]. For an arbitrary measuge and functiong, we use the usual notation
P! (i, A) = [y P'(x, A)pu(dx) andpu(g) = [y g(x)p(dx).

The assumptions we have made guarantee the existence of alN, a
probability measure on B(X), asmall setC with 7(C) > 0 and arnes > 0 such
that for anyx € C,

P"(x,A)>ev(A)  YAeBX).

For ease of exposition, we consider only tteongly aperiodiccase in which
m = 1; that is, we assumg satisfies ane-step minorization condition

1) P(x,)>¢ev() VxeC.

A minorization condition allows for the celebratesplitting constructionof
Athreya and Ney (1978) and Nummelin (1978, 1984). To be specificgfC,
we can use (1) to writé® (x, -) as a two-component mixture

(2) Px,)=ev()+ (1 —-8)R(x, ),

whereR(x, ) = (L — &)~ 1(P(x, ) — ev(")) is called theresidual measurelefine
R(x,-)tobeOife =1.

If X,, € C, then (2) can be used to generatg,; sequentially as follows. Draw
3, ~ Ber(e). If §, =1, then takeX,,,1 from v(-), else takeX,, ;1 from R(X,, -).
This can be formalized by introducing theplit chain, X’ = {(X,,8,):n =
0,1,...}, which lives on the spack x {0, 1} and has Markov transition kernel
given by

[e6+(1—¢e)(Q1—-6)]P(x, A), if x¢C,

P'[(x,0), A x {8}] = { [66 + (1—e)(1—8)]R(x,A), ifxeC,

and
[e6 + (1 —&)(1—8)]P(x, A), if x ¢ C,
[e6+ (1 —¢e)(1—8)]v(A), if xeC,

wheresé € {0, 1}. It is clear that, marginally, the sequer{cg,:n =0, 1, ...} from
the split chain is equivalent (in distribution) 2. Also, the measure’ defined by

7' (Ax {8 =n(A)[ed+ (1—e)(1—9)]

is invariant for X’. The key to our argument is that the set= C x {1} is an
accessible atorfMeyn and Tweedie (1993), page 100] and the (random) times at
which X’ entersx areregeneration timedDefinez,, to be the first return time to;

that is,

P'l(x,1),A x {8§}]]= {

Ty = Min{n > 1:(X,, 8,) € al.

Also, let Py () and E/(-) denote probability and expectation conditional on
(Xo, 80) € «; that is, conditional onX; ~ v(-). It follows from Kac’s theorem
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[Meyn and Tweedie (1993), Theorem 10.2.2] thatfg) < oo. Hence, we may
define a nonnegative, nonincreasing sequépge? ; that sums to one by putting

_ Pl(ta=1)

3 —

©) P T E ()

Now, for anyr € N and any measurable s&f define
(4) 0:(A) =Pry(X; € Alty 2 1);

that is, Q; is the conditional distribution oX, given that(Xo, 8o) € @ and that
there are no regenerations in the split chain before tiriiée now state the first of
our two main results.

THEOREM 1. Let P be a Markov transition kernel on a general state space
(X, 8(X)). Assume that the associated Markov chakh is w-irreducible and
positive Harris recurrent wherer is the invariant probability measuréssume
further that the minorization conditiofi) holds Then for anyA € B(X), we have

(5) m(A) =) 0:(A)ps,

=1

wherep; and Q;(-) are defined a{3) and (4), respectively

PrROOFR Applying Meyn and Tweedie’s (1993) Theorem 10.2.1X6 and
using the fact that’(A x {0, 1}) = 7 (A), we have

1 (e e] (e e]
TA)=———) PL(X; €A, 1a>1)=) Pl(X;€Alta>1)p.
EO((‘L—O{) [Zl l‘=1

Representation (5) is appealing from a simulation point of view because it
reveals the potential for drawing from by randomly drawing an element from
the set{Q1, 02, O3, ...} according to the probabilitiegs, p», p3, ... and then
making an independent random draw from the cho@enThis idea is closely
related toperfect samplingFill (1998) and Propp and Wilson (1996)], which is
a simulation method wherein a Markov chain with stationary distributiois
used to produce independent and identically distributed (i.i.d.) samplessftrom
In fact, it is shown in Section 2 that whah = X, there are direct connections
between (5) and perfect sampling. We show in Section 3 th¥tafso satisfies a
drift condition, our mixture representation can be used to construct an arbitrarily
accurate approximation af from which it is easy to sample. Finally, in Section 4
we explain how this approximation to provides a new method of dealing with
theburn-in problem in Markov chain Monte Carlo (MCMC).
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2. The case where C = X: perfect sampling. Consider the special case in
which C = X, which of course implies that is 1-uniformly ergodicIn this case,
X, € C for all n and, hencer, ~ Geqe); that is, Pg(t, = 1) = e(1 — g)' 1
for t € N. Plugging into (3) yieldg, = £(1 — &)~ so thep,s are also geometric
probabilities. The distributio®; is also quite simple whe@ = X. Indeed, if there
were no regenerations in the split chain before tinthis means that, after having
drawn X1 ~ v, the residual measur®, was applied — 1 consecutive times to
get X,. We state this as a corollary.

COROLLARY 1. Under the assumptions of Theorémf C = X, then

(6) (A=Y el—e) TR, A),
t=1

whereR%(v, A) is defined as/(A).

It is possible to derive (6) directly without using (5). Indeed, consider a Markov
transition kernelM, on the general spacg, B(2)) that takes the fornM (z, -) =
ou() + (1 — w)K(z,-), where K(z,-) is a y-irreducible Markov transition
kernel on the same spaqe(-) is a probability measure o8(Z) andw € (0, 1).
Theorem 2 of Breyer and Roberts (2001) shows 1t o (1—w)/ K/~ 1(u. )
is an invariant probability measure faf. Now note that when (1) holds with
C=X,thenP(x,-)=¢ev(-) + (1 —&)R(x,-) for all x € X and it follows thatr
can be written in the form (6). (It is interesting to note thAis positive recurrent
even if K is badly behaved, e.g., transient.)

Corollary 1 immediately yields the following algorithm for sampling fram

ALGORITHM I.

1. Simulatex; ~ v(-) and, independently,~ GeQ).
2. Ift =1, takexy, else simulate the transitiof) 1 ~ R(x,,-)forn=1,...,r—1
and takex,.

Algorithm | is exactly the Multigamma Coupler of Murdoch and Green [(1998),
page 486] which is a perfect sampling algorithm basedcoupling from the
past (CFTP) [Propp and Wilson (1996)]. Note that we have used our mixture
representation of to derive this algorithm with no appeal to coupling or backward
simulation.

Breyer and Roberts (2001) show, in the context of their catalytic perfect
simulation algorithm, that Corollary 1 can also be used to derive Wilson’s (2000)
Read-Once CFTP algorithm. We now give a slightly different and more detailed
description of this connection which culminates in a statement of the algorithm
that Wilson described on page 93 of his paper [Wilson (2000)]. We begin with
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a Markov transition kernel§, on the general state spaee B(X)), such that the
associated Markov chaif, = {Yy, Y1, ...}, is w-irreducible and positive Harris
recurrent wherer is the invariant probability measure. LetX x (0,1) — X be a
function such that it/ ~ Uni(0, 1), then for anyx € X and any measurablé,

Prigx,U) € A]=S(x, A).

Now forn e Nlet G, : X x (0,1)" — X be defined through compositions gfas
follows:

Gl’l(x’ ulv ’un) :g(g(g(x7u1)’un—l)vun)

For example,G3(x, u1,u2,u3) = g(g(g(x,u1),u2),us). Clearly, if Uy, ..., U,
are i.id. Un{0,1), then G,(x,U,,...,U,) has distribution S$"(x,-). If
Gu(x,u1,...,u,) is constant inx for some fixed (uy,...,u,), we call

G,(x,us,...,u,) acoalescentomposite map.

REMARK 1. Wilson’s setup is actually a bit more abstract than ours. First,
he does not assume as much as we do about the structure of the “random
function” g. Second, Wilson assumes that the user possesses an efficient, but
imperfectmethod for checking whethe®, (x, u1,...,u,) is coalescent. This
method will never incorrectly conclude coalescence, but may miss the fact
that a particularG, (x, u1, ..., u,) is coalescent. When this imperfect method
concludes tha&, (x, u1, ..., uy,) is constantinx for some fixedus, ..., u,), then
G,(x,u1,...,uy,) is called “officially coalescent.”

Suppose that € N is such that whed/4, ..., Uy are i.i.d. Un{0, 1), we have
(7) Pi{Gi(x,Uy,...,Uy) is coalescent= ¢ > 0.

As an example, consider the Markov chain Xe= {1, 2, 3} whose evolution is
described by the probability transition diagram given in Figure 1. For this chain,

1
2

FiG. 1. Probability transition diagranfor a Markov chain orx = {1, 2, 3}.
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we could takeg as follows:
g1, u)=2, 82, u) =210,1/2)(u) + 3[1/2,1)(u)
and

g3, u) = I02/3)(u) + 21[2/3,1)(ut).

It is not difficult to see that RG1(x, U7) is coalescent= 0, but P{G2(x, U1, U2)
is coalescent=1/4.
Now if we setP = S*, then for any measurable sét

P(x,A)=PNiGy(x,Uy,...,Uy) € A]
=eP{Gr(x,Us, ..., Uy) € A|Gy is coalescent
(©) + (1—¢)PiGi(x, Uy, ..., Ur) € A|Gy is not coalesceint
=ecv(A)+ (1—¢e)R(x, A),

where we have defined(-) andR(x, -) in an obvious way. Drawing from(-) is

quite simple—just simulate i.i.d. copies @, ..., Uy) until the observed value
of Gy(x, U1, ..., Uy) is coalescent. Drawing from (x, -) can be done similarly by
waiting for the first nonoalescent value of;(x, Uy, ..., Uy). Therefore, ife is

known, Algorithm | can be applied to make draws fram

The beauty of (8), however, is that it can be used to simulate froeven
when e is unknown! Indeed, assume that (7) holds, but that the exact value of
¢ is unknown. Note that application of Algorithm | does not require knowledge
of ¢, it only requires the ability to simulate from the Gep distribution. But
simulating Z ~ Ged¢) is easy—just generate i.i.d. copies @fy, ..., Uy) and
let Z be the number of trials required until the first coales«esitc, U1, ..., Ur) is
observed. Moreover, the byproducts of simulatihgreZ — 1 i.i.d. noncoalescent
Gir(x,U1,...,Ur)s and an independent coalescéntx, U1, ..., U). All of this
is formalized in the following algorithm, which describes how to use (8) to
simulate fromr.

ALGORITHM II.

1. Simulate a coalesce6 (x, Uy, ..., Uy). Call its values.

2. Draw independent copies ¢4, ..., Uy) (where the components akei.i.d.
uniforms) until the observed value @f;(x, Uy, ..., Uy) is coalescent. Let
denote the number of trials required and write thebserved values of
Un,....Up) as(u;1,...,uix), i=1,...,¢.

3. Take

Gi(-  Gr(S, Uyt 1y v s Up— 1) UL Ty e e ey ULE)-
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Algorithm Il is exactly Wilson’s (2000) Read-Once CFTP algorithm. It lends
itself to iteration. IndeedGy (x, u; 1, ..., us ) iS coalescent and isot usedat
step 3. Thus, it can be used at step 1 of the next iteration of the algorithm.

We end this section with an interesting interpretation of Corollary 1. Because
C = X, we can assume that all transitions X¥fare made using (2). Now, each
time a regeneration occurs, that is, each time a draw is madevffonwe have to
wait a Geds) number of iterations before the next draw framAnd, of course,
the residual measur&, is used in between. Thus, what Algorithm | is actually
doing is returning the states immediately prior to the draws frorilence, an
intuitive way to state Corollary 1 is as follows: The states of the Markov chain
immediately prior to regenerations have distributionWilson (2000) attempts
to connect this to the PASTA (Poisson Arrivals See Time Averages) phenomenon
from the continuous time literature.

3. ThecasewhereC # X: approximating . While things are more difficult
when C # X, it is still possible to make draws from the distributi@d using
a simple accept-reject algorithm. All that is required is the ability to simulate the
split chain. Note thaQ1(-) = v(-), so in the algorithm, it is assumed that 2.

ALGORITHM III.

1. Take(xp, 60) € @ and simulate the split chain foiiterations.
2. If,foreachi =1,2,...,t — 1, (x;, 6;) ¢ «, then takex,; otherwise, repeat.

Jones and Hobert (2001) provide some practical advice on simulating the split
chain.

Let 7 denote a discrete random variable with sup@®rsuch that RiT =
t) = p;. The ability to randomly draw an element from the §@t4, 0>, O3, ...}
according to theprobalilities pi, p2, p3,... is tantamount to being able to
simulateT. While T ~ Gede) whenC = X, its distribution is quite complicated
whenC # X. On the other hand, making i.i.d. draws from the distribution,ois
straightforward—just tak&'; ~ v(-), run the split chain, and count the number of
iterations until the first regeneration. Unfortunately, despite the simple relationship
between their mass functions, it is not clear how to use i.i.d. draws from the
distribution ofz, to geti.i.d. draws from the distribution @f. Hence, we focus on
using (5) to construct an approximationsto

Let {p;};2, denote another nonnegative sequence that sums to one and let
T denote the corresponding discrete random variable, that (g, £rr) = p,.
Consider an approximation af given by

9) n()= Z Q:()pr.

=1
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Note that

7 () =7l =

o o0 o

Y0P =D 0O pi| <D Ipi = pul-

=1 =1 =1

Thus, the total variation distance between the distributiorend 7 is bounded

above by twice the total variation distance between the distributiofisawfd 7 .
We now show that, under an additional assumptiorXoffior any giveny > 0,

it is possible to construct a sequengg}>°, such thaty_2, |p; — p;| <y and

such that making i.i.d. draws from the distribution Bfis straightforward. The

assumption is that the Markov chaihsatisfies ggeometric drift conditionthat is,

for some functionV : X — [1, 00), somei < 1 and someé < oo, we have

(10) PV(x) <AV(x)+blc(x) VxeX,

wherePV (x) := [, V(y) P(x,dy). Itis well known that (10) combined with the
smallness of the set implies that the Markov chaiXX is geometrically ergodic
[Meyn and Tweedie (1993), Chapter 15]. We will need the following result, which
is a combination of Theorems 2.3 and 4.1 in Roberts and Tweedie (1999).

THEOREM 2 [Roberts and Tweedie (1999)]Let P be a Markov transition
kernel on a general state spack, 8(X)). Assume that the associated Markov
chain X, is w-irreducible and positive Harris recurrent where is the invariant
probability measureAssume further that the minorization conditi@t) and the
drift condition (10) both hold Defined = sup..c V(x), A =sup.¢c PV (x) and
J = (A — ¢)/Xx. Then the generating function,E8%) converges foB € (1, )
where

1. If J <1, thenp*=x1"1,
2. If J>1,then

g = logxlog(l—e) } <t
logJ —log(1—¢)
Furthermore letting ¢ (8) = log 8/ logr~1, if B € (1, B*), then

1-8(1-¢) ]ﬂ—z
1-1—e)(J/(1—e)®

Pla(te = 1) < BLV(V)]P® [
(11)
—g(Boe DB,

REMARK 2. In applicationsv(V) may be difficult to calculate. Fortunately,
there is a simple upper bound. Indeed, an application of Lemma 1 from Hobert,
Jones, Presnell and Rosenthal (2002) yields) < 7 (V)/[ex (C)]. From (10) we
know thatr (V) /7 (C) <b/(1— i) and, hencey(V) <b/[e(1— A)].

We are now in a position to state the second of our two main results.
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THEOREM 3. Assume the hypotheses of Theonfix y > 0 and 8 €
(1, B*). Let T be the random variable supported ¢h ..., M} with probabilities

Pry(tq > 1)
YL Pl(ta 2 5)
whereM is any integer larger than

2g(B,e. J)
w252

pr=

Then|z () =7 (Il <.

PROOFE First,

& - Y P (e = 1) Pr, (4 > 1)
Z |pe — pel = Z‘ ey
=1 =1 EO((‘EO[) ZS:]_ Pl‘a (Ta > S)

N Pry(ty >1)
t:%:-i-l Ee (Te)

= Pry(te >1)
[=M+1 EO((‘L—O{)

Thus, since E(ry) > 1, it suffices to show thap 2, Ply(te > 1) < y/2.
Using (11) from Theorem 2, we have

=2

Y Pr(te=n=<gpB.eJ) ), ﬂ—ZZM

t=M+1 t=M+1 /3 -1
and the result follows from the assumption&h [

g,

Of course, Theorem 3 is useful from a practical standpoint only if it is possible
to sample from the distribution of. To this end, consider the random vector
(V, W), whereV and W are independent/ is uniform on{l,..., M}, and W
is equal in distribution ta, when(Xg, dg) € «. Note that, forany € {1, ..., M},
we have

PW>VIV=nM"1  Pr(>1)
Y PW=VIV=DM1 M Pl (e > i)

Hence, the following algorithm can be used to sample from the distributi@h of

Pr(V=t|lW=>V)= = Dr.

ALGORITHM |V.

1. Drawv ~ Uni{l, ..., M} and, independently, draw from the distribution of
7, With (xg, 8g) € o.
2. If w > v, takev; otherwise, repeat.

We conclude that, given any > 0, Algorithms 11l and IV can be used to make
i.i.d. draws fromz satisfying|z(-) — 7(-)|| < y. In the last section we briefly
describe how our approximation may provide an alternative solution touirein
problem in MCMC.
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4. An applicationtoburn-in. Suppose that the Markov kernél, is the basis
of an MCMC algorithm whose purpose is to explareOur assumptions abouit
imply that for every initial probability measuye(-) we have

I1P*(u, ) =740 asn— oo.

Typically, the MCMC user has no particular starting distribution in mind. Indeed,
w () is usually taken to be a point mass at some point from which it is convenient
to start the simulation. An important problem in the implementation of MCMC
algorithms isburn-in (time), which is formally described as follows. Givert-)
andy > 0, we want to find a value* such that

(12) 1P (u, ) — ()l <y

If (12) holds, then the marginal distribution &f, (conditional onXg ~ w) is
within y of = for all n > n*. Hencen™ may be regarded as a reasonable time to
start sampling the Markov chain.

Several authors have recently shown that drift and minorization conditions on
the Markov chain can be used to derive computable upper boungB’aip, -) —

()| that decrease geometrically fastifiDouc, Moulines and Rosenthal (2004),
Meyn and Tweedie (1994), Roberts and Tweddie (1999) and Rosenthal (1995)].
These upper bounds can be used to findvamhat satisfies (12). Unfortunately,
when this strategy is used for nontoy MCMC algorithms, it is not unusual for the
resultingn*s to be too large to be of any practical value [see, e.g., Jones and Hobert
(2004)].

Alternatively, a seemingly unnatural way to phrase the burn-in question is
as follows. Can we find a starting distribution(-), that is withiny of 7 in
total variation? If so, we could start sampling the chain immediately. This seems
unnatural because the stationary distribution of an MCMC algorithm is typically
intractable and, hence, not easily approximated. Nevertheless, the results in the
previous section show that we can actually construct such a starting distribution.
An alternative method of dealing with the burn-in problem is to start the chain by
drawingXo ~ 7 and using all the samples right from the start.

Of course,7 would normally be constructed using the same drift and
minorization conditions that are used to construct the upper bounds mentioned
above. One might suspect that in situations wherentteecalculated using the
upper bounds are too large, simulating fraimmight be extremely inefficient,
perhaps to the point where it is not practical. On the other handas derived
without using several inequalities that are required in deriving the upper bounds.
For example, we did not use tlwdupling inequality nor did we have to worry
about constructing bivariate drift condition using the drift on the original chain
[see Roberts and Tweedie (1999), Theorem 5.2].
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