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A MIXTURE REPRESENTATION OF π WITH APPLICATIONS
IN MARKOV CHAIN MONTE CARLO

AND PERFECT SAMPLING

BY JAMES P. HOBERT1 AND CHRISTIAN P. ROBERT2

University of Florida, and Université Paris Dauphine and CREST, INSEE

Let X = {Xn :n = 0,1,2, . . .} be an irreducible, positive recurrent
Markov chain with invariant probability measureπ . We show that ifX
satisfies a one-step minorization condition, thenπ can be represented as
an infinite mixture. The distributions in the mixture are associated with the
hitting times on anaccessible atom introduced via the splitting construction
of Athreya and Ney [Trans. Amer. Math. Soc.245 (1978) 493–501] and
Nummelin [Z. Wahrsch. Verw. Gebiete43 (1978) 309–318]. When the small
set in the minorization condition is the entire state space, our mixture
representation ofπ reduces to a simple formula, first derived by Breyer and
Roberts [Methodol. Comput. Appl. Probab.3 (2001) 161–177] from which
samples can be easily drawn. Despite the fact that the derivation of this
formula involves no coupling or backward simulation arguments, the formula
can be used to reconstruct perfect sampling algorithms based on coupling
from the past (CFTP) such as Murdoch and Green’s [Scand. J. Statist.25
(1998) 483–502] Multigamma Coupler and Wilson’s [Random Structures
Algorithms16 (2000) 85–113] Read-Once CFTP algorithm. In the general
case where the state space is not necessarily 1-small, under the assumption
thatX satisfies a geometric drift condition, our mixture representation can be
used to construct an arbitrarily accurate approximation toπ from which it
is straightforward to sample. One potential application of this approximation
is as a starting distribution for a Markov chain Monte Carlo algorithm based
onX.

1. Representing π as a mixture. Let P (x, dy) be a Markov transition kernel
on a general state space(X,B(X)) and write the associated discrete time Markov
chain asX = {Xn :n = 0,1,2, . . . }. For t ∈ N := {1,2,3, . . . }, let P t(x, dy)

denote thet-step Markov transition kernel corresponding toP . Then forn ∈ N,
x ∈ X and a measurable setA, P t(x,A) = Pr(Xt+n ∈ A|Xn = x). Throughout the
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paper we assume thatX is π -irreducible and positive Harris recurrent whereπ is
the invariant probability measure; for definitions see Meyn and Tweedie [(1993),
Part I]. For an arbitrary measureµ and functiong, we use the usual notation
P t(µ,A) = ∫

X P t(x,A)µ(dx) andµ(g) = ∫
X g(x)µ(dx).

The assumptions we have made guarantee the existence of anm ∈ N, a
probability measureν on B(X), a small setC with π(C) > 0 and anε > 0 such
that for anyx ∈ C,

P m(x,A) ≥ εν(A) ∀A ∈ B(X).

For ease of exposition, we consider only thestrongly aperiodiccase in which
m = 1; that is, we assumeX satisfies aone-step minorization condition

P (x, ·) ≥ εν(·) ∀x ∈ C.(1)

A minorization condition allows for the celebratedsplitting constructionof
Athreya and Ney (1978) and Nummelin (1978, 1984). To be specific, ifx ∈ C,
we can use (1) to writeP (x, ·) as a two-component mixture

P (x, ·) = εν(·) + (1− ε)R(x, ·),(2)

whereR(x, ·) = (1− ε)−1(P (x, ·) − εν(·)) is called theresidual measure; define
R(x, ·) to be 0 ifε = 1.

If Xn ∈ C, then (2) can be used to generateXn+1 sequentially as follows. Draw
δn ∼ Ber(ε). If δn = 1, then takeXn+1 from ν(·), else takeXn+1 from R(Xn, ·).
This can be formalized by introducing thesplit chain, X′ = {(Xn, δn) :n =
0,1, . . . }, which lives on the spaceX × {0,1} and has Markov transition kernel
given by

P ′[(x,0),A × {δ}] =
{ [εδ + (1− ε)(1− δ)]P (x,A), if x /∈ C,

[εδ + (1− ε)(1− δ)]R(x,A), if x ∈ C,

and

P ′[(x,1),A × {δ}] =
{ [εδ + (1− ε)(1− δ)]P (x,A), if x /∈ C,

[εδ + (1− ε)(1− δ)]ν(A), if x ∈ C,

whereδ ∈ {0,1}. It is clear that, marginally, the sequence{Xn :n = 0,1, . . . } from
the split chain is equivalent (in distribution) toX. Also, the measureπ ′ defined by

π ′(A × {δ}) = π(A)[εδ + (1− ε)(1− δ)]
is invariant forX′. The key to our argument is that the setα := C × {1} is an
accessible atom[Meyn and Tweedie (1993), page 100] and the (random) times at
whichX′ entersα areregeneration times. Defineτα to be the first return time toα;
that is,

τα = min{n ≥ 1 :(Xn, δn) ∈ α}.
Also, let Prα(·) and Eα(·) denote probability and expectation conditional on
(X0, δ0) ∈ α; that is, conditional onX1 ∼ ν(·). It follows from Kac’s theorem
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[Meyn and Tweedie (1993), Theorem 10.2.2] that Eα(τα) < ∞. Hence, we may
define a nonnegative, nonincreasing sequence{pt }∞t=1 that sums to one by putting

pt = Prα(τα ≥ t)

Eα(τα)
.(3)

Now, for anyt ∈ N and any measurable setA, define

Qt(A) = Prα(Xt ∈ A|τα ≥ t);(4)

that is,Qt is the conditional distribution ofXt given that(X0, δ0) ∈ α and that
there are no regenerations in the split chain before timet . We now state the first of
our two main results.

THEOREM 1. Let P be a Markov transition kernel on a general state space
(X,B(X)). Assume that the associated Markov chain, X, is π -irreducible and
positive Harris recurrent whereπ is the invariant probability measure. Assume
further that the minorization condition(1) holds. Then for anyA ∈ B(X), we have

π(A) =
∞∑
t=1

Qt(A)pt,(5)

wherept andQt(·) are defined at(3) and(4), respectively.

PROOF. Applying Meyn and Tweedie’s (1993) Theorem 10.2.1 toX′ and
using the fact thatπ ′(A × {0,1}) = π(A), we have

π(A) = 1

Eα(τα)

∞∑
t=1

Prα(Xt ∈ A,τα ≥ t) =
∞∑
t=1

Prα(Xt ∈ A|τα ≥ t) pt . �

Representation (5) is appealing from a simulation point of view because it
reveals the potential for drawing fromπ by randomly drawing an element from
the set{Q1,Q2,Q3, . . . } according to the probabilitiesp1,p2,p3, . . . and then
making an independent random draw from the chosenQt . This idea is closely
related toperfect sampling[Fill (1998) and Propp and Wilson (1996)], which is
a simulation method wherein a Markov chain with stationary distributionπ is
used to produce independent and identically distributed (i.i.d.) samples fromπ .
In fact, it is shown in Section 2 that whenC = X, there are direct connections
between (5) and perfect sampling. We show in Section 3 that ifX also satisfies a
drift condition, our mixture representation can be used to construct an arbitrarily
accurate approximation ofπ from which it is easy to sample. Finally, in Section 4
we explain how this approximation toπ provides a new method of dealing with
theburn-inproblem in Markov chain Monte Carlo (MCMC).
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2. The case where C = X: perfect sampling. Consider the special case in
which C = X, which of course implies thatX is 1-uniformly ergodic. In this case,
Xn ∈ C for all n and, hence,τα ∼ Geo(ε); that is, Prα(τα = t) = ε(1 − ε)t−1

for t ∈ N. Plugging into (3) yieldspt = ε(1 − ε)t−1 so thepts are also geometric
probabilities. The distributionQt is also quite simple whenC = X. Indeed, if there
were no regenerations in the split chain before timet , this means that, after having
drawnX1 ∼ ν, the residual measure,R, was appliedt − 1 consecutive times to
getXt . We state this as a corollary.

COROLLARY 1. Under the assumptions of Theorem1, if C = X, then

π(A) =
∞∑
t=1

ε(1− ε)t−1 Rt−1(ν,A),(6)

whereR0(ν,A) is defined asν(A).

It is possible to derive (6) directly without using (5). Indeed, consider a Markov
transition kernel,M , on the general space(Z,B(Z)) that takes the formM(z, ·) =
ωµ(·) + (1 − ω)K(z, ·), where K(z, ·) is a ψ-irreducible Markov transition
kernel on the same space,µ(·) is a probability measure onB(Z) andω ∈ (0,1).
Theorem 2 of Breyer and Roberts (2001) shows that

∑∞
j=1ω(1−ω)j−1Kj−1(µ, ·)

is an invariant probability measure forM . Now note that when (1) holds with
C = X, thenP (x, ·) = εν(·) + (1 − ε)R(x, ·) for all x ∈ X and it follows thatπ
can be written in the form (6). (It is interesting to note thatM is positive recurrent
even ifK is badly behaved, e.g., transient.)

Corollary 1 immediately yields the following algorithm for sampling fromπ :

ALGORITHM I.

1. Simulatex1 ∼ ν(·) and, independently,t ∼ Geo(ε).
2. If t = 1, takex1, else simulate the transitionxn+1 ∼ R(xn, ·) for n = 1, . . . , t −1

and takext .

Algorithm I is exactly the Multigamma Coupler of Murdoch and Green [(1998),
page 486] which is a perfect sampling algorithm based oncoupling from the
past (CFTP) [Propp and Wilson (1996)]. Note that we have used our mixture
representation ofπ to derive this algorithm with no appeal to coupling or backward
simulation.

Breyer and Roberts (2001) show, in the context of their catalytic perfect
simulation algorithm, that Corollary 1 can also be used to derive Wilson’s (2000)
Read-Once CFTP algorithm. We now give a slightly different and more detailed
description of this connection which culminates in a statement of the algorithm
that Wilson described on page 93 of his paper [Wilson (2000)]. We begin with
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a Markov transition kernel,S, on the general state space(X,B(X)), such that the
associated Markov chain,Y = {Y0, Y1, . . . }, is π -irreducible and positive Harris
recurrent whereπ is the invariant probability measure. Letg : X × (0,1) → X be a
function such that ifU ∼ Uni(0,1), then for anyx ∈ X and any measurableA,

Pr[g(x,U) ∈ A] = S(x,A).

Now for n ∈ N let Gn : X × (0,1)n → X be defined through compositions ofg as
follows:

Gn(x,u1, . . . , un) = g
(
g
(· · ·g(x,u1) · · · , un−1

)
, un

)
.

For example,G3(x,u1, u2, u3) = g(g(g(x,u1), u2), u3). Clearly, if U1, . . . ,Un

are i.i.d. Uni(0,1), then Gn(x,U1, . . . ,Un) has distribution Sn(x, ·). If
Gn(x,u1, . . . , un) is constant in x for some fixed (u1, . . . , un), we call
Gn(x,u1, . . . , un) a coalescentcomposite map.

REMARK 1. Wilson’s setup is actually a bit more abstract than ours. First,
he does not assume as much as we do about the structure of the “random
function” g. Second, Wilson assumes that the user possesses an efficient, but
imperfect method for checking whetherGn(x,u1, . . . , un) is coalescent. This
method will never incorrectly conclude coalescence, but may miss the fact
that a particularGn(x,u1, . . . , un) is coalescent. When this imperfect method
concludes thatGn(x,u1, . . . , un) is constant inx for some fixed(u1, . . . , un), then
Gn(x,u1, . . . , un) is called “officially coalescent.”

Suppose thatk ∈ N is such that whenU1, . . . ,Uk are i.i.d. Uni(0,1), we have

Pr[Gk(x,U1, . . . ,Uk) is coalescent] = ε > 0.(7)

As an example, consider the Markov chain onX = {1,2,3} whose evolution is
described by the probability transition diagram given in Figure 1. For this chain,

FIG. 1. Probability transition diagramfor a Markov chain onX = {1,2,3}.
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we could takeg as follows:

g(1, u) = 2, g(2, u) = 2I(0,1/2)(u) + 3I[1/2,1)(u)

and

g(3, u) = I(0,2/3)(u) + 2I[2/3,1)(u).

It is not difficult to see that Pr[G1(x,U1) is coalescent] = 0, but Pr[G2(x,U1,U2)

is coalescent] = 1/4.
Now if we setP = Sk , then for any measurable setA,

P (x,A) = Pr[Gk(x,U1, . . . ,Uk) ∈ A]
= ε Pr[Gk(x,U1, . . . ,Uk) ∈ A|Gk is coalescent]

(8)
+ (1− ε)Pr[Gk(x,U1, . . . ,Uk) ∈ A|Gk is not coalescent]

= εν(A) + (1− ε)R(x,A),

where we have definedν(·) andR(x, ·) in an obvious way. Drawing fromν(·) is
quite simple—just simulate i.i.d. copies of(U1, . . . ,Uk) until the observed value
of Gk(x,U1, . . . ,Uk) is coalescent. Drawing fromR(x, ·) can be done similarly by
waiting for the first noncoalescent value ofGk(x,U1, . . . ,Uk). Therefore, ifε is
known, Algorithm I can be applied to make draws fromπ .

The beauty of (8), however, is that it can be used to simulate fromπ even
when ε is unknown! Indeed, assume that (7) holds, but that the exact value of
ε is unknown. Note that application of Algorithm I does not require knowledge
of ε, it only requires the ability to simulate from the Geo(ε) distribution. But
simulatingZ ∼ Geo(ε) is easy—just generate i.i.d. copies of(U1, . . . ,Uk) and
let Z be the number of trials required until the first coalescentGk(x,U1, . . . ,Uk) is
observed. Moreover, the byproducts of simulatingZ areZ −1 i.i.d. noncoalescent
Gk(x,U1, . . . ,Uk)s and an independent coalescentGk(x,U1, . . . ,Uk). All of this
is formalized in the following algorithm, which describes how to use (8) to
simulate fromπ .

ALGORITHM II.

1. Simulate a coalescentGk(x,U1, . . . ,Uk). Call its values.
2. Draw independent copies of(U1, . . . ,Uk) (where the components arek i.i.d.

uniforms) until the observed value ofGk(x,U1, . . . ,Uk) is coalescent. Lett
denote the number of trials required and write thet observed values of
(U1, . . . ,Uk) as(ui,1, . . . , ui,k), i = 1, . . . , t .

3. Take

Gk

(· · ·Gk(s,ut−1,1, . . . , ut−1,k) · · · , u1,1, . . . , u1,k

)
.
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Algorithm II is exactly Wilson’s (2000) Read-Once CFTP algorithm. It lends
itself to iteration. Indeed,Gk(x,ut,1, . . . , ut,k) is coalescent and isnot usedat
step 3. Thus, it can be used at step 1 of the next iteration of the algorithm.

We end this section with an interesting interpretation of Corollary 1. Because
C = X, we can assume that all transitions ofX are made using (2). Now, each
time a regeneration occurs, that is, each time a draw is made fromν(·), we have to
wait a Geo(ε) number of iterations before the next draw fromν. And, of course,
the residual measure,R, is used in between. Thus, what Algorithm I is actually
doing is returning the states immediately prior to the draws fromν. Hence, an
intuitive way to state Corollary 1 is as follows: The states of the Markov chain
immediately prior to regenerations have distributionπ . Wilson (2000) attempts
to connect this to the PASTA (Poisson Arrivals See Time Averages) phenomenon
from the continuous time literature.

3. The case where C �= X: approximating π . While things are more difficult
when C �= X, it is still possible to make draws from the distributionQt using
a simple accept-reject algorithm. All that is required is the ability to simulate the
split chain. Note thatQ1(·) = ν(·), so in the algorithm, it is assumed thatt ≥ 2.

ALGORITHM III.

1. Take(x0, δ0) ∈ α and simulate the split chain fort iterations.
2. If, for eachi = 1,2, . . . , t − 1, (xi, δi) /∈ α, then takext ; otherwise, repeat.

Jones and Hobert (2001) provide some practical advice on simulating the split
chain.

Let T denote a discrete random variable with supportN such that Pr(T =
t) = pt . The ability to randomly draw an element from the set{Q1,Q2,Q3, . . .}
according to theprobabilities p1,p2,p3, . . . is tantamount to being able to
simulateT . While T ∼ Geo(ε) whenC = X, its distribution is quite complicated
whenC �= X. On the other hand, making i.i.d. draws from the distribution ofτα is
straightforward—just takeX1 ∼ ν(·), run the split chain, and count the number of
iterations until the first regeneration. Unfortunately, despite the simple relationship
between their mass functions, it is not clear how to use i.i.d. draws from the
distribution ofτα to get i.i.d. draws from the distribution ofT . Hence, we focus on
using (5) to construct an approximation toπ .

Let {p̃t }∞t=1 denote another nonnegative sequence that sums to one and let
T̃ denote the corresponding discrete random variable, that is, Pr(T̃ = t) = p̃t .
Consider an approximation ofπ given by

π̃(·) =
∞∑
t=1

Qt(·)p̃t .(9)



1302 J. P. HOBERT AND C. P. ROBERT

Note that

‖π(·) − π̃(·)‖ =
∥∥∥∥∥

∞∑
t=1

Qt(·)pt −
∞∑
t=1

Qt(·) p̃t

∥∥∥∥∥ ≤
∞∑
t=1

|pt − p̃t |.

Thus, the total variation distance between the distributionsπ and π̃ is bounded
above by twice the total variation distance between the distributions ofT andT̃ .

We now show that, under an additional assumption onX, for any givenγ > 0,
it is possible to construct a sequence{p̃t }∞t=1 such that

∑∞
t=1 |pt − p̃t | ≤ γ and

such that making i.i.d. draws from the distribution ofT̃ is straightforward. The
assumption is that the Markov chainX satisfies ageometric drift condition, that is,
for some functionV : X → [1,∞), someλ < 1 and someb < ∞, we have

PV (x) ≤ λV (x) + bIC(x) ∀x ∈ X,(10)

wherePV (x) := ∫
X V (y)P (x, dy). It is well known that (10) combined with the

smallness of the setC implies that the Markov chainX is geometrically ergodic
[Meyn and Tweedie (1993), Chapter 15]. We will need the following result, which
is a combination of Theorems 2.3 and 4.1 in Roberts and Tweedie (1999).

THEOREM 2 [Roberts and Tweedie (1999)].Let P be a Markov transition
kernel on a general state space(X,B(X)). Assume that the associated Markov
chain, X, is π -irreducible and positive Harris recurrent whereπ is the invariant
probability measure. Assume further that the minorization condition(1) and the
drift condition (10) both hold. Defined = supx∈C V (x), A = supx∈C PV (x) and
J = (A − ε)/λ. Then the generating function Eα(βτα ) converges forβ ∈ (1, β∗)
where:

1. If J < 1, thenβ∗ = λ−1.
2. If J ≥ 1, then

β∗ = exp
{

logλ log(1− ε)

logJ − log(1− ε)

}
≤ λ−1.

Furthermore, letting φ(β) = logβ/ logλ−1, if β ∈ (1, β∗), then

Prα(τα ≥ t) ≤ β[ν(V )]φ(β)

[
1− β(1− ε)

1− (1− ε)(J/(1 − ε))φ(β)

]
β−t

(11)
=: g(β, ε, J )β−t .

REMARK 2. In applicationsν(V ) may be difficult to calculate. Fortunately,
there is a simple upper bound. Indeed, an application of Lemma 1 from Hobert,
Jones, Presnell and Rosenthal (2002) yieldsν(V ) ≤ π(V )/[επ(C)]. From (10) we
know thatπ(V )/π(C) ≤ b/(1− λ) and, hence,ν(V ) ≤ b/[ε(1− λ)].

We are now in a position to state the second of our two main results.
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THEOREM 3. Assume the hypotheses of Theorem2. Fix γ > 0 and β ∈
(1, β∗). Let T̃ be the random variable supported on{1, . . . ,M} with probabilities

p̃t = Prα(τα ≥ t)∑M
s=1 Prα(τα ≥ s)

,

whereM is any integer larger than

log
[

2g(β, ε, J )

γ (β − 1)

]/
logβ.

Then‖π(·) − π̃(·)‖ ≤ γ .

PROOF. First,
∞∑
t=1

|pt − p̃t | =
M∑
t=1

∣∣∣∣Prα(τα ≥ t)

Eα(τα)
− Prα(τα ≥ t)∑M

s=1 Prα(τα ≥ s)

∣∣∣∣ +
∞∑

t=M+1

Prα(τα ≥ t)

Eα(τα)

= 2
∞∑

t=M+1

Prα(τα ≥ t)

Eα(τα)
.

Thus, since Eα(τα) ≥ 1, it suffices to show that
∑∞

t=M+1 Prα(τα ≥ t) ≤ γ/2.
Using (11) from Theorem 2, we have

∞∑
t=M+1

Prα(τα ≥ t) ≤ g(β, ε, J )

∞∑
t=M+1

β−t = g(β, ε, J )

β − 1
β−M,

and the result follows from the assumption onM . �

Of course, Theorem 3 is useful from a practical standpoint only if it is possible
to sample from the distribution of̃T . To this end, consider the random vector
(V,W), whereV andW are independent,V is uniform on{1, . . . ,M}, andW

is equal in distribution toτα when(X0, δ0) ∈ α. Note that, for anyt ∈ {1, . . . ,M},
we have

Pr(V = t|W ≥ V ) = Pr(W ≥ V |V = t)M−1

∑M
i=1 Pr(W ≥ V |V = i)M−1

= Prα(τα ≥ t)∑M
i=1 Prα(τα ≥ i)

= p̃t .

Hence, the following algorithm can be used to sample from the distribution ofT̃ .

ALGORITHM IV.

1. Drawv ∼ Uni{1, . . . ,M} and, independently, draww from the distribution of
τα with (x0, δ0) ∈ α.

2. If w ≥ v, takev; otherwise, repeat.

We conclude that, given anyγ > 0, Algorithms III and IV can be used to make
i.i.d. draws fromπ̃ satisfying‖π(·) − π̃(·)‖ ≤ γ . In the last section we briefly
describe how our approximation may provide an alternative solution to theburn-in
problem in MCMC.
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4. An application to burn-in. Suppose that the Markov kernel,P , is the basis
of an MCMC algorithm whose purpose is to exploreπ . Our assumptions aboutP

imply that for every initial probability measureµ(·) we have

‖P n(µ, ·) − π(·)‖ ↓ 0 asn → ∞.

Typically, the MCMC user has no particular starting distribution in mind. Indeed,
µ(·) is usually taken to be a point mass at some point from which it is convenient
to start the simulation. An important problem in the implementation of MCMC
algorithms isburn-in (time), which is formally described as follows. Givenµ(·)
andγ > 0, we want to find a valuen∗ such that

‖P n∗
(µ, ·) − π(·)‖ < γ.(12)

If (12) holds, then the marginal distribution ofXn (conditional onX0 ∼ µ) is
within γ of π for all n ≥ n∗. Hence,n∗ may be regarded as a reasonable time to
start sampling the Markov chain.

Several authors have recently shown that drift and minorization conditions on
the Markov chain can be used to derive computable upper bounds on‖P n(µ, ·) −
π(·)‖ that decrease geometrically fast inn [Douc, Moulines and Rosenthal (2004),
Meyn and Tweedie (1994), Roberts and Tweddie (1999) and Rosenthal (1995)].
These upper bounds can be used to find ann∗ that satisfies (12). Unfortunately,
when this strategy is used for nontoy MCMC algorithms, it is not unusual for the
resultingn∗s to be too large to be of any practical value [see, e.g., Jones and Hobert
(2004)].

Alternatively, a seemingly unnatural way to phrase the burn-in question is
as follows. Can we find a starting distribution,µ(·), that is within γ of π in
total variation? If so, we could start sampling the chain immediately. This seems
unnatural because the stationary distribution of an MCMC algorithm is typically
intractable and, hence, not easily approximated. Nevertheless, the results in the
previous section show that we can actually construct such a starting distribution.
An alternative method of dealing with the burn-in problem is to start the chain by
drawingX0 ∼ π̃ and using all the samples right from the start.

Of course, π̃ would normally be constructed using the same drift and
minorization conditions that are used to construct the upper bounds mentioned
above. One might suspect that in situations where then∗s calculated using the
upper bounds are too large, simulating from̃π might be extremely inefficient,
perhaps to the point where it is not practical. On the other hand,π̃ was derived
without using several inequalities that are required in deriving the upper bounds.
For example, we did not use thecoupling inequality, nor did we have to worry
about constructing abivariatedrift condition using the drift on the original chain
[see Roberts and Tweedie (1999), Theorem 5.2].
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