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We consider the problem of hedging a European interest rate contingent
claim with a portfolio of zero-coupon bonds and show that an HIM type
Markovian model driven by an infinite number of sources of randomness does
not have some of the shortcomings found in the classical finite-factor models.
Indeed, under natural conditions on the model, we find that there exists a
unique hedging strategy, and that this strategy has the desirable property that
at all times it consists of bonds with maturities that are less than or equal to
the longest maturity of the bonds underlying the claim.

1. Introduction. This paper seeks to characterize portfolios that hedge
contingent claims in the fixed income market. The fundamental traded instruments
in this market are (zero-coupon) bonds, contracts in which the issuer agrees to pay
one unit of currency at a fixed future maturity date. The idealized bonds considered
here do not suffer from credit risk, that is, at maturity the bond issuer always makes
the promised payment.

There are bonds with so many maturity dates traded on the market, it is
conventional to assume at every time- 0 there exists a bond that matures at
time T for everyT > t. We use the notatio®; (T) to denote the price at time
of a bond with maturity dat& .

Assuming that there is a continuum of traded securities is an important
distinction from the classical Black—Scholes theory. Indeed, whereas in the Black—
Scholes setting we work with a finite-dimensional veo(t@}, ..., 87 of stock
prices at time, in the fixed income market we work with the infinite-dimensional
vector of the bond price curvé;(-). It comes as no surprise then that the
characterization of hedging porfolios in the fixed income market is a more subtle
problem.

In Section 2 we review the classical finite-factor HJM models for the dynamics
of the term structure of interest rates and discuss one of their major shortcomings:
they allow for unnatural hedging strategies which would never be used by traders.
In particular, for HJM models driven by @& dimensional Wiener process, every
interest rate contingent claim can be hedged perfectly by a portfolio of bonds
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of d arbitrary maturities chosen a priori independently of the contingent claim.
This resultis at odds with traders’ intuition that the maturities of the hedging bonds
should depend on the contingent claim in question, and it is the main motivation
for the present work.

In Section 3 we consider the natural generalization of HIM models driven by
an infinite-dimensional Wiener process. We introduce the necessary functional
analysis notation, and we define the function spaces which we use as state spaces
for our infinite-dimensional dynamics. In this setting, the appropriate notion of
portfolio is not obvious. But if we agree to consider a certain class of portfolios,
we show that if a contingent claim can be hedged by a given strategy, then this
strategy is unique under an appropriate model assumption. However, we run into
two technical difficulties. First, for a given contingent claim it is not clear whether
a hedging strategy exists at all. Second, if a strategy does exist, it is not obvious if
the strategy agrees with the traders’ intuition.

We are able to resolve these two technical problems with the tools of Malliavin
calculus. Section 4 reviews briefly some useful results from this theory, including
an infinite-dimensional version of the original Clark—Ocone formula. The results
of Section 4 aressentially known. We state them clearly, and we prove those we
could not find in the existing literature in an appropriate form.

In Section 5 we present the main results of this article. We consider the problem
of hedging a European contingent claim for an infinite-factor Markovian HIM
model where the payout functional is assumed to be Lipschitz. We explicitly
compute the hedging strategy via the Clark—Ocone formula and show that the
difficulties of the finite-factor HIJM models can be overcome. In particular, under
natural conditions on the model, we find in Theorem 5.7 that there exists a unique
hedging strategy with the intuitively appealing property that at all times it consists
of bonds with maturities that are less than or equal to the longest maturity of the
bonds underlying the claim.

2. Shortcomings of the finite-factor HIJM models. An important class of
models of the fixed income market, introduced by Heath, Jarrow and Morton
(1992) and henceforth called HIM models, takes the forward rate curve as the
fundamental object to model. We can define the forward fat€) at timer for
maturity T to be given by the formula

1 T)= aIPT
1) ﬁ()——a—Tog (T

whenever the bond price function is differentiable. Since a dollar today is worth
more than a dollar tomorrow, we note that the bond price functipf) is
decreasing, implying by Vitali's theorem that the forward rg}€T’) exists for
Lebesgue almost evef € [z, co). We assume in fact that the forward rates exist
for everyT, and in particular we can define the short ratat timer by the relation

2 re = fi(f).
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Note that the function®;(-) and f;(-) contain the same information because the
bond prices can be recovered from the forward rates via the equation

©) P/(T) :exp(— ft ! f;(s)ds).

The classical HIM model is specified by fixing a measurable sggac#’) and a
risk-neutral probability measuf@ for which there exists a standadedimensional
Wiener proces$W, = (W2, ..., W%)},=0 and the filtration{#;},>0 given by the
augmentation of the filtration generated by the Wiener process, such that the
dynamics of the forward rate proces$¢sT)}:c(0,1] are given by

T
(@) df/(T) = <r,(T>, / rz(S)dS> dt — (t(T), dW;)za
t R4

where{7,(T) = (t}(T), ..., T8 (T))}eio.7) is anR?-valued adapted process for
eachT > 0 and the brackef:, -)r« is the usual Euclidean scalar product. The
specific form of the drift was shown in Heath, Jarrow and Morton (1992) to be
necessary to prohibit arbitrage. An important feature of this methodology is that
the initial condition for these modeis the whole forward rate curvg(-).

Note that for these models there are an infinite number of stochastic differential
equations, one for each value @f, driven by a finite number of sources
of randomness. Besides the fact that finite-dimensional Wiener processes are
mathematically easier to handle than infinite-dimensional ones, this modeling
assumption is usually justified by appealing to the statistics of the yield and
forward rate curves observed on the market. [Recall that the yigld) at
time ¢ for maturity T is given byy,(T) = (T — t)—lftT fi:(s)ds.] The principal
component analysis of the U.S. Treasury yield curve as reported by Litterman
and Scheinkman (1991) and of the Eurodollar forward rates by Bouchaud, Cont,
Karoni, Potters and Sagna (1999) suggests that the dynamics of the forward rate
are driven by a few sources of noise. Indeed, Litterman and Scheinkman found
that over 95% of the variations of the yield curve can be attributed to the first three
factors, lending credence to HIM models driven by a low-dimensional Wiener
process.

However, the assumption that the driving noise is finite dimensional has an
important implication. Consider the problem of replicating the f&almeasurable
random variablé corresponding to the payout of an interest rate contingent claim
that matures at a tim&. Our hedging instruments are naturally the set of zero-
coupon bonds and thesk-free bankaccount procesis; };>o defined by

(5) B = exp(/ot Fs ds).

To ease notation, we begin with a definition.
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DEFINITION 2.1. For every proces$X;};>o0, we define the discounted
process{f(,},zo by X, = Bt‘lx,. For everyFr-measurable random variabfe
corresponding to the payout of a contingent claim with matufifywe use the
notationf = B 1¢.

A major shortcoming of the finite-factor models is found in the following well-
known proposition. We give a complete proof of this result to emphasize the
difficulties we have to overcome in order to resolve the issues it raises.

PROPOSITION 2.2. Suppose there exist d dates 71 < T» < -+ < T; and
a positive constant ¢ such that, for all T < Ty, thed x d matrix

T .
©) o= | Bt [ 5y as]
t i,j=1,....d
satisfies ||o;x ||ga > c||x||ga for all x e R? andalmost all (¢, w) € [0, T x . Then
for every contingent claim & with maturity 7 < 7 such that E{£2} < +o0, there
exists a replicating strategy consisting of bondswith maturities 71, T», ..., T, and
the bank account.

PROOF  Consider a strategy such that, at timehe portfolio consists of!
units of the bond with maturity; for i =1,...,d and of ¢, units of the bank
account. As usual, we insist that our wealth prod@ss= (¢;, P;)ga + ¥: B:}i>0
satisfies the self-financing condition

dVy = {(¢1,dP;)ga + Y d By,

where¢, = (¢,1, e ¢,d) is the vector of portfolio weights anf, = (P;(Tv), ...,
P,(Ty)) is the vector of bond prices. We now show that there exist processes
{¢1}e10.71 and{y; }1c(0,77 such thatVy = & almost surely.

Recall that the bond price at timdor maturity s is related to the forward rates
by (3), so by an application of 1té’s rule and the stochastic Fubini’'s theorem we
have that the dynamics of the bond price for e@chatisfy the equation

d P(T;) T

(7) PI(T‘I) —}’zdl’+<'/t ‘L’;(u)du, th>Rd

By (7) and (6), the dynamics of the vector of discounted bond prices is given by
d P, = o, dW,, and consequently, the dynamics of the discounted wealth process is
given by

th = (¢, di)ﬁRd = (0;*@7 sz)[W-

On the other hand, I[E{€2} < +o0, we can apply It6’s martingale representation
theorem to conclude that there existg-dimensional adapted proces };co, 7

such thae{ /g fl 12, dt} < +oo and

o - T
S=M8+A(%ﬂmmm
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Setting the initial wealthVy = E{} and portfolio weightsg; = o;"_la, and
Y =V, — (¢r, Pr)ga, We find our desired replicating strategy]

Thus, in this d-factor HIM model every square-integrable claim can be
replicated by a strategy of holding bonds maturing attldatesry, ..., T, fixed a
priori and independently of the claim. For instance, with a three-factor HJM model,
it is possible to perfectly hedge a call option on a bond of maturity five years
with a portfolio of bonds of maturity fifteen, twenty and twenty-five years. Cont
(2004) remarks that this result is counterintuitive and contrary to market practice.
Indeed, there seems to be a notion of “maturity specific risk” not captured by finite-
factor HIM models since we expect that such a contingent claim should be hedged
with bonds of maturities less than or equal to five years. This shortcoming can be
attributed to the high degree of redundancy in the finite-factor models.

In Section 3 we show that if the dynamics of the bond prices are driven by
an infinite-dimensional Wiener process, we can find conditions on the model such
that a given hedging strategy is unique. Unfortunately, the usual notions of hedging
become more complicated in infinite dimensions.

3. Infinite-factor HIM models: some difficulties. In this section we take a
first look at the hedging problem for infinite-factor HIM models, our goal being to
emphasize some of the difficulties occurring because of the infinite-dimensionality
of the sources of randomness.

Here and throughout the rest of the paper, the stochastic processes are assumed
to be defined on a complete probability spage ¥, Q). Also, for the ease of
exposition we prefer to break from the HIM tradition and choose the state variable
for these models to be the discounted bond price clr¢ instead of the forward
rate curvef; (-). But noting that the price of a bond at maturityAgt) = 1, we see
that the bank account process can be recovered by the formula

1
(8) B; = =
Py (1)
and the bond price with maturity> ¢ can be recovered via
Pi(s)
9) Pi(s) = —
RO

This change of variables eases the analysis, although it is quite superficial in
the sense that there is a one-to-one correspondence between bond prices and
instantaneous forward rates given by (1). As motivation for this change of
variables, consider a European option that matures at Tinsend has a payout

of the form

(10) & =g(Pr(Tv),..., Pr(Tw)
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for some dateqd; > T and some measurable functignR” — R. From the dis-
cussionin Section 2 we see that, in order to replicate such a claim, we must find the
martingale representation of the discounted cIéimB;lg(PT(Tl), .. Pr(Ty)).

By (5) we see that depends not only on the bond prices at tifidut also on

the entire history of the short rate process. But treating the discounted bond price
curve as the state variable, we have by (8) and (9) that

Pr(T1) ﬁT(Tn>)
Pr(T) " Pr(T)/)

§=Prr) o

Defining the functionaf on the spac€ (R.) of continuous functions oR . by

x(T1) X(Tn))
XT) " x(T) )

(11) ) = x(T)g(

we have tha€ = 3(Pr) only depends on the tim& values of the discounted
bond price processes. Of course this trades one infinite-dimensional problem for
another; yet in this framework, the problem can be treated as the Black—Scholes
problem of pricing and hedging a modified European contingent claim on a
portfolio of “stocks” with zero interest rate.

REMARK 3.1 (Settlement in arrears). There are many interest rate options
that pay in arrears. That is, although the paygut g(Pr(T1), ..., Pr(Ty,)) is
Fr-measurable, the money does not change hands until the future settlement date
T + AT. This is the case for claims contingent on the LIBOR rate, such as caplets.
In this situation the discounted claim is

= Brlarg(Pr(T0), ..., Pr(Ty)).
Noting thatPr a7 (T 4+ AT) = Pr(T 4+ AT) + (L 72T d P.(T + AT), we have
by (8) and (9) that
- - T+AT .
§=g(Pr)+ . EdP(T + AT),

whereg : C(R;) — R is defined by

x(Ty) X(Tn))
x(T)” " x(T) )

Thus the strategy that consists of replicating the-measurable random vari-
ableg(Pr) and then holding units of the bond with maturity” + AT replicates

the payout of the contingent claim. Hence the hedging problem still maps to an
infinite-dimensional zero interest rate Black—Scholes world, but with the payout
function modified slightly differently.

g0 =1 + AT
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REMARK 3.2. For each time, the domain of the discounted bond price
function P,(-) is the intervallz, co). Since we need to consider the dynamics of
the discounted price curve asaries, it would be more convenient if the functions
15,(-) had a common domain. For this reason, we assume that, for exedy the
domain of the discounted bond price functién-) is the interval[0, co), where
we extend the definition of, () by P;(s) = B;* for s € [0, 7]. Note then that the
procesg P, (s)}s>0 is constant for > s. The corresponding bond prices are given
by P;(s) = B;lB, for s € [0, 1] so that this extension conforms with the price

(12) Pi(s) =E{§% 7}

for s > ¢t and can be understood that once a bond matures the one dollar payout is
immediately put into the bank to accrue interest at the short rate.

REMARK 3.3. Another popular way to resolve the issue of having functions
defined on time-dependent domains is to switch to the so-called Musiela notation.
The idea is to work with the tim& maturity® = T — ¢ rather than with the time
of maturity T'. In this approach, the reparameterized discounted bond price curve
P,(-) is defined by

Pi(0) = P,(1 +0).

For the finite-factor HIM model, this new process is a weak solution of the
following stochastic partial differential equation:

dP,(0)
30

n n t+0
dP(0)= dt + Pt(9)</ 7 (s)ds, a’W,>
t

R4

This formulation of the HIM models proved to be very fruitful; see, for instance,
Musiela (1993), Goldys and Musiela (1990 d Filipovic (2001) Nevertheless,

for the sake of studying the hedging strategies for interest rate contingent claims,
it is more convenient to retain the time to maturity parameterization. Indeed,
whereas the proce:{;s;,(T)},zo is a martingale for eacfi, the analogous process

in Musiela notatior{ﬁ,(@),},zo is usually not a martingale for ary

In order to specify an infinite-factor model of the evolution of the discounted
bond prices, it is natural to work in a function space setting. We first review the
relevant notation of functional analysis. For a Banach sgacthe duality form
is denoted(-, -} : E* x E — R. If F is another Banach space, we l&(F, E)
denote the Banach space of bounded linear operators taking E with norm

IAlecrey= " sup  [[Ax|g.
xeF, |lxllr=1
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If A€ L(F,E), the (Banach space) adjoidt* of A is the unique element of
L(E*, F*) satisfying

(, Ax)g = (A", x) forallu e E*, x € F.

If G is a Hilbert space, we use the notatiohe G* for the Riesz representation
of the elementt € G, and we identify the double dua** with G. If § is a
subspace of7, then we let

8+ ={u e G* suchthat, x)g =0 forall x € G}

be the closed subspace@f orthogonal tos.
If G andH are separable Hilbert spaces, the space of Hilbert—Schmidt operators
taking H into G is denoted£pys(H, G) and is itself a Hilbert space for the norm

0 1/2
Al £s(H.G) = (Z | Ae; ||%;) ,
i=1

where{e; }; is any orthonormal basis fd . There is a natural isometry of the space
LHs(H, G) and the Hilbert space tensor prodde H*.

For a Banach spacé&, we denote byL”(I"; E) the Banach space of
(equivalence classes of ) measurable functions ffoimto £ with the norm

1/p
||f||Lp(r;E)=(/F IIf(X)IIZM(dx)> ,

where the measure spacé€, §, ) is the interval ([0, T'], B0, 7], Lebo. 7)),
the probability spacg2, #,Q), or their product([0, 7] x @, Bjo.11 ® F,
Lebo, 71 xQ).

For our application, we need an infinite-dimensional version of the vector-
valued stochastic integrals of the forfé o, dWs. Self-contained expositions of
the theory of infinite-dimensional stochastic integration can be found in the books
of Da Prato and Zabczyk (1992), Kallianpur and Xiong (1995) and Carmona
(2004). From now on, we fix a real separable Hilbert spAceand we assume
that{W;},;>¢ is a cylindrical H-valued Wiener process defined on the probability
space2, F, ), that this cylindrical process generatesdhéield #, and that the
filtration {¥;};>0 is given by the augmentation of the filtration it generates. The
classical finite-factor HIM model corresponds to the choice of a finite-dimensional
spaceH . The integrands considered here are the adapted, measurable and square-
integrable stochastic processes= {o;};>0 valued in the spaceys(H, F) of
Hilbert—-Schmidt operators frof into F for which we have Itd’s isometry

t 2 t
2
| e )

Note if F =R, the spacelnys(H, R) of Hilbert—-Schmidt operators is jugf*. In
this case we write

t t
/ O'des=/ (05, dWs)
0 0
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in analogy with the finite-dimensional stochastic integration. However, this
notation can only be formal i is infinite dimensional since the Wiener process
{W,}:>0 visits the spacé{ with probability zero.

We now introduce a family of weighted Sobolev spaces to serve as the state
space for the infinite-dimensional dynamics.

DEFINITION 3.1. Forevery functiomw : R, — R, andfori =1, 2, we define
the spaceF!. of functionsx : R, — R which arei — 1 times differentiable, with
a (i — 1)st derivativex~—D absolutely continuous and such thét’(co) = 0
forj<i—1, and[gox(i)(u)zw(u) du < +00.

The space), is a Hilbert space for the norix|| z; = (/5° x O w)2w(u) du)V/2.

We work with the spaces! and FL%. We list three useful properties of these
spaces.

PrRopPOSITION3.2. Ifthepositivefunction v issuchthat C, = f{,’ov(s)‘lds <
~+o00, then the evaluation functionals §, where (3, x) FL= x(s), are continuous

on Flfor all s > 0.

If the positive function w is such that C,, = [5°(1 + u?yww) Ydu < 400,
then the evaluation functionals 8, and the point-wise differentiation §,, where
(05, x) p2 = —x'(s), are both linear continuous functionals on F2 for all s > 0.

If Cow = J5° J3 v(u)/w(s) duds < +oo, then the inclusion from F2 to Fl is
continuous.

PROOF  The evaluation functionals are uniformly boundedrihsince

/Oox’(u) du

N

00 12 ; ro0
(o) ([ wrwa)

< C%|x |l 1.
Similarly, the point-wise differentiation functionals are uniformly bounded on

F2 by /2. The evaluation functionals are uniformly boundedrghsince

/Oox/(u) du

N

(85, %) pa| = Ix ()| =

1/2

(85, x) 2| = 1 (s)] =

/Oo(u —s)x"(u)du

e —¢)2 1/2 e 1/2
([ ([Mrwmwa)

1/2
< C/%lxll 2.
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Finally, if x € F1 N F2, then

o0
s = [ 5o ds

X v(Ss dS C X ,
—Jo s w(u) F‘% " F'%

and hence the inclusion froi2 to F1 is continuous. [

We fix a weightw satisfying the conditions d?roposition 3.2, ad from now on
we assume that the state varialsig-) is an element of the function spa&g for
everyr > 0. Note that for this choice of state space, we may speak honestly about
the price of a specific bond or the value of a specific forward rate since evaluation
and point-wise differentiation are continuous. This choice also agrees with the fact
that a bond that never matures is worthless and héhe®) = B;lP,(oo) =0.
And sinceFu% is a Hilbert space, we may use the integration theory mentioned
above.

We now formulate a model of the discounted price dynamics.

_AssumpTION3.3. The risk-neutral dynamics of the discounted price curve
{P;};>0 are described by the initial conditiafy € Fuz) and the evolution equation

(13) dP, =o0,dW;,
where{o;};>0 is anLys(H, F,ﬁ)—valued adapted stochastic process such that
(14) 0,8, =0 forallz >s.

We assume thaPy and {o,};~0 conspire in such a way thak (s) > 0 for
all s > 0 and that

t PPl 2 1 )
(15) E{/o ( ST <1+ ﬁs(s)2>”0s”£Hs(H,F£)> ds} < +oo.

REMARK 3.4. Condition (14) guarantees that the proqéses)}tzo becomes
constant for > s. Indeed, the continuity of; implies that, forr > s, we have

. o t
Pi(s) = Bu(s) = [ o785, d W) =0

Since our starting point is the discounted bound cuPvewe need to infer
the definition of the bank accousy and of the zero-coupon cun/. The bank
account, given by the formulB, = P;(r)~1, has dynamics given formally by

P/ (1)

P2

(16) dB, =
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while the prices of the zero-coupon bonds, giverfpy= P,/ P; (1), have dynamics
given formally by

P/(1) ~ 1
(17) dP[=—~t()2Ptdt+ = O'[dW[.

Py(1) Py(1)
Condition (15) ensures that the stochastic equations (13), (16) and (17) make
perfectly good sense. In Remark 5.1 we give sufficient conditions for (15) to hold
for a Markovian HJIM model.

REMARK 3.5. Because the eigenvalues of a Hilbert—Schmidt operator must
decay fast enough for the sum of their squares to be finite, assumingftisat
infinite dimensional does not disagree with the principal component analysis
typically used to justify the introduction of models with finitely many factors.

Given such a model, we propose to study how to hedge a contingent claim.
Equivalently, this problem is equivalent to the search for a representation of the
contingent claim as a stochastic integral with respect to the underlying price
process. As we are about to see, this task reduces to finding an adapted process
{¢:}+>0 such that

- - T -
E=EE)+ [ (0dP g,

Identifying this process¢;};>o illustrates the difficulties of working in infinite
dimensions.

In the real world, a portfolio can only contain a finite number of bonds at
any time. That is, we really should only consider processes such that, for almost
every(t,w) € [0, T] x 2, we can find a positive integel, positive real numbers
Ty, ..., T; and real numbers,, ..., c; SO that

d
¢ =) cidr.
i=1

However, limiting ourselves to such portfolios at this stage of the analysis would
be severely restrictive. Indeed, since we are willing to assume that there exists a
continuum of traded securities, it seems reasonable to assume that we can form
portfolios with bonds of an infinite number of different maturities. Since the
process{ﬁ,},zo takes values ilfj, it would seem natural to require thig; }; (o, 7

takes values in the du#2*. Remember that measures of the fofifi_; c;67, are

in Fj*. But the elements of the spaEg" are functions that are quite smooth, and
consequently, the dual spaf%* contains distributions that can be quite rough.
Indeed, point-wise differentiation is bounded E]fj and we choose to work in

this space precisely because we need to define the short rate in the drift of the
bond price process. Nevertheless, even though we would prefer to think of our
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hedging strategies as being measures, if we work Wﬁhvalued portfolios, we
risk the uncomfortable possibility that they might be much wilder distributions.

As a partial resolution to this problem, we consider strategies value?j*in
where v is a function satisfying the conditions of Proposition 3.2. Since the
inclusion map from#? into F} is continuous, the dudl}* can be identified with a
denselsubset (ﬂ’j*. We fix av once and for all, and henceforth adopt the notation
F=FL

We now make precise the various notions of strategy we shall use.

DEFINITION 3.4. A strategy is an adapted-*-valued proces$e, };>o such
that¢, € 7. for almost everyz, w), where we use the notation

(18) T4 =spanss; s € A} C F*
for a closed intervall ¢ R, and where the closure is taken in the topology-6f

Note that the restrictioty; € 77, ) reflects the fact that it is unnecessary to hold
expired bonds.

DEFINITION 3.5. A sdf-financing strategy is a strategy{¢:};>0 such that
d{es, Pr)F = (@1, d Py)F.
For each strategi, };>o, the associated wealth procd3$s};-0 has dynamics
dVy= (¢z, dPt)F + Wdez

with ¥, B; = V; — (¢, P;)r . But by (16) and (17), we hawéB; = B;(5;,d P;) F;

that is to say, the bank account can be replicated by the self-financing strategy of
holding the bond maturing instantly. Hence, the dynamics of the wealth process
can be written in the form

de = <¢t + (Vt - (¢z, Pz)F)5z, dP’)F’

and for every strategye, };>0 we can construct a self-financing strateg@y};>o
via the rule

0r =¢r + (Vi — (b, Pr)F)és.

DEFINITION 3.6. A pre-hedging strategy for the contingent claimg is a
strategy{¢, }:c[o,71 such that

- - T -
ézE{éH/O (b5, dPy) .

A hedging strategy for the contingent claing is a self-financing pre-hedging
strategy.
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Note that a pre-hedging strategy need not be self-financing since the pre-
hedging condition is indifferent to the amount held in the bank account.

We now show that if a contingent claim can be hedged b¥ awalued strategy,
then under an appropriate model assumption, the hedging strategy is unique. This
is a first step toward eliminating the counterintuitive strategies found in Section 2
in the case of finite-dimensional models.

Note that under the condition (14) we necessarily haveker 1o ; sinceo
is almost surely a bounded operator. If we insist that this inclusion is an equality,
we have the following proposition.

PROPOSITION3.7. Suppose, for almost all (¢, w) € [0, T] x 2, we have
(19) ker(o,") = Tjo.1)-

If the hedging strategies {¢}};cjo.r] and {¢?};cj0.7] hedge the same claim &,
then ! = ¢? for almost all (7, w) € [0, T] x Q.

PrROOFE Clearly the strategyy, = <p,1 — gotz},e[oﬂ replicates the zero payout.
Since {¢;}iec0,77 IS pre-hedging, we havﬁ)T(w,,dﬁ,)p = 0 almost surely and

henceE{foT llo/ o ||%* dt} = 0. Thus we have thap; € Tjo,;] N T[z,o0) fOr almost
all (¢, w). Furthermore, sincéy; };c(0,77 is self-financing, we havéy,, P;)r =0
for almost all(z, w).

Fixing (¢, ), we now letj € F be any function with the property thats) = 1.
Note that the functioly; «,(P; — j) is in F and that

(@rs Ljt,00)(Pr — J))p = 0.

Similarly, the functionlg ;1(P; — j) is also inF and

<€0t, 1[0,t](Pt - j))p =0.
Hence, we havéy,, j)r =0 for everyj € F; thusg, =0. O

REMARK 3.6. The above proof of uniqueness does not go through if we
had alIowedFu%*-vaIued portfolios. In particular, there exist nonzero portfolios
@ € F2* such that

F2*
@r € sparfdy; s <t} "

F2*
Nspanfds; s >t} v

and (¢;, P)r = 0. For example, lety, = r;8; — 8;. This is another reason for
demanding that the portfolios be valued in the smaller spaice F*.

Only with infinite-dimensionaH can we hope to satisfy the conditions of the
above proposition. However, unlike the finite-dimensional case, it is not clear that
such hedging strategies exist in general. Parroting the calculation from Section 2,
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let £ be a square-integrable discounted claim and suppose that we could find a
pre-hedging strategfy, };>o such that

- - T ~ - T
5=E§L+A<@¢ﬂwF=E§rgﬁ<qwhmnm.

But recall that the martingale representation theorem states that there exists an
adaptedH *-valued proces§y, };c[o0,7 such that€ fOT llozs ||§I* ds < +oo and

- - T
(20) s=ma+£<mﬁwmf

See Da Prato and Zabczyk (1992) or Carmona (2004) for the infinite-dimensional
version of this result. Thus, in order to calculate a pre-hedging portfolio atstime
we need only compuig, = a;"_la,. But by assumption the operatgyris Hilbert—
Schmidt almost surely. Sincé is infinite dimensional, the inverse;~?! is
unbounded, and at this level of generality there is no guaranteerthatin its
domain for anys. Thus restricting the portfolio to be in the spagé for all
t > 0 is insufficient to replicate every square-integrable contingent claim. Bjork,
Di Masi, Kabanov and Runggaldier (1997) discuss this difficulty in the Banach
space setting where the bond price processjump-diffusion driven by a finite-
dimensional Wiener process, and they introduce the notion of approximate market
completeness.

We could proceed by enlarging the class of allowable hedging portfolios
by insisting thatg, is in the so-calledcovariance spaces;” 1H* for almost
all #r,w) € [0, T] x £, whereco* 1H* 5 F* is the Hilbert space with norm
@l g+-1+ = llo*@| u+. De Donno and Pratelli (2004) elaborate on this approach
for models in which the price process is defined cylindrically on a Hilbert space
Notice the spaces,*_lH* generally depend anandw, but it would be nicer if the
hedging strategy were valued in a fixed space with a more explicit characterization.
Furthermore, we would need the bond priéee (o; “1H** = o,H to be in a
much smaller space almost surely in order to construct the self-financing strategy.

Even if we knew thaty, was in the domain o2, it would be unclear if the
portfolio ¢; = a,*_loz; agrees with the traders’ intuition, since the suppoipis
interpreted as the range of maturities of the bonds in the portfolio. We see that in
order to construct a reasonable hedging portfolio, we need to know some detailed
information about the martingale representation of the payout. In the classical
Black—Scholes framework of a complete market with finitely many tradable assets,
the hedging portfolio of a contingent claim is expressed as the gradient of the
solution of a parabolic partial differential equation. Goldys and Musiela (1996)
extend this PDE approach to the bond market setting by finding conditions under
which the solution of the infinite-dimensional PDE is differentiable. In Section 5
we take a somewhat different approach to construct the hedging portfolio by
appealing to the Clark—Ocone formula of Malliavin calculus.
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Indeed, if we limit ourselves to payouts of the forfn= g(Pr), we can
find conditions on the model paramatdrs};~o and the payout functior(-)
under which there exists a uniqé&-valued hedging strategy. Furthermore, under
assumptions often satisfied by models used in practice, these conditions imply that
the portfolio is confined to a small subspacerot

4. Malliavin calculus and the Clark—Ocone formula. For an #7-measu-
rable random variablé € L2(Q;R), the martingale representation theorem
guarantees the existence of Hri-valued integrand such thatcan be written as a
stochastic integral with respect to the Wiener process. For the financial application
motivating this article, it is necessary to have an explicit formula for this integrand,
expressed in terms @t Fortunately, under a differentiability assumptionfrhe
Clark—Ocone formula provides such an expression. In order to state this useful
result, we need to first introduce the Malliavin derivative operator and list some of
its properties. The material of this section can be found in Nualart's (1995) book
when the Hilbert spaces are finite dimensional.

The Malliavin derivative is a linear map from a space of random variables
to a space of processes. We are concerned with the case where the random
variables are elements df2(Q; G), in which case the processes are elements
L2([0, T] x € L£us(H, G)), whereG is a real separable Hilbert space.

Being a derivative, it is not surprising that this operator is unbounded on
L2(2; G). We take the approach of defining it first on a core and then extending
the definition to the closure of this set in the graph norm topology.

We now define the Malliavin derivative operatbron this set.

DEFINITION 4.1. The random variables$ ¢ LZ(Q; G) of the form

(21) X=K</0T<h,1,dw,>ﬂ,...,fon?,th)H),

wherehl, ... h" € L%([0, T]; H*) are deterministic, and where the differentiable
functionk : R" — G is such that

dKk (x)

n

(22) 3

i=1
for somep, C > 0, and for allx = (x1, ..., x,,) € R", are calledsmooth, and their
Malliavin derivatives are defined to be

" 9k T 1 T )
DX:Z—</O (ht,th)H,...,/o (hf,th)H)(ghz.

=1 9xi

‘G <1+ IxI2),

i

Note that the proced®; X };¢(0, 7] is valued inLns(H, G) and that it satisfies

T
E{/O ||D,X||§HS(H’G)dt} < +o0
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because of the growth condition (22) on the partial derivativeg @nd the

fact that Gaussian random variables have moments of all orders. It turns out
that the Malliavin derivativeD as defined above as a densely defined operator
from L2(Q2; G) into L2([0, T] x ; L£Lus(H, G)) is closable. We use the same
notation D for its closure, and in particular, Definition 4.1 can be extended into
the more practical one:

DEFINITION 4.2.  If X istheL?(Q, G) limit of a sequencéX, },>1 of smooth
random variables such théb X, },~1 converges inL2([0, T] x ; Lus(H, G)),
we define

DX = lim DX,.
n—oo

REMARK 4.1 (Measurability). The Malliavin derivativ® X is defined to be
an element of.2([0, T'] x ; LHs(H, G)). Strictly speaking, it is an equivalence
class of functions ofz, w) which agree Lefy 1 xQ almost surely. By Fubini’s
theorem we can find a representativeloX such that, for every € [0, T], we
have thatD; X is measurable i and, for everyw € 2, we have thaD X () is
measurable im. We choose this representative to defin.

We use the notatiofil!(G) to represent the subspaceo?(Q; G) where the
derivative can be defined by Definition 4.2. This subspace is a Hilbert space for
the graph norm

T
X151, =E{IXI1Z) +E{f0 ||DIX||3CHS(H,G)dt}.

The following simple sufficient condition for Malliavin differentiability will be
needed in the sequel.

LEMMA 4.3. If X,, — X convergesin L2(2; G), then we have X € H(G)
whenever the following boundedness condition is satisfied:

T
supE{/o ||DtX,,||§CHS(H’G)dt} < 400.
n

PROOFE The sequencéX,} is bounded inH'(G), and hence, there exists
a subsequencéX,, }; that converges weakly it (G). But sinceX,, - X
converges in.2(2; G), we see that the weak limit aX,, }x is X, implying that
X eHYG). O

Now we come to the Clark—Ocone formula, the crucial result that provides
an explicit martingale representation for random variableB}AR) in terms of
the Malliavin derivative. A version of this formula for stronger differentiability
assumptions is originally due to Clark (1970). The formulation in terms of the
Malliavin derivative is due to Ocone (1984).
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THEOREM 4.4 (Clark—Ocone formula). For every ¥r-measurable random
variable X e HY(R), we have the representation

T
X =E(X) +f0 (E{D,X|F}.dW)

To prove this formula, we need the following integration by parts formula.

LEMMA 4.5. Let {B;}:c[0,77 bean adapted processin L%([0,T] x Q; H) and
let X € HY(R). We have

E{/OT(DtX, ﬁ,)Hdt} :E{X/OT(ﬂ;",th)H}.

PROOF.  First assume thatX = «(fg (h},dWiu, ..., [ (h*,dW))p) is
a smooth random variable. Note that condltlonal #n the Wlener integral
foT(hs, dW,) g is a real Gaussian random variable with mg(’érhs, dW,)y and
variancef,T ||hs||%* ds, so that forf;-measurablegd € L2(Q; H), we have

B [ wox pruas| 7} =elx ["15awiru| 7]

by definition of the Malliavin derivative for smooth random variables and the
ordinary integration by parts formula.
Now assuming there exist$; -measurables; L%(Q; H) such thatg, =

ZzN:O 1(tivti+1](t)/3i1 we have

E{/OT(Dsz ﬂt)Hdt} ZéE{E{/tit”l(D,X, ﬂi)Hdt‘fFIfi}}
- el "uawinars |

E{X/OT(ﬂ,*,dW,)H}.

Since the smooth random variables are dengéli(R) and the simple integrands
are dense ir.2([0, T] x Q; H*), a straightforward limiting procedure completes
the proof. O

PROOF OFTHEOREM 4.4. SinceX e L%(Q; R), by the martingale represen-
tation theorem there exists an adapted pro¢esscio,r] € L2(Q x [0, T]; H*)
such that

T
X:E{X}+./() (ar, dWi)n
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Without any loss of generality we can assume that'} = 0. Now let{g;};c[0,7]
be an adapted measurable process3f0, T] x 2; H). By Proposition 4.5 and
It6’s isometry, we have

E{/OT<sz, der} =E{/OT@,dwfm/OT(ﬁ;':dW,)H}

B [ e o).
implying

(23) E{/OTut,dez} —0,

wherer; = D; X — ;. The proces§); };cjo,77 1S In L2([0, T] x ; H*) by assump-
tion, but it is not adapted to the filtration. Since the optional projection process
{E{X;|F:}}:e[0.77 IS Obviously adapted to the filtration, and sinfe}cjo0,77 is
measurable and the filtration is right continuous, we have {{88X;|%;}}/c0.7]

is adapted and measurable. Lettjgjg= E{A;|#;} in (23), we get

T
E{/O 1B 71 dt} _o,
implying thata, = E{D, X|#;} for almost every, w) as desired. [J

We close this section with two results that allow us to calculate explicit formulas
in what follows. The first one is a generalization of the chain rule in the spirit of
Proposition 1.2.3 of Nualart (1995).

PROPOSITION 4.6. Given a random variable X € HY(F) and a function
k. F — G such that

Ik (x) —kMlle =Cllx = ylIF

for all x,y € F and some C > 0. Then «(X) € HY(G) and there exists a random
variable Vk (X) satisfying the bound ||V (X) || £(F,¢) < C almost surely and such
that

Dk (X) = Vk(X)DX.

REMARK 4.2. We are not claiming that the function is differentiable.
Instead, we merely state that the random variddkgX) plays the role of a
derivative in the sense of the chain rule. Of course i§ Fréchet differentiable,
thenVk (X) is its Fréchet derivative evaluatedXt In Section 5, we use this result
in the caseswhere=g: F — R andwhenc =0, ): F — Lys(H, F).
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PROOF OF PROPOSITION4.6. According to Lemma 4.3, in order to show
that x(X) € HY(G), we need only find a sequence of functiofis,}, such
that k,(X) — «(X) strongly in L2(Q2; F) and that{D«x,(X)}, is bounded
in L2([0, T] x 2; H*).

Let{¢'}°, be a basis of and let{r'}"_; be a basis foR". Let

n n
=Y e®r'eL® F) and €,=) r'®e" e L(F,R").
i=1 i=1

For everyn, let j, :R"” — R be a twice differentiable positive bounded function
supported on the unit ball iiR” and such thaff. j,(x)dx = 1, and for every

¢ > 0, define the approximate identigy by j5(x) =¢7" j,(x/¢e). Sete =1/n and
choosec, to be defined by the Bochner integral

0 = [ i =y dy = [ G0 6x — Gy dy.

Note thatk, is differentiable and that
2
B(lc (0 &, 013} <B{ ([ 550t X — )~ c0lcdy) |

2
< c2B|( [ 06X = 01 + Iyle)dy) |
< 2C%E{[|(€ut;, — DX |7} +2C%/n* > 0

by the dominated convergence theorem. By the finite-dimensional chain rule, we
have

D (X) = [ (6,)® (Vjiy = £,X)DE,X)dy,
whereV is the gradient irR", so that
g 2 2 r 2
E{ [ 10000 Ol 1.6 dr} <C E{ 10X dr},
and we can apply Lemma 4.3.
Finally, we note tha¥«, (X) is bounded inL.*°(22; L(F, G)) and hence by the

Banach—Alaoglu theorem there exists a subsequgVieg, (X)}x and a random
operatorVi (X) such that

T T
E{/O trace(AtD,K,,k(X))dt} = E{/O tracq A; Vi, (X)D; X) a't}

T
— E{/o tracdA; Vi (X)D; X) a't}
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for everyA e L2([0, T] x Q; £Lus(F, H)). On the other hand,

T T
E{/ trace(A,D,/c,,k(X))dt} — E{/ trace(A,D,/c(X))a’t}
0 0
so thatD;k (X) = Vk(X)D, X as claimed. [J

The second result which we state without proof is the infinite-dimensional
analog of (1.46) of Nualart (1995).

PrROPOSITION 4.7. If the adapted continuous square-integrable process
{ar}iefo, 77 issuchthat, for all # € [0, T'], therandomvariableo; € HY(Lus(H, F))
is differentiable, then

T T
Dl‘/ adeS=a,+/ D,anWS.
0 t

Note that wherw and W are scalar, the above result is true without assuming
that « is adapted provided the stochastic integral is interpreted as a Skorohod
integral instead of an It6 integral. We shall not need such a general form of this
result.

5. Hedging strategies for Lipschitz claims. In this section we find explicit
hedging strategies for an important class of contingent claims, and we characterize
their properties. The results presented here are new. First we show that under
natural conditions on the discounted bond price model and the payout function of
the option, the hedging strategy is bounded in Bitenorm, effectively avoiding
the difficulties mentioned in Section 3 for hedging generic claims. Furthermore,
we prove a general lemma which can be used to show that the hedging strategy is
often confined to a small subspacerdf. We apply this lemma to a model which
has the essential features of a classical HIM model, yet exhibits some notion of
maturity specific risk. For this class of models, we show that the counterintuitive
strategies which are possible for finite-factor models are not allowed.

For the remainder of this article we make the following standing assumption.

ASSUMPTION 5.1. The contingent claim is European with expiratidn
and payout given by = g(Pr). The payout functiong: F — R is such that
the modified functiong : F — R given by g(x) = x(T)g(x/x(T)) satisfies the
Lipschitz bound

(24) 18(x) =g = Cillx — yliF

for all x, y € F and some constarti; > 0. Furthermore, for alk1, xo € F such
thatx1(s) = x2(s) forall s > T, we have

(25) g(x1) = g(x2).
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We remark that the conditio (25) implies that the payout is insensitive to
the part of the price curve corresponding to expired bonds. We also note that
the Lipschitz assumption is reasonable. For instance, the payout function of a
call option with expirationT and strikeK on a bond with maturityly > T is
g(x) = (x(T1) — K)* and thus the modified payout function is given by

x(T1)
x(T)

which is clearly Lipschitz since the point evaluatidasandsr, are bounded linear
functions onF.

If we can prove thaP; € H(F), condition (24) and Proposition 4.6 imply that
the Clark—Ocone formula applies. Our aim is to find an explicit representation
of the Malliavin derivativeD Py so that we can characterize the strategy that
hedgeg.

For the remainder of this article we work in a Markovian setting. The dynamics
of the discounted bond prices will be given by Assumption 3.3 with the added
provision thato; = o (z, P,) for all + > 0. We list here the relevant assumptions
ono(-,-).

+
g(x)=x(T)( —K) — (x(T) — Kx(T)",

ASSUMPTION5.2. Leto(-,-):Ry x F — Lns(H, F2) be such that (-, x) is
continuous for allkk € F such thawt (¢, 0) =0 for all ¢ > 0, and such that we have
the Lipschitz bound

(26) lo(t,x) —o(t, V) leusH,F) < Cllx — yllF
forallz >0, x, y € F and som&” > 0. We assume that, for every, x» € F such
thatx1(s) = x2(s) for all s > ¢, we have

27) o(t,x1) =0(t,x2).

REMARK 5.1. Recall we work in the spacg? of differentiable functions
described in Section 3 so that we can speak sensibly of interest rates, and in
particular the bond price process is an 1td process. The conditions

lo (¢, x)*8gll i+ < K lx(s)],
lo(t,x) = ot )| s, 72y < K12 = Yl 2.

are sufficient to ensure that the bond prices are positive and condition (15) of
Assumption 3.3 is satisfied. We will not make use of such conditions in the
remainder of this paper. However, we are interested in hedging portfolios valued
in the dual spacé* = F*, so we will explicitty make use of condition (26).
Condition (27) implies that the volatilityfdhe discountegbrices is insensitive to

the part of the curve corresponding to expired bonds.

First, we show that the Malliavin derivative of the discounted bond price exists.
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LEMMA 5.3. For all T > 0, we havethat Pr € HY(F).

PROOFE By Lemma 4.3, we need only to find a sequence of Malliavin
differentiable random elements, s&y, which converge towardr in L%(Q; F),

and such thab P! is bounded inL?([0, T] x Q; £Ln1s(H, F)). A natural candidate
is provided by the elements of the Picard iteration scheme. Indeed, applying
Proposition 4.7 to theth step of the scheme, we obtain

. _ T _
DtP#=ot(P,"—1)+/ Doy (PP Yy dw.
t

Now, since for alls € [0, T'] the functiono (s, -) is Lipschitz, we can apply
Proposition 4.6 and conclude by induction tifat e H(F). Indeed we have

D2
E{ID: PN % s, )

=E{llo(t, " D% s p) )

T
pn—1 2
+E{/t | Dso (s, Psn )HOCHS(HvoCHS(HvF))dS}

- T ~
< CZE{|| B/ YI%) + CZE{ f 1D P M st ) ds}.
Since the Picard iterates satisfy the bound
E(| B2} < || Pol3 €
foralln > 1, we have
E{ID, P}1I2, i1 5y} < C2ll Pol3:C°T,
by Gronwall’s inequality. This completes the proof.]
Since we know that?, € HY(F) for all + > 0, we can conclude by Proposi-

tion 4.6 that foro (1, P,) e HY(Lns(H, F)), and by Proposition 4.7, we see that
{D; Ps}sepr, 1 Satisfies the linear equation

~ s ~

Note that, for alk > 0, the random vanabl@’o, takes valuesinC(F, Lus(H, F)),
and that for eachs, 7, we have D, P, € Lns(H, F), so thatVo,D;P; €
Lus(H, Lus(H, F)).

We now appeal to Skorohod’s theory of strong random operators as developed
in Skorohod (1984). A strong random operator frdminto G is a G-valued
stochastic procesZ; (x)};>0.xer Which is linear inx € F. If such a process is
adapted (in an obvious sense) and if, for exam@le; Lys(H, F), then by setting

[/ab stWs](x) :/ab Zs(x)dWs,
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we define a strong random operagfj}rZSdWS on F (i.e., from F into F). In
particular, if for eachr > 0, {Y; ;(x)}s>¢. xeF IS @ Strong random operator an,
then{Vo,Y; s(x)}s>:. xer IS @ strong random operator frof into Lys(H, F).

Then with this definition of the integrand, the stochastic integﬁfaWos Y s dWs
is a strong operator ofF'. In this sense of equality of strong random operators
on F, we would like to interpret the stochastic differential equation

N
(29) Y[’S=I+/ VO'uYt’u‘qu,
t

wherel € L(F, F) is the identity. We are interested in solving such an equation

because the solution process (if any) is in some sense the derivative with
respect toP,;. Moreover, the Malliavin derivative of the terminal underlying price
should be related to this new process by

(30) DIIST = Yt,TUt-

We settle the existence of a solution forstkequation in thedllowing proposition.
PrROPOSITIONS.4. Under the Lipschitz assumption (26), the linear equation
N
Y, s=1 +/ Vo, Y. -dW,
t

has a strong L (F, F)-valued martingale solution {Y; s}se;. 7. Furthermore, we
have the bound

27—
(31) E{I1Y,rx|I5| 57} < llx]|5eS 0.

PrROOF We prove that a Picard iteration scheme converges.Yl,.?gt: I
fors € [r, T] and let

N
Yyt =1 +ft VoY), - dW,.

Using the Lipschitz assumption and the martingale inequality, we have, for
everyx € F,

E{ sup ||<Y;?j1—Y;?s)x||%\ﬂ}
s€lt,T]

T
<aB| [ 1Vo 07, = V0 5]

T
<4c? / E{I(Y — ¥/ Hx131% ) ds.
So by induction, we have

C2(T —1)"

1 2 ¢ 2
B{ sup 75— vl |7 < o S

s€lt,T]
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proving by a Borel-Cantelli lemma that the sequence of proce§ggs,
converges almost surely toward a process which is continuous in the strong
topology of L(F, F). Furthermore, we have

S
E(|Y; sx (%1%} = Ix]1% +E{f ||VauYt,ux||?cHS(H,F)du\f;}

N
< WelZ+ €2 [ (1Y, 13177} du,
which implies the desired bound by Gronwall’s inequalitiz]

We assume that is Lipschitz, so we have the chain rule
Dg(Pr) =Vg(Pr)DPr,

whereD Py € Lys(H, F) andVg(Pr) € L(F,R) = F*.
We now use the Clark—Ocone formula, the chain rule and (30) to identify a
candidate pre-hedging strategy from the following formal calculation:

- - T -
F(Pr) =E(3(Pr)) + /O [E(VE(Br)|F1). Y,.ro dW,)
- T - -
— E{z(Pp)) + /O BV} VE(Pr)|F:}, d P,

PROPOSITIONS.5. The process {¢; }:c[0.77 given by the weak integral
¢ =E(Y, 7 VE(Pr)|F1)
is a pre-hedging strategy for the claim g(Py).

REMARK 5.2. By the formal calculation above, we only need to show that
¢: € Tl1,00) for almost all(z, w) € [0, T] x Q. First, we note thap; is bounded in
F* uniformly in ¢ € [0, T] almost surely. Indeed, we have

Ipellp+ = sup E{{(VE(Pr), Y, rx)r|F:)

IxllF=<1

—~11/2
< sup CiE{||Y:.rx)% %Y

xllF=<1

< CleCz(T—z)/Z

by the Lipschitz bound (24) and the exponential growth bound (31). In fact, we
haveg, € 7. for almost all(z, w) € [0, T'] x 2 thanks to the following lemma.

LEMMA 5.6. Let {3,;};>0 be a decreasing family of closed subspaces of F*
such that, for s < ¢, we have §, C $, and such that §; € §, for all r € [0, T].
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Suppose:

(i) the payout function g(-) : F — R issuchthat, for all x € F andall y € 87,
we have

(32) glx +y)=gx);

(i) thevolatility functiono (-, -): Ry x F — £Lys(H, F) issuch that, for each
t>0andall x e F,y e 4+ and u € 8, we have

(33) ot,x +y)'u=ox)un.
Then for ~almost all (t,w) € [0,T] x 2, the random variable ¢, =
E{Y:Tvg(PT)W}} isvaluedin 4;.
PROOF.  First we prove that
(34) (VE(X),y)r=0  foranyX e HY(F) and ye §7,

where Vg(X) is the boundedF*-valued random variable such théxg(X) =
Vg(X)DX. Following the proof of Proposition 4.6, we 18 (x) be given by

800 = [ il = G)g ) du.

and recall that we have thgt (X) converges strongly t8(X), and that there exists
a subsequence such thag, (X) converges tovg(X) in the weak-* topology of
L>®(Q, F*). Lety € 83 and notice

(9800 el = | [ (V5500 = 00 23500

. g u+het,y)y—gu)| .
e he ¢ —g h
= [ tim |8t G = ST e ) g
R? h—0 h

< Cilld = £, tn)yllF — 0.

Similarly, we note that (33) implies that, for alle ;- andu € &, we have
(Vo (t, X)y)*u=0and henc&o (t, X) € L(8;", Lus(H, 51)).

The identityI € £(F, F) obviously takess;- into 8- and hence (29) has the
strong operator solutiof¥; ;}sef;.7] valued inL (8-, 8;). Thus for every € ;-
we have

(¢, y)F =E{(VE(Pr), Y, 1y)F|F;} =0
by (34), implyinge, € 8+ = 4, as desired. O
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PROOF OFPROPOSITIONS.5.  Apply Lemma 5.6 with the decreasing family
of subspaces given b§ = 7}; ). Note that the hypotheses are fulfilled since (27)
implies

1

o(t,x +y)=0(t,x) forall y € 7j; ),

and by assumption (25) we hagéx 4+ y) = g(x) forall y € T[%’OO). 0

Revisiting the motivating example of Section 3, for any contingent claim
maturing at time7, we denote byl"’ > T the longest maturity of the bonds
underlying the claim. The following theorem shows that under the appropriate
assumptions in the case of infinite-factor HIJM models, the bonds in the hedging
strategy for this claim have maturities less than or equal’taThis intuitively
appealing result is inspired by classical HIM models, of the type

4B = RO [ ki) du )

for a deterministic functiow : R — R?. Note for these models, the volatility*5;
TAQ)

L~ for
Pt/(“)

of the discounted bond price depends only on the forward rates = —
uelt,s].

THEOREMDb.7. Supposethat for every s > ¢, we have
o(t, x1)"8s = o (t, x2)"5;

whenever x1(u) = x2(u) for all u € [z, s]. If the payout function g hasthe property
that there exists a 7’ > T such that g(x1) = g(x2) for all x1, xo € F such that
x1(s) = x2(s) for all s € [T, T'], then there exists a hedging strategy {¢:}:(0,7]
that replicates the payout ¢(Pr) and it is such that ¢, € 7, 7+ for almost all
(t,w) €[0,T] x Q.

Furthermore, if for all x € F and ¢ > 0, we have

ker(a (ta x)*) = T[O,t],
then the hedging strategy is unigue.
PrRoOOF  Apply Lemma 5.6 with8, = 7}; 7 to the pre-hedging strategy given
by
¢ =E{Y 7 VE(Pr)|F7).

Since¢; € 7.7, we have the self-financing hedging strategy= ¢, + (V; —
(¢:, Pr)F)S; is also valued infj; 1. Uniqueness follows from Proposition 3.7.
O
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This theorem implies that hedging strategies for this class of contingent claims
have the property that the support of the portfolio at almost all times is confined
to an interval. Moreover, the right endpoint of this interval is given by the longest
maturity of the bonds underlying the claim, confirming our intuition about maturity
specific risk.
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