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Abstract. By the continuous mapping theorem, if a sequence of d-dimensional random vectors (Wn)n≥1 converges in distribution to a
multivariate normal random variable �1/2Z, then the sequence of random variables (g(Wn))n≥1 converges in distribution to g(�1/2Z)

if g : Rd → R is continuous. In this paper, we develop Stein’s method for the problem of deriving explicit bounds on the distance
between g(Wn) and g(�1/2Z) with respect to smooth probability metrics. We obtain several bounds for the case that the j -component
of Wn is given by Wn,j = 1√

n

∑n
i=1 Xij , where the Xij are independent. In particular, provided g satisfies certain differentiability and

growth rate conditions, we obtain an order n−(p−1)/2 bound, for smooth test functions, if the first p moments of the Xij agree with
those of the normal distribution. If p is an even integer and g is an even function, this convergence rate can be improved further to order
n−p/2. These convergence rates are shown to be of optimal order. We apply our general bounds to some examples, which include the
distributional approximation of asymptotically chi-square distributed statistics; the approximation of expectations of smooth functions
of binomial and Poisson random variables; rates of convergence in the delta method; and a quantitative variance-gamma approximation
of the D∗

2 statistic for alignment-free sequence comparison in the case of binary sequences.

Résumé. Par le théorème de l’application continue, si une suite (Wn)n≥1 de vecteurs aléatoires de dimension d converge en loi
vers une loi normale multivariée �1/2Z, alors la suite des variables aléatoires (g(Wn))n≥1 converge en loi vers g(�1/2Z) si g :
Rd → R est continue. Dans cet article, nous développons la méthode de Stein pour obtenir des bornes explicites sur la distance entre
g(Wn) et g(�1/2Z), pour des métriques lisses sur l’espaces des probabilités. Nous obtenons plusieurs bornes dans le cas où la j -ème
coordonnée de Wn est donnée par Wn,j = 1√

n

∑n
i=1 Xij , où les Xij sont indépendants. En particulier, si g vérifie certains conditions

de dérivabilité et de croissance, nous obtenons une borne d’ordre n−(p−1)/2, pour des fonctions-test lisses, si les p premiers moments
des Xij coïncident avec ceux de la loi normale. Si p est un entier pair et g est une fonction paire, ce taux de convergence peut être

encore amélioré en n−p/2. Nous montrons que ces taux de convergence sont d’ordre optimal. Nous appliquons nos bornes générales
à quelques exemples, incluant l’approximation en loi de statistiques suivant asymptotiquement une loi du chi-deux; l’approximation
d’espérances de fonctions lisses de variables aléatoires de loi binomiales ou de Poisson; des taux de convergence pour la méthode δ;
et une approximation variance-gamma quantitative de la statistique D∗

2 pour la comparaison sans alignement, dans le cas de suites
binaires.
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1. Introduction

1.1. Stein’s method for multivariate normal approximation

In 1972, Stein [64] introduced a powerful method that allows one to bound the distance between the distributions of a
random variable W and a standard normal random variable Z with respect to a probability metric. The basic approach, as
described in detail in [65] (see also [10] for a detailed introduction), involves two steps. The first is to solve the so-called
Stein equation

f ′′(w) − wf ′(w) = h(w) −Eh(Z), (1.1)
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where the test function h is real-valued. Bounds for the solution, f , and its derivatives are then established. In the second
step, the expectation

E
[
f ′′(W) − Wf ′(W)

]
(1.2)

is bounded, typically through the use of coupling techniques, which, via (1.1), leads to a bound for the quantity of interest
Eh(W) − Eh(Z). This then allows one to obtain bounds for the distance between the distributions of W and Z with
respect to probability metrics of the form

dH
(
L(W),L(Z)

) = sup
h∈H

∣∣Eh(W) −Eh(Z)
∣∣,

where the supremum is taken over a class of functions H. In the Stein’s method literature, common classes of test functions
include

HK = {
1(· ≤ z) | z ∈ R

}
,

HW = {
h : R→R | h is Lipschitz,

∥∥h′∥∥ ≤ 1
}
,

Hp = {
h ∈ Cp(R) | ∥∥h(k)

∥∥ ≤ 1 for all 1 ≤ k ≤ p
}
,

which give the Kolmogorov, Wasserstein and smooth Wasserstein (for p ≥ 1) distances, which we denote by dK, dW and
dHp

, respectively. (Here and elsewhere in the paper ‖f ‖ := ‖f ‖∞ = supx∈R |f (x)|.) Other variants include restricting
the smooth Wasserstein distance by further requiring that ‖h‖ ≤ 1 (see, for example, [3]), or weakening the conditions to
only require that ‖h(p)‖ ≤ 1 (see, for example, [21]).

By recognising the left-hand side of the Stein equation (1.1) as the generator of an Ornstein-Uhlenbeck process, [5]
and [37] extended Stein’s method for normal approximation to the multivariate normal distribution. A generalisation of
(1.1) to the multivariate normal distribution MVN(0,�) with mean 0 ∈Rd and covariance matrix � ∈Rd×d (see [36]) is
given by

∇T �∇f (w) − wT ∇f (w) = h(w) −Eh
(
�1/2Z

)
, (1.3)

where Z denotes a random vector having standard multivariate normal distribution of dimension d . If h : Rd → R is
Lipschitz, then a solution to (1.3) exists and is given by

f (w) = −
∫ ∞

0

[
Eh

(
e−sw +

√
1 − e−2s�1/2Z

) −Eh
(
�1/2Z

)]
ds (1.4)

(see [20], as well as [5] and [42] for an analagous solution for the Stein equation for approximation by Brownian motion
on [0,1]). If h is k times differentiable, then the solution (1.4) satisfies the bound (see [5] and [36]):∥∥∥∥ ∂kf (w)∏k

j=1 ∂wij

∥∥∥∥ ≤ 1

k

∥∥∥∥ ∂kh(w)∏k
j=1 ∂wij

∥∥∥∥, k ≥ 1. (1.5)

If we also suppose � is positive definite, we can obtain a bound involving one fewer derivative of h (see [14,25]):

∥∥∥∥ ∂kf (w)∏k
j=1 ∂wij

∥∥∥∥ ≤ �(k
2 )√

2�(k+1
2 )

min
1≤l≤k

{∣∣rowil

(
�−1/2)∣∣∥∥∥∥ ∂k−1h(w)∏

1≤j≤k
j �=l

∂wij

∥∥∥∥
}
, k ≥ 2, (1.6)

where |rowil (�
−1/2)| is the Euclidean norm of the il th row of �−1/2. Similar bounds for the derivatives of f as a k-linear

form can also be found in [25] and [49]. It was shown by [13] that the solution of (1.1) satisfies the bound∥∥f (k)
∥∥ ≤ 2

∥∥h(k−2)
∥∥, k ≥ 3. (1.7)

This bound has the attractive property of involving two fewer derivatives of the test function h than the solution f ,
although this improvement is not possible for multivariate case (see [58]).

When applying Stein’s method to derive bounds for normal and multivariate normal approximation one typically
requires bounds on at least the third order derivatives of the solution of the Stein equation. In the univariate case the
bound (1.7) with k = 3 can be used to derive bounds in the Wasserstein distance, but in the multivariate case the bounds
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(1.5) and (1.6) only allow for bounds to be given in the weaker dHp
metric for p ≥ 2. For this reason, until recently

bounds for multivariate normal approximation were mostly given in smooth Wasserstein metrics with p ≥ 2; bounds
with sub-optimal order could be given in stronger metrics by applying smoothing techniques (see, for example, part 2 of
Proposition 1.2 of [63]), though. The very recent works of [7,12,20,22,23] have, however, used novel implementations of
Stein’s method that bypass these technical difficulties and have established optimal or near-optimal bounds on the rate of
convergence of the usual standardised sum of independent random vectors to the limiting multivariate normal distribution,
under a variety of different assumptions. We also refer the reader to [67] for a recent complementary reference that attacks
this problem without using Stein’s method. The approach taken in this paper is to obtain suitable analogues of the bounds
(1.5)–(1.7) for unbounded test functions. As such, for the multivariate case d ≥ 2 all quantitative limit theorems derived
in this paper will be given in smooth Wasserstein metrics with p ≥ 2.

1.2. Functions of multivariate normal random variables and a general transfer principle

By the continuous mapping theorem, if a sequence of d-dimensional random vectors (Wn)n≥1 converges in distribution
to a multivariate normal random variable �1/2Z, then for any continuous function g : Rd → R, (g(Wn))n≥1 converges
in distribution to g(�1/2Z). In this paper, we develop Stein’s method for the problem of obtaining explicit bounds for
rate of convergence of the sequence of random variables (g(Wn))n≥1 to g(�1/2Z). (From now, for ease of notation, we
shall drop the subscript from Wn.) The general approach that shall be described in this section can in principle be applied
to treat any prelimit of the form g(W), where g satisfies certain differentiability and growth rate conditions (which will
be described shortly) and W can be well-approximated by a multivariate normal random variable by Stein’s method for
multivariate normal approximation. However, the quantitative limit theorems that are derived in Section 3 only treat the
(important) case that the components of W are standardised sums of independent random variables; some reasons for
imposing this restriction are given in Section 1.3.

Many standard probability distributions arise naturally as functions of multivariate normal random variables, such as

the chi-square (χ2
(d)

D= Z2
1 + · · · + Z2

d ), chi, log-normal and t -distribution; for further examples see [66]. Moreover, many
widely used statistics arise as functions of asymptotically multivariate normally distributed random variables, such as
Pearson’s statistic, Friedman’s statistic and the popular D2, DS

2 and D∗
2 statistics from alignment-free sequence compar-

ison (see [45] and [60]). Also, limiting distributions involving functions of multivariate normal random variables have
recently occurred in the context of Malliavin calculus (the Malliavin–Stein method is described in detail in [51]), such as
variance-gamma [19] and linear combinations of chi-square random variables [1,4]; see also [18] for other non-normal
limits.

One of the strengths of Stein’s method is that it is readily adapted to other distributions; for a comprehensive overview
see [44]. In particular, the method has been extended to many distributions that occur as functions of multivariate normal
random variables, such as the chi-square [32,46], chi [55], half-normal [15], variance-gamma [24], products of normal
and chi-square random variables [26,27,31] and linear combinations of centered chi-square random variables [2].

In adapting Stein’s method to these distributions, a suitable Stein equation for the distribution needs to be found, to-
gether with bounds on the solution and its (lower order) derivatives. For certain distributions, despite recent advances (see
[17]), this can be difficult; for example, consider the product normal distribution [26] for which only limited progress
has been made towards obtaining bounds for the derivatives of the solution. The approach described in this paper, which
involves considering the multivariate normal Stein equation rather than the distribution’s specific Stein equation removes
this difficulty by treating distributions that arise as functions of multivariate normal random variables in a general frame-
work (see also [1,52] for recent works that derive approximation theorems without directly bounding the solution of the
Stein equation for the limit law).

Moreover, in certain situations it may be more natural to frame a problem in terms of the multivariate normal Stein
equation than the Stein equation for the limiting distribution. Recently, [32] used such an approach to obtains bounds on
the rate of convergence of Pearson’s statistic to its limiting chi-square distribution.

To obtain distributional approximations for statistics that are asymptotically distributed as a function of a multivariate
normal, we simply consider the multivariate normal Stein equation (1.3) with test function h(g(·)):

∇T �∇f (w) − wT ∇f (w) = h
(
g(w)

) −Eh
(
g
(
�1/2Z

))
. (1.8)

One can then bound the expectation

E
[∇T �∇f (W) − WT ∇f (W)

]
(1.9)

using the various coupling techniques developed for multivariate normal approximation (see [9,35,36,49,61]). However,
in general the derivatives of the test function h(g(w)) will be unbounded (for the χ2

(1) distribution, g(w) = w2 and
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g′(w) = 2w) and therefore the derivatives of the solution

f (w) = −
∫ ∞

0

[
Eh

(
g
(
e−sw +

√
1 − e−2s�1/2Z

)) −Eh
(
g
(
�1/2Z

))]
ds (1.10)

will also in general be unbounded. Therefore one cannot apply inequalities (1.5), (1.6) and (1.7) to bound the solution’s
derivatives. This simple, but powerful approach was first used by [56] and [59] in which the authors invoked the multi-
variate normal Stein equation to derive bounds for chi-square approximation.

In this paper, we develop a general theory based on this approach. The approach will be effective when the prelimit
random variable is of the form g(W), where g : Rd → R is sufficiently regular and W is well-approximated by a multi-
variate normal random variable and is such that the expectation (1.9) can be estimated using one of the standard couplings
for Stein’s method for multivariate normal approximation. There may be instances in which one cannot decompose the
prelimit is such a way, in which case using the Stein equation for the limit distribution may prove to be more fruitful.
However, the combination of the fact there is a well established literature on such coupling techniques and that the es-
timates we obtain for the derivatives of the solution of the Stein equation with test function h(g(·)) (see Section 2) are
relatively simple means that there is potentially a wide range of problems that can be tackled via the techniques developed
in this paper. Indeed, as already noted it is natural to view the approximation of Pearson’s statistic in this way, and other
important statistics can also be treated; see [33]. The D2 and D∗

2 statistics from alignment-free sequence comparison also
seem to naturally fall into this framework; see Section 3.3.6 for further details.

1.3. Summary of results

In Section 2, we obtain general bounds, which apply for all g that satisfy certain differentiability and growth rate con-
ditions, for the derivatives of the solution (1.10) of the MVN(0,�) Stein equation with test function h(g(·)). As special
cases of these general bounds, we obtain bounds for the case that the lower order partial derivatives of g have a polynomial
(A + B

∑d
k=1 |wk|rk , where the rk are non-negative) or exponential growth rate (A exp(t

∑d
k=1 |wk|c), where 0 < c ≤ 2).

Our bounds for the derivatives of the solution of the Stein equation are in general unbounded as |w| → ∞, which means
that more care is needed in bounding the quantity (1.9) than in the usual multivariate normal setting in which the uniform
bounds (1.5), (1.6) and (1.7) can be applied.

Since our bounds for the partial derivatives of the solution of the Stein equation involve derivatives of the test function
h, the approximation theorems considered in this paper will only hold for smooth test functions. For the univariate case
g : R → R some of our bounds will be given in the Wasserstein metric, but all of our bounds for multivariate case
g : Rd → R, d ≥ 2, will be given in the smooth Wasserstein metric dHp

for p ≥ 2 (see Remark 3.6). Bounds resulting
from an application of Stein’s method are often given in such smooth test function metrics, particularly in multivariate
settings in which there are often technical difficulties in obtaining bounds in non-smooth metrics or when faster than
O(n−1/2) convergence rates are sought (see, for example, [8,16,21,32,34,36,61]). Bounds for non-smooth test functions
are often more informative (see, for example, [37]), although, as noted by [34], an advantage of working with smooth test
functions is that it is sometimes possible to obtain improved error bounds that may not hold for non-smooth test functions.
This feature will be exploited in this paper: our proofs rely on the assumption that the test functions are smooth.

In Section 3, we illustrate our approach in the following setting. We consider the case that the derivatives of g have
polynomial growth and that the components of W = (W1, . . . ,Wd)T are given by Wj = 1√

nj

∑nj

i=1 Xij , where the Xij

are independent random variables with mean zero and unit variance. We impose the polynomial growth assumption to
keep calculations manageable, but similar bounds could be obtained under the assumption of exponential growth rate; see
Remark 3.8 for further details. It is also quite a mild assumption, as many important statistics satisfy such an assumption.
We study the case that the components of W are sums of independent random variables for several reasons. Firstly, one can
bound the expectation (1.9) using local couplings, one of the simplest couplings for multivariate normal approximation
via Stein’s method. This allows for a clear exposition of the transfer principle, in which the focus is on the techniques
developed in this paper, rather than the intricacies of the coupling technique. Secondly, it is possible to carry out a quite
detailed investigation into the rate of convergence of g(W) to g(Z), which could provide valuable insights into more
general settings. Indeed, this is one of the main contributions of this paper.

Suppose that the functions h and g are sufficiently regular. Then, roughly speaking, our general bounds (Theorems 3.2–
3.5) can be summarised as follows. If the first p moments of the Xij are equal to those of the standard normal distribution,
then our bound on the quantity of interest |Eh(g(W))−Eh(g(Z))| is of order n−(p−1)/2, where n = min1≤j≤d nj . Match-
ing moments limit theorems with faster than O(n−1/2) convergence rates have appeared in the context of Stein’s method
in the papers [21,25,34,43], and our result generalises the results of [25,34]. That matching moments may result in faster
convergence rates is also know in other contexts; see, for example [38]. Perhaps more interestingly, if p is an even integer
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and we also suppose that g is an even function (g(−w) = g(w) for all w ∈ Rd ), then we can use symmetry considera-
tions, as introduced by [32], to improve this convergence rate further to order n−p/2, a rate which cannot be improved
(see Proposition 3.1). In particular, g(W) converges to g(Z) at rate n−1 even if the third moments of the Xij are non-zero.
This result generalises those of [24] and [32] since their chi-square and variance-gamma statistics are of the form g(W).
As far as this author is aware, the identification of the general condition that g being an even function results in faster
convergence rates in a smooth test function metric is an original contribution of this paper.

By carrying out a detailed investigation of the case that the components of W are sums of independent random vari-
ables, we gain insight into more complex settings that one may encounter in applications. Consider, for example, Pearson’s
statistic. The statistic falls into the framework described above, with g being an even function with derivatives of polyno-
mial growth, with the sole exception that the assumption that the Xij (which would be the normalised indicator random
variable that trial i falls into class j ) are independent fails. Given the insight from Theorems 3.2–3.5 it is, however, aw-
fully tempting to speculate that if the dependence is ‘sufficiently weak’ then a O(n−1) bound can be derived. This is
indeed the case [32], and further general results are given in [33].

We end in Section 3.3 with several examples that are chosen to illuminate the theory developed in this paper. We
consider normal (g(w) = w), chi-square (g(w) = w2) and Gaussian polynomial (g(w) = Hn(w), where Hn is the nth
Hermite polynomial) approximation to illustrate the general bounds of Theorems 3.2–3.5 in a concrete setting and to
provide a comparison with existing bounds from the Stein’s method literature. We also demonstrate, through binomial
and Poisson examples, how one can obtain approximations for expectations of smooth (unbounded) functions of random
variables by corresponding expectations of normal random variables. Tighter bounds can be obtained when the smooth
function is even. In Section 3.3.5, we consider a more involved application to the rate of convergence in the delta method.
Finally, we consider an application to sequence comparison. In Section 3.3.6, we outline how an extension of the theory
developed in this paper could be used to obtain quantitative limit theorems for the D∗

2 statistic from alignment-free
sequence comparison, and in Section 3.3.7 we apply Theorems 3.2 and 3.4 to derive bounds to quantify the variance-
gamma approximation of the statistic in the special case of binary sequence comparison.

2. Bounds for derivatives of the solutions of the normal and multivariate normal Stein equations

2.1. Preliminary results

We begin this section by obtaining a simple bound for the partial derivatives of the test function h(g(·)). Before deriving
this bound, we state some preliminary results. The first is a multivariate generalisation of the Faà di Bruno formula for
nth order derivatives of composite functions, due to [48]:

∂n∏n
j=1 ∂wij

h
(
g(w)

) =
∑
π∈�

h(|π |)(g(w)
) ·

∏
B∈π

∂ |B|g(w)∏
j∈B ∂wij

,

where π runs through the set � of all partitions of the set {1, . . . , n}, the product is over all of the parts B of the partition
π , and |S| is the cardinality of the set S. It is useful to note that the number of partitions of {1, . . . , n} into k non-empty
subsets is given by the Stirling number of the second kind

{
n
k

} = 1
k!

∑k
j=0(−1)k−j

(
k
j

)
jn (see [53]).

We now introduce two classes of functions that will be used throughout this paper. We say that the function h : I ⊆
R→ R belongs to the class Cn

b (I ) if h(n−1) exists and is absolutely continuous, with derivatives up to nth order bounded.
For a given P , we say that the function g : Rd → R belongs to the class Cn

P (Rd) if all nth order partial derivatives of g

exist and are such that, for all w ∈ Rd ,

∣∣∣∣ ∂k∏k
j=1 ∂wij

g(w)

∣∣∣∣
n/k

≤ P(w), k = 1, . . . , n.

If g ∈ Cn
P (Rd) then it is easy to see that, for all w ∈ Rd ,

∣∣∣∣∏
B∈π

∂ |B|g(w)∏
j∈B ∂wij

∣∣∣∣ ≤ P(w).

This inequality allows us to obtain a compact bound for the partial derivatives of the test function h(g(·)), which in turn
allows us to obtain relatively simple bounds for the solution (1.10) of the Stein equation (1.8).
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Lemma 2.1. Suppose h ∈ Cn
b (R) and g ∈ Cn

P (Rd), where n ≥ 1. Then, for all w ∈Rd ,∣∣∣∣ ∂n∏n
j=1 ∂wij

h
(
g(w)

)∣∣∣∣ ≤ hnP (w), (2.1)

where hn = ∑n
k=1

{
n
k

}‖h(k)‖.

Proof. From the above it is clear that∣∣∣∣ ∂n∏n
j=1 ∂wij

h
(
g(w)

)∣∣∣∣ ≤
∑
π∈�

∥∥h(|π |)∥∥ · P(w) =
n∑

k=1

{
n

k

}∥∥h(k)
∥∥ · P(w),

as required. �

We will also make use of the following lemma.

Lemma 2.2. Suppose h ∈ Cn
b (R) and g ∈ Cn

α(R), where n ≥ 2 and α ≥ 0 is a constant. Then the solution (1.10) of the
Stein equation (1.8) is bounded by∥∥wf (n)(w)

∥∥ ≤ ∥∥(h ◦ g)n−1
∥∥ ≤ αhn−1.

Proof. The inequality ‖wf (n)(w)‖ ≤ ‖(h ◦ g)n−1‖ is given in Lemma 2.5 of [25] and the second inequality follows from
Lemma 2.1. �

2.2. General bounds for the solution

Here, we obtain some general bounds for the solution of the multivariate normal Stein equation with test function h(g(·)).
We begin with the following lemma, the proof of which is similar to that of Proposition 2.1 of [25].

Lemma 2.3. Suppose � is non-negative definite and that h ∈ Cn
b (R) and g ∈ Cn

P (Rd), where n ≥ 1. Then, for all w ∈Rd ,
the solution (1.4) of the Stein equation (1.3) satisfies the bound∣∣∣∣ ∂nf (w)∏n

j=1 ∂wij

∣∣∣∣ ≤ hn

∫ ∞

0
e−ns

EP
(
z�1/2Z
s,w

)
ds, (2.2)

where

zx
s,w = e−sw +

√
1 − e−2sx,

provided the integral exists.
Suppose now that � is positive definite and that h ∈ Cn−1

b (R) and g ∈ Cn−1
P (Rd), where n ≥ 2. Then, provided the

integral exists, we have, for all w ∈ Rd ,∣∣∣∣ ∂nf (w)∏n
j=1 ∂wij

∣∣∣∣ ≤ hn−1 min
1≤l≤d

∫ ∞

0

e−ns

√
1 − e−2s

E
∣∣(�−1/2Z

)
l
P

(
z�1/2Z
s,w

)∣∣ds. (2.3)

Proof. Firstly, by the dominated convergence theorem, we obtain the following expression for the nth order partial
derivatives of the solution (1.4):

∂nf (w)∏n
j=1 ∂wij

= −
∫ ∞

0
e−ns

E

[
∂n∏n

j=1 ∂wij

h
(
g
(
z�1/2Z
s,w

))]
ds. (2.4)

By Lemma 2.1 and the assumptions that h ∈ Cn
b (R) and g ∈ Cn

P (Rd), we have that, for all w ∈ Rd ,∣∣∣∣ ∂n∏n
j=1 ∂wij

h
(
g(w)

)∣∣∣∣ ≤ hnP (w). (2.5)
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Combining this bound with (2.4) then yields (2.2). Lastly, we note that we were able to apply the dominated convergence
theorem to interchange the operations of integration and differentiation in virtue of the dominating function in (2.5) and
the assumption that the integral in (2.2) exists. We shall also apply the dominated convergence theorem to interchange the
operations of integration and differentiation later in the proof, and similar justifications can be given.

Now, we prove inequality (2.3). Suppose � is positive definite, so that �−1/2 exists. We proceed by using a very
similar calculation to the one used in the proof of Proposition 2.1 of [25] to find another expression for the nth order
partial derivatives of the solution (1.4). We begin by writing the solution (1.4) in the form

f (w) = −
∫ ∞

0

∫
Rd

[
h
(
g
(
e−sw +

√
1 − e−2sx

)) −Eh
(
g
(
�1/2Z

))]
p(x)dx ds,

where p(x) = (2π)−d/2(det(�))−1/2 exp(− 1
2 xT �−1x) is the MVN(0,�) density. Making the change of variable y =

e−sw + √
1 − e−2sx gives

f (w) = −
∫ ∞

0

∫
Rd

1

(1 − e−2s)d/2

[
h
(
g(y)

) −Eh
(
g
(
�1/2Z

))]
p

(
y − e−sw√

1 − e−2s

)
dy ds.

An application of the dominated convergence theorem gives that

∂f (w)

∂wi

= −
∫ ∞

0

∫
Rd

e−s

(1 − e−2s)(d+1)/2

(
�−1(y − e−sw

))
i

[
h
(
g(y)

) −Eh
(
g
(
�1/2Z

))]

× p

(
y − e−sw√

1 − e−2s

)
dy ds

= −
∫ ∞

0

∫
Rd

e−s

√
1 − e−2s

(
�−1x

)
i

[
h
(
g
(
e−sw +

√
1 − e−2sx

)) −Eh
(
g
(
�1/2Z

))]
p(x)dx ds

= −
∫ ∞

0

e−s

√
1 − e−2s

E
[(

�−1/2Z
)
i

[
h
(
g
(
e−sw +

√
1 − e−2s�1/2Z

)) −Eh
(
g
(
�1/2Z

))]]
ds, (2.6)

where we used the formula ∂
∂xi

(xT �−1x) = 2(�−1x)i in obtaining the first equality. By another application of the domi-
nated convergence we have, for any l ∈ {1, . . . , n},

∂nf (w)∏n
j=1 ∂wij

= −
∫ ∞

0

e−ns

√
1 − e−2s

E

[(
�−1/2Z

)
il

∂n−1∏
1≤j≤n−1

j �=l

∂wij

h
(
g
(
e−sw +

√
1 − e−2s�1/2Z

))]
ds. (2.7)

Finally, we can apply Lemma 2.1 to obtain (2.3), which completes the proof. �

So far, we have imposed no restrictions on the dominating function P other than it is non-negative and that the integrals
of Lemma 2.3 exist. We now introduce some conditions, which ensure that the integrals of Lemma 2.3 exist and can be
bounded relatively easily. As we will see in Examples 2.2 and 2.3 below, these conditions are not restrictive and allow
many classes of functions to be considered.

Assumption 2.1. We suppose that P can be written as P(w) = α + P1(w) + P2(w), where α is a non-negative constant
and

(i) P1 and P2 are non-negative, non-decreasing functions, in the sense that, for any w ∈ Rd and a > 1, one has Pi(w) ≤
Pi(aw), i = 1,2;

(ii) There exist non-negative constants βk , γk and δk such that, for any w1, . . . ,wk ∈ Rd ,

P1(w1 + · · · + wk) ≤ βk

k∑
j=1

P1(wk) and P2(w1 + · · · + wk) ≤ γk

d∏
j=1

P2(δkwk);

(iii) The expectations EP1(�
1/2Z) and EP2(�

1/2Z) exist;
(iii)′ The expectations E|(Z)iP1(�

1/2Z)| and E|(Z)iP2(�
1/2Z)| exist for all i = 1, . . . , d .

If P satisfies (i)–(iii), we write P ∈F ; if P satisfies (i)–(iii)′, we write P ∈ F∗.
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Example 2.2 (Polynomial P ). The function P(w) = A + B
∑d

i=1 |wi |ri clearly satisfies conditions (i) and (iii)′. Con-
dition (ii) can be verified by applying the crude inequality |x1 + · · · + xk|b ≤ kb(|x1|b + · · · + |xk|b), b ≥ 0. Writing
P(w) = A + P1(w), where P1(w) = B

∑d
i=1 |wi |ri , and using this inequality we deduce that

P1(w1 + · · · + wk) ≤ kr
k∑

j=1

P1(wj ), (2.8)

where r = max1≤i≤d ri . Hence, (ii) is satisfied with α = A, βk = kr , γk = 0 and P1(w) = B
∑d

i=1 |wi |ri .

Example 2.3 (Exponential P ). It is clear that P(w) = A exp(a
∑d

i=1 |wi |b), where a, b > 0, satisfies (i). To verify (ii),
we use the inequality |x1 +· · ·+xk|r ≤ ck,r (|x1|r +· · ·+ |xk|r ), where ck,r = max{1, kr−1}, which improves on the crude
inequality used above. Let (wj )k = wjk . Then

P(w1 + · · · + wk) = A exp

(
a

d∑
i=1

|w1i + · · · + wki |b
)

≤ A exp

(
a

d∑
i=1

ck,b

k∑
j=1

|wji |b
)

= A

k∏
j=1

exp

(
ack,b

d∑
i=1

|wji |b
)

= A1−k
k∏

j=1

P(ck,bwj ),

and so (ii) holds with α = 0, βk = 0, γk = A1−k , δk = ck,b and P2(w) = A exp(a
∑d

i=1 |wi |b). Clearly, (iii)′ holds if b < 2
and a > 0, or if b = 2 and 0 < a < 1/2.

Proposition 2.1. Suppose � is non-negative definite and that h ∈ Cn
b (R) and g ∈ Cn

P (Rd), where n ≥ 1 and P ∈ F .
Then, for all w ∈Rd ,∣∣∣∣ ∂nf (w)∏n

j=1 ∂wij

∣∣∣∣ ≤ hn

n

[
α + β2

(
EP1

(
�1/2Z

) + P1(w)
) + γ2P2(δ2w)EP2

(
δ2�

1/2Z
)]

. (2.9)

Suppose now that � is positive definite and that h ∈ Cn−1
b (R) and g ∈ Cn−1

P (Rd), where n ≥ 2 and P ∈ F∗. Then, for all
w ∈ Rd ,∣∣∣∣ ∂nf (w)∏n

j=1 ∂wij

∣∣∣∣ ≤ hn−1 min
1≤l≤d

[
αE

∣∣(�−1/2Z
)
l

∣∣ + β2
(
E

∣∣(�−1/2Z
)
l
P1

(
�1/2Z

)∣∣
+E

∣∣(�1/2Z
)
l

∣∣P1(w)
) + γ2E

∣∣(�−1/2Z
)
l
P2

(
δ2�

1/2Z
)∣∣P2(δ2w)

]
. (2.10)

Proof. Since P ∈ F ,

P
(
z�1/2Z
s,w

) = α + P1
(
z�1/2Z
s,w

) + P2
(
z�1/2Z
s,w

)
≤ α + β2

(
P1

(
e−sw

) + P1
(√

1 − e−2s�1/2Z
)) + γ2P2

(
δ2e−sw

)
P2

(
δ2

√
1 − e−2s�1/2Z

)
≤ α + β2

(
P1(w) + P1

(
�1/2Z

)) + γ2P2(δ2w)P2
(
δ2�

1/2Z
)
, (2.11)

where the final inequality follows from property (i). Substituting (2.11) into the integral inequalities (2.2) and (2.3),
respectively, gives the bounds∣∣∣∣ ∂nf (w)∏n

j=1 ∂wij

∣∣∣∣ ≤ hn

∫ ∞

0
e−ns

[
α + β2

(
EP1

(
�1/2Z

) + P1(w)
) + γ2P2(δ2w)EP2

(
δ2�

1/2Z
)]

ds,

and ∣∣∣∣ ∂nf (w)∏n
j=1 ∂wij

∣∣∣∣ ≤ hn−1 min
1≤l≤d

∫ ∞

0

e−ns

√
1 − e−2s

E
∣∣(�−1/2Z

)
l

(
α + β2

(
P1(w) + P1

(
�1/2Z

))
+ γ2P2(δ2w)P2

(
δ2�

1/2Z
))∣∣ds,
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whence on evaluating the integral
∫ ∞

0 e−ns ds = 1
n

and using the bound
∫ ∞

0
e−ns√
1−e−2s

ds ≤ ∫ ∞
0

e−2s√
1−e−2s

ds = 1, n ≥ 2, we
obtain inequalities (2.9) and (2.10), respectively. �

Corollary 2.1. Fix d = 1, � = 1 and let n ≥ 2. Suppose h ∈ Cn−1
b (R) and g ∈ Cn−1

P (R), where P ∈ F∗. Then, for all
w ∈R,∣∣wf (n)(w)

∣∣ ≤ hn−1
[
α + β2|w|(E∣∣ZP1(Z)

∣∣ + P1(w)
) + γ2|w|P2(δ2w)EP2(δ2Z)

]
. (2.12)

Proof. Due to the decomposition P(w) = α + P1(w) + P2(w), we can write the solution as f = fg1 + fg2 , where
g1 ∈ Cn−1

α (R) and g2 ∈ Cn−1
P1+P2

(R). By the triangle inequality, |f (n)(w)| ≤ |f (n)
g1 (w)| + |f (n)

g2 (w)|, and bounding these
two quantities using Lemma 2.2 and inequality (2.10) of Proposition 2.1, respectively, and that E|Z| < 1, leads to the
desired bound. �

In the univariate case, we can obtain a bound which involves two fewer derivatives of h and g than of the solution f

(compare the following proposition to inequality (1.7)); an improvement that is not possible in the multivariate case (see
[58]).

Proposition 2.2. Fix d = 1, � = 1 and let n ≥ 3. Suppose h ∈ Cn−2
b (R) and g ∈ Cn−2

P (R), where P ∈ F∗. Then, for all
w ∈R,∣∣f (n)(w)

∣∣ ≤ hn−2
[
3α + P1(w) + P2(w) + β2

(
EP1(Z) + |w|E∣∣ZP1(Z)

∣∣
+ (

1 + |w|)P1(w)
) + γ2

(
EP2(δ2Z)P2(δ2w) +E

∣∣ZP2(δ2Z)
∣∣∣∣wP2(δ2w)

∣∣)]. (2.13)

Proof. The standard normal Stein equation is f ′′(w) − wf ′(w) = h(g(w)) − Eh(g(Z)). By a straightforward induction
on n,

f (n)(w) = wf (n−1)(w) + (n − 2)f (n−2)(w) + (h ◦ g)(n−2)(w),

and applying the triangle inequality gives that, for every w ∈ R,∣∣f (n)(w)
∣∣ ≤ ∣∣wf (n−1)(w)

∣∣ + (n − 2)
∣∣f (n−2)(w)

∣∣ + ∣∣(h ◦ g)(n−2)(w)
∣∣.

Bounding these terms using (2.12), (2.9) and (2.1) yields (2.13). �

Now, we obtain estimates for the solution ψm of the Stein equation

∇T �∇ψm(w) − wT ∇ψm(w) = ∂mf (w)∏m
j=1 ∂wij

, (2.14)

where f is the solution (1.10) of the multivariate normal Stein equation (1.8). The Stein equation (2.14) plays an important
role in Section 3. We proceed as before and the following lemma is analogous to Lemma 2.3.

Lemma 2.4. Suppose � is non-negative definite and that h ∈ Cm+n
b (R) and g ∈ Cm+n

P (Rd), m,n ≥ 1. Then, for all
w ∈Rd , the solution of the Stein equation (2.14) satisfies the bound∣∣∣∣ ∂nψm(w)∏n

j=1 ∂wij

∣∣∣∣ ≤ hm+n

∫ ∞

0

∫ ∞

0
e−(m+n)se−nt

EP
(
z�1/2Z,�1/2Z′
s,t,w

)
ds dt,

where

zx,y
s,t,w = e−s−tw + e−s

√
1 − e−2ty +

√
1 − e−2sx,

provided the integral exists. Here Z′ is an independent copy of Z.
Suppose now that � is positive definite and that h ∈ Cm+n−2

b (R) and g ∈ Cm+n−2
P (Rd), where m,n ≥ 1 and m+n ≥ 3.

Then, provided the integral exists, we have, for all w ∈Rd ,∣∣∣∣ ∂nψm(w)∏n
j=1 ∂wij

∣∣∣∣ ≤ hm+n−2 min
1≤k,l≤d

∫ ∞

0

∫ ∞

0

e−(m+n)s

√
1 − e−2s

e−nt

√
1 − e−2t

×E
∣∣(�−1/2Z

)
k

(
�−1/2Z′)

l
P

(
z�1/2Z,�1/2Z′
s,t,w

)∣∣ds dt.
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Proof. The solution of (2.14) can be written as

ψm(w) = −
∫ ∞

0

∫
Rd

∂mf∏m
j=1 ∂wij

(
zy
t,w

)
p(y)dy dt,

where p is the probability density function of the random variable �1/2Z. By the dominated convergence theorem,

∂mf∏m
j=1 ∂wij

(
zy
t,w

) = −
∫ ∞

0

∫
Rd

e−ms ∂m(h ◦ g)∏m
j=1 ∂wij

(
e−szy

t,w +
√

1 − e−2sx
)
p(x)dx ds

= −
∫ ∞

0

∫
Rd

e−ms ∂m(h ◦ g)∏m
j=1 ∂wij

(
zx,y
s,t,w

)
p(x)dx ds,

and we can therefore write

ψm(w) =
∫ ∞

0

∫ ∞

0

∫
R2d

e−ms ∂m(h ◦ g)∏m
j=1 ∂wij

(
zx,y
s,t,w

)
p(x)p(y)dx dy dt ds.

By again applying the dominating convergence theorem, we have

∂nψm(w)∏n
j=1 ∂wij

=
∫ ∞

0

∫ ∞

0

∫
R2d

e−(m+n)se−nt ∂
m+n(h ◦ g)∏m+n

j=1 ∂wij

(
zx,y
s,t,w

)
p(x)p(y)dx dy dt ds

=
∫ ∞

0

∫ ∞

0
e−(m+n)se−nt

E

[
∂m+n(h ◦ g)∏m+n

j=1 ∂wij

(
z�1/2Z,�1/2Z′
s,t,w

)]
dt ds, (2.15)

which, on applying integration by parts twice, can be rewritten as

∂nψm(w)∏n
j=1 ∂wij

=
∫ ∞

0

∫ ∞

0

e−(m+n)s

√
1 − e−2s

e−nt

√
1 − e−2t

E

[(
�−1/2Z

)
ik

(
�−1/2Z′)

il

× ∂m+n−2(h ◦ g)∏
1≤j≤m+n−2

j �=k,l

∂wij

(
z�1/2Z,�1/2Z′
s,t,w

)]
dt ds. (2.16)

The desired bounds now follow from (2.15) and (2.16) and Lemma 2.1. �

Proposition 2.3. Suppose � is non-negative definite and that h ∈ Cm+n
b (R) and g ∈ Cm+n

P (Rd), where m,n ≥ 1 and
P ∈F . Then, for all w ∈Rd ,∣∣∣∣ ∂nψm(w)∏n

j=1 ∂wij

∣∣∣∣ ≤ hm+n

n(m + n)

[
α + β3

(
2EP1

(
�1/2Z

) + P1(w)
) + γ3

(
EP2

(
δ3�

1/2Z
))2

P2(δ3w)
]
. (2.17)

Suppose now that � is positive definite and that h ∈ Cm+n−2
b (R) and g ∈ Cm+n−2

P (Rd), where m,n ≥ 1 with m + n ≥ 3
and P ∈F∗. Then, for all w ∈Rd ,∣∣∣∣ ∂nψm(w)∏n

j=1 ∂wij

∣∣∣∣ ≤ 2hm+n−2 min
1≤k,l≤d

[
αE

∣∣(�−1/2Z
)
k

∣∣E∣∣(�−1/2Z
)
l

∣∣
+ β3

(
E

∣∣(�−1/2Z
)
k
P1

(
�1/2Z

)∣∣E∣∣(�−1/2Z
)
l

∣∣ +E
∣∣(�−1/2Z

)
k

∣∣
×E

∣∣(�−1/2Z
)
l
P1

(
�1/2Z

)∣∣ +E
∣∣(�−1/2Z

)
k

∣∣E∣∣(�−1/2Z
)
l

∣∣P1(w)
)

+ γ3P2(δ3w)E|(�−1/2Z
)
k
P2

(
δ3�

1/2Z
)
E

∣∣(�−1/2Z
)
l
P2

(
δ3�

1/2Z
)∣∣]. (2.18)

Proof. By using a similar argument to the one used to prove inequality (2.11) we obtain

P
(
z�1/2Z,�1/2Z′
s,t,w

) ≤ α + β3
(
P1(w) + P1

(
�1/2Z

) + P1
(
�1/2Z′))

+ γ3P2(δ3w)P2
(
δ3�

1/2Z
)
P2

(
δ3�

1/2Z′). (2.19)
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We then proceed as we did in the proof of Proposition 2.1 by substituting (2.19) into the integral inequalities of Lemma 2.4
and then bounding the resulting integrals. Here, in obtaining (2.18) we used the inequality

∫ ∞

0

∫ ∞

0

e−(m+n)s

√
1 − e−2s

e−nt

√
1 − e−2t

ds dt ≤
∫ ∞

0

e−3s

√
1 − e−2s

ds

∫ ∞

0

e−t

√
1 − e−2t

dt = π

4
· π

2
< 2,

which holds since n ≥ 1 and m + n ≥ 3. �

Again, in the univariate case it is possible to obtain a bound for the partial derivatives of ψm that involve fewer
derivatives of h and g.

Proposition 2.4. Fix d = 1 and let � = 1. Let m ≥ 2 and suppose that h ∈ Cm−1
b (R) and g ∈ Cm−1

P (Rd), where P ∈F∗.
Then, for all w ∈ R,∣∣ψ(3)

m (w)
∣∣ ≤ hm−1

[
2α

(
3 + w2) + P1(w) + P2(w) + β2

((
1 + 2|w|)P1(w) +EP1(Z) + 2|w|E∣∣ZP1(Z)

∣∣)
+ 2β3

(
1 + w2)(P1(w) + 2E

∣∣ZP1(Z)
∣∣) + γ2

(
P2(δ2w)EP2(δ2Z) + 2

∣∣wP2(δ2w)
∣∣E∣∣ZP2(δ2Z)

∣∣)
+ 2γ3

(
1 + w2)P2(δ3w)

[
E

∣∣ZP2(δ3Z)
∣∣]2]

.

Proof. The solution ψm satisfies the Stein equation ψ ′′
m(w) − wψ ′

m(w) = f (m)(w), and therefore

∣∣ψ(3)
m (w)

∣∣ = ∣∣f (m+1)(w) − wψ ′′
m(w) − ψ ′

m(w)
∣∣ = ∣∣f (m+1)(w) − wf (m)(w) + w2ψ ′(w) − ψ ′(w)

∣∣
≤ ∣∣f (m+1)(w)

∣∣ + ∣∣wf (m)(w)
∣∣ + (

1 + w2)∣∣ψ ′
m(w)

∣∣.
Bounding the final three terms using (2.13), (2.12) and (2.18), and simplifying the resulting bound by using that E|Z| < 1
completes the proof. �

2.3. Bounds for polynomial and exponential P

In Section 2.2, we gave bounds for the derivatives of f and ψm in terms of a dominating function P from a general class
of functions F or F∗. As was noted in Examples 2.2 and 2.3, the functions P(w) = A + B

∑d
i=1 |wi |ri and P(w) =

A exp(a
∑d

i=1 |wi |b) are contained in these classes. Therefore we can obtain bounds for the derivatives of f and ψm for
the case that the derivatives of g have polynomial or exponential growth as special cases of the bounds of Section 2.2.
The bounds for the case of polynomial P will be used in the proofs of Theorems 3.2–3.5. The bounds for the case of
exponential P will not be further used in this paper, but may prove useful in other applications; for a further discussion
see Remark 3.8.

Corollary 2.2. Let P(w) = A + B
∑d

i=1 |wi |ri , where ri ≥ 0, i = 1, . . . , d . Suppose � is non-negative definite and
h ∈ Cn

b (R) and g ∈ Cn
P (Rd) for n ≥ 1. Let Zi = (�1/2Z)i ∼ N(0, σ 2

ii ). Then, for all w ∈Rd ,

∣∣∣∣ ∂nf (w)∏n
j=1 ∂wij

∣∣∣∣ ≤ hn

n

[
A + B

d∑
i=1

2ri
(|wi |ri +E|Zi |ri

)]
.

Suppose now that � is positive definite and h ∈ Cn−1
b (R) and g ∈ Cn−1

P (Rd) for n ≥ 2. Then, for all w ∈ Rd ,

∣∣∣∣ ∂nf (w)∏n
j=1 ∂wij

∣∣∣∣ ≤ hn−1 min
1≤l≤d

[
AE

∣∣(�−1/2Z
)
l

∣∣ + B

d∑
i=1

2ri
(|wi |riE

∣∣(�−1/2Z
)
l

∣∣ +E
∣∣(�−1/2Z

)
l
Z

ri
i

∣∣)].

Suppose now that � = Id . Then we have the simplified bound

∣∣∣∣ ∂nf (w)∏n
j=1 ∂wij

∣∣∣∣ ≤ hn−1

[
A + B

d∑
i=1

2ri
(|wi |ri +E|Z|ri+1)].
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Consider now the case d = 1 with � = 1. Suppose h ∈ Cn−2
b (R) and g ∈ Cn−2

P (R), where n ≥ 3 and P(w) = A+B|w|r ,
r ≥ 0. Then, for all w ∈R,

∣∣f (n)(w)
∣∣ ≤ hn−2

[
3A + 2rB

(|w|r+1 + 2|w|r + |w|E|Z|r+1 +E|Z|r)].
Proof. The bounds follow from applying inequalities (2.9), (2.10) and (2.13) with P(w) = A + B

∑d
i=1 |wi |ri . From

Example 2.2, we have α = A, βk = kr∗ , where r∗ = max1≤i≤d ri , γk = 0 and P1(w) = B
∑d

i=1 |wi |ri . Although, by
examining the derivations of inequalities (2.9), (2.10) and (2.13), we see that we can slightly improve on these bounds by
using the inequality P1(w1 + · · · + wk) ≤ ∑k

j=1 kri P1(wj ), instead of inequality (2.8). Finally, we simplify the final two
bounds by using that E|Z| < 1. �

Corollary 2.3. Let P(w) = A + B
∑d

i=1 |wi |ri , where ri ≥ 0, i = 1, . . . , d . Suppose � is non-negative definite and
h ∈ Cm+n

b (R) and g ∈ Cm+n
P (Rd) for m,n ≥ 1. Then, for all w ∈ Rd ,

∣∣∣∣ ∂nψm(w)∏n
j=1 ∂wij

∣∣∣∣ ≤ hm+n

n(m + n)

[
A + B

d∑
i=1

3ri
(|wi |ri + 2E|Zi |ri

)]
.

Suppose now that � is positive definite and h ∈ Cm+n−2
b (R) and g ∈ Cm+n−2

P (Rd) for m,n ≥ 1 and m + n ≥ 3. Then, for
all w ∈Rd ,

∣∣∣∣ ∂nψm(w)∏n
j=1 ∂wij

∣∣∣∣ ≤ hm+n−2 min
1≤k,l≤d

[
AE

∣∣(�−1/2Z
)
k

∣∣E∣∣(�−1/2Z
)
l

∣∣

+ B

d∑
i=1

3ri
(|wi |riE

∣∣(�−1/2Z
)
l

∣∣E∣∣(�−1/2Z
)
k

∣∣ + 2E
∣∣(�−1/2Z

)
k

∣∣E∣∣(�−1/2Z
)
l
Z

ri
i

∣∣)].

Suppose now that � = Id . Then we have the simplified bound

∣∣∣∣ ∂nψm(w)∏n
j=1 ∂wij

∣∣∣∣ ≤ hm+n−2

[
A + B

d∑
i=1

3ri
(|wi |ri + 2E|Z|ri+1)]. (2.20)

Consider now the case d = 1 with � = 1. Suppose h ∈ Cm−1
b (R) and g ∈ Cm−1

P (R), where m ≥ 2 and P(w) = A+B|w|r ,
r ≥ 0. Then, for all w ∈R,

∣∣ψ(3)
m (w)

∣∣ ≤ hm−1
[
A

(
6 + w2) + 2 · 3rB

(|w|r+2 + 2|w|r+1 + 2|w|r + 2E|Z|r+1(1 + |w| + w2) +E|Z|r)].
The proof of Corollary 2.3 is analogous to that of Corollary 2.2 and is omitted. Similarly, one can obtain bounds for

the case that the dominating function P grows exponentially.

Corollary 2.4. Let P(w) = A exp(a
∑d

i=1 |wi |b), where a ≥ 0 and bi ≥ 0, i = 1, . . . , d . For each of the below inequal-
ities, a and the bi must be such that the expectation in the upper bound exists. (A simple sufficient condition for this to
be the case is that a ≥ 0 and max1≤i≤d bi < 2). Suppose � is non-negative definite and h ∈ Cn

b (R) and g ∈ Cn
P (Rd) for

n ≥ 1. Then, for all w ∈ Rd ,

∣∣∣∣ ∂nf (w)∏n
j=1 ∂wij

∣∣∣∣ ≤ Ahn

n
exp

(
a

d∑
i=1

c2,bi
|wi |bi

)
E exp

(
a

d∑
i=1

c2,bi

∣∣(�−1/2Z
)
i

∣∣bi

)
.

Suppose now that � is positive definite and h ∈ Cn−1
b (R) and g ∈ Cn−1

P (Rd) for n ≥ 2. Then, for all w ∈Rd ,

∣∣∣∣ ∂nf (w)∏n
j=1 ∂wij

∣∣∣∣ ≤ Ahn−1 exp

(
a

d∑
i=1

c2,bi
|wi |bi

)
min

1≤l≤d
E

∣∣∣∣∣(�−1/2Z
)
i
exp

(
a

d∑
i=1

c2,bi

∣∣(�−1/2Z
)
i

∣∣bi

)∣∣∣∣∣.
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Consider now the case d = 1 with � = 1. Suppose h ∈ Cn−2
b (R) and g ∈ Cn−2

P (R), where n ≥ 3 and P(w) =
A exp(a|w|b). Then, for all w ∈ R,

∣∣f (n)(w)
∣∣ ≤ Ahn−2 exp

(
ac2,b|w|b)[1 +E exp

(
ac2,b|Z|b) + |w|E∣∣Z exp

(
ac2,b|Z|b)∣∣].

Corollary 2.5. Let P(w) = A exp(a
∑d

i=1 |wi |bi ), where a ≥ 0 and bi ≥ 0, i = 1, . . . , d . Suppose � is non-negative
definite and h ∈ Cm+n

b (R) and g ∈ Cm+n
P (Rd) for m,n ≥ 1. Then, for all w ∈Rd ,

∣∣∣∣ ∂nψm(w)∏n
j=1 ∂wij

∣∣∣∣ ≤ Ahm+n

n(m + n)
exp

(
a

d∑
i=1

c3,bi
|wi |bi

){
E

(
a

d∑
i=1

c3,bi

∣∣(�−1/2Z
)
i

∣∣bi

)}2

.

Suppose now that � is positive definite and h ∈ Cm+n−2
b (R) and g ∈ Cm+n−2

P (Rd) for m,n ≥ 1 and m + n ≥ 3. Then, for
all w ∈ Rd ,

∣∣∣∣ ∂nψm(w)∏n
j=1 ∂wij

∣∣∣∣ ≤ Ahm+n−2 exp

(
a

d∑
i=1

c3,bi
|wi |bi

)
min

1≤l≤d

{
E

∣∣∣∣∣(�−1/2Z
)
l
exp

(
a

d∑
i=1

c3,bi

∣∣(�−1/2Z
)
i

∣∣bi

)∣∣∣∣∣
}2

.

Consider now the case d = 1 with � = 1. Suppose h ∈ Cm−1
b (R) and g ∈ Cm−1

P (R), where m ≥ 2 and P(w) =
A exp(a|w|b). Then, for all w ∈ R,

∣∣ψ(3)
m (w)

∣∣ ≤ Ahm−1 exp
(
ac3,b|w|b)[1 +E exp

(
ac2,b|Z|b)

+ 2|w|E∣∣Z exp
(
ac2,b|Z|b)∣∣ + 2

(
1 + w2){

E
∣∣Z exp

(
ac3,b|Z|b)∣∣}2]

.

3. Bounds for the distributional distance between g(W) and g(Z)

With the bounds for the derivatives of the solution of the multivariate normal Stein equation with test function h(g(·))
stated in Section 2, we are in a position to obtain bounds for the distributional distance between g(W) and its limiting
distribution g(�1/2Z). Such bounds can be achieved by bounding the expectation E[∇T �∇f (W) − WT ∇f (W)] by
using various coupling techniques that have been developed for multivariate normal approximation (see [9,35,36,49,61]),
where the coupling is chosen based on the dependence structure of W.

For the rest of this paper, we shall consider the case that W = (W1, . . . ,Wd), where Wj = 1√
nj

∑nj

i=1 Xij and the Xij

are mutually independent (as a result, in this section, we shall mostly be taking � = Id). From here on, W will denote
such a random vector. The restriction to this class of statistics allows for a detailed investigation of convergence rates, and
we would expect that the factors effecting convergence rates here (matching moments, whether g is an even function, and
the differentiability and growth rate of g) to also to apply in more general settings.

3.1. Preliminary lemmas

We begin by obtaining bounds for the distributional distance between g(W) and g(Z) in terms of the derivatives of the
solution of the MVN(0,�) Stein equation with test function h(g(·)). We give two bounds: one for general g and another
for when g is an even function. In Section 3.2, we apply these bounds and those of Section 2.3 to bound the distance for
the case that the derivatives of g have polynomial growth.

Unless otherwise stated, in this section, f will denote the solution (1.10). We shall also let Ck(Rd) denote the case of
real-valued functions defined on Rd whose partial derivatives of order k all exist. We define the random vector Xij to be
such that it has Xij as its j th entry and the other d − 1 entries are given by zero. For all 1 ≤ i ≤ n and 1 ≤ j ≤ d , we
define W(i,j) = W − 1√

nj
Xij , so that W(i,j) is independent of Xij .

Lemma 3.1. Let X1,1, . . . ,Xn1,1, . . . ,X1,d , . . . ,Xnd,d be independent random variables with EXk
ij = EZk for all 1 ≤

i ≤ nj , 1 ≤ j ≤ d and all positive integers k ≤ p. Let � = Id and suppose h and g are such that f ∈ C
p+1
b (Rd). Then, if
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the expectations on the right-hand side of (3.1) exist,

∣∣Eh
(
g(W)

) −Eh
(
g(Z)

)∣∣ ≤
d∑

j=1

nj∑
i=1

1

(p − 1)!n(p+1)/2
j

{
sup
θ

E

∣∣∣∣Xp−1
ij

∂p+1f

∂w
p+1
j

(
W(i,j)

θ

)∣∣∣∣
+ 1

p
sup
θ

E

∣∣∣∣Xp+1
ij

∂p+1f

∂w
p+1
j

(
W(i,j)

θ

)∣∣∣∣
}
, (3.1)

where W(i,j)
θ = W(i,j) + θ√

nj
Xij for some θ ∈ (0,1).

Proof. We aim to bound Eh(g(W)) − Eh(g(Z)), and do so by bounding the quantity
∑d

j=1 E[ ∂2f

∂w2
j

(W) − Wj
∂f
∂wj

(W)].
Taylor expanding ∂2f

∂w2
j

(W) and ∂f
∂wj

(W) about W(i,j) gives

d∑
j=1

E

[
∂2f

∂w2
j

(W) − Wj

∂f

∂wj

(W)

]
=

d∑
j=1

nj∑
i=1

1

nj

E
∂2f

∂w2
j

(W) −
d∑

j=1

nj∑
i=1

1√
nj

EXij

∂f

∂wj

(W)

=
d∑

j=1

nj∑
i=1

p−2∑
k=0

1

k!nk/2+1
j

EXk
ij

∂k+2f

∂wk+2
j

(
W(i,j)

)

−
d∑

j=0

nj∑
i=1

p−1∑
k=0

1

k!nk/2+1/2
j

EXk+1
ij

∂k+1f

∂wk+1
j

(
W(i,j)

) + R1 + R2, (3.2)

where

|R1| ≤
d∑

j=1

nj∑
i=1

1

(p − 1)!n(p+1)/2
j

sup
θ

E

∣∣∣∣Xp−1
ij

∂p+1f

∂w
p+1
j

(
W(i,j)

θ

)∣∣∣∣,

|R2| ≤
d∑

j=1

nj∑
i=1

1

p!n(p+1)/2
j

sup
θ

E

∣∣∣∣Xp+1
ij

∂p+1f

∂w
p+1
j

(
W(i,j)

θ

)∣∣∣∣.
Using independence and that the Xij have mean zero and collecting terms, we can write the right-hand side of (3.2) as

d∑
j=1

nj∑
i=1

p−1∑
k=1

1

k!nk/2+1/2
j

[
kEXk−1

ij −EXk+1
ij

]
E

∂k+1f

∂wk+1
j

(
W(i,j)

) + R1 + R2.

Now, by the matching moments assumption, kEXk−1
ij − EXk+1

ij = kEZk−1 − EZk+1 for all 1 ≤ k ≤ p − 1. But the

moments of the standard normal distribution satisfy kEZk−1 −EZk+1 = 0 for all k > 0. Thus, |Eh(g(W))−Eh(g(Z))| ≤
|R1| + |R2|, and the proof is complete. �

Remark 3.1. In the statement of Lemma 3.1, we did not give precise conditions on h and g such that f ∈ C
p+1
b (Rd), nor

restrictions on the Xij such that the expectations on the right-hand side of (3.1) exist. In applying, Lemma 3.1 in practice
(see Section 3.2), one would need to check that h, g and the Xij are such that these conditions are met. These comments
apply equally to Lemmas 3.2–3.3.

We now turn our attention to the case that g is an even function. The following key lemma enables us to obtain faster
convergence rates in this case.

Lemma 3.2. Let � be non-negative definite. Suppose that g : Rd → R is an even function (g(w) = g(−w) for all w ∈
Rd ). Then, the solution (1.10), denoted by f , is an even function. Moreover, for odd k ≥ 1, provided that ∂kf (w)∏k

j=1 ∂wij
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exists,

E

[
∂kf (�1/2Z)∏k

j=1 ∂wij

]
= 0, (3.3)

if the expectation in (3.3) is well-defined.

Proof. As �1/2Z D= −�1/2Z and g is an even function, we have, for any w ∈ Rd ,

f (−w) = −
∫ ∞

0
E

[
h
(
g
(−e−sw +

√
1 − e−2s�1/2Z

)) −Eh
(
g
(
�1/2Z

))]
ds

= −
∫ ∞

0

[
h
(
g
(−e−sw −

√
1 − e−2s�1/2Z

)) −Eh
(
g
(
�1/2Z

))]
ds

= −
∫ ∞

0

[
h
(
g
(
e−sw +

√
1 − e−2s�1/2Z

)) −Eh
(
g
(
�1/2Z

))]
ds = f (w),

and therefore the solution (1.4) is an even function.
Since f is an even function, the partial derivatives of odd order are odd functions, provided they exist. Therefore, since

�1/2Z D= −�1/2Z, it follows that (3.3) holds. �

With the aid of Lemma 3.2, we are able to obtain an analogue of Lemma 3.1 for the case that g is an even function.
The symmetry of the function g allows us to obtain faster convergence rates, for smooth test functions h. The following
partial differential equation shall appear in our proof:

d∑
k=1

(
∂2ψj

∂w2
k

(w) − wk

∂ψj

∂wk

(w)

)
= ∂p+1f

∂w
p+1
j

(w). (3.4)

Bounds for the solution ψj and its partial derivatives were given in Sections 2.2 and 2.3.

Lemma 3.3. Let X1,1, . . . ,Xn1,1, . . . ,X1,d , . . . ,Xnd,d be independent random variables with EXk
ij = EZk for all 1 ≤

i ≤ nj , 1 ≤ j ≤ d and all positive integers k ≤ p. Suppose g : Rd → R is an even function. Suppose further that the
solution (1.10), denoted by f , belongs to the class Cp+2(Rd) and that the solution ψj to (3.4) is in the class C3(Rd).
Then, if the expectations on the right-hand side of (3.5) exist,

∣∣Eh
(
g(W)

) −Eh
(
g(Z)

)∣∣
≤

d∑
j=1

nj∑
i=1

1

p!np/2+1
j

{
sup
θ

E

∣∣∣∣Xp
ij

∂p+2f

∂w
p+2
j

(
W(i,j)

θ

)∣∣∣∣
+ 1

p + 1
sup
θ

E

∣∣∣∣Xp+2
ij

∂p+2f

∂w
p+2
j

(
W(i,j)

θ

)∣∣∣∣ + ∣∣EX
p+1
ij

∣∣ sup
θ

E

∣∣∣∣Xij

∂p+2f

∂w
p+2
j

(
W(i,j)

θ

)∣∣∣∣
}

+
d∑

j=1

nj∑
i=1

|EX
p+1
ij |

p!n(p+1)/2
j

d∑
k=1

nk∑
l=1

1

n
3/2
k

{
sup
θ

E

∣∣∣∣Xlk

∂3ψj

∂w3
k

(
W(l,k)

θ

)∣∣∣∣ + 1

2
sup
θ

E

∣∣∣∣X3
lk

∂3ψj

∂w3
k

(
W(l,k)

θ

)∣∣∣∣
}
, (3.5)

where W(i,j)
θ is defined in Lemma 3.1.

Proof. By a similar argument to the one used in the proof of Lemma 3.1, we have

d∑
j=1

E

[
∂2f

∂w2
j

(W) − Wj

∂f

∂wj

(W)

]
=

d∑
j=1

nj∑
i=1

1

p!np/2+1/2
j

[
pEX

p−1
ij −EX

p+1
ij

]
E

∂p+1f

∂w
p+1
j

(
W(i,j)

) + R1 + R2,
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where

|R1| ≤
d∑

j=1

nj∑
i=1

1

p!np/2+1
j

sup
θ

E

∣∣∣∣Xp
ij

∂p+2f

∂w
p+2
j

(
W(i,j)

θ

)∣∣∣∣,

|R2| ≤
d∑

j=1

nj∑
i=1

1

(p + 1)!np/2+1
j

sup
θ

E

∣∣∣∣Xp+2
ij

∂p+2f

∂w
p+2
j

(
W(i,j)

θ

)∣∣∣∣.

By the matching moments assumption, EX
p−1
ij = EZp−1 = 0. Using this fact and Taylor expanding ∂p+1f

∂w
p+1
j

(W(i,j)) about
W gives

d∑
j=1

E

[
∂2f

∂w2
j

(W) − Wj

∂f

∂wj

(W)

]
= −

d∑
j=1

nj∑
i=1

1

p!n(p+1)/2
j

EX
p+1
ij E

∂p+1f

∂w
p+1
j

(
W(i,j)

) + R1 + R2

= N + R1 + R2 + R3,

where

N = −
d∑

j=1

nj∑
i=1

1

p!n(p+1)/2
j

EX
p+1
ij E

∂p+1f

∂w
p+1
j

(W),

|R3| ≤
d∑

j=1

nj∑
i=1

1

p!np/2+1
j

∣∣EX
p+1
ij

∣∣ sup
θ

E

∣∣∣∣Xij

∂p+2f

∂w
p+2
j

(
W(i,j)

θ

)∣∣∣∣.

To achieve the desired O(n
−p/2
1 + · · · + n

−p/2
d ) bound we need to show that E ∂p+1f

∂w
p+1
j

(W) is of order n
−1/2
1 + · · · + n

−1/2
d ,

since in general EX
p+1
ij �= 0. We consider the MVN(0, Id) Stein equation with test function ∂p+1f

∂w
p+1
j

:

d∑
k=1

(
∂2ψj

∂w2
k

(w) − wk

∂ψj

∂wk

(w)

)
= ∂p+1f

∂w
p+1
j

(w) −E

[
∂p+1f

∂w
p+1
j

(Z)

]
.

By Lemma 3.2, we have that E ∂p+1f

∂w
p+1
j

(Z) = 0, and therefore

E

[
∂p+1f

∂w
p+1
j

(W)

]
=

d∑
k=1

E

[
∂2ψj

∂w2
k

(W) − Wk

∂ψj

∂wk

(W)

]
. (3.6)

We can use Lemma 3.1 to bound the right-hand side of (3.6), which allows us to bound N . All terms have now been
bounded to the desired order and the proof is complete. �

3.2. Approximation theorems for polynomial P

Lemmas 3.1 and 3.3 allow one to bound the distributional distance between g(W) and g(Z) if bounds are available for
the expectations on the right-hand side of (3.1) and (3.5), respectively. In this section, we obtain such bounds for the case
that the derivatives of g have polynomial growth. We do not give bounds for the case of g with derivatives of exponential
growth, but see Remark 3.8 for a further discussion. We begin by proving the following lemma.
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Lemma 3.4. Let P(w) = A + B
∑d

i=1 |wi |ri , where A, B and r1, . . . , rd are non-negative constants. Suppose � = Id ,
θ ∈ (0,1) and let q ≥ 0. Then

E

∣∣∣∣Xq
ij

∂pf

∂w
p
j

(
W(i,j)

θ

)∣∣∣∣ ≤ hp

p

[
AE|Xij |q + B

d∑
k=1

2rk

(
2rkE|Xij |qE|Wk|rk

+ 2rk

n
rk/2
k

E
∣∣Xq

ijX
rk
ik

∣∣ +E|Z|rkE|Xij |q
)]

,

E

∣∣∣∣Xq
ij

∂pf

∂w
p
j

(
W(i,j)

θ

)∣∣∣∣ ≤ hp−1

[
AE|Xij |q + B

d∑
k=1

2rk

(
2rkE|Xij |qE|Wk|rk

+ 2rk

n
rk/2
k

E
∣∣Xq

ijX
rk
ik

∣∣ +E|Z|rk+1
E|Xij |q

)]
,

E

∣∣∣∣Xq
ij

∂3ψm

∂w3
j

(
W(i,j)

θ

)∣∣∣∣ ≤ hm+1

[
AE|Xij |q + B

d∑
k=1

3rk

(
2rkE|Xij |qE|Wk|rk

+ 2rk

n
rk/2
k

E
∣∣Xq

ijX
rk
ik

∣∣ + 2E|Z|rk+1
E|Xij |q

)]
,

(3.7)

where the inequalities are for g in the classes C
p
P (Rd), C

p−1
P (Rd) and Cm+1

P (Rd), respectively. Suppose now that d = 1
and � = 1. Then

E
∣∣Xq

i f (p)
(
W

(i)
θ

)∣∣ ≤ hp−2

[
3AE|Xi |q + 2rB

(
2r+1

E|Xi |q
(
E|W |r+1 +E|W |r)

+ 4E|Z|r+1
E|Xi |q+1 + 2r+2

nr/2
E|Xi |r+q+1

)]
,

E
∣∣Xq

i ψ(3)
m

(
W

(i)
θ

)∣∣ ≤ hm−1

[
10AE|Xi |q + 3r+1B

(
2r+1

E|Xi |q
(
2E|W |r+2 +E|W |r)

+ 16E|Z|r+1
E|Xi |q+2 + 2r+3

nr/2
E|Xi |r+q+2

)]
,

where the inequalities are for g in the classes C
p−2
P (R) and Cm−1

P (R), respectively. Here, W
(i)
θ = W(i) + θ√

n
Xi , where

W(i) = W − 1√
n
Xi .

Proof. Let us prove the first inequality. From inequality (2.20) we have

E

∣∣∣∣Xq
ij

∂nf

∂wn
j

(
W(i,j)

θ

)∣∣∣∣ ≤ hn

n

[
AE|Xij |q + B

d∑
k=1

2rk
(
E

∣∣Xq
ij

((
W(i,j)

θ

)
k

)rk
∣∣ +E|Z|rkE|Xij |q

)]
,

where (W(i,j)
θ )k denotes the kth component of W(i,j)

θ . Note that (W(i,j)
θ )j = W

(i)
j + θ√

nj
Xij and that (W(i,j)

θ )k = Wk =
W

(i)
k + 1√

nk
Xik for k �= j , where W

(i)
j = Wj − 1√

nj
Xij . Now, let θj = θ ∈ (0,1), and θk = 1 if k �= j . By using the crude

inequality |a + b|s ≤ 2s(|a|s + |b|s), which holds for any s ≥ 0, and independence of Xij and W
(i)
k , we have, for all

k = 1, . . . , d ,

E
∣∣Xq

ij

((
W(i,j)

θ

)
k

)rk
∣∣ ≤ 2rkE

∣∣∣∣Xq
ij

(∣∣W(i)
k

∣∣rk + θ
rk
k

n
rk/2
k

|Xik|rk
)∣∣∣∣

≤ 2rk

(
E|Xij |qE

∣∣W(i)
k

∣∣rk + 1

n
rk/2
k

E
∣∣Xq

ijX
rk
ik

∣∣). (3.8)
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Using that E|W(i)
k |rk ≤ E|Wk|rk leads to the desired inequality. This can be seen by using Jensen’s inequality:

E|Wk|rk = E
[
E

[∣∣Wk + n
−1/2
k Xik

∣∣rk | W(i)
k

]] ≥ E
∣∣E[

Wk + n
−1/2
k Xik | W(i)

k

]∣∣rk = E
∣∣W(i)

k

∣∣rk .
The proofs of the other inequalities are similar, with the only difference being that for the final two inequalities in

which d = 1 we have

E
∣∣Xq

i

(
W

(i)
θ

)r+l∣∣ ≤ 2r+l−1
(
E|Xi |qE

∣∣W(i)
∣∣r+l + 1

nr/2
E|Xi |q+rk+l

)
,

for l = 1,2, which is obtained via an analogous calculation to the one used to obtain (3.8), but here we used the inequality
|a + b|s ≤ 2s−1(|a|s + |b|s), which holds for any s ≥ 1. �

By applying the inequalities of Lemma 3.4 to the bounds of Lemmas 3.1 and 3.3, we can obtain the following four
theorems for the distributional distance between g(W) and g(Z) when the derivatives of g have polynomial growth.
Theorem 3.2 follows from using inequality (3.7) in the bound of Lemma 3.1, and the other theorems are proved similarly.

Theorem 3.2. Let P(w) = A + B
∑d

i=1 |wi |ri , where A, B and r1, . . . , rd are non-negative constants. Suppose g ∈
C

p
P (Rd). Let X1,1, . . . ,Xn,1, . . . ,X1,d , . . . ,Xn,d be independent random variables with EXk

ij = EZk for all 1 ≤ i ≤ nj ,

1 ≤ j ≤ d and all positive integers k ≤ p. Suppose also that E|Xij |rl+p+1 < ∞ for all i, j and l. Then, for h ∈ C
p
b (R),

∣∣Eh
(
g(W)

) −Eh
(
g(Z)

)∣∣ ≤ p + 1

p! hp

d∑
j=1

nj∑
i=1

1

n
(p+1)/2
j

[
AE|Xij |p+1 + B

d∑
k=1

2rk

(
2rkE|Xij |p+1

E|Wk|rk

+ 2rk

n
rk/2
k

E
∣∣Xp+1

ij X
rk
ik

∣∣ +E|Z|rk+1
E|Xij |p+1

)]
.

Theorem 3.3. Let P(w) = A + B|w|r , where A, B and r are non-negative constants. Suppose g ∈ C
p−1
P (R). Let

X1, . . . ,Xn be independent random variables with EXk
i = EZk for all 1 ≤ i ≤ n and all positive integers k ≤ p. Suppose

also that E|Xi |r+p+2 < ∞ for all 1 ≤ i ≤ n. Then, for h ∈ C
p−1
b (R),

∣∣Eh
(
g(W)

) −Eh
(
g(Z)

)∣∣ ≤ p + 1

p!n(p+1)/2
hp−1

n∑
i=1

[
3AE|Xi |p+1 + 2rB

(
2r+1

E|Xi |p+1(
E|W |r+1 +E|W |r)

+ 4E|Z|r+1
E|Xi |p+2 + 2r+2

nr/2
E|Xi |r+p+2

)]
.

Theorem 3.4. Let P(w) = A + B
∑d

i=1 |wi |ri , where A, B and r1, . . . , rd are non-negative constants. Suppose g ∈
C

p+2
P (Rd) is an even function. Let X1,1, . . . ,Xn,1, . . . ,X1,d , . . . ,Xn,d be independent random variables with EXk

ij =
EZk for all 1 ≤ i ≤ nj , 1 ≤ j ≤ d and all positive integers k ≤ p. Suppose also that E|Xij |rl+p+2 < ∞ for all i, j and l.

Then, for h ∈ C
p+2
b (R),

∣∣Eh
(
g(W)

) −Eh
(
g(Z)

)∣∣ ≤ 1

p!hp+2

{
1

p + 2

d∑
j=1

nj∑
i=1

1

n
p/2+1
j

(
p + 2

p + 1
+ ∣∣EX

p+1
ij

∣∣)[
AE|Xij |p+2

+ B

d∑
k=1

2rk

(
2rkE|Xij |p+2

E|Wk|rk + 2rk

n
rk/2
k

E
∣∣Xp+2

ij X
rk
ik

∣∣ +E|Z|rkE|Xij |p+2
)]

+ 3

2

d∑
j=1

nj∑
i=1

|EX
p+1
ij |

n
(p+1)/2
j

d∑
k=1

nk∑
l=1

1

n
3/2
k

[
AE|Xlk|3

+ B

d∑
t=1

3rt

(
2rtE|Xlk|3E|Wt |rt + 2rt

n
rt /2
t

E
∣∣X3

lkX
rt
lt

∣∣ + 2E|Z|rt+1
E|Xlk|3

)]}
.
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Theorem 3.5. Let P(w) = A + B|w|r , where A, B and r are non-negative constants. Suppose g ∈ C
p
P (R) is an even

function. Let X1, . . . ,Xn be independent random variables with EXk
i = EZk for all 1 ≤ i ≤ n and all positive integers

k ≤ p. Suppose also that E|Xi |r+p+4 < ∞ for all 1 ≤ i ≤ n. Then, for h ∈ C
p
b (R),

∣∣Eh
(
g(W)

) −Eh
(
g(Z)

)∣∣ ≤ 1

p!np/2+1
hp

{
1

p + 2

n∑
i=1

(
p + 2

p + 1
+ ∣∣EX

p+1
i

∣∣)

×
[

3AE|Xi |p+2 + 2rB

(
2r+1

E|Xi |p+2(
E|W |r+1 +E|W |r)

+ 4E|Z|r+1
E|Xi |p+3 + 2r+2

nr/2
E|Xi |r+p+3

)]

+ 3

2n

n∑
i=1

n∑
l=1

∣∣EX
p+1
i

∣∣[10AE|Xl |p+2

+ 3r+1B

(
2r+1

E|Xl |p+2(2E|W |r+2 +E|W |r)

+ 16E|Z|r+1
E|Xl |p+4 + 2r+3

nr/2
E|Xl |r+p+4

)]}
.

Remark 3.6. Consider Theorem 3.3 with p = 2. Then setting h1 = ‖h′‖ = 1 gives a bound in the Wasserstein metric.
All other bounds given in Theorems 3.2–3.5 can only be given in weaker metrics, though. Consider now Theorem 3.2
with p ≥ 2, and set ‖h(k)‖ = 1 for all k = 1, . . . , p. Then hp = ∑p

k=1

{
p
k

} = Bp , where Bp = e−1 ∑∞
j=1

jp

j ! is the pth

Bell number (see Section 26.7(i) of [53], noting that
{
n
0

} = 0 for n ≥ 1). Thus, setting hp = Bp in Theorem 3.3 gives
a bound in the smooth Wasserstein metric dHp

, p ≥ 2. Similarly, the bounds from Theorems 3.3–3.5 can be given in
smooth Wasserstein metrics.

Remark 3.7. From Theorem 3.2, we see that if the first p moments of the Xij match those of the N(0,1) distribution then,
provided E|Xij |rl+p+1 < ∞ for all i, j , l and g ∈ C

p
P1

(Rd) for P1(w) = A + B
∑d

i=1 |wi |ri , the rate of convergence of
g(W) to g(Z) is O(n−(p−1)/2), where n = min1≤j≤d nj . For this rate of convergence, we require that the test function h is
in the class C

p
b (R). By Theorem 3.4, it follows that, for even p, the rate of convergence can be improved to O(n−p/2) if we

strengthen the assumptions to E|Xij |rl+p+2 < ∞ for all i, j , l, that g
p+2
P1

(Rd) is an even function, and that h ∈ C
p+2
b (R).

When d = 1, we see from Theorems 3.3 and 3.5 that we can achieve these convergence rates with weaker assumptions
on g and h, possibly at the expense of stronger conditions on the existence of absolute moments of the Xi .

Remark 3.8. One could derive analogues of Theorems 3.2–3.5 for the case that the dominating function of g is of the
form P2(w) = A exp(a

∑d
i=1 |wi |b), where 0 < b ≤ 2. Such results could be derived by using the bounds of Section 2.3 to

obtain an analogue of Lemma 3.4 and substitute the resulting bounds into the general bounds of Lemmas 3.1 and 3.3. In
this paper, we do not carry out the more tedious and involved calculations required to obtain such analogues of Theorems
3.2–3.5, but we note here that it can easily be seen that similar principles regarding the rate of convergence of g(W)

to g(Z) would apply. For example, the analogue of Theorem 3.2 would give a bound on |Eh(g(W)) − Eh(g(Z))| that
was O(n−(p−1)/2) under the following assumptions. The first p moments of the Xij would also agree with those of the
N(0,1) distribution, although the absolute moment assumption would be replaced by the condition that an expectation
of the form E[|Xij |α exp(β|Xij |γ )] would exist, for some α,β, γ > 0. The assumptions on g and h would be exactly
analogous with g ∈ C

p
P2

(Rd) and h ∈ C
p
b (R).

The rates of convergence of Theorems 3.2–3.5 cannot be improved.

Proposition 3.1.

(i) For any p ≥ 2, the O(n−(p−1)/2) rate of Theorems 3.2 and 3.3 cannot be improved.
(ii) For any even p ≥ 2, the O(n−p/2) rate of Theorems 3.4 and 3.5 cannot be improved.

The proof shall use the following lemma.
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Lemma 3.5. Let X,X1, . . . ,Xn be i.i.d. random variables, with EXk = EZk for k = 1, . . . , p.

(i) If E|X|p+1 < ∞, then

EWp+1 = EZp+1 + 1

n(p−1)/2

(
EXp+1 −EZp+1).

(ii) If we further assume that E|X|p+2 < ∞, then

EWp+2 = EZp+2 + 1

np/2

(
EXp+2 −EZp+2). (3.9)

Proof. Let us prove part (ii); the proof of part (i) is similar and slightly easier. Since

EWp+2 = 1

n(p+2)/2

n∑
i1=1

· · ·
n∑

ip+2=1

E[Xi1 · · ·Xip+2]

and the random variables X1, . . . ,Xn are i.i.d., it follows that EWp+2 is expressed solely as a sum of constants and
products of moments EXk , k = 1, . . . , p + 2. In fact, only the moment EXp+2 appears in the sum. This is because
the first p moments are equal to the moments of the standard normal distribution and thus become constants. Also,
the moment EXp+1 only appears in the sum as a product with the moment EX = 0, and thus vanishes. Therefore,
EWp+2 = a + bEXp+2 for some constants a and b. There are only n terms in the sum in which EXp+2 is present,
and so b = n−p/2. Also, if EXp+2 = EZp+2 then we must have that EWp+2 = EZp+2, from which we deduce that
a = (1 − n−p/2)EZp+2. We thus obtain (3.9), as required. �

Proof of Proposition 3.1. We first prove that the O(n−(p−1)/2) rate of Theorem 3.3 cannot be improved, which also
shows that the O(n−(p−1)/2) rate of Theorem 3.2 cannot be improved. Let X,X1, . . . ,Xn be i.i.d. random variables
satisfying the assumptions of Theorem 3.3, so that EXk = EZk for all positive integers k ≤ p, and E|X|p+1 < ∞.
Suppose, however, that EXp+1 �= EZp+1. Take h(w) = w, which is in the class C

p−1
b (R), and g1(w) = wp+1, whose

derivatives have polynomial growth. Then, by part (i) of Lemma 3.5,

Eh
(
g1(W)

) −Eh
(
g1(Z)

) = EWp+1 −EZp+1 = 1

n(p−1)/2

(
EXp+1 −EZp+1),

and so the O(n−(p−1)/2) rate cannot be improved.
The proof of part (ii) is similar. Suppose that X,X1, . . . ,Xn are as before, but with the additional assumption that

EXp+2, where p is even. Take h(w) = w and g2(w) = wp+2, which is an even function. Then, by part (ii) of Lemma 3.5,

Eh
(
g2(W)

) −Eh
(
g2(Z)

) = EWp+2 −EZp+2 = 1

np/2

(
EXp+2 −EZp+2),

and so the O(n−p/2) rate cannot be improved. �

3.3. Examples

We end with some simple examples that are chosen to illuminate the results of this section. For simplicity, we consider
the case that the Xij are i.i.d. and are equal in law to the random variable X.

3.3.1. Normal approximation: g(x) = x

In the classical case g(x) = x, we can apply Theorem 3.3 with A = 1 and B = 0 to obtain the bound

∣∣Eh(W) −Eh(Z)
∣∣ ≤ 3(p + 1)

p!n(p−1)/2
hp−1E|X|p+1.

The case p = 3 (the first three moments match those of the standard normal) can be compared with Corollary 3.1 of [34],
in which a bound of order n−1 was obtained using zero bias couplings. The requirement that EX4 < ∞ is common to
both bounds, but our bound only requires that h ∈ C2

b(R), whereas [34] require that h ∈ C4
b(R). For the case of general p,

we can compare to Corollary 3.2 of [25]. Whilst the requirements on the moments and the test function h are the same,
our bound is outperformed by that of [25], which one may expect because our approach is much more general.
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3.3.2. Chi-square approximation: g(x) = x2

Let us now study the approximation of W 2 by Z2 ∼ χ2
(1). Firstly, we apply Theorem 3.3. Here g′(w) = 2w, so we take

P(w) = 2w as our dominating function, and applying the theorem with p = 2, A = 0, B = 2 and r = 1. Using that
E|W | ≤ (EW 2)1/2 = 1, E|Z|3 = 2

√
2/π and recalling Remark 3.6 we obtain the bound

dW
(
L

(
W 2), χ2

(1)

) ≤ 48√
n

[
E|X|3 +

√
2

π
EX4 + E|X|5√

n

]
. (3.10)

It is worth noting that obtaining O(n−1/2) Wasserstein distance bounds using the chi-square Stein equation would present
technical challenges, and this is the first instance of such a bound in the Stein’s method literature.

Since g(w) = w2 is an even function with polynomial growth, the O(n−1/2) rate can be improved, at the expense of
working in a weaker probability metric. Let us apply Theorem 3.5. We take P(w) = 2 + 4w2 as our dominating function,
since |g′(w)|2 = 4w2 and g′′(w) = 2 are both bounded by P(w) for all w ∈ R. We then apply the theorem with p = 2,
A = 2, B = 4 and r = 2. To obtain a more compact form for the final bound, we simplify by using that 1 ≤ E|X|a ≤ E|X|b
and 1 ≤ E|W |a ≤ E|W |b , for 2 ≤ a ≤ b, which follows from Hölder’s inequality. We also round numbers up to the nearest
integer to obtain

∣∣Eh
(
W 2) − χ2

(1)h
∣∣ ≤ 1

n

(∥∥h′′∥∥ + ∥∥h′∥∥)[
22E|W |3 + 40E|X|5 + 43

n
E|X|7

+ ∣∣EX3
∣∣(1312EX4

EW 4 + 3974EX6 + 2592

n
EX8

)]
, (3.11)

where χ2
(1)h denotes the expectation of h(U) for U ∼ χ2

(1). It is interesting to compare this bound with the previous

example; the simple act of taking the square of the random variable means that we can obtain a O(n−1) bound even
without the first three moments matching those of the standard normal distribution.

A bound for the quantity |Eh(W 2) − χ2
(1)| has also been obtained by [32], through a different approach involving the

chi-square Stein equation. They also required that EX8 < ∞; however, their bound requires that h ∈ C3
b(R+). Finally,

we note that we could obtain a O(n−1) bound for the rate of convergence of
∑d

k=1 W 2
k to the χ2

(d) distribution using

Theorem 3.4. However, the dependence on d would be bad; for large d the order would be d3n−1. Instead, it is better
to use the bounds (3.10) of (3.11) and the simple conditioning argument used to prove Theorem 3.3 of [32] to obtain a
O(dn−1) bound. This rate is worse than the n−1 rate of Theorem 3.3 of [32].

3.3.3. Hermite polynomials: g(x) = Hn(x)

Since the seminal paper [50], there has been considerable interest in the link between Stein’s method and Malliavin
calculus; see the book [51] for a detailed account of normal approximation by the Malliavin–Stein method. As noted by
[54], an important class of limits which fall outside current the state of the art of the Malliavin–Stein method are those
of the type Q(Z), where Z ∼ N(0,1) and Q is polynomial of degree strictly greater than 2. In particular, the case that
P is a Hermite polynomial, as given by Hq(x) = (−1)qex2/2 dq

dxq (e−x2/2), q ≥ 1, is of particular interest, due to their
fundamental role in Gaussian analysis and Malliavin calculus.

The difficulty in applying the Malliavin–Stein method here is because the only Stein equations in the current literature
for Hq(Z), q ≥ 3, are those of [28] for H3(Z) and H4(Z), which are fifth and third order differential equations, respec-
tively, for which no estimates are given for the solution of the Stein equation. However, the limit distributions Hq(Z),
q ≥ 1, evidently fall into our framework with g(x) = Hq(x). We note that Hq(x) is a polynomial of degree q and if q is
odd (even) then Hq(x) is an odd (even) function of x. Therefore, as we did in Section 3.3.2, we can apply Theorem 3.3
(with P(w) = Cq(1+|w|q−1) for some absolute constant Cq ) and Theorem 3.5 (with P(w) = C′

q(1+|w|2q−2)) to obtain
the bounds

dW
(
L

(
Hq(W)

)
,L

(
Hq(Z)

)) ≤ KqE|X|q+3

√
n

, q ≥ 3

and ∣∣Eh
(
H2q(W)

) −Eh
(
H2q(Z)

)∣∣ ≤ Mq

n

(∥∥h′∥∥ + ∥∥h′′∥∥)(
1 + ∣∣EX3

∣∣)E|X|2q+4, q ≥ 2,

where Kq and Mq are absolute constants, which can be found from a careful bookkeeping of constants. In obtaining these
compact bounds we used that, for p ≥ 2, there exists a constant Bp > 0 such that E|W |p ≤ BpE|X|p , which follows from
the Marcinkiewicz–Zygmund inequality.
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This example highlights some of the strengths and weaknesses of the theory developed in this paper. On the one hand,
we are able to easily give quantitative limit theorems for limit distributions that cannot otherwise be dealt with by Stein’s
method, but, on the other hand, the class of prelimits we can treat is very restrictive and our theory cannot treat limit
theorems involving convergence to linear combinations of Hermite polynomials that are found in applications in works
such as [11].

3.3.4. Approximation of expectations of smooth functions of binomial and Poisson random variables
Let S ∼ Bin(n,p). Then it is a well-known and standard application of the central limit theorem that W = S−np√

np(1−p)

converges in distribution to the standard normal distribution. Letting Y1, . . . , Yn ∼ Ber(p) be i.i.d. Bernoulli random

variables, we can write S = ∑n
i=1 Yi . We can thus write W = 1√

n

∑n
i=1 Xi , where Xi = Yi−p√

p(1−p)
. All moments of the Xi

exist, so if we take h(w) = w and g : R→R has a first derivative with polynomial growth, then we can apply Theorem 3.3
to obtain the bound

∣∣Eg(W) −Eg(Z)
∣∣ ≤ Cp,g√

n
, (3.12)

where Cp,g depends on p and g, but not n. If we assume further that g has a second derivative with polynomial growth
and that either p = 1

2 (EX3
i = 0 if and only if p = 1

2 ) or g is an even function, then we can apply Theorem 3.5 to obtain
the improved convergence rate

∣∣Eg(W) −Eg(Z)
∣∣ ≤ Kp,g

n
. (3.13)

The Poisson random variable T ∼ Po(λ), can be decomposed similarly to the binomial distribution: T is equal in
distribution to

∑�λ�
i=1 Vi , where the Vi are independent Po( λ

�λ� ) random variables and the floor function �x� is the greatest
integer less than or equal to x. It is evident that analogous bounds to (3.12) and (3.13) can be obtained for the normalised
Poisson random variable T −λ√

λ
. The only difference is that here EX3

i is not equal to zero for any value of λ, so to obtain
the λ−1 rate we always require that g is an even function. We refer the reader to [30] for further details, in which such
estimates find a surprising application in a derivation of the leading term in the asymptotic expansion of the normalising
constant of the Conway-Maxwell-Poisson distribution.

3.3.5. The delta method
Let X1, . . . ,Xn be independent random variables with zero mean and unit variance, and let X denote the sample mean.
Then, by the delta method,

√
n
(
f (X) − f (0)

) D→ N
(
0,

[
f ′(0)

]2) (3.14)

for continuous functions f with f ′(0) �= 0. In Theorem 3.9 below we obtain a O(n−1/2) bound for the rate of convergence
for the case that the derivatives of f have polynomial growth by applying Theorem 3.3 with g(w) = √

n(f (w/
√

n) −
f (0))/f ′(0) (note that W = √

nX). In the degenerate case that f ′(0) = 0 but f ′′(0) �= 0, we have instead that

n
(
f (X) − f (0)

) D→ 1

2
f ′′(0)χ2

(1), (3.15)

where χ2
(1) is the chi-square distribution with 1 degree of freedom (see [40, Theorem 5.5]). We can again obtain a

O(n−1/2) rate of convergence by applying Theorem 3.3, and in Theorem 3.10 below we use Theorem 3.5 to obtain a
bound with O(n−1) rate of convergence for the case that f is an even function (in which case f ′(0) = 0). As far as
the author is aware, this is the first bound in the literature with a O(n−1) rate of convergence for the delta method and
certainly the first to have been proved using Stein’s method.

The limiting results (3.14) and (3.15) generalise to functions f : Rd → Rm. If the partial derivatives of f are of
polynomial growth, we can use Theorems 3.2 and (3.4) to obtain bounds for m = 1, but none of our bounds are applicable
for the more general case. We also refer the reader to [57] for a detailed investigation into convergence rates in the
multivariate delta method, with optimal order bounds given in the Kolmogorov metric.

Theorem 3.9. Suppose that f : R → R is twice differentiable with f ′(0) �= 0, |f ′(w)| ≤ A + B|w|r and |f ′′(w)| ≤
C + D|w|s for all w ∈R, where A, B , C, D, r and s are non-negative constants. Let X1, . . . ,Xn be independent random
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variables with zero mean, unit variance and E|Xi |r+4 < ∞ for all 1 ≤ i ≤ n. Define T1 = √
n(f (X)−f (0))/f ′(0). Then,

for absolutely continuous h :R→ R,

∣∣Eh(T1) −Eh(Z)
∣∣ ≤ ‖h′‖

|f ′(0)|√n

{
1

n

n∑
i=1

[
3AE|Xi |3 + 2rB

nr/2

(
2r+1

EX4
i

(
E|W |r+1 +E|W |r)

+ 4E|Z|r+1
EX4

i + 2r+2

nr/2
E|Xi |r+4

)]
+

(
C + D

ns/2
E|Z|s+2

)}
.

Theorem 3.10. Let f : R → R be twice differentiable with f ′(0) = 0 and f ′′(0) �= 0. Let X1, . . . ,Xn be independent
random variables with zero mean and unit variance. Define T2 = 2n(f (X) − f (0))/f ′′(0) and let Y ∼ χ2

(1).

(i) In addition to the above, suppose that f ∈ C3(R) with |f ′′(w)| ≤ A + B|w|r and |f (3)(w)| ≤ C + D|w|s for all
w ∈ R, where A, B , C, D, r and s are non-negative constants, and also that E|Xi |r+4 < ∞, 1 ≤ i ≤ n. Then, for
absolutely continuous h :R→ R,

∣∣Eh(T2) −Eh(Y )
∣∣ ≤ ‖h′‖

|f ′′(0)|√n

{
1

n

n∑
i=1

[
6AE|Xi |3 + 2r+1B

nr/2

(
2r+1

EX4
i

(
E|W |r+1 +E|W |r)

+ 4E|Z|r+1
EX4

i + 2r+2

nr/2
E|Xi |r+4

)]
+ 1

3

(
2

√
2

π
C + D

ns/2
E|Z|s+3

)}
.

(ii) Suppose now that f ∈ C4(R) is an even function with |f ′′(w)| ≤ A + B|w|r and |f (4)(w)| ≤ C + D|w|s for all
w ∈ R, where A, B , C, D, r and s are non-negative constants, and also that E|Xi |r+6 < ∞, 1 ≤ i ≤ n. Then, for
h ∈ C2

b(R),

∣∣Eh(T2) −Eh(Y )
∣∣ ≤ 1

|f ′′(0)|n

{(∥∥h′′∥∥ + ∥∥h′∥∥){1

n

n∑
i=1

(
1

3
+ |EX3

i |
4

)

×
[

3AEX4
i + 2rB

nr/2

(
2r+1

EX4
i

(
E|W |r+1 +E|W |r)

+ 4E|Z|r+1
E|Xi |5 + 2r+2

nr/2
E|Xi |r+5

)]
+ 3

2n2

n∑
i=1

n∑
l=1

∣∣EX3
i

∣∣[10AEX4
l

+ 3r+1B

nr/2

(
2r+1

EX4
l

(
2E|W |r+2 +E|W |r) + 16E|Z|r+1

EX6
l + 2r+3

nr/2
E|Xl |r+6

)]}

+ ‖h′‖
12

(
3C + D

ns/2
E|Z|s+4

)

+ ‖h′′‖
|f ′′(0)|

[
5

3

(
f (3)(0)

)2 + 1

144n

(
105C2 + D2

ns/2
E|Z|s+8

)]}
.

Proof of Theorem 3.9. Let g1(w) = √
n(f (w/

√
n) − f (0))/f ′(0) and define W = √

nX, so that W = 1√
n

∑n
i=1 Xi .

Note that T1 = g1(W). Then, by the triangle inequality,

∣∣Eh(T1) −Eh(Z)
∣∣ ≤ ∣∣Eh

(
g1(W)

) −Eh
(
g1(Z)

)∣∣ + ∣∣Eh
(
g1(Z)

) −Eh(Z)
∣∣

=: R1 + R2.

We now note that g′
1(w) = f ′(w/

√
n)/f ′(0), and therefore |g′

1(w)| ≤ (A + Bn−r/2|w|r )/|f ′(0)| for all w ∈ R. Hence
we can apply Theorem 3.3 with the dominating function P(w) = (A+Bn−r/2|w|r )/|f ′(0)| to bound R1. We now bound
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R2. By Taylor expanding f (w/
√

n) about 0, we have that

Eh
(
g1(Z)

) = Eh

(
Z + f ′′(θZ/

√
n)

f ′(0)
√

n
Z2

)
,

for some θ ∈ (0,1). Therefore, as |f ′′(w)| ≤ C + D|w|s for all w ∈R,

|R2| =
∣∣Eh

(
g1(Z)

) −Eh(Z)
∣∣ ≤ ‖h′‖

|f ′(0)|√n
E

∣∣Z2f ′′(θZ/
√

n)
∣∣

≤ ‖h′‖
|f ′(0)|√n

E

[
Z2

(
C + D

∣∣∣∣ θZ√
n

∣∣∣∣
s)]

≤ ‖h′‖
|f ′(0)|√n

(
C + D

ns/2
E|Z|s+2

)
.

Combining our bounds for R1 and R2 yields the desired bound and completes the proof. �

Proof of Theorem 3.10. (i) Let g2(w) = 2n(f (w/
√

n)−f (0))/f ′′(0). Let W = √
nX so that T2 = g2(W). Then, by the

triangle inequality,∣∣Eh(T2) −Eh(Z)
∣∣ ≤ ∣∣Eh

(
g2(W)

) −Eh
(
g2(Z)

)∣∣ + ∣∣Eh
(
g2(Z)

) −Eh(Y )
∣∣

=: R1 + R2.

On Taylor expanding g′
2(w) = 2

√
nf ′(w/

√
n)/f ′′(0) about 0 and using that f ′(0) = 0 and |f ′′(w)| ≤ A + B|w|r for

all w ∈ R, we have that |g′
2(w)| ≤ 2(A + B|w/

√
n|r )/|f ′′(0)| for all w ∈ R. Hence we can bound R1 by applying

Theorem 3.3 with dominating function P(w) = 2(A+Bn−r/2|w|r )/|f ′′(0)|. Let us now bound R2. By Taylor expanding
f (w/

√
n) about 0 and using that f ′(0) = 0, we have that

Eh
(
g2(Z)

) = Eh

(
Z2 + f (3)(θZ/

√
n)

3f ′′(0)
√

n
Z3

)
,

for some θ ∈ (0,1). Therefore, as V
D= Z2 and |f (3)(w)| ≤ C + D|w|s for all w ∈ R,

|R2| =
∣∣Eh

(
g2(Z)

) −Eh
(
Z2)∣∣ ≤ ‖h′‖

3|f ′′(0)|√n
E

∣∣Z3f (3)(θZ/
√

n)
∣∣

≤ ‖h′‖
3|f ′′(0)|√n

E

∣∣∣∣Z3
(

C + D

∣∣∣∣ θZ√
n

∣∣∣∣
s)∣∣∣∣ ≤ ‖h′‖

3|f ′′(0)|√n

(
2

√
2

π
C + D

ns/2
E|Z|s+3

)
,

where we used that E|Z|3 = 2
√

2/π in the final step. Combining the bounds for R1 and R2 now yields the desired bound.
(ii) Suppose now that f is an even function, so that g2 is also an even function. We have already shown in part

(i) that |g′
2(w)| ≤ 2(A + B|w/

√
n|r )1/2/|f ′′(0)| for all w ∈ R. We also have that |g′′

2 (w)| = 2|f ′′(w/
√

n)|/|f ′′(0)| ≤
2(A + B|w/

√
n|r )/|f ′′(0)|. Therefore, we can obtain an alternative bound for R1 to the one given in part (i) of the proof

by applying Theorem 3.5 with dominating function P(w) = 2(A + Bn−r/2|w|r )/|f ′′(0)|. To bound R2, we begin by
proceeding as we did in part (i) but this time Taylor expand one term further to obtain

Eh
(
g2(Z)

) = Eh

(
Z2 + f (3)(0)

3f ′′(0)
√

n
Z3 + f (4)(θZ/

√
n)

12f ′′(0)n
Z4

)
,

for some θ ∈ (0,1). By another Taylor expansion, we then have that

|R2| =
∣∣Eh

(
g2(Z)

) −Eh(Z)
∣∣ = |R3 + R4|,

where

R3 = E

[(
f (3)(0)

3f ′′(0)
√

n
Z3 + f (4)(θZ/

√
n)

12f ′′(0)n
Z4

)
h′(Z2)],

|R4| ≤ ‖h′′‖
2

E

[(
f (3)(0)

3f ′′(0)
√

n
Z3 + f (4)(θZ/

√
n)

12f ′′(0)n
Z4

)2]
.
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Since x3h′(x2) is an odd function and the standard normal distribution is symmetric about 0, we have that E[Z3h′(Z2)] =
0. Hence

|R3| = 1

12|f ′′(0)|n
∣∣E[

Z4f (4)(θZ/
√

n)h′(Z2)]∣∣ ≤ ‖h′‖
12|f ′′(0)|n

(
3C + D

ns/2
E|Z|s+4

)
,

where the calculation used to obtain the inequality is now almost routine to us and we made use of the formula EZ4 = 3
and the assumption that |f (4)| ≤ C +D|w|s for all w ∈R. Finally, we bound R4. In the first step we use the simple bound
(a + b)2 ≤ 2(a2 + b2) to obtain a simpler bound and then use similar arguments to those used throughout the proof to
obtain the bound

|R4| ≤
∥∥h′′∥∥[

(f (3)(0))2

9(f ′′(0))2n
· 15 + 1

144(f ′′(0))2n2

(
105C2 + D2

ns/2
E|Z|s+8

)]
,

where we made use of the formulas EZ6 = 15, EZ8 = 105. Combining the bounds for R1, R3 and R4 (which together
bound R2) now gives the desired bound and completes the proof. �

Remark 3.11. On examining the proof of Theorem 3.9, one can see that our assumption that |f ′′(w)| ≤ C + D|w|s
for all w ∈ R can be substantially weakened. Our reason for imposing this condition is that we preferred clarity over
the most general result possible, and this assumption ties in quite neatly with the assumption that |f ′(w)| ≤ A + B|w|r
for all w ∈ R (which we must impose in order to apply Theorem 3.3). The same remark applies to the two bounds of
Theorem 3.10.

3.3.6. Sequence comparison: The D2 and D∗
2 statistics in the general case

Word sequence comparison is of importance to biological sequence comparison. One way of comparing sequences uses
k-tuples (a sequence of letters of length k), with the intuition being that if two sequences are closely related, we would
expect their k-tuple content to be similar. A statistic for sequence comparison based on k-tuple content, known as the D2
statistic, was suggested by [6].

Suppose that the two sequences, A = A1A2 · · ·Am and B = B1B2 · · ·Bn, say, are composed of i.i.d. letters that are
drawn from a finite alphabet A of size d . The null hypothesis is typically that the two sequences are independent. For
a ∈A let pa denote the probability of letter a. For w = (w1, . . . ,wk) ∈ Ak let

Xw =
m̄∑

i=1

1(Ai = w1, . . . ,Ai+k−1 = wk)

count the number of occurrences of w in A. Here m̄ = m − k + 1. Similarly, we let Yw count the number of occurrences
of w in B, and let n̄ = n − k + 1. For w = w1 · · ·wk denote by pw = ∏k

i=1 pwi
the probability of occurrence of w. Then

the D2 statistic is defined by

D2 =
∑

w∈Ak

XwYw.

Due to the complicated dependence structure (for a detailed account see [62]) approximating the asymptotic distribution
of D2 is a difficult problem. However, for certain parameter regimes D2 has been shown to be asymptotically normal and
Poisson, with error bounds given [41,45].

An alternative to D2 is the D∗
2 statistic [60], given by

D∗
2 =

∑
w∈Ak

(Xw − m̄pw)(Yw − n̄pw)√
m̄n̄pw

,

which was shown by [60], through simulation studies, to outperform D2 in terms of power for detecting the relatedness
between the two sequences. Like D2, the D∗

2 statistic has a complicated dependence structure and no quantitative limit
theorems have yet been derived. However, the tools developed in this paper offer the possibility to attack this problem, as
we shall now sketch.

The D∗
2 statistic is motivated (see [60, Section 2.2]) by estimating the standardised counts

X0
w = Xw − m̄pw√

VarXw
and Y 0

w = Yw − n̄pw√
VarYw

.
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We have that Var(Xw) = m̄pw(1 − pw). For relatively rare words w (rare words will occur provided that k is reasonably
large) we have 1 − pw ≈ 1 and so we can approximate Var(Xw) by m̄pw, which is less costly to compute. Now, X0

w
and Y 0

w are sums of locally dependent random variables and so, under certain parameter regimes, for each w, X0
wY 0

w is
approximately distributed as the product of two independent standard normal random variables (see [60]). However, the
random vectors X0

w = (X0
w : w ∈ Ak) are not independent; in fact, for d ∈Ak , X0

d is determined by the other dk − 1 word
counts. A multivariate normal approximation for X0

w (in a certain parameter regime) is given by [39], and formulas for
the covariance matrix are given in [47] and [60]. Similar comments apply to Y0

w = (Y 0
w : w ∈ Ak). From the above, we

see that D∗
2 can be written as

D∗
2 =

∑
w∈Ak

awX0
wY 0

w,

where aw = √
Var(Xw)Var(Yw)/(m̄n̄p2

w). Hence, D∗
2 is of the form D∗

2 = g(X0
w,Y0

w), where g(x,y) = ∑dk

i=1 aixiyi . The
limiting distribution is given by Dlim = g(�1/2Z1,�

1/2Z2), where the multivariate normal random variables �1/2Z1 and
�1/2Z2 are independent and the covariance matrix � is given in [47] and [60].

It is evident that the problem of bounding the quantity |Eh(D∗
2) − Eh(Dlim)| shares similarities with the quantitative

limit theorems derived in this paper. Here, the function g : R2(dk−1) → R is smooth with polynomial growth. The compo-
nents of the random vector (X0

w,Y0
w) are standardised sums of random variables and a multivariate normal approximation

is valid (in a particular parameter regime). Moreover, g is an even function, so a convergence rate of order m−1 + n−1

may be expected. However, unlike in this paper, the D∗
2 statistic has a dependence structure: there is a local dependence in

amongst the summands in the word count statistics X0
w, and a global dependence structure as the word counts statistics X0

w
are dependent themselves. A work in progress of the author is to extend the theory developed in this paper to treat depen-
dence structures of the type found in the D∗

2 statistic, with an application to bounding the quantity |Eh(D∗
2) −Eh(Dlim)|.

Some progress to this goal has been made in [33], in which the theory is extended to locally dependent random variables
with application to the rate of convergence of some classical statistics.

3.3.7. Binary sequence comparison
Whilst the problem of bounding bounding the quantity |Eh(D∗

2) −Eh(Dlim)| for general parameter values is beyond the
scope of this paper, thanks to Theorems 3.2 and 3.4 we are, however, able to treat the special case of binary sequence
comparison; some details regarding this problem for the D2 statistic are also given in Section 5 of [45].

Consider an alphabet of size 2 with comparison based on the content of 1-tuples. Suppose that the sequences are of
length m and n, the alphabet is {0,1}, and P(0 appears) = p and P(1 appears) = q , with p + q = 1. Denoting the number
of occurrences of 0 in the two sequences by X and Y , then

D∗
2 = (X − mp)(Y − np)√

mnp
+ (m − X − mq)(n − Y − nq)√

mnq

=
(

X − mp√
mpq

)(
Y − np√

mpq

)
. (3.16)

By the central limit theorem, (X − mp)/
√

mpq and (Y − np)/
√

npq are approximately N(0,1) distributed, and so D∗
2

is approximately distributed as Z1Z2, where Z1 and Z2 are independent N(0,1) random variables. By Proposition 1.2 of
[24], Z1Z2 is a variance-gamma VG(1,0,1,0) random variable with density 1

π
K0(|x|), x ∈ R, where K0(u) = ∫ ∞

0 (1 +
t2)−1/2 cos(ut)dt is a modified Bessel function of the second kind. In the case p = q = 1

2 , straightforward calculations
(see [45, Section 5]) show that

D2z = D2 −ED2√
Var(D2)

=
(

X − m
2√

m
4

)(
Y − n

2√
n
4

)
.

Note that in this case D2z = D∗
2 . We quantify these variance-gamma approximations of D2z and D∗

2 in Theorem 3.12. It

should be noted that if p �= 1
2 , then a normal approximation for D2z is more suitable; see again [45, Section 5].

Theorem 3.12. Consider the D∗
2 statistic, as given by (3.16), based on 1-tuple content, for i.i.d. binary sequences of

lengths m and n drawn from an alphabet {0,1} for which P(0 appears) = p, P(1 appears) = q , with p ∈ (0,1) and
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p + q = 1. Let V ∼ VG(1,0,1,0). Then, for h ∈ C4
b(R),∣∣Eh

(
D∗

2

) −Eh(V )
∣∣

≤
(

179 + 4411

∣∣∣∣
√

q

p
−

√
p

q

∣∣∣∣
)(

q4

p3
+ p4

q3

)(
1

m
+ 1

n

)(∥∥h(4)
∥∥ + 6

∥∥h(3)
∥∥ + 7

∥∥h′′∥∥ + ∥∥h′∥∥)
. (3.17)

Suppose now that p = q = 1
2 . Then we have the improved bound: for h ∈ C3

b(R),

∣∣Eh
(
D∗

2

) −Eh(V )
∣∣ ≤ 193

(
1

m
+ 1

n

)(∥∥h(3)
∥∥ + 3

∥∥h′′∥∥ + ∥∥h′∥∥)
. (3.18)

As D2z = D∗
2 in this case, we have the same bound for |Eh(D2z) −Eh(V )|.

Proof. Let Ii and Ji be the indicator random variables that the letter 0 occurs at position i in the first and second
sequences, respectively. Then X = ∑m

i=1 Ii and Y = ∑n
j=1 Jj , and we may write

D∗
2 =

(
X − mp√

mpq

)(
Y − np√

npq

)
=

(
1√
m

m∑
i=1

Xi

)(
1√
n

n∑
j=1

Yj

)
=: W1W2,

where Xi = (Ii − p)/
√

pq and Yj = (Jj − p)/
√

pq . The random variables X1, . . . ,Xm and Y1, . . . , Yn are i.i.d. with
zero mean and unit variance.

We first consider the general p ∈ (0,1) case and prove inequality (3.17) using Theorem 3.4 with g(u, v) = uv (which
is an even function). Now, ∂ug = v, ∂vg = u, ∂uvg = 1 and all other partial derivatives are equal to zero. We can therefore
take P(u, v) = 1 + u4 + v4 as our dominating function. On applying Theorem 3.4 with d = 2, p = 2, A = 1, B = 1 and
r1 = r2 = 4 we obtain a bound for the quantity |Eh(D∗

2) − Eh(V )|. In applying the theorem a number of expectations
need to be computed: we have

∣∣EX3
1

∣∣ =
∣∣∣∣
√

q

p
−

√
p

q

∣∣∣∣, EX8
1 = q4

p3
+ p4

q3
, EZ4 = 3, E|Z|5 = 8

√
2

π
,

where Z ∼ N(0,1). In order to obtain a compact final bound, we use that 1 ≤ E|X1|a ≤ EX8
1 for 2 ≤ a ≤ 8, which follows

from Hölder’s inequality, and that, again by Hölder’s inequality,

E
∣∣X3

1Y
4
1

∣∣ = E|X1|3EX4
1 ≤ (

EX4
1

)2 ≤ EX8
1

and

E|X1|3EW 4
1 ≤ EX4

1EW 4
1 = EX4

1

(
3(n − 1)

n
+ EX4

1

n

)
< 3

(
EX4

1

)2 ≤ 3EX8
1,

as well as the simple inequality 1√
mn

≤ 1
2 ( 1

m
+ 1

n
) and the crude inequalities m ≥ 1, n ≥ 1. Combining the above formulas

and inequalities with the bound of Theorem 3.4 then yields inequality (3.17) after rounding the constants up to the nearest
integer.

Now suppose that p = 1
2 . In this case, EX3

1 = 0 and we may therefore apply Theorem 3.2 to obtain a bound for
|Eh(D∗

2) −Eh(V )|, which allows us to weaken the class of test functions to C3
b(R). Again we have g(u, v) = uv, but we

now take P(u, v) = 1 + |u|3 + |v|3 as our dominating function. We thus apply Theorem 3.2 with d = 2, p = 3, A = 1,
B = 1 and r1 = r2 = 3. In obtaining our bound we use that E|X1|a = 1 for all a > 0, and that, by Hölder’s inequality,

E|W1|3 ≤ (
EW 4

1

)3/4 =
(

3(n − 1)

n
+ EX4

1

n

)3/4

=
(

3n − 2

n

)3/4

< 33/4.

To obtain the compact bound (3.18) for |Eh(D∗
2) − Eh(V )| we then proceed as we did in obtaining our bound for the

general p ∈ (0,1) case. �

Remark 3.13. For the case p = 1
2 , a bound of order m−1 + n−1 for the quantity |Eh(D2z) − Eh(V )| (for bounded test

functions h whose first three derivatives are also bounded) is given in [24] and Wasserstein and Kolmogorov distance
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bounds between the distributions of D2z and V with slower convergence rates are given in [29]. Our bound (3.18)
improves on that of [24] by having smaller constants and not requiring h to be bounded, and our bound 3.17 is the first in
the literature to treat the general p ∈ (0,1) case.

Let us discuss the bound (3.17) in more detail. The bound increases as the quantity |p − q| increases and, for fixed
m and n, blows up in the limits p → 0 and p → 1, but the bound still tends to 0 in the limit np7/2(1 − p)7/2 → ∞.
However, (X − mp)/

√
mpq and (Y − np)/

√
npq convergence in distribution to the standard normal distribution in the

limits mp(1 − p) → ∞ and np(1 − p) → ∞, respectively, so, by the continuous mapping theorem, the VG(1,0,1,0)

approximation of D∗
2 is also valid if mp(1 − p) � 1 and np(1 − p) � 1. The reason that our bound does not have an

optimal dependence on the parameter p is an artefact of the fact that we applied the general bound of Theorem 3.4 that is
not optimised for this particular application. Centering indicator random variables (as we must do to apply Theorem 3.4)
is not very efficient in terms of obtaining bounds with optimal dependence on the parameter p, and we refer the reader to
the proof of Theorem 4.1 of [32], particularly the Taylor expansion on p. 739, for a specialised method for dealing with a
statistic that is expressed in terms of indicator random variables that leads to an optimal dependence on all parameters.
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