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Abstract. In first-passage percolation (FPP), one assigns i.i.d. weights to the edges of the cubic lattice Z
d and analyzes the induced

weighted graph metric. If T (x, y) is the distance between vertices x and y, then a primary question in the model is: what is the order
of the fluctuations of T (0, x)? It is expected that the variance of T (0, x) grows like the norm of x to a power strictly less than 1, but
the best lower bounds available are (only in two dimensions) of order log‖x‖. This result was found in the ’90s and there has not been
any improvement since. In this paper, we address the problem of getting stronger fluctuation bounds: to show that T (0, x) is with high
probability not contained in an interval of size o(log‖x‖)1/2, and similar statements for FPP in thin cylinders. Such statements have
been proved for special edge-weight distributions, and here we obtain such bounds for general edge-weight distributions. The methods
involve inducing a fluctuation in the number of edges in a box whose weights are of “hi-mode” (large).

Résumé. En percolation de premier passage (PPP), on attribue des poids i.i.d. aux arêtes du réseau cubique Z
d et analyse la métrique

de graphe induite. Si T (x, y) dénote la distance entre les sommets x et y, une question fondamentale est de trouver l’ordre des
fluctuations de T (0, x). Il est escompté que la variance de T (0, x) croît comme la norme, ‖x‖, de x à une puissance strictement
inférieure à 1, mais les meilleures bornes inférieures disponibles à ce jour (et seulement pour d = 2) sont d’ordres logarithmiques. Ce
résultat a été démontré dans les années 90 et il a connu peu d’amélioration depuis. Dans ce papier, nous abordons le problème d’obtenir
des bornes inférieures plus strictes, en montrant qu’avec très grande probabilité, la distance T (0, y) n’est pas contenue dans un interval
de taille o(log‖x‖)1/2. Un résultat similaire est aussi valide en percolation de dernier passage (PDP) dans des cylindres minces. Ce
type de résultats qui n’avait été obtenu que pour des classes particulières de poids est ici démontré en toute généralité. Les (nouvelles)
méthodes développées ici consistent à induire une fluctuation du nombre d’arêtes dans une boîte dont les poids sont en “mode-haut.”
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1. Introduction

1.1. Background

We will consider first-passage percolation (FPP) on Z
2 (or more generally Z

d with d ≥ 2), with set E2 of nearest-neighbor
edges. This means that we take a collection (te)e∈E2 of i.i.d. nonnegative random variables (passage times) and, for any
lattice path � (alternating sequence x0, e0, x1, e1, . . . , xn−1, en−1, xn of vertices and edges such that ei has endpoints xi ,
xi+1), we assign the passage time T (�) = ∑n−1

i=0 tei
. Last, for vertices x, y ∈ Z

2, we put

T (x, y) = inf
�:x→y

T (�),

where the infimum is over all paths from x to y.
T as defined is a pseudometric, and FPP is the study of the random metric space (Z2, T ). A primary question involves

the order of the variable T (0, x), when ‖x‖ is large. Under mild conditions on the distribution of (te), one can show that
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T (0, x) grows linearly: there is a norm g on R
2 such that

lim‖x‖→∞
|T (0, x) − g(x)|

‖x‖ = 0 a.s.,

where ‖x‖ is the Euclidean norm of x. (See Section 2.3 of [5].) This can be interpreted as

T (0, x) = g(x) + o
(‖x‖) as ‖x‖ → ∞.

This leads to another important question: what is the order of the error term o(‖x‖)?
The error term splits into a “random fluctuation” term T (0, x) − ET (0, x) and a “nonrandom fluctuation” term

ET (0, x) − g(x). Bounds on the latter (see [2,4,30]) typically use bounds on the former, so we will focus on the random
fluctuation term. A typical way to measure its size is to estimate the variance of T (0, x). Upper bounds on the variance
were given by Kesten (order ‖x‖ in [23]) and later improved to ‖x‖/ log‖x‖ in a series of works by Benjamini–Kalai–
Schramm [8], Benaïm–Rossignol [7], and Damron–Hanson–Sosoe [13]. All of these works were for general dimensions
d ≥ 2. These are far from the predicted value of VarT (0, x) ∼ ‖x‖2/3 in two dimensions, which has been verified in a
related exactly-solvable model [21].

Lower bounds on the variance are less developed. In the ’90s, Pemantle–Peres [28] (for exponential distribution) and
Newman–Piza [27] (for general distributions, extended by Auffinger–Damron in [3]) showed inequalities of the form

VarT (0, x) ≥ c log‖x‖, for x �= 0,

in two-dimensional FPP. (The best lower bound for general dimensions remains of constant order [23].) Although the
work [27] uses a martingale method which only gives a variance bound, the other [28] shows a stronger property of the
distribution of T (0, x). Specifically, they show that it cannot be supported on an interval of size o(

√
log‖x‖): for any

intervals [an, bn] with bn − an = o(
√

logn), one has P(T (0, nv) ∈ [an, bn]) → 0 for any fixed unit vector v. Their proof
uses the memoryless property of the exponential distribution to exhibit the growth of the ball B(t) = {x ∈ Z

2 : T (0, x) ≤ t}
as a Markov process.

A general method was given by Chatterjee in [11] to prove “fluctuation lower bounds” for a range of statistical physics
models, so long as the underlying randomness lies in a certain class. For FPP, he has shown that under a strong regularity
assumption on the distribution of (te) (requiring te to be a continuous random variable with a smooth density and rapidly
decaying tails), the following holds. If (yn) is a sequence of points such that ‖yn‖ grows like a constant multiple of n,
then for d = 2, there exist c1, c2 > 0 such that for all large n, and all −∞ < a ≤ b < ∞ with b − a ≤ c1

√
logn, one has

P(a ≤ T (0, yn) ≤ b) ≤ 1 − c2. Note that results of this type do not in general follow from variance lower bounds.
In this paper, we aim to improve the results of Chatterjee and Pemantle–Peres to general distributions. Our main

results below apply to the largest class of distributions for which the FPP model does not exhibit degenerate behavior. In
contrast to [28] and [11], our methods do not rely on specific properties of the underlying distribution, and explore a more
combinatorial avenue. The main idea is inspired by the study of the longest common subsequence problem (see [16,18,
24]), and involves introducing a fluctuation in the number of hi-mode weights (weights in the top part of the distribution
of te). The notion of hi-mode weights was introduced and used in the Ph.D. thesis of Xu [31], where lower bounds of order

n
r(1−α)

2 are obtained for the r-th central moments (r ≥ 1) in a related last-passage percolation model over an n × �nα�
grid. (See [20].)

1.2. Main results

For the statement of our results, we need some conditions on the common distribution function F of (te):

F(0) < pc and F(I) < pc if I > 0, (1)

where pc = 1/2 is the critical value for two-dimensional bond percolation, pc ∼ 0.644 is the critical value for two-
dimensional oriented bond percolation (see [15]), and I is the infimum of the support of F . Note that (1) implies that F

is non-degenerate.

Theorem 1. Let F be a distribution satisfying (1). There exist families of reals (Ax)x∈Z2 and (Bx)x∈Z2 such that

lim inf‖x‖→∞P
(
T (0, x) ≤ Ax

)
> 0,

lim inf‖x‖→∞P
(
T (0, x) ≥ Bx

)
> 0,
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and

lim inf‖x‖→∞
Bx − Ax√

log‖x‖ > 0.

Remark 1. Here we discuss optimality of the condition (1). If I = 0 and F(0) > pc, then there is an infinite component
of zero-weight edges, and this makes T (0, x) stochastically bounded in x, so Theorem 1 cannot hold. If I = 0 and
F(0) = pc , then it was shown in [14] that VarT (0, x) � ∑�log‖x‖�

k=1 (F−1(pc + 1/2k))2. Similar arguments will show that

under no moment condition, Theorem 1 holds with
√

log‖x‖ replaced by
√∑�log‖x‖�

k=1 (F−1(pc + 1/2k))2. If, instead, one
has I > 0 and F(I) ≥ pc, then the limit shape for the model has flat segments (see [5, Section 2.5]), and for directions
corresponding to these segments, T (0, x) has fluctuations of order constant. For directions outside these segments, the
arguments of this paper can be adapted (the proof of Lemma 6 must be replaced with an analysis similar to that of [3,
Section 4]) to show that under a moment condition on te, T (0, x) still fluctuates at least with order

√
log‖x‖.

Remark 2. Our strategy for the proof of Theorem 1, when applied in dimensions d > 2, gives only a constant lower
bound. See the discussion at the beginning of Section 3.

The next result concerns FPP in thin cylinders of Z2. For α > 0, we define the restricted cylinder passage time between
vertices 0 and x as

T (0, x;α) = inf
�:0→x

�⊂C(x;α)

T (�),

where C(x;α) is the thin cylinder

C(x;α) = {
z ∈R

2 : dist(z,Lx) ≤ ‖x‖α
}
,

dist is the Euclidean distance, and Lx is the line through 0 and x.

Theorem 2. Let F be a distribution satisfying (1). There exist families of reals (Ax)x∈Z2 and (Bx)x∈Z2 such that

lim inf‖x‖→∞P
(
T (0, x;α) ≤ Ax

)
> 0,

lim inf‖x‖→∞P
(
T (0, x;α) ≥ Bx

)
> 0,

and

lim inf‖x‖→∞
Bx − Ax

‖x‖ 1−α
2

> 0.

Although the above result is stated for two dimensions, it extends to Z
d with d ≥ 3 under the assumption Ete < ∞.

(This is needed to apply an analogue of [26, Theorem 1.5] in the proof of Lemma 6.) The corresponding exponent is
1−α(d−1)

2 .

Remark 3. Theorem 2 has implications for the original (unconstrained) FPP model. Under the (unproven) assumption
that the asymptotic shape satisfies the “positive curvature inequality” (see the lower bound of Equation (2.28) in [5])
in direction u, one can show (with an additional moment condition on (te)) that any geodesic between 0 and nu will,
with high probability, be confined to C(nu;α) for any given α > 3/4. In this setting, the restricted cylinder passage time
T (0, nu;α) is equal to T (0, nu), and we obtain fluctuations for T (0, nu) of order at least nβ for any β < 1/8. (This
result is analogous to variance lower bounds provided by Newman–Piza [27] and is one manifestation of the relationship
between the variance exponent and the transversal (geodesic) wandering exponent – see [10,25].) See also [19] for a
corresponding result in the aforementioned related last-passage percolation model.

The proofs of both theorems are similar, and the second is even somewhat easier. For this reason, we will give the full
proof of Theorem 1 in Section 2, and sketch the proof of Theorem 2, indicating the necessary adjustments to the first
proof, in Section 3.
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Remark 4. While we were finalizing this paper, Bates and Chatterjee [6] posted a paper to the arXiv containing results
similar to those listed above, with substantially different proof methods. While our moment condition is weaker, their
work also includes a study of fluctuations in polymer models (in addition to percolation models). We have not yet tried to
extend our methods to other models.

2. Proof of Theorem 1

Let us assume to aim for a contradiction:

Assumption 1. We assume that there exist

1. a sequence (wn) of reals decreasing to 0,
2. a sequence (an) of reals, and
3. a sequence of nonzero points (xn) in Z

2 with ‖xn‖ → ∞
such that if Jn is defined as

Jn = [
an, an + wn

√
log‖xn‖

]
,

then

P
(
T (0, xn) ∈ Jn

) → 1 as n → ∞.

We will represent the passage time T (0, x) as a function of three quantities. First, due to (1), we may find d0 > I such
that

F(d0) ∈ (0,1). (2)

Note that this implies that

P(te < d0) > 0. (3)

Definition 1. Any weight te with te ≤ d0 is called lo-mode, and all other weights are called hi-mode.

For K > 0 large and to be determined later, we define the box B(j) for j ≥ 1 to be the set of edges with both endpoints
in [−Kj ,Kj ]2, and the annuli

A(1) = B(1) and A(j) = B(j) \B(j − 1) for j ≥ 2. (4)

Let N = (N1,N2, . . . ) be a vector with independent entries, such that Nj is binomial with parameters #A(j) and
1 − F(d0). Nj will represent the number of edges with hi-mode weights in A(j). Let � = (π1,π2, . . . ) be a vector
of independent uniform permutations, where πj is an ordering of the elements of A(j). In other words, πj is a (uni-
formly chosen) bijection from A(j) to {1,2, . . . ,#A(j)}; we write the image of an element e ∈ A(j) as πj (e). Last, let

P = (t
(L)
e , t

(H)
e )e∈E2 be a collection of i.i.d. pairs of weights assigned to each edge, with t

(L)
e and t

(H)
e independent and

distributed as te conditional on {te ≤ d0} and {te > d0} respectively. Given these variables (which we assume all to be
mutually independent), we define an edge-weight configuration (te) by setting te = t

(H)
e if e ∈ A(j) and πj (e) ≤ Nj , and

te = t
(L)
e otherwise. Note that (te) is then distributed as our original edge-weights were, and so from now on we will use

only these te’s. We can then think of the passage time T (0, x) as a function of the triple ( N,�,P ).

2.1. Outline of the proof

The main idea of the proof is to examine the effect of changing the vector N , which records the number of hi-mode
weights in the system. In each annulus A(k), the variable Nk is likely to fluctuate on the order of the square root of the
volume of A(k), and this fluctuation changes the passage time T (0, xn) by at least a constant. Because weights of edges
in distinct annuli are independent, the total change in T (0, xn), summed over all A(k) from k = 1 to C log‖xn‖ should
be of order

√
log‖xn‖.
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To make the above idea rigorous, we attempt to show a “small ball” probability bound for T (0, xn) of the form

sup
r

P
(
T (0, xn) ∈ [r, r + ε]) ≤ C√

log‖xn‖ .

If we were able to do this, then we could immediately contradict Assumption 1. Unfortunately, we can only prove such a
small ball bound for the conditional expectation E[T (0, xn) | N ], and this bound does not directly contradict the assump-
tion. To obtain a contradiction from it, we need to know that T (0, xn) has sufficiently quickly decaying tails. For this
reason, we start by making a truncation Tn of T (0, xn) with the following properties:

1. Tn ∈ [An,An + √
log‖xn‖] a.s. for some An ∈ R, and

2. the midpoint Mn of the above interval is a median of E[Tn | N ].
This truncation is done in step 1 (Section 2.2).

In step 2 (Section 2.3), we prove the small ball probability bound for the conditional expectation of the truncated
passage time, E[Tn | N ] (see Proposition 7). The proof involves encoding the Nj ’s using a sequence of i.i.d. Bernoulli
random variables, and analyzing them combinatorially. The event that E[Tn | N ] lies in an interval [r, r + ε] is shown (in
Lemma 8) to be a particular type of subset of the hypercube known as an antichain. We can then apply Sperner’s theorem
on the size of antichains to obtain the small ball result. The antichain lemma, Lemma 8, only applies to a certain set of
“good” values of N which is defined in step 1 (see Definition 2). A large part of step 1 is focused on showing that this set
has high probability (see Proposition 4), and involves new geodesic estimates under no moment condition (Lemma 6).

The last step, step 3 (Section 2.4), uses the small ball result of step 2 to show that one has

P
(
T (0, xn) ≤ Mn − c1

√
log‖xn‖

)
> c1,

and

P
(
T (0, xn) ≥ Mn + c1

√
log‖xn‖

)
> c1,

for some c1 > 0. This is done in Proposition 12, and contradicts Assumption 1.

2.2. Step 1. Truncation and definition of good N ’s

First we make a particular truncation of T (0, xn). This is done so that estimates on E[Tn | N ] can be brought back to
T (0, xn) in step 3.

Lemma 3. For each n, there exists a real An such that if Bn := An + √
log‖xn‖ and

Tn :=

⎧⎪⎨⎪⎩
An if T (0, xn) ≤ An

Bn if T (0, xn) ≥ Bn

T (0, xn) otherwise,

then some median of E[Tn | N ] is equal to (An + Bn)/2.

Proof. If ‖xn‖ = 1, then the claim holds for any value of An, so we assume n is large enough so that ‖xn‖ > 1. Because
n will not vary in the proof and Tn is a function of An, we write An = A and

XA = E[Tn | N ] − A√
log‖xn‖ = E

[
Tn − A√
log‖xn‖

∣∣∣ N
]
.

Then the family (XA)A∈R has the following properties:

1. XA takes values in [0,1].
2. XA is non-increasing; that is, for A ≤ A′, one has XA ≥ XA′ a.s.

Proof. As a function of A, Tn = Tn(A) is linear (with slope 1) for A ≤ T (0, xn) − √
log‖xn‖, constant (slope 0) for

A ∈ [T (0, xn) − √
log‖xn‖, T (0, xn)], and linear (slope 1) for A ≥ T (0, xn). Therefore Tn − A is non-increasing and

so is XA. �
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3. limA→−∞ XA = 1 and limA→∞ XA = 0 in probability.

Proof. Because (Tn − A)/
√

log‖xn‖ is equal to 1 for A negative enough and 0 for A positive enough, the bounded
convergence theorem implies the statement. �

4. If Ak → A as k → ∞, then XAk
→ XA a.s.

Proof. Because Tn = Tn(A) is continuous in A, so is (Tn − A)/
√

log‖xn‖. If Ak → A, then XAk
→ XA a.s. by the

bounded convergence theorem. �

We now must show that for some A, XA has a median equal to 1/2. Let MA be the set of medians of XA and let
M = ⋃

AMA. We first show that

M∩ [0,1/2) �=∅ (5)

and

M∩ (1/2,1] �= ∅. (6)

The proofs of these are identical up to symmetry, so we only prove the first. By property 3, limA→∞ XA = 0 in probability,
so for large A, we have P(XA ≤ 1/4) > 1/2. For such A, all medians of XA must lie in [0,1/4], and so MA ∩ [0,1/2) �=
∅.

Next we show that if (Ak) is a sequence of reals converging to a finite A and mk is any median of XAk
such that

mk → m for some m, then

m is a median of XA. (7)

To see why this is true, assume that m is not a median of XA. Then either P(XA ≤ m) < 1/2 or P(XA ≥ m) < 1/2. In the
first case, pick δ > 0 such that P(XA ≤ m + δ) < 1/2 and m + δ is not an atom of the distribution of XA. Then by item 4,

P(XAk
≤ m + δ) → P(XA ≤ m + δ) < 1/2.

This means that for large k, any median of Ak must be ≥ m + δ, and so mk does not converge to m, a contradiction. The
other case is handled similarly.

Using (7), we now prove that M∪{0,1} is closed. To show this, let (mk) be a sequence in M\ {0,1} that converges to
some m. Then mk is a median of some XAk

. If (Ak) has a subsequence that converges to ∞, then XAk
→ 0 in probability

along this subsequence and, as in the proof of (5), the full sequence mk → 0. Similarly, if (Ak) has a subsequence that
converges to −∞, then mk → 1. Therefore we need only consider the case where (Ak) is bounded, and by passing to a
subsequence, we may assume that (Ak) converges to some finite A. Then by (7), m is a median of XA, and so m ∈ M.
This means that M∪ {0,1} is closed.

Due to the results of the last paragraph, (M ∪ {0,1})c is a countable union of disjoint open intervals, and so if we
assume, for a contradiction, that 1/2 /∈ M, it must be in one such interval (a, b) with 0 < a < b < 1 (by (5) and (6)) and
a, b ∈ M. Since b ∈ M, it is in some MA. Let

Â = sup{A : b ∈ MA}.
Note that Â is finite because for A large, all medians of XA are smaller than 1/4 < b. Furthermore, b must be a median
of X

Â
. Indeed, for each k, take Ak such that b ∈ MAk

and so that Ak → Â. Choosing mk = b for all k and applying (7),
we get that b ∈M

Â
.

Now take a sequence (A′
k) such that A′

k ↓ Â and A′
k > Â for all k. Then since b /∈ MA′

k
for all k, the monotonicity

of item 4 implies that all medians of all XA′
k
’s must be ≤ a. Next, choosing mk as a median of XA′

k
and restricting to a

subsequence so that the mk’s converge to some m, we find from (7) that m must be a median of X
Â

. Since M
Â

contains
a and b and must be an interval, it contains 1/2. This means 1/2 ∈M, a contradiction. �

From this point forward, we fix a value of An (and therefore of Bn) for which a median of E[Tn | N ] is equal to
(An + Bn)/2. Next we need to define a set of “good” values of N . These are values of N for which we can make
the antichain argument of step 2 work. The definition of this good set Nn below will include two conditions. The first
is to ensure that with high probability, T (0, xn) is well within the window of truncation defined in Lemma 3, so that
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T (0, xn) = Tn. The second is a geodesic condition, used to ensure that decreasing N significantly (and thereby reducing
the number of hi-mode edges) will decrease the conditional expectation E[Tn | N ].

We define

Mn = An + Bn

2
,

In = [An,Bn] =
[
Mn −

√
log‖xn‖

2
,Mn +

√
log‖xn‖

2

]
,

and

I ′
n =

[
Mn −

√
log‖xn‖

4
,Mn +

√
log‖xn‖

4

]
.

Recall that a geodesic from x to y is a minimizing path in the definition of T (x, y). It is known [5, Theorem 4.2] that in
two dimensions, a.s. a geodesic exists between any given x and y. Last, recall that K > 0 is the number defining A(j) in
(4).

Definition 2. For a sequence (ξn) of reals converging to 0, Nn is the set of those vectors N such that the following two
conditions hold.

1. P(T (0, xn) ∈ I ′
n | N) > 1 − ξn.

2. Let En(j) be the event that every geodesic from 0 to xn has at least Kj−1 hi-mode edges in A(j). For every j ∈
[0.25 logK ‖xn‖∞,0.75 logK ‖xn‖∞],

P
(
En(j) | N)

> 1 − ξn.

The main proposition about the good values of N is as follows.

Proposition 4. There is a K sufficiently large and a sequence of reals (ξn) with ξn → 0 such that

P( N ∈ Nn) > 1 − ξn.

Proof. The proof of this proposition relies entirely on two lemmas.

Lemma 5. One has

P
(
T (0, xn) ∈ I ′

n

) → 1 as n → ∞.

Proof. Assume for a contradiction that P(T (0, xn) ∈ I ′
n) does not converge to 1. So there is ε > 0 such that for some

subsequence (nk), one has P(T (0, xnk
) /∈ I ′

nk
) > ε for all k. This implies that for infinitely many k,

P

(
Tnk

− Ank√
log‖xnk

‖ <
1

4

)
>

ε

2
, (8)

or P((Tnk
− Ank

)/
√

log‖xnk
‖ > 3/4) > ε/2. Both cases are similar, so by restricting to a further subsequence (nk), we

will assume that (8) holds for all k.
Assumption 1 implies that

T (0, xn) − an√
log‖xn‖ → 0 in probability. (9)

We then write

Tn − An√
log‖xn‖ =

((
T (0, xn) − An√

log‖xn‖
)

∨ 0

)
∧ 1 =

((
an − An√
log‖xn‖ + T (0, xn) − an√

log‖xn‖
)

∨ 0

)
∧ 1.

Due to (9), if we choose a further subsequence (nk) so that((
ank

− Ank√
log‖xnk

‖
)

∨ 0

)
∧ 1 → â ∈ [0,1],
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then

Tnk
− Ank√

log‖xnk
‖ → â in probability.

However, by (8), we obtain â ∈ [0,1/4]. This means that

P

(
Tnk

− Ank√
log‖xnk

‖ ≤ 1

3

)
→ 1,

and this is a contradiction, since 1/2 is a median of (Tnk
− Ank

)/
√

log‖xnk
‖. �

Lemma 6. Writing En for the intersection

En =
⋂

j∈[0.25 logK ‖xn‖∞,0.75 logK ‖xn‖∞]
En(j),

one has for some K sufficiently large,

P(En) → 1 as n → ∞.

Proof. This result is not so hard to prove under stricter conditions on the edge-weights. Because we are making no
moment assumption on the te’s, we must use more involved constructions of Cerf and Théret [9]. Let M be any number
such that P(te ≤ M) > pc = 1/2 and say that an edge is open if it has weight ≤ M (closed otherwise). An (open) cluster
is a maximal set of vertices such that any two vertices in the set are connected by a path whose edges are open. There
is exactly one infinite cluster [17, Theorem 8.1], and so for each vertex x, we select a vertex x̃ to be the one of minimal
distance from x in the infinite cluster. If there is more than one candidate for x̃, then we break the tie in some deterministic
way. Then, following [9, Eq. (1)], we define T̃ (x, y) = T (x̃, ỹ) for x, y ∈ Z

2. Defining the time constant as

g̃(x) = lim
n→∞

T̃ (0, nx)

n
a.s. and in L1 for x ∈ Z

2,

which [9, Theorem 1] says exists, the statement of [9, Theorem 3(i)] is a sort of shape theorem for T̃ :

lim
n→∞ sup

x∈Z2,‖x‖1≥n

∣∣∣∣ T̃ (0, x) − g̃(x)

‖x‖1

∣∣∣∣ = 0 a.s. (10)

Last, [9, Theorem 4] states that the limit g̃ is the same as that for T . In other words, if we define

g(x) = lim
n→∞

T (0, nx)

n
in probability for x ∈ Z

2, (11)

then g(x) = g̃(x) for all x.
Given these preparations, we first aim to show that there exists δ > 0 such that, if F̃δ(x) is the event that every geodesic

from 0̃ to x̃ contains at least δ‖x‖ hi-mode edges, then

P

( ⋂
‖x‖≥R

F̃δ(x) occurs for R large enough

)
= 1. (12)

(The geodesic referred to is the T -geodesic between 0̃ and x̃.) To do this, we define an auxiliary set (t ′e) of edge weights:

t ′e =
{

te + 1 if te is hi-mode

te otherwise.

Then (t ′e) stochastically dominates (te) and, in particular, satisfies the concave ordering condition: for every concave
increasing function 
 :R→ R and any edge e,

E
(te) ≤ E

(
t ′e

)
,
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so long as these expectations exist. So by [26, Theorem 1.5], one has g(x) < g′(x) for all x �= 0, where g′ is the limit
defined as in (11), but for t ′e instead of te. Because (see [5, Section 2.3]) both g and g′ are restrictions of norms to Z

2 (the
condition (1) implies that neither are degenerate – see [5, Theorem 2.5]), there exists η > 0 such that

g′(x) ≥ g(x) + η‖x‖ for all x ∈ Z
2. (13)

Now, applying (10) to both T and T ′, we obtain a random (a.s. finite) number R such that if ‖x‖ ≥ R then

T (0̃, x̃) < g(x) + η

3
‖x‖,

and

T ′(0̃, x̃) > g′(x) − η

3
‖x‖.

(In applying (10), we need to choose two values of M : one for T and one for T ′ to construct the open edges for both
sets of weights. We choose these values so that the open edges for both sets of weights are the same. Specifically, we can
take M > d0 (from (2)) for (te) and M + 1 for (t ′e).) If we let N(x,y) be the minimal number of hi-mode edges on any
T -geodesic from x̃ to ỹ, then for the R above and ‖x‖ ≥ R,

g′(x) − η

3
‖x‖ < T ′(0̃, x̃) ≤ T (0̃, x̃) + N(0, x) < g(x) + η

3
‖x‖ + N(0, x),

or, using (13),

N(0, x) ≥ g′(x) − g(x) − 2η

3
‖x‖ ≥ η

3
‖x‖.

This proves (12) with δ = η/3.
Next we use (12) to prove a similar statement for points without tildes. That is, if we define Fδ(x) to be the event that

every geodesic from 0 to x contains at least δ‖x‖ number of hi-mode edges, then there exists δ > 0 such that

P

( ⋂
‖x‖≥R

Fδ(x) occurs for R large enough

)
= 1. (14)

To prove this, we will show that for any η > 0,

P

( ⋂
‖x‖≥R

Fδ(x) occurs for R large enough

)
> 1 − η. (15)

The main tool to prove this is a bound on the size of “holes” in the infinite cluster. Although this is particularly easy to do
in two dimensions, it would lead us into bond percolation arguments, so instead we use a result of Kesten that would be
applicable in any dimension. The following is a slight modification of [22, Theorem 2.24] and is given as [4, Lemma 6.3].
If M is sufficiently large (so that P(te ≤ M) is sufficiently close to 1), there exists c3 > 0 such that for every n,

P
(
each path from 0 to ∂[−n,n]2 intersects the infinite cluster

)
> 1 − e−c3n.

Here, ∂[−n,n]2 is the set of vertices of [−n,n]2 with a neighbor outside of [−n,n]2. So choose n0 such that if Gn is the
event in this inequality, then

P(Gn0) > 1 − η/3. (16)

Next, by translation invariance, the above estimate also implies

P
(
each path from x to x + ∂

[−‖x‖/2,‖x‖/2
]2 intersects the infinite cluster

)
> 1 − e−c3

‖x‖
2 .
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Therefore for all sufficiently large R,

P
(
for all x with ‖x‖ ≥ R, each path from x to

x + ∂
[−‖x‖/2,‖x‖/2

]2 intersects the infinite cluster
)

> 1 −
∑

‖x‖≥R

e−c3
‖x‖

2

> 1 − η

3
. (17)

By translating the event in (12), for each fixed y ∈ [−n0, n0]2,

P

( ⋂
‖x‖≥R

F̃δ/2(y, x) occurs for all large R

)
= 1,

where F̃δ(y, x) is the event that every geodesic from ỹ to x̃ contains at least δ‖x‖/2 hi-mode edges. (Translating the event
gives at least δ‖x − y‖ hi-mode edges, but if R is large and y ∈ [−n0, n0]2, this number is larger than δ‖x‖/2.) Therefore
for all R sufficiently large (depending on n0),

P

( ⋂
y∈[−n0,n0]2

⋂
‖x‖≥R

F̃δ/2(y, x)

)
> 1 − η

3
. (18)

Now suppose that the events in (16), (17), and (18) occur (this has probability > 1 − η); we will show that for any
x with ‖x‖ ≥ 2R (assuming R is sufficiently large), every geodesic from 0 to x contains at least δ‖x‖/4 many hi-mode
edges. So let � be a geodesic from 0 to such an x. Since the event in (16) occurs, � must contain a vertex w0 of the
infinite cluster in [−n0, n0]2. Because the event in (17) occurs, it must also contain a vertex w1 of the infinite cluster in
x + [−‖x‖/2,‖x‖/2]2. Because the event in (18) occurs, the segment of � from w0 to w1 (which is a geodesic) must
contain at least δ‖w1‖/2 ≥ δ‖x‖/4 many hi-mode edges. (Here we use that w̃0 = w0, w̃1 = w1, and ‖w1‖ ≥ ‖x‖/2 ≥ R.)
This completes the proof of (15) and therefore of (14) (with δ/4 in place of δ).

Finally, we use (14) to show that if K is large enough, then the statement of the lemma holds: P(En) → 1 as n → ∞.
For this, we need to use a geodesic length estimate from [5, Theorem 4.9]. It states that under assumption (1), there exist
C5, c4 > 0 such that

P
(
each geodesic from 0 to x has at most C5‖x‖ many edges

) ≥ 1 − e−c4‖x‖1/2
.

So, given η > 0, we can pick R > 0 such that

P

( ⋂
‖x‖≥R

{
each geodesic from 0 to x has at most C5‖x‖ many edges

})
> 1 − η

2
. (19)

By (14), we can further increase R so that

P

( ⋂
‖x‖≥R

Fδ(x)

)
> 1 − η

2
. (20)

Now pick n so large that for all j ∈ [0.25 logK ‖xn‖∞ − 1,0.75 logK ‖xn‖∞], each endpoint of an edge in A(j) has
Euclidean norm at least R. Suppose that the above two events occur (this has probability > 1 − η); we will show that En

occurs. Let � be a geodesic from 0 to xn, let w0 be the last endpoint of an edge in A(j − 1) that � touches, and let w1

be the vertex on � directly before the first endpoint of an edge in A(j + 1) that it touches. Then the segment �0 of �

from 0 to w0 is a geodesic, and the segment �1 of � from w0 to w1 is a geodesic whose edges are all in A(j). Because
‖w1‖ ≥ R and the event in (20) occurs, the concatenation of �0 and �1 contains at least δ‖w1‖ many hi-mode edges.
Because ‖w0‖ ≥ R and the event in (19) occurs, �0 contains at most C5‖w0‖ many edges. Therefore

�1 contains at least δ‖w1‖ − C5‖w0‖ many hi-mode edges.
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Because w1 is adjacent to A(j + 1), one has ‖w1‖ ≥ ‖w1‖∞ = Kj − 1. Because w0 is in A(j − 1), one has ‖w0‖ ≤√
2‖w0‖∞ ≤ √

2Kj−1. Therefore �1 contains at least δ(Kj − 1) − √
2C5K

j−1 many hi-mode edges. If K is sufficiently
large (note that δ is fixed), this number is ≥ Kj−1. All these edges lie in A(j) and are on �, so this completes the proof. �

Given Lemmas 5 and 6, we can complete the proof of Proposition 4. Taken together, they imply that we can find a
sequence (εn) with εn → 0 such that P(En, T (0, xn) ∈ I ′

n) > 1 − εn. Now set ξn = √
εn and define Un, a function of N ,

as

Un( N) = P
(
En,T (0, xn) ∈ I ′

n | N)
.

Then

1 − ξ2
n < P

(
En,T (0, xn) ∈ I ′

n

) = EUn = EUn1{Un≤1−ξn} +EUn1{Un>1−ξn}
≤ (1 − ξn)P(Un ≤ 1 − ξn) + P(Un > 1 − ξn).

Rearranging, we obtain P(Un ≤ 1−ξn) < ξn. This means that the set of N such that the probability defining Un is > 1−ξn

has probability > 1 − ξn. For each N in this set, item 1 of Definition 2 holds. For item 2, the probability, for a fixed j , is
no smaller than the probability of the event intersected over all relevant j ’s. By definition of En, this probability is also
> 1 − ξn, and this completes the proof. �

2.3. Step 2. Small ball for conditional mean

In this step, we show that that the conditional expectation E[Tn | N ] satisfies a “small ball” probability bound: the proba-
bility that it lies in a small interval is bounded by (log‖xn‖)−1/2.

Proposition 7. There exist ε,C1 > 0 such that

sup
r∈I ′

n

P
(
E[Tn | N ] ∈ [r, r + ε], N ∈ Nn

) ≤ C1√
log‖xn‖ .

Proof. At the risk of increasing the constant C1, we will assume in the proof that n is large.
The idea of the proof, inspired by that of [1, Theorem 3.1], is to represent each Nj in the vector N as

Nj
d= Xj + ηjYj , (21)

where Xj ≥ 0 and Yj ≥ 0 are independent of ηj , which is a Bernoulli(1/2) variable; that is, P(ηj = 0) = 1/2 = P(ηj =
1) = 1/2. Once we condition on all of the values of the Xj ’s and Yj ’s, we view E[Tn | N ] as only a function of the ηj ’s,
and show that flipping one of the ηj ’s from 1 to 0 (so that Nj “jumps down” by the value Yj ) often decreases E[Tn | N ]
by at least some ε. This will be sufficient to show that the set whose probability we consider in the proposition is an
“antichain,” and antichain probability estimates will complete the proof.

To find this representation, we let Fj be the distribution function of Nj , and let Uj be a uniform random variable on
[0,1]. Then F−1

j (Uj ) is distributed as Nj (here F−1
j (t) = inf{x : Fj (x) ≥ t} is a generalized inverse of Fj ). Let Xj be a

random variable with the same distribution as Nj conditioned on {Uj ≤ 1/2} and Zj an independent random variable with
the same distribution as Nj conditioned on {Uj ≥ 1/2}. Last, let ηj be an independent Bernoulli(1/2) random variable.
Then for Yj = Zj − Xj , (21) holds. We will assume that the collection {X1,X2, . . . ,Z1,Z2, . . . , η1, η2, . . . } is formed of
mutually independent random variables.

From now on, we think of E[Tn | N ] as a function of the vector (X1 + η1Y1,X2 + η2Y2, . . . ). We will want to consider
only indices j in which the corresponding jump value Yj is large enough (to ensure it affects the passage time). We also
want to ensure j is not too large or small, to avoid degeneracies. Therefore we define the set of indices

In = {
j ∈ [

0.25 logK ‖xn‖∞,0.75 logK ‖xn‖∞
] : Xj ≤ μj − σj ,Zj ≥ μj + σj

}
.

Here, μj = ENj , σj = √
VarNj , and we recall again that K is the number defining the annuli A(j) in (4). Then for

r ∈ I ′
n,

P
(
E[Tn | N ] ∈ [r, r + ε], N ∈ Nn

)
= E

[
P
(
E[Tn | N ] ∈ [r, r + ε], N ∈ Nn | (Xi,Zi)i≥1, (ηi)i /∈In

)]
. (22)
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Here we have conditioned on all the values of Xi and Zi (which themselves determine the set In), and also on the values
of the Bernoullis η outside In. By independence, in the inner conditional probability, we can now view E[Tn | N ] as a
function of only (ηi)i∈In

(with all other variables fixed).
Next we need the notion of an antichain. Here, for convenience, it is defined using the ordering (≤), which is opposite

of what is normally used (≥).

Definition 3. A subset � of {0,1}n is an antichain if whenever η = (η1, . . . , ηn) ∈ � and τ �= η satisfies τi ≤ ηi for all i,
then τ /∈ �.

A simple example of an antichain is the set {η : ∑
i ηi = k}. The asymptotic bound n−1/2 on the probability of this

set under the uniform measure extends to all antichains. Indeed, by Sperner’s Theorem [29], an antichain cannot contain
more than

( n
�n/2�

)
many elements. Therefore, under the uniform measure,

P(�) ≤ 8√
n

for any antichain � ⊂ {0,1}n. (23)

To apply the antichain bound, we must establish the following.

Lemma 8. There exist ε > 0 and K sufficiently large such that for all large n, all r ∈ I ′
n, and any choice of fixed

(Xi,Zi)i≥1 and (ηi)i /∈In
, the set

Q = Q
(
n, (Xi,Zi)i≥1, r, (ηi)i /∈In

) = {
(ηi)i∈In

: E[Tn | N ]((ηi)
) ∈ [r, r + ε], N ∈Nn

}
is an antichain in {0,1}#In .

Given x, y and a realization (te) of the edge weights such that a geodesic from x to y exists, we write GEO(x, y) =
GEO[(te)](x, y) for the union of all edges appearing in geodesics from x to y. For use in the proof of Lemma 8, we note
the following fact, whose proof we omit.

Proposition 9. Suppose (te) and (t ′e) are two edge-weight configurations such that the following hold: (i) t ′f = tf − ε,

(ii) t ′e ≤ te for e �= f , (iii) a geodesic from x to y exists in the configuration (te), and (iv) f ∈ GEO[(te)](x, y). Then
T (x, y)[(t ′e)] ≤ T (x, y)[(te)] − ε.

Proof of Lemma 8. Fix values of the arguments of Q as above. Let η(1) = (η
(1)
i ) and η(2) = (η

(2)
i ) be realizations of the

η variables having (η
(1)
i )i /∈In

= (η
(2)
i )i /∈In

= (ηi)i /∈In
, such that E[Tn | N ](η(1)) ∈ [r, r + ε] and such that N(η(1)) ∈ Nn.

In other words, (η
(1)
i )i∈In

∈ Q. Suppose η(2) �= η(1) but that η(2) ≤ η(1). We will show (η
(2)
i )i∈In

/∈ Q by showing E[Tn |
N ](η(2)) < r .

In fact, it suffices to show the preceding statement for η(2) that differs from η(1) in only one index j ∈ In, where
η

(2)
j = 0 and η

(1)
j = 1. Indeed, recall that (te) is monotone in N , and N is monotone in η. This means that, if we prove

E[Tn | N ](̃η(2)) < r for some arbitrarily chosen η̃(2) ≥ η(2) differing from η(1) in only one index as above, then we
necessarily have E[Tn | N ](η(2)) < r as well. Thus, we will spend the rest of the proof analyzing this simpler case for a
fixed arbitrary j ∈ In.

We write the difference of the conditional expectations in the two configurations as

E[Tn | N ](η(1)
) −E[Tn | N ](η(2)

) =
∫ (

Tn

( N(1),�,P
) − Tn

( N(2),�,P
))

d(�,P ). (24)

Here N(�) = N(�)((η
(�)
i )i∈I) is N in the configuration ((Xi,Zi)i≥1, (η

(�)
i )i≥1) but viewed as a function only of the η

coordinates in In. Our next step is defining a special set ϒ of pairs (�,P ) which will be useful for lower-bounding this
integral.

Write GEO
(1)

(0, xn) for the union of geodesics from 0 to xn in ( N(η(1)),�,P ). We define

ϒ = ϒ
(
n, (Xi,Zi)i≥1, (ηi)i /∈In

,
(
η

(1)
i

)
i∈In

, j
)

= {
(�,P ) : for some f ∈ A(j) ∩ GEO

(1)
(0, xn), we have πj (f ) ∈ (

N
(2)
j ,N

(1)
j

]}
.
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Note that the interval (N
(2)
j ,N

(1)
j ] has length at least 2σj by the very definition of In. The definition of ϒ ensures that

the value of tf changes from hi-mode to lo-mode when η(1) is replaced by η(2) (i.e., when η
(1)
j is “flipped”).

We will need to be able to make a measurable choice of edge f as in the definition of ϒ when lower-bounding

the integral in (24). On the event ϒ , we define e(0) to be the edge f ∈ A(j) ∩ GEO
(1)

(0, xn), which satisfies πj (f ) ∈
(N

(2)
j ,N

(1)
j ] and which is smallest in some deterministic ordering. We will not use e(0) on the event ϒc, so we can choose

its value on that event arbitrarily. We note here the most important property of the definition of e(0):

Conditonal on ϒ ∩ {
e(0) = f

}
, t

(L)
f is distributed as F conditional on tf ≤ d0. (25)

The distributional claim (25) follows from the fact that GEO
(1)

(0, xn) depends only on N(1), on �, and (for fixed N(1)

and �) on the values of those entries of P which actually appear in the edge-weight configuration (te) for the outcome
( N(1),�,P ). In other words, on the following entries of P :{

t (L)
e : πk(e) > N

(1)
k for the k such that e ∈ A(k)

}
∪ {

t (H)
e : πk(e) ≤ N

(1)
k for the k such that e ∈ A(k)

}
.

The independence of the (L)- and (H)-coordinates of P thus shows (25).
We now are prepared to prove a probability lower bound for ϒ .

Claim 10. There exists δ0 > 0 such that, uniformly in n, (Xi,Zi)i≥1, r ∈ I ′
n, (ηi)i /∈In

, and (η
(1)
i )i∈In

∈ Q, we have
P((�,P ) ∈ ϒ) ≥ δ0.

Proof. Fixing the arguments of ϒ as above, we consider possible values of πj . Define the set U2 = {e ∈ A(j) : πj (e) ∈
[0,N

(2)
j ]}, the set U1 = {e ∈ A(j) : πj (e) ∈ (N

(2)
j ,N

(1)
j ]}, and U3 = A(j) \ (U1 ∪ U2). We control P((�,P ) ∈ ϒc) by

arguing that a large number of e ∈ A(j) must lie in U1 ∪ U2, and then that, in fact, many of these e must lie in U1.

Indeed, writing GEO
(1) = GEO

(1)
(0, xn), we see

P
(
(�,P ) ∈ ϒc

) ≤ P
(
#(U1 ∪ U2) ∩ GEO

(1)
< Kj−1)

+ P
(
U1 ∩ GEO

(1) =∅,#(U1 ∪ U2) ∩ GEO
(1) ≥ Kj−1). (26)

Note that both the events above only depend on � and P (since N = N(1) is fixed). Also the event appearing in the first

probability is equal to the event {GEO
(1) ∩ A(j) contains < Kj−1 hi-mode edges}. Since “P” in that term really means

averaging over (�,P ) for fixed N = N(1), this is a conditional probability (given N = N(1)). By the second item of
Definition 2 of the set Nn and the fact that N(1) ∈ Nn, this probability is bounded above by ξn.

We turn to bounding the second term on the right-hand side of (26). We bound this probability by conditioning on the
value of U1 ∪ U2 and P as well as the permutations in A(k) for k �= j . In other words, we write

P
(
U1 ∩ GEO

(1) =∅,#(U1 ∪ U2) ∩ GEO
(1) ≥ Kj−1)

= E
[
P
(
U1 ∩ GEO

(1) =∅,#(U1 ∪ U2) ∩ GEO
(1) ≥ Kj−1|U1 ∪ U2,P , (πk)k �=j

)]
= E

[
P
(
U1 ∩ GEO

(1) =∅|U1 ∪ U2,P , (πk)k �=j

);#(U1 ∪ U2) ∩ GEO
(1) ≥ Kj−1].

We have used the fact that (given our other variables, which determine N(1) and N(2)) GEO
(1)

depends only on P and

on U1 ∪ U2, but not directly on U1 or U2. This fact also ensures that GEO
(1)

is treated as constant when computing the
above conditional probability. Moreover, the conditional distribution of U1 is just the distribution of the first N

(1)
j − N

(2)
j

elements of a uniform permutation of U1 ∪U2. Thus, the conditional probability above is the same as the probability that,

under a uniform permutation σ of {1, . . . ,N
(1)
j }, no element k ∈ {1, . . . ,#((U1 ∪U2)∩GEO

(1)
)} has σ(k) ∈ {1, . . . ,N

(1)
j −

N
(2)
j }.
We can now invoke the bounds on #((U1 ∪ U2) ∩ GEO

(1)
) and N

(1)
j − N

(2)
j . By the very definition of In, we have

N
(1)
j − N

(2)
j ≥ 2σj ≥ c1K

j for some c1 > 0. Moreover, for each outcome considered in the expectation above, we have
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#((U1 ∪U2)∩ GEO
(1)

) ≥ Kj−1, and we of course have the trivial upper bound N
(1)
j ≤ #A(j) ≤ 18K2j . So the probability

involving σ described in the preceding paragraph is at most

(
N

(1)
j − #((U1 ∪ U2) ∩ GEO

(1)
)

N
(1)
j

)N
(1)
j −N

(2)
j ≤

(
1 − c

Kj

)c1K
j

, (27)

uniformly in j . The right-hand side of (27) is less than one for each j , and converges as j → ∞ to e−c1c < 1. Thus,
P((�,P ) ∈ ϒc) < 1 − δ0, for some δ0 > 0, uniformly in j large. �

We will lower-bound the integral in (24) by restricting it to ϒ and then integrating iteratively, first conditioning on the

information needed to determine GEO
(1)

. Claim 10 will help bound the integral restricted to ϒ .
Define the event

ϒ1 = ϒ1
( N(1)

) = {
(�,P ) : T (0, xn) ∈ I ′

n in
(
t (1)
e

)}
, (28)

and write ϒ2 = ϒ ∩ ϒ1. Extending the reasoning used to establish (25), we see that, conditional on ϒ2 and e(0) = f , the
value of t

(L)
f has distribution F conditional on tf ≤ d0. We can then lower-bound (24) by∫

ϒ2

[
Tn

( N(1),�,P
) − Tn

( N(2),�,P
)]

d(�,P )

=
∑
f

∫
ϒ2

[
Tn

( N(1),�,P
) − Tn

( N(2),�,P
)]

1{e(0)=f } d(�,P ), (29)

where we have used monotonicity of the passage time in N (which ensures the integrand is a.s. nonnegative).
We write P̂f for the collection of t

(L)
e and t

(H)
e for e �= f , along with t

(H)
f . In other words, P̂f = (t

(H)
f ) ⊕

(t
(L)
e , t

(H)
e )f �=e∈E2 . Using Fubini’s theorem, we can rewrite the integral in (29) as

∑
f

∫
ϒ2

[∫ [
Tn

( N(1),�,P
) − Tn

( N(2),�,P
)]

dt
(L)
f

]
1{e(0)=f } d(�, P̂f ), (30)

using that the event {e(0) = f } ∩ ϒ2 is measurable with respect to (�, P̂f ).

Claim 11. There exists a c > 0 such that uniformly in n large and f , in given values of the parameters in the argument
of ϒ , and in � and P̂f such that ϒ2 ∩ {e(0) = f } occurs, the following holds:∫ (

Tn

( N(1),�,P
) − Tn

( N(2),�,P
))

dt
(L)
f ≥ c. (31)

Proof. For N(1), �, and P̂f as in the claim, we note that

Tn

( N(1),�,P
) = T (0, xn)

[( N(1),�,P
)]

for a.e. t
(L)
f ,

since πj (f ) ∈ (N
(2)
j ,N

(1)
j ] and since I ′

n ⊆ In. We lower-bound T (0, xn)[( N(1),�,P )] − Tn( N(2),�,P ) by first lower-

bounding T (0, xn)[( N(1),�,P )] − T (0, xn)[( N(2),�,P )].
By Proposition 9, using the fact πj (f ) ∈ (N

(2)
j ,N

(1)
j ], we have the following on {e(0) = f } ∩ ϒ2:

T (0, xn)
[( N(1),�,P

)] − T (0, xn)
[( N(2),�,P

)] ≥ t
(H)
f − t

(L)
f

≥ d0 − t
(L)
f .

We now return to the truncated variable Tn. Since T (0, xn)[( N(1),�,P )] ∈ I ′
n and since Tn is truncated below at Mn −√

log‖xn‖/2, the above shows that

Tn

[( N(1),�,P
)] − Tn

( N(2),�,P
) ≥ d0 − t

(L)
f ,
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for all n large enough that
√

log‖xn‖/4 > d0. Integrating this inequality gives by (3)

LHS of (31) ≥ d0 −
∫

t
(L)
f dt

(L)
f = d0 − Ete1{te≤d0}

P(te ≤ d0)
≥ c,

for some c > 0. This completes the proof. �

Having proved the two claims above, the result follows in short order. Recall our goal is to show (η
(2)
i )i∈In

/∈ Q by
showing E[Tn | N ](η(2)) < r , if ε is small enough. By the result of Claim 11 placed into (30), we have

E[Tn | N ](η(2)
) ≤ E[Tn | N ](η(1)

) − cP
(
(�,P ) ∈ ϒ2

)
.

All that remains is to show that P(ϒ2) > c1 > 0 uniformly.
We have P((�,P ) ∈ ϒc

2 ) ≤ P((�,P ) ∈ ϒc) + P((�,P ) ∈ ϒc
1), and the first term is at most 1 − δ0 < 1 by Claim 10.

The second is at most ξn → 0 by the definition of Nn (Definition 2). So P((�,P ) ∈ ϒ2) > δ0/2 for n large, and this
completes the proof of Lemma 8. �

Returning to (22) (in an effort to complete the proof of Proposition 7), and applying the antichain bound (23), we
obtain

P
(
E[Tn | N ] ∈ [r, r + ε], N ∈ Nn

) ≤ 8E

[
1√
#In

∧ 1

]
. (32)

To estimate this quantity, we write

#In =
�0.75 logK ‖xn‖∞�∑

j=�0.25 logK ‖xn‖∞�
1{Xj ≤μj −σj }1{Zj ≥μj +σj },

where the collection of all summands is independent. They are Bernoulli random variables, so to estimate their parameters,
we compute

E1{Xj ≤μj −σj } = P(Xj ≤ μj − σj ,Uj ≤ 1/2)

P(Uj ≤ 1/2)
= 2P

(
F−1

j (Uj ) ≤ μj − σj ,Uj ≤ 1/2
)
.

Since F−1
j (Uj ) is a Binomial random variable with parameters #A(j) and 1 − F(d0), the central limit theorem implies

lim
n→∞ sup

0.25 logK ‖xn‖≤j≤0.75 logK ‖xn‖

∣∣∣∣P(
F−1

j (Uj ) ≤ μj − σj

) − 1√
2π

∫ −1

−∞
e−x2/2 dx

∣∣∣∣ = 0.

Since this last integral is < 1/2, when n is large, every j in the specified range has the property {F−1
j (Uj ) ≤ μj − σj } ⊂

{Uj ≤ 1/2}. Using this in the above equation and since the integral is also > 0.1 gives for large n,

E1{Xj ≤μj −σj } = 2P
(
F−1

j (Uj ) ≤ μj − σj

) ≥ 0.2.

A similar argument works to show that if n is large,

E1{Zj ≥μj +σj } ≥ 0.2.

Therefore if (bj ) is a collection of i.i.d. Bernoulli random variables with parameter 0.04, if n is large,

P
(
#In ≤ 0.01 logK ‖xn‖∞

) ≤ P

( �0.75 logK ‖xn‖∞�∑
j=�0.25 logK ‖xn‖∞�

bj ≤ 0.01 logK ‖xn‖∞

)

≤ exp
(−c1 logK ‖xn‖∞

)
(33)
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for some c1 > 0. (Here we have used standard large deviation inequalities for sums of i.i.d. Bernoullis.) Putting (33) in
(32) gives for all r ∈ I ′

n and n large

P
(
E[Tn | N ] ∈ [r, r + ε], N ∈Nn

) ≤ 8 exp
(−c1 logK ‖xn‖∞

) + 8√
0.01 logK ‖xn‖∞

≤ C1√
log‖xn‖ .

This completes the proof. �

2.4. Step 3. Reckoning

From the small ball result and the truncation, we can give a fluctuation result for T (0, xn). This will contradict Assump-
tion 1.

Proposition 12. There exists c1 > 0 such that for all large n,

P
(
T (0, xn) ≤ Mn − c1

√
log‖xn‖

)
> c1,

and

P
(
T (0, xn) ≥ Mn + c1

√
log‖xn‖

)
> c1.

Proof. We first use the result of step 2 to show that there exists c2 ∈ (0,1/4) such that for all large n,

P
(
E[Tn | N ] ≤ Mn − c2

√
log‖xn‖

)
> c2,

and

P
(
E[Tn | N ] ≥ Mn + c2

√
log‖xn‖

)
> c2. (34)

We will show the second inequality; the first is similar. To do so, we cover the interval [Mn,Mn + c2
√

log‖xn‖] by a
collection I of �c2

√
log‖xn‖/ε� many closed intervals of length ε, all of which are contained in I ′

n. (Here, ε is from
Proposition 7.) Then we upper bound

P
(
E[Tn | N ] ∈ [

Mn,Mn + c2
√

log‖xn‖
]) ≤

∑
I∈I

P
(
E[Tn | N ] ∈ I, N ∈ Nn

)
+ P( N /∈Nn).

By Proposition 4 and Proposition 7, the above is bounded by

C1√
log‖xn‖

⌈
c2

ε

√
log‖xn‖

⌉
+ ξn.

For n large, ξn < 1/8. Also, if we choose c2 < ε
16C1

, then the first term is < 1/8. Therefore for such choices, we have

P
(
E[Tn | N ] ∈ [

Mn,Mn + c2
√

log‖xn‖
])

<
1

4
.

Since Mn is a median of E[Tn | N ], the left side of (34) is at least

1

2
− P

(
E[Tn | N ] ∈ [

Mn,Mn + c2
√

log‖xn‖
])

>
1

4
.

This proves (34).
It remains to show that the proposition follows from (34) and the fact that Tn is defined using a truncation. Again,

because the statements have similar proofs, we will only show the second. Now define

E = { N : E[Tn | N ] ≥ Mn + c2
√

log‖xn‖
}
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and for a given N ,

A = A( N) = {
(�,P ) : Tn( N,�,P ) ≥ Mn + (c2/2)

√
log‖xn‖

}
.

Then we compute

E[Tn | N ] − Mn =
∫

(Tn − Mn)d(�,P ) =
∫

(Tn − Mn)1A(�,P )d(�,P )

+
∫

(Tn − Mn)1Ac (�,P )d(�,P )

≤
√

log‖xn‖
2

P
(
(�,P ) ∈ A

)
+ c2

2

√
log‖xn‖P

(
(�,P ) ∈ Ac

)
.

If N ∈ E, we obtain

c2 ≤ 1

2
P
(
(�,P ) ∈ A

) + c2

2
P
(
(�,P ) ∈ Ac

)
,

or

P
(
(�,P ) ∈ A

) ≥ c2

1 − c2
. (35)

This implies

P
(
T (0, xn) ≥ Mn + (c2/2)

√
log‖xn‖

) = P
(
Tn ≥ Mn + (c2/2)

√
log‖xn‖

)
=

∫
P
(
(�,P ) ∈ A

)
d N

≥
∫

E
P
(
(�,P ) ∈ A

)
d N.

By (34) and (35), this is bounded below by c2
2/(1 − c2). Taking c1 small, therefore, completes the proof of the proposi-

tion. �

3. Sketch of proof of Theorem 2

The proof of Theorem 2 follows the same lines as those of the proof of Theorem 1, so we only indicate here the changes
needed. The main difference is that we do not need to consider changing weights from hi- to lo-mode in all annuli A(k)

as we did before. It is sufficient to focus on only one of the top-scale annuli, the annulus A(k0), with k0 = �logK ‖xn‖∞�.
Roughly speaking, the reason why one can obtain a polynomial lower bound for fluctuations of the passage time in

a cylinder (whereas the bound in the full space is only logarithmic) is as follows. In the full space, a geodesic from
0 to xn contains at least order Kj many edges in the annulus A(j). If we resample Nj (number of hi-mode weights
associated to this annulus), it has a positive probability, independent of j , to decrease by order Kj as well, since this is
the standard deviation of Nj . The edges where weights decrease are uniformly distributed in the annulus, so any given
edge has probability ∼ Kj/K2j = 1/Kj to be one. This means the expected number of these decreased edges which
lie on the geodesic is at least order Kj · 1/Kj = 1. In other words, when we decrease Nj , typically there will be one
edge on the geodesic whose weight decreases, and so T (0, xn) will decrease by a constant. In a cylinder, the counting is
more favorable. Still the geodesic takes at least order Kj many edges in the annulus, but now the standard deviation of

the number of hi-mode edges in A(j) which are also in the cylinder is Kj 1+α
2 . This means that the expected number of

decreased edges on the geodesic is at least order Kj · Kj 1+α
2 /Kj(1+α) = Kj 1−α

2 , and so when we decrease Nj , typically
T (0, xn) will decrease by this much. If we consider only the top-level annulus (so that Kj ∼ ‖xn‖), we obtain fluctuations

at least of order ‖xn‖ 1−α
2 .

This reasoning also shows why our strategy for Theorem 1 breaks down in dimensions d > 2. In the full space, the
expected number of edges of decrease on the geodesic in A(j) is of order Kj/Kdj/2 and this is summable in j . So, in
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total, we would typically only have finitely many edges which decrease in weight on the geodesic, and this would lead to
a constant lower bound for fluctuations.

Moving to the proof, we begin as before, assuming for a contradiction:

Assumption 2. We assume that there exist

1. a sequence (wn) of reals decreasing to 0,
2. a sequence (an) of reals, and
3. a sequence of nonzero points (xn) in Z

d with ‖xn‖ → ∞ such that if Jn is defined as

Jn = [
an, an + wn‖xn‖�

]
(with � = 1−α

2 ), then

P
(
T (0, xn;α) ∈ Jn

) → 1 as n → ∞.

Under this assumption, we define the variables ( N,�,P ) as previously, so that they represent the number of hi-mode
edges in the annuli portions (A(k) ∩ C(0, xn;α)), a uniform ordering of the edges, and pairs of hi/lo-mode edge-weights.
As already noted, only the annulus of the top-most scale will be used, but we define all the variables, to use the previous
framework more easily.

Step 1. Truncation and definition of good N ’s. In the corresponding step 1, we define a similar truncation:

Tn =

⎧⎪⎨⎪⎩
An if T (0, xn;α) ≤ An

Bn if T (0, xn;α) ≥ Bn

T (0, xn;α) otherwise,

except that now Bn = An + ‖xn‖� . The same proof as before shows that there is a choice of An such that some median
of E[Tn | N ] is equal to Mn = (An + Bn)/2.

For the definition of the “good” set Nn of values of N , we first define analogous intervals In, I ′
n as

In =
[
Mn − ‖xn‖�

2
,Mn + ‖xn‖�

2

]
I ′
n =

[
Mn − ‖xn‖�

4
,Mn + ‖xn‖�

4

]
.

Also, since we focus only on the top-most scale annulus, we slightly modify the definition of Nn.

Definition 4. For a sequence (ξn) of reals converging to 0, Nn is the set of those vectors N such that the following two
conditions hold.

1. P(T (0, xn;α) ∈ I ′
n | N) > 1 − ξn.

2. Let En = En,c be the event that every T (·, ·;α)-geodesic from 0 to xn has at least c‖xn‖ hi-mode edges in A(k0), with
k0 = k0(n) = �logK ‖xn‖∞�. Then

P(En | N) > 1 − ξn.

As above, we have a result on the probability of Nn:

Proposition 13. There is a K sufficiently large, a c sufficiently small, and a sequence of reals (ξn) with ξn → 0 such that

P( N ∈Nn) > 1 − ξn.

Proof. The proof again splits into considering each item in the definition of Nn. Item 1 is handled exactly as before (the
proof of Lemma 5 goes through without modifications). For item 2 (corresponding to Lemma 6), the same proof works
as well. First, the analogue of (12) is shown in the same way, but now using that

lim
n→∞

T (0, nx;α)

n
exists in probability for x ∈ Z

2,
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and is equal to the limit g(x) defined in (11). (See [12, Prop. 1.3].) The proof of (14) is the same as before. The only other
difference in the proof is that, since we consider only the annulus A(k0), in the argument below (20), we define w0 and
w1 relative to the annuli A(k0 − 1) and A(k0 + 1). We end as previously: if �1 is the segment of a T (·, ·;α)-geodesic �

(from 0 to xn) that connects w0 and w1, then

�1 contains at least δ‖w1‖ − C5‖w0‖ many hi-mode edges.

This is larger than Kk0−1 ≥ c‖xn‖, for c small. �

Step 2. Small ball for the conditional mean. For the small ball result, the corresponding proposition is:

Proposition 14. There exists ε ∈ (0,1) such that

sup
r∈I ′

n

P
(
E[Tn | N ] ∈ [

r, r + ε‖xn‖�
]
, N ∈N

) ≤ 1 − ε.

Proof. Again we define the variables (Xj , ηj , Yj ) so that Nj
d= Xj + ηjYj , and Xj ,Yj ≥ 0 are independent of ηj , which

is a Bernoulli(1/2) variable. Next, though, we need to change the definition of In to be

In =
{

{k0} if Xk0 ≤ μk0 − σk0,Zk0 ≥ μk0 + σk0

∅ otherwise.

We then condition on (Xi,Zi)i≥1 and (ηi)i /∈In
and write the probability in the proposition as

E
[
P
(
E[Tn | N ] ∈ [

r, r + ε‖xn‖�
]
, N ∈Nn | (Xi,Zi)i≥1, (ηi)i /∈In

)]
. (36)

Now we must show an analogous antichain statement:

Lemma 15. There exists ε > 0 and K sufficiently large such that for all large n, all r ∈ I ′
n, and any choice of fixed

(Xi,Zi)i≥1 and (ηi)i /∈In
, the set

Q = {
(ηi)i∈In

: E[Tn | N ]((ηi)
) ∈ [

r, r + ε‖xn‖�
]
, N ∈Nn

}
is an antichain in {0,1}#In .

Given this lemma (whose proof we will next sketch), we note that since In has cardinality at most 1, we do not need to
use Sperner’s theorem to bound the probability of such a small antichain. Indeed, any antichain in {0,1} has probability
at most 1/2. Therefore, given the lemma, the probability in (36) is at most

E

(
1

2
1{In �=∅} + 1{In=∅}

)
.

By the argument leading to (33), one has P(In �= ∅) ≥ 0.04, and so the above expectation is bounded by 1 − ε. This
would complete the proof of Proposition 14.

To justify Lemma 15, we may suppose that In �= ∅ and can take η(1) = η
(1)
i and η(2) = (η

(2)
i ) as realizations of the η

variables that are equal off of In and such that η
(1)
k0

= 1 and η
(2)
k0

= 0. We follow the proof as before, but defining the event
ϒ differently:

ϒ = {
(�,P ) : at least ε‖xn‖� edges f ∈ A(k0) ∩ GEO

(1)
(0, xn)

have πj (f ) ∈ (N
(2)
k0

,N
(1)
k0

]}.
(Here, GEO

(1)
(0, xn) is understood as the collection of edges in any geodesic between 0 and xn for T (0, xn;α).) On the

event ϒ , instead of defining only one edge e(0) with the above properties, we define a sequence e(0), . . . , e(�ε‖xn‖� � −
1) as the first �ε‖xn‖� � edges f in some deterministic ordering with πk0(f ) ∈ (N

(2)
k0

,N
(1)
k0

].
Corresponding to Claim 10, we have a lower bound uniformly in n, (Xi,Zi)i≥1, r ∈ I ′

n, (ηi)i /∈In
, and (η

(1)
i )i∈In

∈ Q:

P
(
(�,P ) ∈ ϒ

) ≥ δ0 > 0.
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The proof of this inequality is another permutation computation. One can estimate the first and second moments of

the number of edges f ∈ A(k0) ∩ GEO
(1)

(0, xn) with πj (f ) ∈ (N
(2)
k0

,N
(1)
k0

] (conditional on U1 ∪ U2, P , (πk)k �=k0 as

before, and removing the event where #(U1 ∪U2)∩ GEO
(1)

(0, xn) < c‖xn‖). The claimed bound follows from the Paley–
Zygmund inequality.

Next, we again define ϒ1 = {(�,P ) : T (0, xn) ∈ I ′
n in (t

(1)
e )} and ϒ2 = ϒ ∩ ϒ1, and decompose over the values of the

e(i)’s (as in (29)) to obtain∑
(f (i))

∫
ϒ2

[
Tn

( N(1),�,P
) − Tn

( N(2),�,P
)]

1{e(i)=f (i) for all i} d(�,P ).

If P̂ is the collection of all t
(L)
e and t

(H)
e for e �= f (i), along with t

(H)
f (i) for all i, then Fubini’s theorem again gives that the

previous display is equal to∑
(f (i))

∫
ϒ2

[∫ [
Tn

( N(1),�,P
) − Tn

( N(2),�,P
)]∏

i

dt
(L)
f (i)

]
1{e(i)=f (i) for all i} d(�, P̂ ).

The version of Claim 11 we need is: there exists c′ > 0 such that for n large, any choice of f (i)’s, any given values of
the parameters of ϒ , and any choice of �, P̂ such that ϒ2 ∩ {e(i) = f (i) for all i} occurs,∫ [

Tn

( N(1),�,P
) − Tn

( N(2),�,P
)]∏

i

dt
(L)
f (i) ≥ c′‖xn‖� . (37)

The proof is nearly the same as the corresponding proof of Claim 11. We first have

T (0, xn;α)
[( N(1),�,P

)] − T (0, xn;α)
[( N(2),�,P

)] ≥
∑

i

[
t
(H)
f (i) − t

(L)
f (i)

]
≥

∑
i

[
d0 − t

(L)
f (i)

]
.

As before, the integral of each d0 − t
(L)
f (i) is ≥ c′′ > 0, so (again using T (0, xn;α)[( N(1),�,P )] ∈ I ′

n), the left side of (37)
is at least c′′�ε‖xn‖� �. This shows (37).

The end of step 2 follows the lines of its counterpart. We obtain

E[Tn | N ](η(2)
) ≤ E[Tn | N ](η(1)

) − c′‖xn‖�
P
(
(�,P ) ∈ ϒ2

)
.

Because P((�,P ) ∈ ϒ2) is uniformly positive, the term on the far right is at least ε‖xn‖� for some possibly smaller
ε > 0. For this choice of ε, we complete the proof of Lemma 15. �

Step 3. Reckoning. The result which parallels Proposition 12 and contradicts Assumption 2 is:

Proposition 16. There exists c1 > 0 and real M ′
n such that for all large n,

P
(
T (0, xn;α) ≤ M ′

n − c1‖xn‖�
)
> c1

and

P
(
T (0, xn;α) ≥ M ′

n + c1‖xn‖�
)
> c1.

Proof. The proof of this proposition is similar to that of Proposition 12, except that we have to change the centering Mn

to M ′
n because the upper bound in Proposition 14 is only 1 − ε. This main inequalities to verify are then for some M ′

n and
c2 > 0:

P
(
E[Tn | N ] ≤ M ′

n − c2‖xn‖�
)
> c2

and

P
(
E[Tn | N ] ≥ M ′

n + c2‖xn‖�
)
> c2.



1356 M. Damron et al.

To prove this, we argue as follows. The probability that E[Tn | N ] is in an interval of length ε‖xn‖� centered on Mn is
at most 1 − ε. Therefore there must be probability at least ε/2 for the expectation to lie to the left of this interval or to
the right. If it is to the left, then because Mn is a median, we find that for M ′

n = Mn − (ε/4)‖xn‖� , the expectation has
probability at least 1/2 to lie to the right of M ′

n + c2‖xn‖� , with c2 = ε/4, and probability at least ε/2 to lie to the left of
M ′

n − c2‖xn‖� . Choosing c2 smaller shows the claimed bounds.
The rest of the proof follows as before, putting M ′

n in place of Mn. �
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