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Abstract. This paper constructs a solvability theory for a system of stochastic partial differential equations. On account of the Kol-
mogorov continuity theorem, solutions are looked for in certain Hölder-type classes in which a random field is treated as a space-time
function taking values in Lp-space of random variables. A modified stochastic parabolicity condition involving p is proposed to ensure
the finiteness of the associated norm of the solution, which is showed to be sharp by examples. The Schauder-type estimates and the
solvability theorem are proved.

Résumé. Cet article construit une théorie sur la solvabilité d’un système d’équations différentielles partielles stochastiques. En raison
du théorème de continuité de Kolmogorov, les solutions sont recherchées dans certaines classes de Hölder, dans lesquelles un champ
aléatoire est considéré comme une fonction spatio-temporelle prenant des valeurs dans l’espace Lp des variables aléatoires. Une
condition de parabolicité stochastique modifiée impliquant p est proposée afin d’assurer la finitude de la norme associée de la solution.
En étudiant des exemples, cette condition est montrée être optimale. Les estimations de type de Schauder et la solvabilité de l’équation
sont démontrées.
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1. Introduction

Random fields governed by systems of stochastic partial differential equations (SPDEs) have been used to model many
physical phenomena in random environments such as the motion of a random string, stochastic fluid mechanic, the
precessional motion of magnetisation with random perturbations, and so on; specific models can be founded in [3,7,13,
16,29,31] and references therein. This paper concerns the smoothness properties of the random field

u = (
u1, . . . , uN

)′ : Rd × [0,∞) × � → RN

described by the following linear system of SPDEs:

duα = (
a

ij
αβ∂ij u

β + bi
αβ∂iu

β + cαβuβ + fα

)
dt + (

σ ik
αβ∂iu

β + νk
αβuβ + gk

α

)
dwk

t , (1.1)

where {wk} are countable independent Wiener processes defined on a filtered complete probability space (�,F,

(Ft )t≥0,P), and Einstein’s summation convention is used with

i, j = 1,2, . . . , d; α,β = 1,2, . . . ,N; k = 1,2, . . . ,
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and the coefficients and free terms are all random fields. Considering infinitely many Wiener processes enables us to treat
systems driven by space-time white noise (see [22]). Regularity theory for system (1.1) can not only directly apply to
some concrete models, see for example [13,31,38,39], but also provide with important estimates for solutions of suitable
approximation to nonlinear systems in the literature such as [7,21,30] and references therein.

The literature dedicated to SPDEs (not systems) is quite extensive and fruitful. In the framework of Sobolev spaces,
a complete Lp-theory (p ≥ 2) has been developed, see [5,12,20,22,23,32,37] and references therein. However, the Lp-
theory for systems of SPDEs is far from complete, though for p = 2 it has been fully solved by [18], and for p > 2 some
results were obtained by [19,28,29,33] in the special case where the matrices σ ik = [σ ik

αβ ]N×N are diagonal or nearly
diagonal. The smoothness properties of random fields follow from Sobolev’s embedding theorem in this framework.

The present paper investigates the regularity of random fields from another aspect prompted by Kolmogorov’s conti-
nuity theorem, which ensures a continuous modification for a random field under some mild conditions. The key point
is to derive appropriate estimates on Lp-moments of increments of the random field. This motivates one to consider a
random field as a function of (x, t) to the space L

p
ω := Lp(�) and to introduce appropriate L

p
ω-valued Hölder spaces, for

instance, as in [11,25,34]. Correspondingly, in this paper we shall consider the space Cδ
p of all jointly measurable random

fields u satisfying

‖u‖Cδ
p

:=
[

sup
t,x

E
∣∣u(x, t)

∣∣p + sup
t,x �=y

E|u(x, t) − u(y, t)|p
|x − y|δp

] 1
p

< ∞

with some constants δ ∈ (0,1) and p ∈ [2,∞). The space Cδ
p can be regarded as a stochastic version of classical Hölder

spaces. If δp > d , for each u ∈ Cδ
p , it has a modification with Hölder continuous in space by Kolmogorov’s theorem.

For the Cauchy problem for parabolic SPDEs (not systems), a C2+δ-theory was once an open problem proposed by
[22]. Based on the Hölder class Cδ

p , it was partially addressed by [25] and generally solved by [10,11] very recently.

The theory says that, under natural conditions on the coefficients, the solution u and its derivatives ∂u and ∂2u belong
to a space Cδ

p , provided that f , g and ∂g belong to the same space. In addition, [11] also obtained stochastic Hölder

continuity in time for ∂2u. Their established theory is sharp in the sense that the result cannot be improved under the
same assumptions. Extensions to the Cauchy–Dirichlet problem of SPDEs can be found in [26,27], and for more related
results, we refer the reader to, for instance, [2,6,36]. Nevertheless, C2+δ-theory for systems of SPDEs is not yet known
in the literature.

The purpose of this paper is to construct such a C2+δ-theory for systems of type (1.1) under mild conditions. Like
the situation in the Lp framework this extension is also nontrivial as some new features emerge in the system of SPDEs
comparing with single equations. It is well-known that the well-posedness of a second order SPDE is usually guaranteed
by certain coercivity conditions. For system (1.1), [18] recently obtained Wn

2 -solutions under the following algebraic
condition: there is a constant κ > 0 such that(

2a
ij
αβ − σ ik

γασ
jk
γβ

)
ξα
i ξ

β
j ≥ κ|ξ |2 ∀ξ ∈ Rd×N. (1.2)

Although it is a natural extension of the strong ellipticity condition for PDE systems (σ ≡ 0, see for example [35]) and
of the stochastic parabolicity condition for SPDEs (N = 1, see for example [22]), the following example constructed by
[19] reveals that condition (1.2) is not sufficient to ensure the finiteness of L

p
ω-norm of the solution of some system even

the given data are smooth, and some structure condition stronger than (1.2) is indispensable to establish a general Lp or
C2+δ theory for systems of type (1.1).

Example 1.1. Let d = 1, N = 2 and p > 2. Consider the following system:{
du(1) = u

(1)
xx dt − μu

(2)
x dwt,

du(2) = u
(2)
xx dt + μu

(1)
x dwt

(1.3)

with the initial data

u(1)(x,0) = e− x2
2 , u(2)(x,0) = 0,

where μ is a given constant. In this case, condition (1.2) reads μ2 < 2, but we will see that this is not sufficient to ensure
the finiteness of E|u(x, t)|p with p > 2. Set v = u(1) + √−1u(2), and the above system turns to a single equation:

dv = vxx dt + √−1μvx dwt (1.4)
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with v(x,0) = u(1)(x,0). It can be verified directly by Itô’s formula that

v(x, t) = 1√
1 + (2 + μ2)t

exp

{
− (x + √−1μwt)

2

2[1 + (2 + μ2)t]
}

solves (1.4) with the given initial condition. So we can compute

E
∣∣u(x, t)

∣∣p = E
∣∣v(x, t)

∣∣p
= 1√

2πt

1

[1 + (2 + μ2)t]p/2
e
− px2

2[1+(2+μ2)t]
ˆ

R
e
− y2

2t
[1− pμ2t

1+(2+μ2)t
]
dy. (1.5)

It is noticed that

1 − pμ2t

1 + (2 + μ2)t
→ 2 − (p − 1)μ2

2 + μ2
as t → ∞,

which implies that if

μ2 >
2

p − 1
, (1.6)

the integral in (1.5) diverges for large t , and E|u(x, t)|p = ∞ for every x.

A major contribution of this paper is the finding of a general coercivity condition that ensures us to construct a general
C2+δ-theory for system (1.1). The basic idea is to impose an appropriate correction term involving p to the left-hand side
of (1.2). More specifically, we introduce

Definition 1.2 (MSP condition). Let p ∈ [2,∞). The coefficients a = (a
ij
αβ) and σ = (σ ik

αβ) are said to satisfy the

modified stochastic parabolicity (MSP) condition if there are measurable functions λik
αβ : Rd × [0,∞) × � → R with

λik
αβ = λik

βα , such that

Aij
αβ(p,λ) := 2a

ij
αβ − σ ik

γασ
jk
γβ − (p − 2)

(
σ ik

γα − λik
γα

)(
σ

jk
γβ − λ

jk
γβ

)
(1.7)

satisfy the Legendre–Hadamard condition: there is a constant κ > 0 such that

Aij
αβ(p,λ)ξiξj η

αηβ ≥ κ|ξ |2|η|2 ∀ξ ∈ Rd, η ∈ RN (1.8)

everywhere on Rd × [0,∞) × �.

In particular, the following criteria for the MSP condition, simplified by taking λik
αβ = 0 and λik

αβ = (σ ik
αβ + σ ik

βα)/2
respectively in (1.7), could be very convenient in applications.

Lemma 1.3. The MSP condition is satisfied if either

(i) 2a
ij
αβ − (p − 1)σ ik

γ ασ
jk
γβ or

(ii) 2a
ij
αβ − σ ik

γασ
jk
γβ − (p − 2)̂σ ik

γ ασ̂
jk
γβ with σ̂ ik

αβ := (σ ik
αβ − σ ik

βα)/2

satisfies the Legendre–Hadamard condition.

Evidently, the MSP condition is invariant under change of basis of Rd or under orthogonal transformation of RN . Also
the Legendre–Hadamard condition (see for example [14]) is more general than the strong ellipticity condition. The MSP
condition coincides with the Legendre–Hadamard condition for PDE systems and the stochastic parabolicity condition
for SPDEs. Besides when p = 2 it becomes(

2a
ij
αβ − σ ik

γασ
jk
γβ

)
ξiξj η

αηβ ≥ κ|ξ |2|η|2 ∀ξ ∈ Rd, η ∈ RN (1.9)

which is weaker than (1.2) used in [18]. Moreover, the case (ii) in Lemma 1.3 shows that the MSP condition is also
reduced to (1.9) if the matrices Bik := [σ ik

αβ ]N×N are close to be symmetric. Nevertheless, the generality of the MSP
condition cannot be covered by these cases in Lemma 1.3, which is illustrated by Example 6.5 in the final section.
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Example 1.1 illustrates that in (1.7) the coefficient of the correction term p − 2 is optimal to guarantee the Schauder
regularity for the SPDEs (1.1). Indeed, if p > 2 is fixed and the coefficient p−2 in (1.7) drops down a bit to p−2−ε > 0,
we can choose the value of μ satisfying

2

p − 1
< μ2 <

2

p − 1 − ε
,

then it is easily verified that system (1.3) satisfies (1.8) in this setting by taking λik
αβ = 0 and p − 2 replaced by p − 2 − ε.

However, Example 1.1 has showed that when t is large enough E|u(x, t)|p becomes infinite for such a choice of μ, let
alone the Cδ

p-norm of the solution. More examples in this respect are discussed in the final section.
Technically speaking, the MSP condition is explicitly used to derive a class of mixed norm estimates for the model

system in the space Lp(�;Wn
2 ). Owing to Sobolev’s embedding the mixed norm estimates lead to the local boundedness

of E|∂mu(x, t)|p , which plays a key role in the derivation of the fundamental interior estimate of Schauder-type for
system (1.1). A similar issue was addressed in [4] for an abstract stochastic equation on torus, in which the authors give a
stochastic parabolic condition depending on p for the well-posedness of some Lp(X)-solution (p ≥ 2 for general cases,
1 < p < 2 with a stronger restriction for a special case), and show the sharpness of their condition. Very recently, [33]
establish an Lp-theory for a class of complex valued stochastic PDE systems, see the last remark in Section 2.

As in the classic PDE theory, the results for linear equations are the building base for the study of nonlinear equations.
We point out that it is not hard to generalize our linear theory to the nonlinear case in which fα is Lipschitz continuous
w.r.t. u and ∂u, and gk

α is Lipschitz continuous w.r.t. u as well.
The paper is organized as follows. In Section 2 we introduce some notations and state our main results. In Sections 3

and 4 we consider the model system

duα = (
a

ij
αβ∂ij u

β + fα

)
dt + (

σ ik
αβ∂iu

β + gk
α

)
dwk

t ,

where the coefficients a and σ are random but independent of x. We prove the crucial mixed norm estimates in Section 3,
and then establish the interior Hölder estimate in Section 4. In Section 5 we complete the proofs of our main results. The
final section is devoted to more comments and examples on the sharpness and flexibility of the MSP condition.

2. Main results

Let us first introduce our working spaces and associated notations. A Banach-space valued Hölder continuous function is
defined analogously to the classical Hölder continuous function. Let E be a Banach space, O a domain in Rd and I an
interval. We define the parabolic modulus

|X|p = |x| + √|t | for X = (x, t) ∈ Q := O × I.

For a space-time function u : Q → E, we define

[u]Em;Q := sup
{∥∥∂su(X)

∥∥
E

: X = (x, t) ∈ Q, |s| = m
}
,

|u|Em;Q := max
{[u]Ek;Q : k ≤ m

}
,

[u]Em+δ;Q := sup
|s|=m

sup
t∈I

sup
x,y∈O

‖∂su(x, t) − ∂su(y, t)‖E

|x − y|δ ,

|u|Em+δ;Q := |u|Em;Q + [u]Em+δ;Q,

[u]E(m+δ,δ/2);Q := sup
|s|=m

sup
X,Y∈Q

‖∂su(X) − ∂su(Y )‖E

|X − Y |δp
,

|u|E(m+δ,δ/2);Q := |u|Em;Q + [u]E(m+δ,δ/2);Q

with m ∈ N := {0,1,2, . . . } and δ ∈ (0,1), where s = (s1, . . . , sd) ∈ Nd with |s| = ∑d
i=1 si , and all the derivatives of an

E-valued function are defined with respect to the spatial variable in the strong sense, see [17]. In the following context, the
space E is either (i) an Euclidean space, (ii) the space �2, or (iii) L

p
ω := Lp(�) (abbreviation for L

p
ω for both Lp(�;RN)
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or Lp(�;�2)). We omit the superscript in cases (i) and (ii), and in case (iii), we introduce some new notations:

�u�m+δ,p;Q := [u]Lp
ω

m+δ;Q, �u�(m+δ,δ/2),p;Q := [u]Lp
ω

(m+δ,δ/2);Q,

|||u|||m+δ,p;Q := |u|Lp
ω

m+δ;Q, |||u|||(m+δ,δ/2),p;Q := |u|Lp
ω

(m+δ,δ/2);Q.

As the random fields in this paper take values in different spaces like RN (say, u and f ) or �2 (say, g), we shall use | · |
uniformly for the standard norms in Euclidean spaces and in �2, and L

p
ω for both Lp(�;RN) and Lp(�;�2). The specific

meaning of the notation can be easily understood in context.

Definition. The Hölder classes Cm+δ
x (Q;Lp

ω) and C
m+δ,δ/2
x,t (Q;Lp

ω) are defined as the sets of all predictable random
fields u defined on Q × � and taking values in an Euclidean space or �2 such that |||u|||m+δ,p;Q and |||u|||(m+δ,δ/2),p;Q are
finite, respectively.

The following notations for special domains are frequently used:

Br(x) = {
y ∈ Rd : |y − x| < r

}
, Qr(x, t) = Br(x) × (t − r2, t],

and Br = Br(0), Qr = Qr(0,0), and also

Qr,T (x) := Br(x) × (0, T ], Qr,T =Qr,T (0) and QT := Rd × (0, T ].

Assumption. The following conditions are used throughout the paper unless otherwise stated:

(i) For all i, j = 1, . . . , d and α,β = 1, . . . ,N , the random fields a
ij
αβ , bi

αβ , cαβ and fα are real-valued, and σ i
αβ , ναβ and

gα are �2-valued; all of them are predictable.
(ii) a

ij
αβ and σ i

αβ satisfy the MSP condition with some p ∈ [2,∞).

(iii) For some δ ∈ (0,1), the classical Cδ
x -norms of a

ij
αβ , bi

αβ and cαβ , and the C1+δ
x -norms of σ i

αβ and ναβ are all domi-
nated by a constant K .

We are ready to state the main results of the paper. The first result is the a priori interior Hölder estimates for system
(1.1).

Theorem 2.1. Under the above setting, there exist two constants ρ0 ∈ (0,1) and C > 0, both depending only on d , N , κ ,
K , p and δ, such that if u ∈ C2+δ

x (Q1(X);Lp
ω) satisfies (1.1) in Q1(X) with X = (x, t) ∈ Rd × [1,∞), then

ρ2+δ �∂2u�(δ,δ/2),p;Qρ/2(X)

≤ C
{
ρ2|||f |||δ,p;Qρ(X) + ρ|||g|||1+δ,p;Qρ(X) + ρ− d

2
[
E‖u‖p

L2(Qρ(X))

] 1
p
}

(2.1)

for any ρ ∈ (0, ρ0], provided the right-hand side is finite.

By rescaling one can obtain the local estimate around any point X ∈ Rd × (0,∞).
The second theorem is regarding the global Hölder estimate and solvability for the Cauchy problem for system (1.1)

with zero initial condition.

Theorem 2.2. Under the above setting, if f ∈ Cδ
x(QT ;Lp

ω) and g ∈ C1+δ
x (QT ;Lp

ω) with T > 0, then system (1.1) with
the initial condition

u(x,0) = 0 ∀x ∈ Rd

admits a unique solution u ∈ C
2+δ,δ/2
x,t (QT ;Lp

ω), and it satisfies the estimate

|||u|||(2+δ,δ/2),p;QT
≤ CeCT

(|||f |||δ,p;QT
+ |||g|||1+δ,p;QT

)
, (2.2)

where the constant C depends only on d , N , κ , K , p and δ.
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Remark. Theorem 2.2 still holds true if the system is considered on the torus Td = Rd/Zd instead of Rd .

Remark. The above theorems show that the solutions possess the Hölder continuity in time even for time-irregular
coefficients and free terms. A similar property of classical PDEs is well-known in the literature, see for example [9,
24] and references therein. In view of an anisotropic Kolmogorov continuity theorem (see [8]) the solution obtained in
Theorem 2.2 has a modification that is Hölder continuous jointly in space and time.

Remark. Although we only consider the real valued SPDE systems in this paper, our method can also be applied to the

complex valued case, as long as the complex valued coefficients a = (a
ij
αβ) and σ = (σ ik

αβ) satisfy the following complex
version MSP condition:

There are measurable complex valued functions λik
αβ : Rd × [0,∞) × � → C with λik

αβ = λ̄ik
βα , such that

Aij
αβ(p,λ) := 2a

ij
αβ − σ ik

γασ̄
jk
γβ − (p − 2)

(
σ ik

γα − λik
γα

)(
σ̄

jk
γβ − λ̄

jk
γβ

)
satisfy the Legendre–Hadamard condition: there is a constant κ > 0 such that

Re
[
Aij

αβ(p,λ)ξi ξ̄j η
αη̄β

] ≥ κ|ξ |2|η|2 ∀ξ ∈ Cd, η ∈ CN

everywhere on Rd × [0,∞) × �.
The readers can check out that Theorem 3.1 still holds true for the complex SPDE system with the complex version

MSP condition in hand, which is the key theorem to guarantee the whole theory workable. Very recently, [33] also
proposed a stochastic parabolic condition for complex valued SPDE systems and established an Lp theory.

3. Integral estimates for the model system

Throughout this section we assume that a
ij
αβ and σ ik

αβ depend only on (t,ω), but are independent of x, satisfying the MSP

condition (in this case λik
αβ is chosen to be independent of x) and

∣∣aij
αβ

∣∣, ∣∣σ ij
αβ

∣∣ ≤ K, ∀t,ω, (3.1)

and we consider the following model system

duα = (
a

ij
αβ∂ij u

β + fα

)
dt + (

σ ik
αβ∂iu

β + gk
α

)
dwk

t . (3.2)

The aim of this section is to derive several auxiliary estimates for the model system that will be used to prove the interior
Hölder estimate in the next section.

In this section and the next one, we may consider (3.2) in the entire space Rn × R. On the one hand, we can always
extend (1.1) and (3.2) to the entire space if we require u(x,0) = 0. Indeed, the zero extensions of u, f and g (i.e., these
functions are defined to be zero for t < 0) satisfy the equations in the entire space, where the extension of coefficients
and Wiener processes are quite easy; for example, we can define a

ij
αβ(t) = δij and σ ik

αβ = 0 for t < 0, and wt := w̃−t for
t < 0 with w̃ being an independent copy of w. On the other hand, we mainly concern the local estimates for the equation
(3.2) in the following two sections, so we can only focus on the estimates around the origin on account of a translation.
Indeed, we can reduce the estimates around a point (x0, t0) to the estimates around the origin by a change of variables
(x, t) → (x − x0, t − t0).

Let O ∈ Rd and Hm(O) = Wm
2 (O) be the usual Sobolev spaces. Let I ⊂ R be an interval and Q = O × I . For

p,q ∈ [1,∞], define

Lp
ωL

q
t Hm

x (Q) := Lp
(
�;Lq

(
I ;Hm

(
O;RN

)))
.

In what follows, we denote ∂mu the set of all m-order derivatives of a function u. These ∂mu(x) for each x and (ω, t) are
regarded as elements of a Euclidean space of proper dimension.

Our C2+δ-theory is grounded in the following mixed norm estimates for model system (3.2), in which the modified
stochastic parabolicity condition (1.8) plays a key role.
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Theorem 3.1. Let p ∈ [2,∞) and m ≥ 0. Suppose f ∈ L
p
ωL2

t H
m−1
x (QT ) and g ∈ L

p
ωL2

t H
m
x (QT ). Then (3.2) with zero

initial value admits a unique solution u ∈ L
p
ωL∞

t Hm
x (QT ) ∩ L

p
ωL2

t H
m+1
x (QT ). Moreover, for any multi-index s such that

|s| ≤ m,∥∥∂su
∥∥

L
p
ωL∞

t L2
x
+ ∥∥∂sux

∥∥
L

p
ωL2

t L
2
x
≤ C

(∥∥∂sf
∥∥

L
p
ωL2

t H
−1
x

+ ∥∥∂sg
∥∥

L
p
ωL2

t L
2
x

)
, (3.3)

where the constant C depends only on d , p, T , N , κ , and K .

The proof of Theorem 3.1 is postponed to the end of this section. A quick consequence of this theorem is the following
local estimates for model equations with smooth free terms.

Proposition 3.2. Let m ≥ 1, p ≥ 2, r > 0 and 0 < θ < 1, and let u ∈ L
p
ωL∞

t Hm
x (Qr) ∩ L

p
ωL2

t H
m+1
x (Qr) solve (3.2) in

Qr with f ∈ L
p
ωL2

t H
m−1
x (Qr) and g ∈ L

p
ωL2

t H
m
x (Qr). Then there is a constant C = C(d,p, κ,K,m,N, θ) such that

∥∥∂mu
∥∥

L
p
ωL∞

t L2
x(Qθr )

+ ∥∥∂mux

∥∥
L

p
ωL2

t L
2
x(Qθr )

≤ Cr−m−1‖u‖L
p
ωL2

t L
2
x(Qr )

+ C

m−1∑
k=0

r−m+k+1
∥∥∂kf

∥∥
L

p
ωL2

t L
2
x(Qr )

+ C

m∑
k=0

r−m+k
∥∥∂kg

∥∥
L

p
ωL2

t L
2
x(Qr )

. (3.4)

Consequently, for 2(m − |s|) > d ,∥∥∥sup
Qθr

∣∣∂su∣∣∥∥∥
L

p
ω

≤ Cr−|s|−d/2−1‖u‖L
p
ωL2

t L
2
x(Qr )

+ C

m−1∑
k=0

r−|s|−d/2+k+1
∥∥∂kf

∥∥
L

p
ωL2

t L
2
x(Qr )

+ C

m∑
k=0

r−|s|−d/2+k
∥∥∂kg

∥∥
L

p
ωL2

t L
2
x(Qr )

. (3.5)

Proof. It suffices to prove (3.4) as (3.5) follows from (3.4) immediately by Sobolev’s embedding theorem [1, Theo-
rem 4.12]. Moreover for general r > 0, we can apply the obtained estimates for r = 1 to the rescaled function

v(x, t) := u
(
rx, r2t

)
, ∀(x, t) ∈ Rd × R

which solves the equation

dvα(x, t) = (
a

ij
αβ

(
r2t

)
∂ij v

β(x, t) + Fα

)
dt + (

σ ik
αβ

(
r2t

)
∂iv

β(x, t) + Gk
α

)
dβk

t , (3.6)

with

Fα(x, t) = r2fα

(
rx, r2t

)
, Gk

α(x, t) = rg
(
rx, r2t

)
, βk

t = r−1wk
r2t

.

Obviously, βk are mutually independent standard Wiener processes.
For any θ ∈ (0,1), choose cut-off functions ζ � ∈ C∞

0 (Rd+1), � = 1,2, satisfying i) 0 ≤ ζ � ≤ 1, ii) ζ 1 = 1 in Q√
θ and

ζ 1 = 0 outside Q1, and iii) ζ 2 = 1 in Qθ and ζ 2 = 0 outside Q√
θ . Then v� = ζ �u (� = 1,2) satisfy

dvα
l = (

a
ij
αβ∂ij v

β
� + f̃�,α

)
dt + (

σ ik
αβ∂iv

β
� + g̃k

�,α

)
dwk

t , � = 1,2, (3.7)

where

f̃�,α = ζ �fα − a
ij
αβ

(
ζ �
xi

uβ
)
xj

+ a
ij
αβζ �

xixj
uβ + (

∂t ζ
�
)
uα,

g̃k
�,α = ζ �gk

α − σ ik
αβζ �

xi
uβ, � = 1,2.

Applying Theorem 3.1 to (3.7) for � = 1, s= 0 and for � = 2, |s| = 1, we have

‖u‖L
p
ωL∞

t L2
x(Q√

θ
) + ‖ux‖L

p
ωL2

t L
2
x(Q√

θ
)

≤ C
(‖u‖L

p
ωL2

t L
2
x(Q1)

+ ‖f ‖L
p
ωL2

t L
2
x(Q1)

+ ‖g‖L
p
ωL2

t L
2
x(Q1)

);
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∥∥

L
p
ωL∞

t L2
x(Qθ )

+ ∥∥∂sux

∥∥
L

p
ωL2

t L
2
x(Qθ )

≤ C
(‖u‖L

p
ωL2

t L
2
x(Q√

θ
) + ∥∥∂su‖L

p
ωL2

t L
2
x(Q√

θ
)

∥∥ + ‖f ‖L
p
ωL2

t L
2
x(Q√

θ
) + ‖∂sg‖L

p
ωL2

t L
2
x(Q√

θ
)

)
.

Combining these two estimates, we have (3.4) for m = 1. Higher order estimates follows from induction. The proof is
complete. �

Another consequence of Theorem 3.1 is the following lemma concerning the solution for equation (3.2) with the
Cauchy–Dirichlet boundary conditions:{

u(x,0) = 0, ∀x ∈ Br ;
u(x, t) = 0, ∀(x, t) ∈ ∂Br × (0, T ]. (3.8)

Proposition 3.3. Let f = f 0 + ∂if
i and f 0,f 1, . . . ,f d ,g ∈ L

p
ωL2

t H
m
x (Qr,r2) for all m ≥ 0. Then problem (3.2) and

(3.8) admits a unique solution u ∈ L2
ωL2

t H
1
x (Qr,r2), and for each t ∈ (0, r2), u(·, t) ∈ Lp(�;Cm(Bε;RN)) with any

m ≥ 0 and ε ∈ (0, r). Moreover, there is a constant C = C(n,p) such that

‖u‖L
p
ωL2

t L
2
x(Q

r,r2 ) ≤ C
(
r2

∥∥f 0
∥∥

L
p
ωL2

t L
2
x(Q

r,r2 )
+ r

∥∥(
f 1, . . . ,f d ,g

)∥∥
L

p
ωL2

t L
2
x(Q

r,r2 )

)
. (3.9)

Proof. The existence, uniqueness and smoothness of the solution of problem (3.2) and (3.8) follow from [18, Theo-
rem 4.8], and (3.9) from (3.3) and rescaling. We remark that, although the results in [18] used condition (1.2), Lemma 3.4
below ensures that those results remain valid for the model equation (3.2) under condition (1.9) that is implied by the
MSP condition. �

The following lemma is standard (cf. [14]).

Lemma 3.4. If the real numbers A
ij
αβ satisfy the Legendre–Hadamard condition, then there exists a constant ε > 0

depending only on d , N and κ such that
ˆ

Rd

A
ij
αβ∂iu

α∂ju
β ≥ ε

ˆ
Rd

|∂u|2

for any u ∈ H 1(Rd;RN).

The rest of this section is devoted to the proof of Theorem 3.1.

Proof of Theorem 3.1. According to Theorem 2.3 in [18] the model system (3.2) with zero initial value admits a unique
solution

u ∈ L2
ωL∞

t Hm
x (QT ) ∩ L2

ωL2
t H

m+1
x (QT ).

Noting that u ∈ L
p
ωL∞

t Hm
x (QT ) ∩ L

p
ωL2

t H
m+1
x (QT ) follows from estimate (3.3) by approximation, it remains to prove

(3.3). As we can differentiate (3.2) with order s, it suffices to show (3.3) for m = 0.
By Itô’s formula in Hilbert space (see Theorem 4.32 in [7]) for ‖u(·, t)‖2

L2
x
, we derive

d
∥∥u(·, t)∥∥2

L2
x

=
ˆ

Rd

[−(
2a

ij
αβ − σ ik

γασ
jk
γβ

)
∂iu

α∂ju
β + 2uαfα + 2σ ik

αβ∂iu
βgk

α + |g|2]dx dt

+
ˆ

Rd

2
(
σ ik

αβuα∂iu
β + uαgk

α

)
dx dwk

t . (3.10)

Applying Itô’s formula to ‖u(·, t)‖p

L2
x
, one has

d
∥∥u(·, t)∥∥p

L2
x

= p

2
‖u‖p−2

L2
x

ˆ
Rd

[−(
2a

ij
αβ − σ ik

γασ
jk
γβ

)
∂iu

α∂ju
β + 2uαfα + 2σ ik

αβ∂iu
βgk

α + |g|2]dx dt
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+ p(p − 2)

2
1{‖u‖

L2
x
�=0}‖u‖p−4

L2
x

∑
k

[ˆ
Rd

(
σ ik

αβuα∂iu
β + uαgk

α

)
dx

]2

dt

+ p‖u‖p−2
L2

x

ˆ
Rd

(
σ ik

αβuα∂iu
β + uαgk

α

)
dx dwk

t .

Recalling the MSP condition for the definition of λik
αβ and that λik

αβ = λik
βα , we compute

σ ik
αβuα∂iu

β = (
σ ik

αβ − λik
αβ

)
uα∂iu

β + λik
αβuα∂iu

β

= (
σ ik

αβ − λik
αβ

)
uα∂iu

β + 1

2
λik

αβ∂i

(
uαuβ

)
,

so by the integration by parts,

ˆ
Rd

σ ik
αβuα∂iu

β dx =
ˆ

Rd

(
σ ik

αβ − λik
αβ

)
uα∂iu

β dx.

Using the MSP condition and Lemma 3.4, we can dominate the highest order terms:

−‖u‖2
L2

x

ˆ
Rd

(
2a

ij
αβ − σ ik

γασ
jk
γβ

)
∂iu

α∂ju
β dx + (p − 2)

∑
k

(ˆ
Rd

σ ik
αβuα∂iu

β dx

)2

≤ −‖u‖2
L2

x

ˆ
Rd

(
2a

ij
αβ − σ ik

γασ
jk
γβ

)
∂iu

α∂ju
β dx

+ (p − 2)‖u‖2
L2

x

∑
k,γ

ˆ
Rd

[(
σ ik

γβ − λik
γβ

)
∂iu

β
]2 dx

= −‖u‖2
L2

x

ˆ
Rd

[
2a

ij
αβ − σ ik

γασ
jk
γβ − (p − 2)

(
σ ik

γα − λik
γα

)(
σ

jk
γβ − λ

jk
γβ

)]
∂iu

α∂ju
β dx

≤ −ε‖u‖2
L2

x
‖∂u‖2

L2
x
.

So we have

d
∥∥u(·, t)∥∥p

L2
x

≤ p

2
‖u‖p−2

L2
x

(−ε‖∂u‖2
L2

x
+ 2‖u‖H 1

x
‖f ‖

H−1
x

+ C‖g‖2
L2

x
+ C‖∂u‖L2

x
‖g‖L2

x

)
dt

+ p‖u‖p−2
L2

x

ˆ
Rd

(
σ ik

αβuα∂iu
β + uαgk

α

)
dx dwk

t

≤
[
−pε

4
‖u‖p−2

L2
x

‖∂u‖2
L2

x
+ C‖u‖p

L2
x
+ C‖u‖p−2

L2
x

(‖f ‖2
H−1

x
+ ‖g‖2

L2
x

)]
dt

+ p‖u‖p−2
L2

x

ˆ
Rd

(
σ ik

αβuα∂iu
β + uαgk

α

)
dx dwk

t . (3.11)

Integrating with respect to time on [0, s] for any s ∈ [0, T ], and keeping in mind the initial condition u(x,0) ≡ 0, we
know that∥∥u(s)

∥∥p

L2
x
+ pε

4

ˆ s

0
‖u‖p−2

L2
x

‖∂u‖2
L2

x
dt

≤ C

ˆ s

0

[∥∥u(t)
∥∥p

L2
x
+ ‖u‖p−2

L2
x

(‖f ‖2
H−1

x
+ ‖g‖2

L2
x

)]
dt

+
ˆ s

0
p‖u‖p−2

L2
x

ˆ
Rd

[
σ ik

αβuα∂iu
β + uαgk

α

]
dx dwk

t , a.s. (3.12)
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Let τ ∈ [0, T ] be a stopping time such that

E sup
t∈[0,τ ]

∥∥u(t)
∥∥p

L2
x
+E

(ˆ τ

0

∥∥∂u(t)
∥∥2

L2
x

dt

) p
2

< ∞.

Then it is easily verified that the last term on the right-hand side of (3.12) is a martingale with parameter s. Taking the
expectation on both sides of (3.12), and by Young’s inequality and Gronwall’s inequality, we can obtain

sup
t∈[0,T ]

E
∥∥u(t ∧ τ)

∥∥p

L2
x
+E

ˆ τ

0

∥∥u(t)
∥∥p−2

L2
x

∥∥∂u(t)
∥∥2

L2
x

dt

≤ CE

ˆ τ

0

∥∥u(t)
∥∥p−2

L2
x

(‖f ‖2
H−1

x
+ ‖g‖2

L2
x

)
dt. (3.13)

On the other hand, by the Burkholder–Davis–Gundy (BDG) inequality (c.f. Theorem 4.36 in [7]), we can derive from
(3.12) that

E sup
t∈[0,τ ]

∥∥u(t)
∥∥p

L2
x
+E

ˆ τ

0

∥∥u(t)
∥∥p−2

L2
x

∥∥∂u(t)
∥∥2

L2
x

dt

≤ CE

ˆ τ

0

[∥∥u(t)
∥∥p

L2
x
+ ∥∥u(t)

∥∥p−2
L2

x

(‖f ‖2
H−1

x
+ ‖g‖2

L2
x

)]
dt

+ CE

{ˆ τ

0
‖u‖2(p−2)

L2
x

∑
k

[ˆ
Rd

(
σ ik

αβuα∂iu
β + uαgk

α

)
dx

]2

dt

} 1
2

, (3.14)

and by Hölder’s inequality, the last term on the right-hand side of the above inequality is dominated by

CE

[ˆ τ

0
‖u‖2(p−2)

L2
x

(‖u‖2
L2

x
‖∂u‖2

L2
x
+ ‖u‖2

L2
x
‖g‖2

L2
x

)
dt

] 1
2

≤ CE

{
sup

t∈[0,τ ]
∥∥u(t)

∥∥p/2
L2

x

[ˆ τ

0

(‖u‖p−2
L2

x
‖∂u‖2

L2
x
+ ‖u‖p−2

L2
x

‖g‖2
L2

x

)
dt

] 1
2
}

≤ 1

2
E sup

t∈[0,τ ]

∥∥u(t)
∥∥p

L2
x
+ CE

ˆ τ

0
‖u‖p−2

L2
x

‖∂u‖2
L2

x
dt + C

ˆ τ

0
‖u‖p−2

L2
x

‖g‖2
L2

x
dt,

which along with (3.13) and (3.14) yields that

E sup
t∈[0,τ ]

∥∥u(t)
∥∥p

L2
x
≤ CE

ˆ τ

0

∥∥u(t)
∥∥p−2

L2
x

(‖f ‖2
H−1

x
+ ‖g‖2

L2
x

)
dt

≤ CE

[
sup

t∈[0,τ ]
∥∥u(t)

∥∥p−2
L2

x

ˆ τ

0

(‖f ‖2
H−1

x
+ ‖g‖2

L2
x

)
dt

]

≤ 1

2
E sup

t∈[0,τ ]
∥∥u(t)

∥∥p

L2
x
+ CE

[ˆ T

0

(‖f ‖2
H−1

x
+ ‖g‖2

L2
x

)
dt

] p
2

.

Thus we obtain the estimate

1

C
E sup

t∈[0,τ ]
∥∥u(t)

∥∥p

L2
x
≤ E

[ˆ T

0

(‖f ‖2
H−1

x
+ ‖g‖2

L2
x

)
dt

] p
2 =: F (3.15)

with C = C(d,N,κ,K,p,T ).
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In order to estimate ‖∂ux‖L
p
ωL2

t L
2
x
, we go back to (3.10). Bearing in mind Condition (1.8) (actually here we only need

the weaker one (1.9)) we can easily get that∥∥u(τ )
∥∥2

L2
x
+ ε

ˆ τ

0

∥∥∂u(t)
∥∥2

L2
x

dt ≤
ˆ τ

0

ˆ
Rd

(
2uαfα + 2σ ik

αβ∂iu
βgk

α + |g|2)dx dt

+
ˆ τ

0

ˆ
Rd

2
(
σ ik

αβuα∂iu
β + uαgk

α

)
dx dwk

t ,

where ε is the constant in Lemma 3.4. Computing E[·]p/2 on both sides of the above inequality and by Hölder’s inequality
and the BDG inequality, we derive that

E

(ˆ τ

0

∥∥∂u(t)
∥∥2

L2
x

dt

) p
2

≤ 1

4
E

(ˆ τ

0

∥∥u(t)
∥∥2

H 1
x

dt

) p
2 + CF + CE

∣∣∣∣ˆ τ

0

ˆ
Rd

(
σ ik

αβuα∂iu
β + uαgk

α

)
dx dwk

t

∣∣∣∣
p
2

≤ 1

4
E

(ˆ τ

0

∥∥u(t)
∥∥2

H 1
x

dt

) p
2 + CF + CE

[∑
k

ˆ τ

0

{ˆ
Rd

(
σ ik

αβuα∂iu
β + uαgk

α

)
dx

}2

dt

] p
4

≤ 1

4
E

(ˆ τ

0

∥∥u(t)
∥∥2

H 1
x

dt

) p
2 + CF + CE

[ˆ τ

0

∥∥u(t)
∥∥2

L2
x

(∥∥∂u(t)
∥∥2

L2
x
+ ∥∥g(t)

∥∥2
L2

x

)
dt

] p
4

≤ 1

2
E

(ˆ τ

0

∥∥∂u(t)
∥∥2

L2
x

dt

) p
2 + CE sup

t∈[0,τ ]

∥∥u(t)
∥∥p

L2
x
+ CF,

which along with (3.15) implies

E sup
t∈[0,τ ]

∥∥u(t)
∥∥p

L2
x
+E

(ˆ τ

0

∥∥∂u(t)
∥∥2

L2
x

dt

) p
2 ≤ CF,

where the constant C depends only on d , p, T , κ , K , N , but is independent of τ . Note that ε that depends on d , N , and
κ has been absorbed into the constant C. Finally, by taking the stopping time τ to be

τn := inf

{
s ≥ 0 : sup

t∈[0,s]

∥∥u(t)
∥∥2

L2
x
+
ˆ s

0

∥∥∂u(t)
∥∥2

L2
x

dt ≥ n

}
∧ T ,

and letting n tend to infinity we obtain the estimate (3.3) with m = 0. Theorem 3.1 is proved. �

4. Interior Hölder estimates for the model system

The aim of this section is to prove the interior Hölder estimates for the model equation (3.2). The conditions (1.8) and
(3.1) are also assumed throughout this section. Take f ∈ C0

x(Rd ×R;Lp
ω) and g ∈ C1

x(Rd ×R;Lp
ω) such that the modulus

of continuity

�(r) := ess sup
t∈R,|x−y|≤r

(∥∥f (x, t) − f (y, t)
∥∥

L
p
ω

+ ∥∥∂g(x, t) − ∂g(y, t)
∥∥

L
p
ω

)
satisfies the Dini condition:

ˆ 1

0

�(r)

r
dr < ∞.

Theorem 4.1. Let u ∈ C2,1
x,t (Q2;Lp

ω) satisfy (3.2). Under the above setting, there is a positive constant C, depending only
on d , N , K , κ , and p, such that for any X,Y ∈ Q1/4,

∥∥∂2u(X) − ∂2u(Y )
∥∥

L
p
ω

≤ C

[
�M +

ˆ �

0

�(r)

r
dr + �

ˆ 1

�

�(r)

r2
dr

]
,
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where � := |X − Y |p and

M := ‖u‖L
p
ωL2

t L
2
x(Q1)

+ |||f |||0,p;Q1 + |||g|||1,p;Q1 .

Then the interior Hölder estimates are straightforward:

Corollary 4.2. Under the same setting of Theorem (4.1) and given δ ∈ (0,1), there is a constant C > 0, depending only
on d , N , K , κ and p, such that

�∂2u�(δ,δ/2),p;Q1/4
≤ C

[
‖u‖L

p
ωL2

t L
2
x(Q1)

+ |||f |||δ,p;Q1 + |||g|||1+δ,p;Q1

δ(1 − δ)

]
,

provided the right-hand side is finite.

Proof of Theorem 4.1. Letting ϕ : Rn → R be a nonnegative and symmetric mollifier and ϕε(x) = εnϕ(x/ε), we define
uα,ε = ϕε ∗ uα , f ε

α = ϕε ∗ fα and gε
α = ϕε ∗ gα . Then it is easily checked that f ε and ∂gε are also Dini continuous and

has the same continuity modulus � with f and ∂g, and∣∣∣∣∣∣f ε − f
∣∣∣∣∣∣

0,p;Rn + ∣∣∣∣∣∣gε − g
∣∣∣∣∣∣

1,p;Rn → 0,∥∥∂2uε(X) − ∂2u(X)
∥∥

L
p
ω

→ 0, ∀X ∈ Rn × R,

as ε → 0. On the other hand, from Fubini’s theorem one can check that uε satisfies the model equation (3.2) in the
classical sense with free terms f ε and gε . Therefore, it suffices to prove the theorem for the mollified functions, and the
general case is straightforward by passing the limits.

Based on the above analysis and the smoothness of mollified functions, we may suppose that (cf. [11])

(A) f ,g ∈ L
p
ωL2

t H
k
x (QR) ∩ Ck

x(QR;Lp
ω) for all k ∈ Z+ and R > 0.

We can also set X = 0 without loss of generality. With ρ = 1/2, we define

Q� := Qρ� = Qρ�(0,0), � ∈ N = {0,1,2, . . . },
and introduce the following boundary value problems:{

duα,� = [aij
αβ∂ij u

β,� + fα(0, t)]dt + [σ ik
αβ∂iu

β,� + gk
α(0, t) + xi∂ig

k
α(0, t)]dwk

t

uα,� = uα on ∂pQ
�,

(4.1)

where ∂pQ
� denotes the parabolic boundary of the cylinder Q�. The existence and interior regularity of u� can be direct

yielded by Proposition 3.3.
Given a point Y = (y, s) ∈ Q1/4, there is an �0 ∈ N such that

� := |Y |p ∈ [
ρ�0+2, ρ�0+1).

So we have∥∥∂2u(Y ) − ∂2u(0)
∥∥

L
p
ω

≤ ∥∥∂2u�0(0) − ∂2u(0)
∥∥

L
p
ω

+ ∥∥∂2u�0(Y ) − ∂2u(Y )
∥∥

L
p
ω

+ ∥∥∂2u�0(Y ) − ∂2u�0(0)
∥∥

L
p
ω

=: N1 + N ′
1 + N2. (4.2)

As N1 and N ′
1 are similar, we are going to derive the estimates for N1 and N2. The constant C in the following claims

only depends on d , N , K , κ , and p

Claim 4.3. |||∂m(u� − u�+1)|||0,p;Q�+2 ≤ Cρ(2−m)�−m�(ρ�), where m ∈ N.

Proof. Applying Proposition 3.2 to (4.1), we have

∣∣∣∣∣∣∂m
(
u� − u�+1)∣∣∣∣∣∣

0,p;Q�+2 ≤ Cρ−m�−m

∥∥∥∥ 
Q�+1

∣∣u� − u�+1
∣∣2

∥∥∥∥1/2

L
p/2
ω

=: I�,m
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(hereafter we denote
ffl
Q

= 1
|Q|

´
Q

with |Q| being the Lebesgue measure of the set Q ⊂ Rn+1), and by Proposition 3.3,

J� :=
∥∥∥∥ 

Q�+1

∣∣u� − u
∣∣2

∥∥∥∥1/2

L
p/2
ω

≤ Cρ2��
(
ρ�

)
.

So we gain that

I�,m ≤ Cρ−m�−m(J� + J�+1) ≤ Cρ(2−m)�−m�
(
ρ�

)
.

The claim is proved. �

Claim 4.4. N1 ≤ C
´ ρ�0

0
�(r)

r
dr .

Proof. It follows from Claim 4.3 that

∑
�≥�0

∥∥∂2u�(0) − ∂2u�+1(0)
∥∥

L
p
ω

≤ C
∑
�≥�0

�
(
ρ�

) ≤ C

ˆ ρ�0

0

�(r)

r
dr,

which implies that ∂2u�(0) converges in L
p
ω as � → ∞, if the limit is ∂2u(0), then

N1 = ∥∥∂2u�0(0) − ∂2u(0)
∥∥

L
p
ω

≤
∑
�≥�0

∥∥∂2u�(0) − ∂2u�+1(0)
∥∥

L
p
ω

≤ C

ˆ ρ�0

0

�(r)

r
dr.

So it suffices to show that lim�→∞ ‖∂2u�(0) − ∂2u(0)‖L2
ω

= 0. From Proposition 3.2 with p = 2, we have

sup
Q�+1

∥∥∂2u� − ∂2u
∥∥2

L2
ω

≤ Cρ−4�
E

 
Q�

∣∣u� − u
∣∣2 + CE

 
Q�

(∣∣f (x, t) − f (0, t)
∣∣2

+ ρ−2l
∣∣g(x, t) − g(0, t) − xi∂ig(0, t)

∣∣2 + ∣∣∂g(x, t) − ∂g(0, t)
∣∣2)dX

+ C

[ d+1
2 ]+1∑
k=1

ρ2�k
E

 
Q�

(∣∣∂kf
∣∣2 + ∣∣∂k+1g

∣∣2)
. (4.3)

The additional assumption (A) on f and g together with Proposition 3.3 implies

ρ−4�
E

 
Q�

∣∣u� − u
∣∣2

≤ CE

 
Q�

(∣∣f (x, t) − f (0, t)
∣∣2 + ρ−2�

∣∣g(x, t) − g(0, t) − xi∂ig(0, t)
∣∣2)dX

≤ C�
(
ρ�

)2 → 0, as � → ∞.

And it is easier to obtain that the last two terms on the right-hand side of (4.3) tend to zero as � → ∞. Thus,
lim�→∞ ‖∂2u�(0) − ∂2u(0)‖L2

ω
= 0. The claim is proved. �

Claim 4.5. N2 ≤ Cρ�0(M + ´ 1
ρ�0

�(r)

r2 dr).

Proof. Define h� = u� − u�−1 for � = 1,2, . . . , �0, then

N2 = ∥∥∂2u�0(Y ) − ∂2u�0(0)
∥∥

L
p
ω

≤ ∥∥∂2u0(Y ) − ∂2u0(0)
∥∥

L
p
ω

+
�0∑

�=1

∥∥∂2h�(Y ) − ∂2h�(0)
∥∥

L
p
ω
.
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As ∂iju
0 satisfies a homogeneous system in Q1 for any i, j = 1, . . . , d , it follows from Proposition 3.2 that, for m = 1,2,∣∣∣∣∣∣∂m

(
∂iju

0)∣∣∣∣∣∣
0,p;Q1/4

≤ C
∥∥∂iju

0
∥∥

L
p
ωL2

t L
2
x(Q1/2)

≤ C
(∥∥∂iju

0 − ∂iju
∥∥

L
p
ωL2

t L
2
x(Q1/2)

+ ‖∂iju‖L
p
ωL2

t L
2
x(Q1/2)

)
≤ C

(‖u‖L
p
ωL2

t L
2
x(Q1)

+ |||f |||0,p;Q1 + |||g|||1,p;Q1

) = CM,

and for −1/16 < s < t ≤ 0 and x ∈ B1/4,

∥∥∂2uα,0(x, t) − ∂2uα,0(x, s)
∥∥

L
p
ω

=
∥∥∥∥ˆ t

s

a
ij
αβ∂ij

(
∂2uβ,0)dτ +

ˆ t

s

σ ik
αβ∂i

(
∂2uβ,0)dwk

τ

∥∥∥∥
L

p
ω

≤ C
√

t − s
(∣∣∣∣∣∣∂3u0

∣∣∣∣∣∣
0,p;Q1/4

+ ∣∣∣∣∣∣∂4u0
∣∣∣∣∣∣

0,p;Q1/4

)
≤ CM

√
t − s.

So combining above two inequalities we have∥∥∂2u0(Y ) − ∂2u0(0)
∥∥

L
p
ω

≤ CM|Y |p ≤ CMρ�0 .

Next, by Claim 4.3,

ρ−�
∣∣∣∣∣∣∂3h�

∣∣∣∣∣∣
0,p;Q�+1 + ∣∣∣∣∣∣∂4h�

∣∣∣∣∣∣
0,p;Q�+1 ≤ Cρ−2��

(
ρ�−1),

thus, for −ρ2(�0+1) ≤ t ≤ 0 and |x| ≤ ρ�0+1,∥∥∂2h�(x,0) − ∂2h�(0,0)
∥∥

L
p
ω

≤ Cρ�0−��
(
ρ�−1)

and ∥∥∂2hα,�(x, t) − ∂2hα,�(x,0)
∥∥

L
p
ω

=
∥∥∥∥ˆ t

0
a

ij
αβ∂ij

(
∂2hβ,�

)
dτ +

ˆ t

s

σ ik
αβ∂i

(
∂2hβ,�

)
dwk

τ

∥∥∥∥
L

p
ω

≤ C
(
ρ�0

∣∣∣∣∣∣∂3h�
∣∣∣∣∣∣

0,p;Ql+1 + ρ2�0
∣∣∣∣∣∣∂4h�

∣∣∣∣∣∣
0,p;Ql+1

)
≤ Cρ�0−��

(
ρ�−1).

Therefore,

N2 ≤ CMρ�0 + C

�0∑
�=1

ρ�0−��
(
ρ�−1) ≤ Cρ�0

(
M +

ˆ 1

ρ�0

�(r)

r2
dr

)
.

The claim is proved. �

Combining (4.2) and Claims 4.4 and 4.5, we conclude Theorem 4.1. �

5. Hölder estimates for general systems

This section is devoted to the proofs of Theorems 2.1 and 2.2. We need two technical lemmas whose proofs can be found
in, for example, [11].

Lemma 5.1. Let ϕ : [0, T ] → [0,∞) satisfy

ϕ(t) ≤ θϕ(s) +
m∑

i=1

Ai(s − t)−ηi ∀0 ≤ t < s ≤ T
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for some nonnegative constants θ , ηi and Ai (i = 1, . . .m), where θ < 1. Then

ϕ(0) ≤ C

m∑
i=1

AiT
−ηi ,

where C depends only on η1, . . . , ηn and θ .

Lemma 5.2. Let p ≥ 1, R > 0 and 0 ≤ s < r . There exists a constant C > 0, depending only on d and p, such that

�u�s,p;QR
≤ Cεr−s �u�r,p;QR

+ Cε−s−d/2[
E‖u‖p

L2(QR)

] 1
p

for any u ∈ Cr(QR;Lp
ω) and ε ∈ (0,R).

Now we prove the a priori interior Hölder estimates for system (1.1).

Proof of Theorem 2.1. With a change of variable, we may move the point X to the origin. Let ρ/2 ≤ r < R ≤ ρ with
ρ ∈ (0,1/4) to be defined. Take a nonnegative cut-off function ζ ∈ C∞

0 (Rd+1) such that ζ = 1 on Qr , ζ = 0 outside QR ,
and for γ ≥ 0,

[ζ ](γ,γ /2);Rd+1 ≤ C(d)(R − r)−γ .

Set v = ζu, and

ã
ij
αβ(t) = a

ij
αβ(0, t), σ̃ ik

αβ(t) = σ ik
αβ(0, t),

then v = (v1, . . . , vN) satisfies

dvα = (
ã

ij
αβ∂ij v

β + f̃α

)
dt + (

σ̃ ik
αβ∂iv

β + g̃k
α

)
dwk

t

where

f̃α = (
a

ij
αβ − ã

ij
αβ

)
ζ∂ij u

β + (
bi
αβζ − 2ã

ij
αβ∂j ζ

)
∂iu

β

+ (
cαβζ − ã

ij
αβ∂ij ζ

)
uβ − ζtu

α + ζf α,

g̃k
α = (

σ ik
αβ − σ̃ ik

αβ

)
ζ∂iu

β + (
νk
αβζ − σ̃ ik

αβ∂iζ
)
uβ + ζgα.

Obviously, ã
ij
αβ and σ̃ ik

αβ satisfy the MSP condition with λ = λ(0, t). So by Lemma 5.2,

|||f̃ |||δ,p;QR
≤ (

ε + Kρδ
)

�∂2u�δ,p;QR
+ C1(R − r)−2−δ−d/2‖u‖L

p
ωL2

t L
2
x(QR)

+ �f �δ,p;QR
+ C1(R − r)−δ|||f |||0,p;QR

,

|||g̃|||1+δ,p;QR
≤ (

ε + Kρδ
)

�u�2+δ,p;QR
+ C1(R − r)−2−δ−d/2‖u‖L

p
ωL2

t L
2
x(QR)

+ �g�1+δ,p;QR
+ C1(R − r)−1−δ|||g|||0,p;QR

,

where C1 = C1(d,K,p, ε). Applying Corollary 4.2, we gain that

�∂2u�(δ,δ/2),p;Qr

≤ C2
[(

ε + Kρδ
)

�∂2u�(δ,δ/2),p;QR
+ C1(R − r)−2−δ−d/2‖u‖L

p
ωL2

t L
2
x(QR)

+ �f �δ,p;QR
+ C1(R − r)−δ|||f |||0,p;QR

+ �g�1+δ,p;QR
+ C1(R − r)−1−δ|||g|||0,p;QR

]
,

where C2 = C2(d,N,κ,K,p, δ). Set ε = (4C2)
−1, then

C2
(
ε + Kρδ

) ≤ 1

2
for any ρ ≤ (4C2K)−1/δ =: ρ0.
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Thus, by Lemma 5.1 we have

�∂2u�(δ,δ/2),p;Qρ/2
≤ C

(
ρ−2−δ−d/2‖u‖L

p
ωL2

t L
2
x(Qρ) + ρ−δ|||f |||δ,p;Qρ

+ ρ−1−δ|||g|||1+δ,p;Qρ

)
,

where the constant C depends only on d , N , κ , K , p, and δ. The proof is complete. �

Proof of Theorem 2.2. The solvability of the Cauchy problem follows from the a priori estimate (2.2) by the standard
method of continuity (see [15, Theorem 5.2]), so it suffices to prove the a priori estimate (2.2).

We may extend the equations to Rd × (−∞, T ] × � by letting u(x, t), f (x, t) and g(x, t) be zero if t ≤ 0. Take
τ ∈ (0, T ] and R = ρ0/2, where ρ0 is determined in Theorem 2.1. Applying the estimate (2.1) on the cylinders centered
at (x, s) for all s ∈ (−1, τ ], we can obtain that

�∂2u�(δ,δ/2),p;QR,τ (x) ≤ C
(‖u‖L

p
ωL2

t L
2
x(Q2R,τ (x)) + |||f |||δ,p;Q2R,τ (x) + |||g|||1+δ,p;Q2R,τ (x)

)
≤ C

(‖u‖L
p
ωL2

t L
2
x(Q2R,τ (x)) + |||f |||δ,p;Qτ

+ |||g|||1+δ,p;Qτ

)
,

then by Lemma 5.2,

|||u|||(2+δ,δ/2),p;QR,τ (x) ≤ C
(‖u‖L

p
ωL2

t L
2
x(Q2R,τ (x)) + |||f |||δ,p;Qτ

+ |||g|||1+δ,p;Qτ

)
. (5.1)

Define

Mτ
x,R(u) = sup

0≤t≤τ

( 
BR(x)

E
∣∣u(y, t)

∣∣p dy

) 1
p

, Mτ
R(u) = sup

x∈Rd

Mτ
x,R(u).

Obviously, ‖u‖L
p
ωL2

t L
2
x(Q2R,τ (x)) ≤ C(d,p,R)Mτ

R(u). So (5.1) implies

sup
x∈Rd

|||u|||(2+δ,δ/2),p;QR,τ (x) ≤ C3
(
Mτ

R(u) + |||f |||δ,p;Qτ
+ |||g|||1+δ,p;Qτ

)
. (5.2)

To get rid of Mτ
R(u), we apply Itô’s formula to |u|p :

d|u|p = p|u|p−2
[
uα

(
a

ij
αβ∂ij u

β + b
ij
αβ∂iu

β + cαβuβ + fα

) + 1

2

∑
k

(
σ ik

αβ∂iu
β + gk

α

)2
]

dt

+ p(p − 2)

2
1{|u|�=0}|u|p−4

∑
k

(
σ ik

αβuα∂iu
β + uαgk

α

)2 dt + dMt,

where Mt is a martingale. Integrating on QR,τ (x) × � and by the Hölder inequality, we can derive that

sup
t∈[0,τ ]

E

ˆ
BR(x)

∣∣u(y, t)
∣∣p dy ≤ C4E

ˆ
QR,τ (x)

(∣∣∂2u
∣∣p + |u|p + |f |p + |g|p)

dX

with C4 = C4(d,N,K,p), which implies that

Mτ
x,R(u) ≤ C4τ

(|||u|||2,p;QR,τ (x) + |||f |||0,p;Qτ
+ |||g|||0,p;Qτ

)
≤ C4τ

(
sup
x∈Rd

|||u|||(2+δ,δ/2),p;QR,τ (x) + |||f |||0,p;Qτ
+ |||g|||0,p;Qτ

)
,

Substituting the last relation into (5.2) and taking τ = (2C3C4)
−1, we get

sup
x∈Rd

|||u|||(2+δ,δ/2),p;QR,τ (x) ≤ C
(|||f |||δ,p;Qτ

+ |||g|||1+δ,p;Qτ

)
,

and equivalently,

|||u|||(2+δ,δ/2),p;Qτ
≤ C(τ)

(|||f |||δ,p;Qτ
+ |||g|||1+δ,p;Qτ

)
(5.3)

with C(τ) = C(τ)(d,N,κ,K,p, δ) ≥ 1.
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Let us conclude the proof by induction. Assume that there is a constant C(S) ≥ 1 for some S > 0 such that

|||u|||(2+δ,δ/2),p;QS
≤ C(S)

(|||f |||δ,p;QS
+ |||g|||1+δ,p;QS

)
.

Then applying (5.3) to v(x, t) = 1{t≥0} · [u(x, t + S) − u(x, S)], one can easily derive that

|||v|||(2+δ,δ/2),p;Qτ
≤ C(τ)

(|||f |||δ,p;QS+τ
+ |||g|||1+δ,p;QS+τ

+ C̃
∣∣∣∣∣∣u(·, S)

∣∣∣∣∣∣
2+δ,p;Rd

)
≤ 2C(τ)C̃C(S)

(|||f |||δ,p;QS+τ
+ |||g|||1+δ,p;QS+τ

)
,

with C̃ = C̃(N,K) ≥ 1, so

|||u|||(2+δ,δ/2),p;QS+τ
≤ |||v|||(2+δ,δ/2),p;Qτ

+ 2|||u|||(2+δ,δ/2),p;QS

≤ 4C(τ)C̃C(S)

(|||f |||δ,p;QS+τ
+ |||g|||1+δ,p;QS+τ

)
,

that means C(S+τ) ≤ 4C(τ)C̃C(S). By iteration we have CS ≤ CeCS with C = C(d,N,κ,K,p, δ), and the theorem is
proved. �

6. More comments on the MSP condition

In this section we discuss more examples on the sharpness and flexibility of the MSP condition (Definition 1.2). We
always let d = 1 and assume that the coefficient matrices A = [aαβ ] and B = [σαβ ] are constant. We write M � 0 if the
matrix M is positive definite.

Under the above setting the MSP condition can be written into the following form if we set [λik
αβ ] = (B + B ′)/2 − �

in (1.7).

Condition 6.1. There is a symmetric N × N real matrix � such that

A + A′ − B ′B − (p − 2)(TB + �)′(TB + �) � 0 (6.1)

where TB := (B − B ′)/2 is the skew-symmetric component of B .

Example 6.2. consider the following system{
du(1) = u

(1)
xx dt + (λu

(1)
x − μu

(2)
x )dwt,

du(2) = u
(2)
xx dt + (μu

(1)
x + λu

(2)
x )dwt

(6.2)

with x ∈ T = R/(2πZ), real constants λ and μ, and with the initial data

u(1)(x,0) + √−1u(2)(x,0) =
∑
n∈Z

e−n2 · e
√−1nx. (6.3)

Evidently, if λ2 + μ2 < 2, then system (6.2) satisfies the condition (1.2), and from the result of [18], it has a unique
solution u = (u(1), u(2))′ in the space L2(�;C([0, T ];Hm(T)) with any m ≥ 0 and T > 0.

To apply our results to (6.2), we should assume it to satisfy Condition 6.1. In the next two lemma, we first simplify the
condition into a specific constraint on λ and μ, and then prove it to be optimal.

Lemma 6.3. Let p ≥ 2. The coefficients of system (6.2) satisfy Condition 6.1 if and only if they satisfy (6.1) with � = 0,
namely,

λ2 + (p − 1)μ2 < 2. (6.4)

Proof. By orthogonal transform, A + A′ − B ′B − (p − 2)(TB + �)′(TB + �) is positive definite if and only if

2 − (
λ2 + μ2) − (p − 2)λmax > 0, (6.5)
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where λmax is the larger eigenvalue of (TB + �)′(TB + �). For � = μ
[ a c

c b

]
, we have

(TB + �)′(TB + �) = μ2
[

a2 + (c − 1)2 ac + bc + a − b

ac + bc + a − b b2 + (c + 1)2

]
whose larger eigenvalue is

λmax = μ2

2

(
a2 + b2 + 2c2 + 2

) + μ2

2

√(
a2 − b2 − 4c

)2 + 4(ac + bc + a − b)2.

Obviously, λmax ≥ μ2.
Once (6.5) holds for some �, we get (6.4), namely (6.1) holds for � = 0. Now we prove the only if part. The proof of

if part is trivial. �

Therefore, if (6.4) is satisfied, then supx∈T E‖u(x, t)‖p < ∞ for any t ≥ 0; if it is not, even some weaker norm of
u(·, t) is infinite for large t as showed in the following lemma.

Lemma 6.4. Let p > 2 and λ2 + μ2 < 2. If ε := λ2 + (p − 1)μ2 − 2 > 0, then

E
∥∥u(·, t)∥∥p

L2(T)
= ∞

for any t > 2/ε.

Proof. Denote v = u(1) + √−1u(2) that can be verified to satisfy

dv = vxx dt + (λ + √−1μ)vx dwt

with the initial condition v(x,0) = ∑
n∈Z e−n2

e
√−1nx for x ∈ T. By Fourier analysis, we can express

v(x, t) =
∑
n∈Z

vn(t)e
√−1nx,

where vn(·) satisfies the following SDE:

dvn = vn

[−n2 dt + (−μ + √−1λ)ndwt

]
, vn(0) = e−n2

.

From the theory of SDEs, we have

vn(t) = e− 1
2 f (t)n2−μnwt · e

√−1(λμn2t+λnwt ),

where f (t) := 2 + (2 + μ2 − λ2)t . So we derive∣∣vn(t)
∣∣2 = exp

{−f (t)n2 − 2μnwt

}
= exp

{
−f (t)

(
n + μwt

f (t)

)2

+ μ2|wt |2
f (t)

}
,

and by Parseval’s identity,∥∥v(·, t)∥∥2
L2(T)

= 2π
∑
n∈Z

∣∣vn(t)
∣∣2

= 2π
∑
n∈Z

exp

{
−f (t)

(
n + μwt

f (t)

)2

+ μ2|wt |2
f (t)

}

≥ 2π exp

{
−f (t) + μ2|wt |2

f (t)

}
.
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Thus, we have

E
∥∥u(·, t)∥∥p

L2(T)
= E

∥∥v(·, t)∥∥p

L2(T)

≥ (2π)pE exp

{
−pf (t)

2
+ pμ2|wt |2

2f (t)

}
= (2π)pe−pf (t)/2

E exp

{
pμ2|w1|2
2f (t)/t

}
= (2π)pe−pf (t)/2

E exp

{
pμ2|w1|2

2[2 + μ2 − λ2 + 2t−1]
}

= (2π)p−1/2e−pf (t)/2
ˆ

R
exp

{
−y2

2

[
1 − pμ2

2 + μ2 − λ2 + 2t−1

]}
dy.

The last integral diverges if

1 − pμ2

2 + μ2 − λ2 + 2t−1
< 0.

This immediately concludes the lemma. �

Indeed, some specific choices of � in Condition 6.1 like � = 0 usually lead to a class of convenient and even optimal
criteria in applications. For instance, the above discussion shows how the skew-symmetric component of B substantially
affects the Lp-norm of the solution of system (6.2). But in general, the choice of � still heavily depends on the structure
of the concrete problem.

Example 6.5. Let p ≥ 3 and λ > μ > 0. Consider

A =
[

1 + λ2 0
0 1 + μ2

]
and B =

[
0 −μ

λ 0

]
.

For the sake of simplicity, we restrict the choice of � in the form
[ 0 c

c 0

]
. Then we have

A + A′ − B ′B − (p − 2)(TB + �)′(TB + �)

= diag

{
2 + λ2 − (p − 2)

(
c + λ + μ

2

)2

,2 + μ2 − (p − 2)

(
c − λ + μ

2

)2}
=: diag

{
g(c), h(c)

}
.

As p ≥ 3 and λ > μ > 0, it is easily to check that

max
c∈R

{
g(c) ∧ h(c)

} = 2 + λ2 + μ2

2
− (p − 2)(λ + μ)2

4
− (λ − μ)2

4(p − 2)
,

where the maximum is attained when g(c) = h(c), i.e.,

c = λ − μ

2(p − 2)
.

So one can easily assign some specific values to p, λ and μ to let A and B satisfy Condition 6.1 but not with � = 0, for
example, (p,λ,μ) = (3,3,1). This shows that the choice � = 0 does not always lead to the minimal requirements.
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[3] Z. Brzeźniak, B. Goldys and T. Jegaraj. Weak solutions of a stochastic Landau–Lifshitz–Gilbert equation. Appl. Math. Res. Express. AMRX 2013
(1) (2013) 1–33. MR3040886
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