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Abstract. Similarly as in (Electron. J. Probab. 23 (2018)) where nested coalescent processes are studied, we generalize the definition
of partition-valued homogeneous Markov fragmentation processes to the setting of nested partitions, i.e. pairs of partitions (ζ, ξ) where
ζ is finer than ξ . As in the classical univariate setting, under exchangeability and branching assumptions, we characterize the jump
measure of nested fragmentation processes, in terms of erosion coefficients and dislocation measures. Among the possible jumps of a
nested fragmentation, three forms of erosion and two forms of dislocation are identified – one being specific to the nested setting and
relating to a bivariate paintbox process.

Résumé. Poursuivant l’idée de (Electron. J. Probab. 23 (2018)) où les processus de coalescence emboîtés sont étudiés, nous étendons
ici la définition des processus de fragmentation markoviens homogènes aux processus de fragmentation à valeurs dans les partitions
emboîtées, c’est-à-dire les paires de partitions (ζ, ξ) telles que ζ soit plus fine que ξ . Comme dans le contexte classique (dit univarié),
sous des hypothèses d’échangeabilité et de branchement, nous caractérisons la mesure de saut des processus de fragmentation emboîtés
en termes de coefficients d’érosion et de mesures de dislocation. Les sauts d’une fragmentation emboîtée peuvent être de plusieurs
natures différentes : nous distinguons trois formes d’érosions et deux formes de dislocations, l’une d’elles étant spécifique au contexte
des partitions emboîtées et étant générée par un processus de pots de peinture bivarié.
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1. Introduction

Evolutionary biology aims at tracing back the history of species, by identifying and dating the relationships of ancestry
between past lineages of extant individuals. This information is usually represented by a tree or phylogeny [16,23], species
corresponding to leaves of the tree and speciation events (point in time where several species descend from a single one)
corresponding to internal nodes.

In modern methods, one analyzes genetic data from samples of individuals to statistically infer their phylogenetic tree.
Probabilistic tree models have been well-developed in the last decades – either from individual-based population models
like the classical Wright–Fisher model [2,10,15,23], or from forward-in-time branching processes, where the branching
particles are species (see for instance Aldous’s Markov branching models [1] and the surrounding literature [6,7,11,13])
– allowing for inference from genetic data. A challenge is that trees inferred from different parts of the genome generally
fail to coincide, each of them being understood as an alteration of a “true” underlying phylogeny (which we call the
species tree).

To understand the relation between gene trees and the species tree, our goal is to identify a class of Markovian models
coupling the evolution of both trees, making the assumption that in general, several gene lineages coexist within the same
species, and at speciation events one or several gene lineages diverge from their neighbors to form a new species, i.e.
we model the problem as a tree within a tree [9,18–20], or nested tree. See Figure 1 for an instance of a simple nested
genealogy where discrepancies arise between the resulting gene tree and species tree.

Recent research aims at defining mathematical processes giving rise to such nested trees, generalizing several well-
studied univariate (we will sometime use this term as opposed to nested) processes. Some work in progress involves a
nested version [5,17] of the Kingman coalescent [14] (considered the neutral model for evolution, appearing as a scaling
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Fig. 1. Example of a nested tree where the gene tree (in black) does not coincide with the species tree (in gray).

limit of many individual-based population models). In [4] we study a nested generalization of �-coalescent processes
[3,21,22] and characterize their distribution. Our present goal is to generalize the forward-in-time branching models
originated from Aldous [1]. His assumptions (which will be formally defined for our context in Section 3) are basically
that the random process of evolution is homogeneous in time and that the law of the process is invariant under both
relabeling and resampling of individuals (we then say the process is exchangeable and sampling consistent). We are
interested in the partition-valued processes satisfying these assumptions, i.e. the so-called fragmentation processes [3,
13], and in this article we generalize their definition to nested partition-valued processes to model jointly a gene tree
within a species tree.

Crane [7] also generalizes Aldous’s Markov branching models to study the gene tree/species tree problem but uses a
different approach to the one we use here. Indeed, his model is such that first the entire species tree t is drawn according to
some probability, and then the gene tree t′ is constructed thanks to a generalized Markov branching model that depends on
t. In the meantime, our goal is to characterize the class of models in which there is a joint Markov branching construction
of both the gene tree and the species tree, under the assumptions of exchangeability and sampling consistency.

In particular our main result Theorem 14, which will be formally stated in Section 5, shows that nested fragmentation
processes satisfying natural branching properties are uniquely characterized by

• three erosion parameters cout, cin,1 and cin,2 (rates at which a unique lineage can fragment out of its mother block, in
three different situations);

• two dislocation measures νout and νin that are Poissonian intensities of how blocks instantaneously fragment into
several new blocks with macroscopic frequencies.

The article is organized as follows. Section 2 introduces some notation used throughout the paper, and the definition
of nested fragmentations. We also recall some results in the univariate case which we seek to generalize to the nested
case. In Section 3 we study our so-called strong exchangeability assumption, and show its relation to a projective Markov
property, in order to define characteristic kernels of nested fragmentation processes. In Section 4 we use the so-called
outer branching property, simplifying the representation of characteristic kernels of fragmentations, and giving a natural
Poissonian construction of such processes. Focusing on the inner branching property, Section 5 is dedicated to the full
characterization of the semi-group of nested fragmentations, in terms of erosion and dislocation measures. It is shown
that dislocations, similarly as in the univariate case, can be understood as (bivariate) paintbox processes. Finally Sec-
tion 6 briefly shows how our main result, Theorem 14, translates in simpler terms when we make the classical biological
assumption that all splits are binary.

2. Definitions and examples

2.1. Definitions, notation

For a set S, write PS for the set of partitions of S:

PS :=
{
π ⊂P(S) \ {∅}, ∀A �= B ∈ π,A ∩ B =∅ and

⋃
A∈π

A = S

}
,

where P(S) denotes the power set of S. Throughout the paper, whenever a subset π ′ ⊂ P(S) is defined in a way such
that π ′ = π ∪{∅} for a certain π ∈ PS , we will implicitly identify π ′ and π to avoid the formal and cumbersome notation
π ′ \ {∅}.

For S,S′ two sets, π ∈PS and σ : S′ → S an injection, we write

πσ := {
σ−1(A),A ∈ π

}
,

and if μ is a measure on PS then we write μσ for the push-forward of μ by the map π 
→ πσ .
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Note that if S′′ τ→ S′ σ→ S are injections, then we have πστ = (πσ )τ , and μστ = (μσ )τ .
For S′ ⊂ S, there is a natural surjective map rS,S′ :PS →PS′ called the restriction, defined by

rS,S′(π) = π|S′ := {
A ∩ S′,A ∈ π

}
.

Note that π|S′ = πσ for σ : S′ → S,x 
→ x the canonical injection.
There is always a partial order on PS , denoted by � and defined as:

π � π ′ if ∀(A,B) ∈ π × π ′,A ∩ B �= ∅ ⇒ A ⊂ B,

that is π � π ′ if π is finer than π ′. From now on, we prefer to write ζ or ξ for partitions and π for pairs of partitions.
Also, throughout the paper we will say if ζ � ξ that the pair (ζ, ξ) is nested. Let us introduce the space of pairs of nested
partitions,

P2,�
S := {

(ζ, ξ) ∈P2
S, ζ � ξ

}
,

which we equip with a partial order � defined naturally as

(ζ, ξ) � (
ζ ′, ξ ′) if ζ � ζ ′ and ξ � ξ ′.

We will use 0S or sometimes, with some abuse of notation, 0 when the context is clear, to denote the partition of S into
singletons. Similarly, we will denote by 1S or 1 the partition in one block {S}. For S′ ⊂ S and π = (ζ, ξ) ∈ P2,�

S , we
define naturally the restriction

π|S′ := (ζ|S′ , ξ|S′) ∈ P2,�
S′ .

Let us now define, for n ∈ N, [n] := {1, . . . , n} and [∞] := N, and for n ∈ N∪ {∞}:
Pn := P[n] and P2,�

n := P2,�
[n]

We will generally label the blocks of a partition ξ = {ξ1, ξ2, . . .}, in the unique way such that

min ξ1 < min ξ2 < · · ·
The space P2,�∞ is endowed with a distance d which makes it compact, defined as follows:

d
(
π,π ′) = (

sup{n ∈N,π|[n] = π|[n]}
)−1

,

with the convention (supN)−1 = 0. Note that the same expression can be used to define a distance on P∞, making it a
compact space as well.

For k ≤ n ≤ ∞, σ : [k] → [n] an injection and π = (ζ, ξ) ∈P2,�
n , we write

πσ := (
ζ σ , ξσ

) ∈P2,�
k .

A key property of the space P2,�∞ is that for any n ∈ N, and any π ∈P2,�
n , there is a π	 ∈ P2,�∞ satisfying:

• π	|[n] = π ;

• for any π ′ ∈ P2,�∞ such that π ′|[n] = π , there is an injection σ : N →N which satisfies σ|[n] = id[n] and (π	)σ = π ′.
Indeed, it is clear that one can choose a π	 = (ζ 	, ξ	) such that π	|[n] = π , such that ζ 	 has infinitely many infinite blocks
and no finite blocks, ξ	 has infinitely many blocks, and each of them contains infinitely many distinct blocks of ζ 	. This
partition immediately satisfies the required property. We will call any such π	 a universal element of P2,�∞ with initial
part π whenever we need to use one.

A measure μ on Pn or on P2,�
n is said to be exchangeable if for any permutation σ : [n] → [n], we have

μσ = μ.

A random variable 
 taking values in Pn or in P2,�
n is said to be exchangeable if for any permutation σ : [n] → [n], we

have


σ (d)= 
,
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that is if its distribution is exchangeable. Similarly, a random process (
(t), t ≥ 0) taking values in Pn or in P2,�
n is said

to be exchangeable if for any initial state π0 and any permutation σ : [n] → [n], we have

(

(t)σ , t ≥ 0

)
under Pπ0

(d)= (

(t), t ≥ 0

)
under Pπσ

0
, (1)

where Pπ is the distribution of the process started from π .
Finally, a measure or a random process with values in P∞ or P2,�∞ will be called strongly exchangeable if its dis-

tribution is invariant under the action of injections N → N. Note that while it is easily checked that for measures the
two properties are equivalent, for processes this is a strictly stronger assumption than being exchangeable. Indeed, since
the number of blocks of a partition is invariant under the action of permutations but not under the action of injections,
one can define exchangeable Markov jump processes (
(t), t ≥ 0) with jump rates depending on the total number of
blocks of 
(t), preventing strong exchangeability. The reason we prefer to assume strong exchangeability is the follow-
ing. Consider a strong exchangeable process 
 (say with values in P2,�∞ ) and a universal initial state π . Then for any
π ′ ∈ P2,�∞ , there is an injection σ : N → N such that π ′ = πσ , so strong exchangeability (1) ensures us that if 
 ∼ Pπ ,
then 
σ ∼ Pπ ′ . In other words, the process 
 under Pπ – i.e. started from π – is a coupling of all possible distributions
Pπ ′ , for π ′ ∈ P2,�∞ , which will often be convenient.

In the following we only consider time-homogeneous Markov processes. We can now define nested fragmentation
processes in a way that extends naturally the definition of fragmentation processes in the univariate case.

Definition 1. Let 
 = (
(t), t ≥ 0) = ((ζ(t), ξ(t)), t ≥ 0) be a Markov process with values in P2,�∞ . We say 
 is a
nested fragmentation process if:

(i) 
 is strongly exchangeable, with nonincreasing càdlàg sample paths.
(ii) Outer branching property. For any initial state π = (ζ, ξ) with ξ = {ξ1, ξ2, . . .} and given bijections σi : [#ξi] → ξi ,

where #ξi denotes the cardinality of block ξi , the processes((

σi (t), t ≥ 0

)
, i ≥ 1

)
are mutually independent under Pπ .

(iii) Inner branching property. The process (ζ(t), t ≥ 0), with values in P∞, is a homogeneous univariate fragmentation
process, as in [3, Definition 3.2].

In words, the branching properties (ii) and (iii) imply that different blocks at a given time undergo independent frag-
mentations in the future. Throughout the rest of the paper, unless stated otherwise, we consider an alternative, more
convenient definition, which we will prove to be equivalent to Definition 1, and whose idea is the following: distinct
blocks fragment at distinct times.

Definition 1′. Let 
 = (
(t), t ≥ 0) = ((ζ(t), ξ(t)), t ≥ 0) be a Markov process with values in P2,�∞ . We say 
 is a
nested fragmentation process if:

(i) 
 is strongly exchangeable, with nonincreasing càdlàg sample paths.
(ii′) 
 satisfies the outer branching property:

Almost surely for all t such that 
(t−) �= 
(t), there is a unique block B ∈ ξ(t−) such that 
(t−)|B �=

(t)|B .

(iii′) 
 satisfies the inner branching property:

Almost surely for all t such that ζ(t−) �= ζ(t), there is a unique block B ∈ ζ(t−) such that ζ(t−)|B �= ζ(t)|B .

Note that we will show in Section 3 that a nested fragmentation process according to Definition 1 satisfies also Defini-
tion 1′, and then in Corollary 15 it will appear the converse is true.

Before describing our results in the setting of nested fragmentations, let us recall the concepts of mass partitions
and paintbox processes in the univariate setting. These ideas, which will ultimately be extended to the nested case, are
paramount in understanding the possible transitions of fragmentation processes.
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2.2. Univariate results, mass partitions

Random exchangeable partitions π ∈ P∞ and their relation to random mass partitions is well known [see 3, Chapter 2].
We denote the space of mass partitions by

Pm :=
{

s = (s1, s2, . . .) ∈ [0,1]N, s1 ≥ s2 ≥ . . . ,
∑

k

sk ≤ 1

}
. (2)

For s ∈ Pm, one defines an exchangeable distribution on P∞, by the following so-called paintbox construction:

• for k ≥ 0, define tk = ∑k
k′=1 sk′ , with t0 = 0 by convention.

• let (Ui, i ≥ 1) be an i.i.d. sequence of uniform random variables in [0,1].
• define the random partition π ∈ P∞ by setting

i ∼π j ⇐⇒ i = j or ∃k ≥ 1, Ui,Uj ∈ [tk−1, tk).

Then the distribution of π is exchangeable and is denoted by �s. Notice that the set π0 := {[tk−1, tk), k ≥ 1} ∪
{{t},∑k≥1 sk ≤ t ≤ 1} is a partition of [0,1], and that we have π = πσ

0 , where σ : N → [0,1] is the random injection
defined by σ : i 
→ Ui . Also, note that by definition some blocks are singletons (blocks {i} such that Ui ∈ [∑k≥1 sk,1]),
and by construction we have

#{i ∈ [n], {i} ∈ π}
n

−→
n→∞ s0 := 1 −

∑
k≥1

sk.

These integers that are singleton blocks are called the dust of the random partition π and the last display tells us there is
a frequency s0 of dust.

Conversely, any random exchangeable partition π has a distribution that can be expressed with these paintbox con-
structions �s. Indeed, π has asymptotic frequencies, i.e.

|B| := lim
n→∞

#(B ∩ [n])
n

exists a.s. for all B ∈ π.

Let us write |π |↓ ∈ Pm for the nonincreasing reordering of (|B|,B ∈ π), ignoring the zero terms coming from the dust.
It is known [14, Theorem 2] that the conditional distribution of π given |π |↓ = s is �s, so we have

P(π ∈ ·) =
∫

P
(|π |↓ ∈ ds

)
�s(·).

This means that any exchangeable probability measure on P∞ is of the form �ν where ν is a probability measure on Pm,
and

�ν(·) :=
∫

Pm

�s(·)ν(ds).

Furthermore, Bertoin [3, Theorem 3.1] shows that any exchangeable measure μ on P∞ such that

μ
({1}) = 0 and ∀n ≥ 1, μ(π|[n] �= 1[n]) < ∞ (3)

can be written μ = ce+ �ν , where c ≥ 0, ν is a measure on Pm satisfying

ν
({

(1,0,0, . . .)
}) = 0 and

∫
Pm

(1 − s1)ν(ds) < ∞, (4)

and e is the so-called erosion measure, defined by

e :=
∑
i∈N

δ{{i},N\{i}}.

As a result, each fragmentation process with values in P∞ is characterized by its erosion coefficient c and characteristic
measure ν, in such a way that its rates can be described as follows:
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A block of size n fragments, independently of the other blocks, into a partition with k different blocks of sizes
n1, n2, . . . , nk at rate

c1{k = 2, and n1 = 1 or n2 = 1} +
∫

Pm

ν(ds)
∑

i

s
n1
i1

· sn2
i2

· · · snk

ik
,

where s0 is defined to be 1 −∑
i≥1 si , and the sum is over the vectors i = (i1, . . . , ik) ∈ {0,1, . . .}k such that ij may

be 0 only if nj = 1, and if j �= j ′ and ij �= 0, then ij ′ �= ij .

A similar result will be shown in the setting of nested fragmentations.

2.3. Transitions of nested fragmentation processes

In this article we show that nested fragmentations are processes for which five different fragmentation events – jumps for
the Markov process 
 – need to be distinguished. All nested fragmentation processes are entirely characterized by the
rates at which those fragmentation events occur. While the main result, Theorem 14, cannot be stated at this time because
much notation needs to be introduced first, let us briefly explain what the five typical events of a nested fragmentation
are with an example. Assume that the nested fragmentation 
 = (ζ, ξ) jumps at time t , with (restricting each partition to
{1, . . . ,12})

ξ(t−) = {1,4,6}, {2,5,7,8,9,10,11,12}, {3}
ζ(t−) = {1,4}, {6}, {2,9,10,12}, {5}, {7,8}, {11}, {3}.

Then the five following events may occur:

• Outer erosion: Each inner block erodes out of its outer block at a constant rate. For example, if the block {7,8} erodes
out of its outer block at time t , then we have

ξ(t) = {1,4,6}, {2,5,9,10,11,12}, {7,8}, {3}
ζ(t) = {1,4}, {6}, {2,9,10,12}, {5}, {11}, {7,8}, {3}.

Note that a macroscopic – i.e. non-singleton – inner block can erode out of its outer block. This may seem counterin-
tuitive as erosion is usually seen as a continuous loss of mass, but here the idea is simply that a single inner block – not
a macroscopic proportion of blocks – separates from its outer block.

• Inner erosion: Each integer erodes out of its inner block at a constant rate. For example, if the integer 2 erodes out of
its inner block at time t , then we have

ξ(t) = {1,4,6}, {2,5,7,8,9,10,11,12}, {3}
ζ(t) = {1,4}, {6}, {2}, {9,10,12}, {5}, {7,8}, {11}, {3}.

• Inner erosion with creation of new species: Each integer erodes out of its inner and outer blocks at a constant rate. If
the integer 2 erodes out of its inner and outer blocks at time t , then we have

ξ(t) = {1,4,6}, {2}, {5,7,8,9,10,11,12}, {3}
ζ(t) = {1,4}, {6}, {2}, {9,10,12}, {5}, {7,8}, {11}, {3}.

• Outer dislocation: An outer block can split into two or more outer blocks. Each of the inner blocks then decides,
according to a Kingman paintbox procedure [14], which outer block to join. For example, if the outer block containing
2 splits into three outer blocks, then the partitions at time t can be

ξ(t) = {1,4,6}, {2,9,10,11,12}, {5}, {7,8}, {3}
ζ(t) = {1,4}, {6}, {2,9,10,12}, {11}, {5}, {7,8}, {3}.

Recall that a paintbox process is a way to draw random exchangeable partitions of a (countable) set I : given a partition
of [0,1] into intervals, throw a sequence (Ui)i∈I of i.i.d. uniform random variables on [0,1]; the blocks of the random
partition are composed of the i that lie in the same interval. A paintbox procedure corresponding to the example would
be Figure 2.
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Fig. 2. Usual paintbox process, where the interval partition is composed of three intervals of lengths s1 ≥ s2 ≥ s3.

Fig. 3. Bivariate paintbox process, built from two nested interval partitions, the coarser (drawn in blue) with interval lengths ū, s̄1, s̄2, . . . , and the finer
(drawn in red) with interval lengths u1, u2, s1,1, s1,2, s2,1, etc. In this example, the variable U2 falls into the distinguished interval with length ū,
meaning that the integer 2 remains in its mother outer block. The variables U9 and U12 fall in the same outer interval but in distinct inner intervals so
an outer block {9,12} is formed, containing two inner blocks {9} and {12}. Similarly, {10} forms a new outer and inner block.

• Inner dislocation: An inner block could split into two or more inner blocks, with each of the new inner blocks choosing
either to stay in the outer block in which it resided before – its mother block –, or move to one of two or more new outer
blocks that are created. For example, if the block {2,9,10,12} splits into four singletons, with {2} choosing to stay in
the mother block while the other three integers move to one of two newly created outer blocks. Then the partitions at
time t can be

ξ(t) = {1,4,6}, {2,5,7,8,11}, {9,12}, {10}, {3}
ζ(t) = {1,4}, {6}, {2}, {5}, {7,8}, {11}, {9}, {12}, {10}, {3}.

Note that a bivariate paintbox process is needed to construct inner dislocation events: see Figure 3 for a paintbox
corresponding to this example.

Note that not all decreasing transitions are valid. For instance, consider the transition from the initial state above to

ξ(t) = {1,4}, {6}, {2,5,7,8,9,10,11,12}, {3}
ζ(t) = {1,4}, {6}, {2}, {9,10,12}, {5}, {7,8}, {11}, {3},

where both the inner block A = {2,9,10,12} and the outer block B = {1,4,6} simultaneously undergo fragmentation. In
fact since they are not nested (A �⊂ B) we will see that this transition is impossible. Also, consider the transition

ξ(t) = {1,4,6}, {2,5,9,10,12}, {7,8,11} {3}
ζ(t) = {1,4}, {6}, {2}, {9,10,12}, {5}, {7,8}, {11}, {3}.

Now inner block A undergoes fragmentation at the same time as its mother block B = {2,5,7,8,9,10,11,12}. However,
the transition is invalid because the fragmentation of block B separates, in particular, sites 5 and 7, while neither of them
is in A. It will be clear along the proof of Theorem 14 that such events are impossible for nested fragmentation processes
(essentially because if such transitions had positive rates, exchangeability would imply that those rates are infinite).

Let us now start the analysis of nested fragmentation processes by exploiting their strong exchangeability property.

3. Projective Markov property – characteristic kernel

The goal of this section is to show that nested fragmentations are processes 
 for which the following projective Markov
property holds:

For all n ≥ 1, the process 
n := (
(t)|[n], t ≥ 0) is a continuous-time Markov chain in the finite state space P2,�
n ,

whose distribution under Pπ depends only on π|[n].

We already made use of this property in [4, Lemma 3.2] in the context of nested coalescent processes. Here it is
exposed in a slightly more general way since we show that for a large class of Markov processes with values in P2,�∞
or P∞ (not only coalescent or fragmentation processes, but any càdlàg exchangeable process), the projective Markov
property is in fact equivalent to strong exchangeability.
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Proposition 2. Let 
 = (
(t), t ≥ 0) be an exchangeable Markov process taking values in P2,�∞ or P∞ with càdlàg
sample paths. The following propositions are equivalent:

(i) 
 is strongly exchangeable.
(ii) 
 has the projective Markov property, i.e. 
n := (
(t)|[n], t ≥ 0) is a Markov chain for all n ∈N.

Remark 3. Crane and Towsner [8, Theorem 4.26] show that the projective Markov property is equivalent to the Feller
property for exchangeable Markov process taking values in a Fraïssé space (i.e. a space satisfying general “stability and
universality” assumptions [see 8, Definitions 4.4 to 4.11]). In particular the space of partitions and the space of nested
partitions are Fraïssé spaces (the argument essentially being the existence of so-called universal elements π	 defined in
Section 2), so for the processes we consider, strong exchangeability is equivalent to the Feller property.

Proof. (i) ⇒ (ii): Let n ∈ N and π ∈ P2,�
n . Fix a universal π	 ∈ P2,�∞ with initial part π . Now take any π0 ∈ P2,�∞ such

that (π0)|[n] = π , and an injection σ :N→ N such that σ|[n] = id|[n] and (π	)σ = π0. Now we have

Pπ0

(

n ∈ ·) = Pπ	

((

σ

)n ∈ ·)
= Pπ	

(

n ∈ ·),

so this distribution depends only on π , which proves that 
n is a Markov process. Now the assumption that 
 has
càdlàg sample paths ensures that the process 
n stays some positive time in each visited state a.s. Therefore 
n is a
continuous-time Markov chain.

(ii) ⇒ (i): Let σ : N → N be an injection. For n ∈ N, let τ be a permutation of N such that τ|[n] = σ|[n]. This property
implies (πτ )|[n] = (πσ )|[n] for any π ∈ P2,�∞ . We deduce

Pπ

((

σ

)n ∈ ·) = Pπ

((

τ

)n ∈ ·)
= Pπτ

(

n ∈ ·)

= Pπσ

(

n ∈ ·),

where the last equality is a consequence of the projective Markov property (the distribution of 
n under Pπ depends only
on the initial segment π|[n]). Since it is true for all n, we have Pπ (
σ ∈ ·) = Pπσ (
 ∈ ·), which proves the property of
strong exchangeability. �

Corollary 4. A nested fragmentation as defined by Definition 1 satisfies the assumptions of Definition 1′.

Proof. Consider a nested fragmentation process 
 = (ζ, ξ) satisfying Definition 1. Note that (i) of Definition 1 implies
that 
 satisfies the projective Markov property. Fix any initial state π = (ζ, ξ) ∈ P2,�∞ and an integer n ∈ N, and write
ξ|[n] = {ξ1, ξ2, . . . , ξk}, for some 1 ≤ k ≤ n. Now define bijections σi : [#ξi] → ξi for each integer 1 ≤ i ≤ k. Assump-
tion (ii) and the projective Markov property imply that the processes((


σi (t), t ≥ 0
)
,1 ≤ i ≤ k

)
are mutually independent under Pπ , and such that 
σi has distribution 
#ξi started from πσi = (ζ σi ,1). Independent
continuous-time Markov chains have distinct jump times almost surely, so in particular the first jump time T n

1 of 
n

started from π|[n] is the first jump time of some 
σi , for a unique i. So there is a unique block B ∈ ξ(0)|[n] = ξ(T n
1 −)|[n]

such that 
(T n
1 −)|B �= 
(T n

1 )|B . By induction and the Markov property applied to successive jumps times T n
1 , T n

2 , . . .

of the Markov chain 
n, it is clear that almost surely, for all t ≥ 0 such that 
n(t−) �= 
n(t), there is a unique block
B ∈ ξn(t−) such that 
(t−)|B �= 
(t)|B . Since this is true for all n ∈ N, the outer branching property as described in (ii′)
holds.

It is a result of the univariate theory of fragmentations [3], that (iii) implies (iii′). �

The next proposition is the direct consequence of the projective Markov property in the space P2,�∞ . It is essentially
Lemma 4.1 in [4], from which the proof is easily adapted, the argument being entirely independent from any monotonicity
(coalescence or fragmentation) assumption.

Proposition 5. Let 
 = (
(t), t ≥ 0) be a stochastic process with values in P2,�∞ which satisfies the projective Markov
property. Then 
 is a Markov process, whose distribution is characterized by a transition kernel K from P2,�∞ to P2,�∞
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(i.e. Kπ(·) is a nonnegative measure on P2,�∞ for all π ∈ P2,�∞ and π 
→ Kπ(B) is measurable for any B Borel set of
P2,�∞ ) such that

• for all π ∈ P2,�∞ , we have Kπ({π}) = ∞,
• for all π ∈ P2,�∞ , n ∈ N and π ′ ∈ P2,�

n \ {π|[n]}, the Markov chain 
n has a transition rate from π|[n] to π ′ equal to

qn
π,π ′ = Kπ

(
r−1
n

({
π ′})) < ∞,

where rn(·) = ·|[n] denotes the restriction operation.

This kernel K will be called the characteristic kernel of the process 
. Furthermore, if 
 is exchangeable, then K is
strongly exchangeable, in the sense that for any π ∈P2,�∞ and any injection σ :N→ N, we have

Kπσ = Kσ
π .

Proof. See [4, Lemma 4.1]. �

Remark 6. Note that the transition rates of the Markov chains 
n are given by the collection of σ -finite measures
Kπ(·∩P2,�∞ \{π}), for π ∈P2,�∞ . The value Kπ({π}) is irrelevant for the distribution of the process 
, and for uniqueness,
we set Kπ({π}) = ∞, whereas it is conventional for a transition kernel that this value is taken to be 0. However, setting this
value to be infinite is necessary so that strong exchangeability Kπσ = Kσ

π holds in general for all injections σ : N → N.
Indeed, note that if σ is a bijection, then Kσ

π ({πσ }) = Kπ({π}), but in general, when σ is an injection, one can have
Kσ

π ({πσ }) = Kπ({π}) + a, where a > 0. For instance assume – we will see that it is the case for characteristic kernels of
nested fragmentation – that K is such that if π0 = (ζ, ξ) has at least two outer blocks B �= B ′ ∈ ξ , then

Kπ0

({
π|B �= (π0)|B

} ∩ {
π|B ′ �= (π0)|B ′

}) = 0.

Then if σ :N→ N is an injection with image σ(N) ⊂ B , then one has

Kπ0

({
πσ = πσ

0

}) ≥ Kπ0

({
π|B = (π0)|B

}) ≥ Kπ0

({π = π0}
) + Kπ0

({
π|B ′ �= (π0)|B ′

})
,

where Kπ0({π|B ′ �= (π0)|B ′ }) may be greater than 0 if K is not trivial.

Let us emphasize that the kernel K essentially gives us the infinitesimal generator of the Markov process 
. Indeed,
note that the generator Gn of the continuous-time finite-space Markov chain 
n is then given by

Gnf (π|[n]) =
∑

π ′∈P2,�
n \{π|[n]}

qn
π,π ′

(
f

(
π ′) − f (π|[n])

)

=
∫
P2,�∞

Kπ

(
dπ ′)(f (

π ′|[n]
) − f (π|[n])

)
,

for any function f : P2,�
n → R and π ∈ P2,�∞ . As an obvious consequence, the generator G of the process 
 can be

applied to any function g : P2,�∞ → R of the form g = f ◦ rn for some n ∈ N and some function f : P2,�
n → R, and is

written

Gg(π) =
∫
P2,�∞

Kπ

(
dπ ′)(g(

π ′) − g(π)
)
.

4. Outer branching property

In this section we study the outer branching property – as stated in Definition 1′ – to analyze the characteristic kernel
of nested fragmentations. The aim is to show that it is entirely characterized by a measure on partitions of N2 satisfying
some invariance property.
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4.1. Simpler kernel

First, the following proposition expresses that the jump rates from initial states with a single outer block are sufficient to
characterize the whole process.

Proposition 7. Let 
 = (
(t), t ≥ 0) = ((ζ(t), ξ(t)), t ≥ 0) be a strongly exchangeable Markov process with values in
P2,�∞ and nonincreasing càdlàg sample paths. Write K for its exchangeable characteristic kernel.

If 
 satisfies the outer branching property, then K is characterized by a simpler kernel κ from P∞ to P2,�∞ which is
defined as

κζ (·) := K(ζ,1)(·),
where 1 denotes the partition of N with only one block. The simpler kernel is also strongly exchangeable.

The kernel K is determined by κ in the following way: fix π0 = (ζ, ξ) ∈ P2,�∞ and for simplicity suppose that all the
blocks of ξ are infinite. For all B ∈ ξ , define the injection σB : N → N as the unique increasing map whose image is B ,
and τB : B → N such that σB ◦ τB = idB . By definition, (π0)

σB is of the form (ζB,1), with ζB = ζ σB . Now define fB as
the function which maps π ∈P2,�∞ to the unique ω ∈ P2,�∞ such that

• ω � ({B,N \ B}, {B,N \ B}),
• ω|B = πτB and ω|N\B = (π0)|N\B .

Then for any Borel set A ⊂P2,�∞ , we have

Kπ0(A) =
∑
B∈ξ

κζB

({
fB(π) ∈ A

})
. (5)

Remark 8.

• This proposition shows how Kπ0 is expressed in terms of the kernel κ only for π0 = (ζ, ξ) such that all the blocks of
ξ are infinite. In fact this is enough to characterize K entirely since if π0 does not satisfy this property, there exists a
nested partition π ′

0 = (ζ ′, ξ ′), where ξ ′ has infinite blocks, and an injection σ : N → N such that π0 = (π ′
0)

σ . Then we
have Kπ0 = Kσ

π ′
0
, which is determined by κ .

• This result implies that different outer blocks undergo independent fragmentations, in other words a nested fragmen-
tation (recall that we only assume Definition 1′) satisfies (ii) of Definition 1. Indeed, one interprets the sum (5) as:
independently for each block B ∈ ξ , (π0)|B is replaced by πτB at rate κζB

(π ∈ ·), which is a measure which depends
only on (π0)|B .

Proof. First note that the fact that 
 has decreasing sample paths implies that for any π0 ∈ P2,�∞ , the support of the
measure Kπ0 is included in {π � π0}. Indeed, since {π � π0} = ⋂

n≥1{π|[n] � (π0)|[n]}, we have

Kπ0

({π � π0}
) = lim

n→∞Kπ0

(
π|[n] � (π0)|[n]

)
,

where for any n ≥ 1, the right-hand side is equal to the (finite) transition rate of the Markov chain 
n from (π0)|[n] to any
π for which π � (π0)|[n]. But 
n is a decreasing process by assumption, so this rate is zero, so we conclude

Kπ0(π � π0) = 0 (6)

Using the same argument, it is clear that the outer branching property implies that for any π0 = (ζ, ξ) ∈ P2,�∞ , we have

Kπ0

( ⋃
B1 �=B2∈ξ

{
π|B1 �= (π0)|B1 and π|B2 �= (π0)|B2

}) = 0. (7)

Now without loss of generality (see Remark 8), suppose that all the blocks of ξ are infinite, and let us define for all B ∈ ξ ,
the maps σB , τB and fB as in the proposition. Equations (6) and (7) imply that for any B ∈ ξ , on the event {π|B �= (π0)|B},
we have

π = fB

(
πσB

)
Kπ0 -a.e.,
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where fB is the map defined in the proposition. Then to show (5) for any Borel set A ⊂P2,�∞ \ {π0}, we have

Kπ0(A) = Kπ0

(⋃
B∈ξ

(
A ∩ {

π|B �= (π0)|B
}))

=
∑
B∈ξ

Kπ0

(
A ∩ {

π|B �= (π0)|B
})

=
∑
B∈ξ

Kπ0

({
fB

(
πσB

) ∈ A
} ∩ {

πσB �= (π0)
σB

})
=

∑
B∈ξ

K(π0)
σB

({
fB(π) ∈ A

} ∩ {
π �= (π0)

σB
})

,

where we use the strong exchangeability of the kernel K in the last line. Now, note that for every B ∈ ξ , by definition of
fB we have {fB(π) �= π0} = {π �= (π0)

σB }, therefore {fB(π) ∈ A} ⊂ {π �= (π0)
σB }, so one can simply rewrite

Kπ0(A) =
∑
B∈ξ

K(π0)
σB

({
fB(π) ∈ A

})
.

In general, if A is a Borel subset of P2,�∞ with π0 ∈ A, we have Kπ0(A) = ∞, and for each B ∈ ξ , K(π0)
σB ({fB(π) ∈ A}) ≥

K(π0)
σB ({fB(π) = π0}) = K(π0)

σB ({π = (π0)
σB }) = ∞, so the equality still holds. Now by definition of σB , (π0)

σB is of
the form (ζB,1), which concludes the proof that Kπ0 can be expressed with the simpler kernel κ . Finally, by definition, it
is clear that κ inherits strong exchangeability from K . �

Now, to further analyze the simplified characteristic kernel κ of an nested fragmentation, we need to introduce some
tools, reducing the problem to study exchangeable (with respect to a particular set of injections M) partitions of N2.

4.2. M-invariant measures

Let M be the monoid of functions N2 →N2 consisting of injective maps of the form

(i, j) 
−→ (
σ(i), σi(j)

)
,

where σ and σ1, σ2, . . . are injections N→ N. Let us write πR for the rows partition {{(i, j), j ≥ 1}, i ≥ 1} ∈PN2 , which
has the property that an injection τ :N2 → N is in M if and only if πτ

R = πR.
Note that in P∞ any universal element π has the property that κπ characterize κ entirely, but there is no natural choice

for π . The reason for studying partitions of N2 is that the rows partition πR is a natural universal element of PN2 . The
following proposition shows that one can make sense of a measure essentially defined as “κπR ”, which then characterize
κ and therefore the distribution of a nested fragmentation.

Proposition 9. Let κ be a strongly exchangeable kernel from P∞ to P2,�∞ , and let π0 denote a universal element of P∞,
i.e. a partition of N with infinitely many infinite blocks (and no finite block). Choose a bijection σ : N2 → N such that
πσ

0 = πR.

Then μ := κσ
π0

is a measure on P2,�
N2 which is M-invariant, in the sense that for all τ ∈ M , μ = μτ . Moreover, μ does

not depend on π0 or σ and the mapping κ 
→ μ is bijective from the set of strongly exchangeable kernels to the set of
M-invariant measures on P2,�

N2 .

Thinking of κ as the jump kernel of a nested fragmentation process, one can see this measure μ as the measure giving
the infinitesimal jump rates from the nested partition (πR,1), where each row of N2 is an inner block.

Proof. Fix τ ∈ M and a Borel set A ⊂P2,�
N2 . We need to prove μ(πτ ∈ A) = μ(A). Consider ϕ = σ ◦ τ ◦ σ−1. This map

satisfies ϕ ◦ σ = σ ◦ τ and π
ϕ
0 = π0, so we have

μ
(
πτ ∈ A

) = κπ0

(
πσ◦τ ∈ A

)
= κπ0

(
πϕ◦σ ∈ A

)
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= κπ
ϕ
0

(
πσ ∈ A

)
= μ(A).

This proves that μ is M-invariant. Let us now prove that μ does not depend on π0 or σ : fix π1,π2 ∈ P∞ (both with
infinitely many infinite blocks and no finite block) and σ1, σ2 bijections from N2 to N such that π

σi

i = πR. We need to
show

κπ1

(
πσ1 ∈ ·) = κπ2

(
πσ2 ∈ ·).

Let ϕ be a bijection such that π
ϕ
1 = π2. Note that π

σ−1
2 ◦ϕ−1◦σ1

R = π
ϕ−1◦σ1
2 = π

σ1
1 = πR, i.e. σ−1

2 ◦ ϕ−1 ◦ σ1 ∈ M . Now we
have

κπ1

(
πσ1 ∈ ·) = κπ1

((
πϕ

)ϕ−1◦σ1 ∈ ·)
= κπ2

(
πϕ−1◦σ1 ∈ ·)

= κπ2

((
πσ2

)σ−1
2 ◦ϕ−1◦σ1 ∈ ·)

= κπ2

(
πσ2 ∈ ·),

where the last equality follows from the M-invariance of κπ2(π
σ2 ∈ ·). So μ is well defined and depends only on κ .

We now prove that κ 
→ μ is bijective. For any injection σ :N → N2, we write 2σ for the map

2σ :
{
N −→ N2

n 
−→ 2σ(n) = (2i,2j) where σ(n) = (i, j).

Note that for any injection σ : N → N2, we have πσ
R = π2σ

R . Now let σ1, σ2 be any two injections such that π
σ1
R = π

σ2
R .

Then there exists a τ ∈ M such that

τ ◦ σ1 = 2σ2.

Indeed one such τ can be defined in the following way. First let us define an injection ϕ : N → N, which will serve as a
mapping for rows. For any i ∈N, there are two possibilities:

• either there is a j ∈ N such that (i, j) ∈ im(σ1), and then there is an even integer i′ ∈ N such that 2σ2(σ
−1
1 (i, j)) =

(i′, k) for some k ∈N. This number i′ does not depend on j because of the fact that π
σ1
R = π

σ2
R . Indeed if j1, j2 ∈ N are

such that (i, j1), (i, j2) ∈ im(σ1), then by definition σ−1(i, j1) and σ−1(i, j2) belong to the same block of π
σ1
R = π

σ2
R ,

and so σ2(σ
−1(i, j1)) and σ2(σ

−1(i, j2)) belong to the same block of πR. So in that case we can define ϕ(i) := i′.
• or im(σ1) ∩ {(i, j), j ≥ 1} = ∅, and then we define ϕ(i) = 2i − 1.

The map ϕ is a well-defined injection, and we may now define

τ :
{

(i, j) ∈ im(σ1) 
−→ 2σ2(σ
−1
1 (i, j))

(i, j) /∈ im(σ1) 
−→ (ϕ(i),2j − 1)

It is easy to check that τ ∈ M and that τ ◦ σ1 = 2σ2. We can now fix μ an M-invariant measure on P2,�
N2 . Consider a

partition π0 ∈ P∞ and an injection σ0 : N →N2 such that π
σ0
R = π0. Now for any other σ1 such that π

σ1
R = π0, let τ ∈ M

be such that τ ◦ σ1 = 2σ0. By M-invariance of μ, we have

μ
(
πσ1 ∈ ·) = μ

(
πτ◦σ1 ∈ ·)

= μ
(
π2σ0 ∈ ·).

Therefore this measure does not depend on σ1 but only on π0, so we may define

κπ0 := μ
(
πσ0 ∈ ·),
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which is a measure on P2,�∞ , for all π0. Now it remains to check that for any injection σ : N → N, we have κσ
π0

= κπσ
0

.
But if π

σ0
R = π0, then π

σ0◦σ
R = πσ

0 , so

κσ
π0

= μ
((

πσ0
)σ ∈ ·)

= μ
(
πσ0◦σ ∈ ·)

= κπσ
0
,

so κ is a strongly exchangeable kernel from P∞ to P2,�∞ , and it is easy to check that the M-invariant measure associated
with κ is μ. �

Note that for K a characteristic kernel of a nested fragmentation, we have set (see Remark 6) Kπ({π}) = ∞ for any
π ∈ P2,�∞ , which implies that μ({(πR,1)}) = ∞ for the corresponding M-invariant measure. This is only technical and
for our processes this value μ({(πR,1)}) has no relevance. Therefore we will from now on abuse notation and identify M-
invariant measures on P2,�

N2 with their restriction to P2,�
N2 \ {(πR,1)}. More precisely, in the rest of the article, we extend

the definition of M-invariance to all measures μ on P2,�
N2 such that for all τ ∈ M , μ and μτ coincide on P2,�

N2 \ {(πR,1)}.
As such, we will now only consider M-invariant measures μ satisfying μ({(πR,1)}) = 0.

Putting together Proposition 7 and Proposition 9 gives us:

Theorem 10. Let 
 = (
(t), t ≥ 0) be a nested fragmentation process. Then its distribution is characterized by a unique
M-invariant measure μ on P2,�

N2 satisfying

μ
(
π ⊀ (πR,1)

) = 0

and ∀n ∈N, μ
(
π|[n]2 �= (πR,1)|[n]2

)
< ∞.

(8)

The characterization is in the sense that for any π0,π1 ∈ P∞ with infinitely many infinite blocks, for any Borel sets
A ⊂P2,�

N2 \ {(πR,1)} and B ⊂P2,�∞ \ {(π1,1)},
μ(A) = κσ0

π0
(A) and κπ1(B) = μσ1(B),

where κ is the simplified characteristic kernel of 
, σ0 :N2 → N is any injection such that π
σ0
0 = πR and σ1 : N→N2 is

any injection such that π
σ1
R = π1.

Conversely, for any such measure μ, there is a strongly exchangeable Markov process with values in P2,�∞ , nonin-
creasing càdlàg sample paths and the outer branching property with characteristic measure μ.

Remark 11. An explicit construction for the converse part of the theorem is described in the next section (Lemma 12).

4.3. Poissonian construction

Consider μ an M-invariant measure on P2,�
N2 satisfying (8), and let � be a Poisson point process on N× [0,∞) ×P2,�

N2

with intensity # ⊗ dt ⊗ μ, where # denotes the counting measure and dt the Lebesgue measure.
Fix n ∈N. Because of (8), the points (k, t,π) ∈ � such that k ≤ n and π|[n]2 �= (πR,1)|[n]2 can be numbered(

kn
i , tni , πn

i , i ≥ 1
)

with tn1 < tn2 < · · · and tni −−−→
i→∞ ∞.

Fix any initial value π0 ∈ P2,�∞ . Let us define a process (
n
i , i ≥ 0) with values in P2,�

[n] , by 
n
0 = (π0)|[n] and by

induction, conditional on 
n
i = (ζ, ξ):

• if ξ has less than kn
i+1 blocks, then set 
n

i+1 := 
n
i

• if ξ has a kn
i+1-th block, say B , then let τ : B → [n]2 be the injection such that τ(k) = (i′, j ′) iff k ∈ B is the j ′-th

element of the i′-th block of ζ|B .
Then define 
n

i+1 as the only element π ∈ P2,�
n such that π � 
n

i , π|B = (πn
i )τ and π|[n]\B = (
n

i )|[n]\B .

Now we define the continuous-time processes (
n(t), t ≥ 0) by


n(t) := 
n
i iff t ∈ [

tni−1, t
n
i

)
.
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Lemma 12. The processes 
n built from this Poissonian construction are consistent in the sense that we have for all
m ≥ n ≥ 1 and t ≥ 0,


m(t)|[n] = 
n(t).

Therefore, for all t ≥ 0, there is a unique random variable 
(t) with values in P2,�∞ such that 
(t)|[n] = 
n(t) for all
n, and the process (
(t), t ≥ 0) is a strongly exchangeable Markov process with càdlàg, nonincreasing sample paths,
satisfying the outer branching property, and whose characteristic M-invariant measure is μ.

Proof. Choose an integer n ∈ N and consider the variable (kn+1
1 , tn+1

1 ,πn+1
1 ). It is clear from the definition that

(
n+1
0 )|[n] = 
n

0 . Now let us show that (
n+1
1 )|[n] = 
n(tn+1

1 ).
We distinguish two cases:

(1) If tn+1
1 = tn1 , then we have necessarily kn+1

1 = kn
1 ≤ n and (πn+1

1 )|[n]2 = (πn
1 )|[n]2 �= (πR,1)|[n]2 . Let us write


n+1
0 = (ζ n+1, ξn+1) and 
n

0 = (ζ n, ξn). Since (
n+1
0 )|[n] = 
n

0 , it is clear that the kn
1 -th block of ξn+1 includes the

kn
1 -th block of ξn, and may at most contain one other element, the integer n + 1. In other words we have

Bn+1 ∩ [n] = Bn,

where Bn+1 and Bn denote those two blocks. Now let us write τn+1, τ n for the respective injections in N2 defined in the
construction. Because we defined the injections according to the ordering of the blocks of ζ and with the natural order on
N, it is clear that

τn+1
|Bn = τn.

Therefore we deduce ((πn
1 )τ

n+1
)|Bn = (πn

1 )τ
n
, which allows us to conclude (
n+1

1 )|[n] = 
n
1 = 
n(tn+1

1 ).
(2) If tn+1

1 < tn1 , then we have to further distinguish two possibilities:

(a) kn+1
1 = n+1. In that case the (n+1)-th block of ξn+1 can either be empty or the singleton {n+1}. Then by definition,

we necessarily have 
n+1
1 = 
n+1

0 , so we can conclude (
n+1
1 )|[n] = 
n

0 = 
n(tn+1
1 ).

(b) kn+1
1 ≤ n, and then necessarily (πn+1

1 )|[n]2 = (πR,1)|[n]2 . In that case, let B be the kn+1
1 -th block of ξ and τ : B →

[n + 1]2 the injective map defined in the construction. By definition, we have (πR,1)τ = (ζ, ξ)|B . Also by definition
of τ , for any k ≤ n, we have τ(k) ∈ [n]2. Therefore, we can conclude that((

πn+1
1

)τ )
|B∩[n] = ((

πn+1
1

)
|[n]2

)τ|B∩[n] = (πR,1)τ|B∩[n] = (ζ, ξ)|B∩[n].

This shows that (
n+1
1 )|[n] = (
n+1

0 )|[n], which allows us to conclude (
n+1
1 )|[n] = 
n

0 = 
n(tn+1
1 ).

By induction and the strong Markov property of the Poisson point process �, this proves that (
n+1
i )|[n] = 
n(tn+1

i )

for all i ≥ 1, so 
n+1(t)|[n] = 
n(t) for all t ≥ 0, which concludes the first part of the proof.
It remains to show that the process (
(t), t ≥ 0) is a strongly exchangeable Markov process with the outer branching

property, and whose characteristic M-invariant measure is μ.
First, notice that from the construction, we deduce immediately that for any n, 
n is a Markov chain, and at any jump

time tni , the partitions 
n
i−1 and 
n

i differ at most on one block of ξ , where 
n
i−1 = (ζ, ξ). Therefore the distribution of

the Markov chain 
n is given by the transition rates of the form

qn
π0,π1

,

with π0 = (ζ, ξ) ∈ P2,�∞ , and with π1 � (π0)|[n] such that, for some B ∈ ξ|[n], (π1)|[n]\B = (π0)|[n]\B and (π1)|B ≺ (π0)|B .
Now for such π0,π1, write τ : B → N2 for the injection such that τ(k) = (i, j) iff k is the j -th element of the i-th block
of ζ|B . By elementary properties of Poisson point processes we have

qn
π0,π1

= μ
(
πτ = (π1)|B

)
. (9)

Now recall from Proposition 2 that since 
 satisfies the projective Markov property and is exchangeable (this is immediate
from the M-invariance of μ), 
 is strongly exchangeable, with a characteristic kernel K such that with the same notation
as in (9),

Kπ0(π|[n] = π1) = qn
π0,π1

. (10)
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Now the outer branching property is immediately deduced from the construction of the process, where it is clear that
at any jump time, at most one block of the coarser partition is involved. Therefore by Proposition 7, the law of 
 is
characterized by the simpler kernel κ defined by κζ = K(ζ,1), for ζ ∈ P∞. Now putting this together with (10) and (9),
since the coarsest partition 1[n] only contains one block B = [n], we have simply

κζ (π|[n] = π1) = μ
((

πτ
)
|[n] = π1

)
,

where τ is an injection such that πτ
R = ζ . In other words with these definitions, the measures κζ and μτ coincide on

P2,�∞ \ {(ζ,1)}, which shows that μ is the characteristic M-invariant measure of the process 
. �

5. Inner branching property

In the previous section we only exploited the outer branching property of Definition 1′. This section will instead focus
on the inner branching property, which will allow us to further the analysis of the M-invariant measure μ appearing
in Theorem 10. To introduce the next theorem and main result of this article, let us first give examples of M-invariant
measures that give rise to the types of transitions already discussed in Section 2.3.

5.1. Some examples

Pure erosion. For i ≥ 1, let ξ
(i)
out be the partition of N2 with two blocks such that one of them is the i-th line {i} ×N, i.e.

ξ
(i)
out := {{i} ×N,N2 \ ({i} ×N

)}
and define the outer erosion measure eout := ∑

i≥1 δ(πR, ξ
(i)
out), where for readability we denote without subscripts δ(ζ, ξ)

the Dirac measure on (ζ, ξ).
Similarly, for i, j ≥ 1, we define

ζ
(i,j)

in := {{
(i, j)

}} ∪ {({i} ×N
) \ {

(i, j)
}} ∪ {{k} ×N, k ≥ 1, k �= i

}
,

ξ
(i,j)

in := {{
(i, j)

}
,N2 \ {

(i, j)
}}

,

and the inner erosion measures

ein,1 :=
∑
i,j≥1

δ
(
ζ

(i,j)

in ,1
)

and ein,2 :=
∑
i,j≥1

δ
(
ζ

(i,j)

in , ξ
(i,j)

in

)
.

Now, given three real numbers cout, cin,1, cin,2 ≥ 0, the M-invariant measure μ = coute
out + cin,1e

in,1 + cin,2e
in,2 clearly

satisfies (8), so by Theorem 10 there exists a fragmentation process having μ as M-invariant measure.
From the construction, we see that the rates of such a process can be described informally as follows:

• any inner block erodes out of its outer block at rate cout, i.e. it does not fragment but forms, on its own, a new outer
block.

• any integer erodes out of its inner block at rate cin,1, forming a singleton inner block, within the same outer block as its
parent.

• any integer erodes out of its inner and outer block at rate cin,2, forming singleton inner and outer blocks.

Outer dislocation. Recall the definition of the space of mass partitions s = (s1, s2, . . .) ∈ Pm and of the measures �s from
Section 2.2. We define in a similar way, a collection of probability measure �̂s on P2,�

N2 , by constructing π = (ζ, ξ) ∼ �̂s
with the following so-called paintbox procedure:

• for k ≥ 0, let tk := ∑k
k′=1 sk′ , with t0 = 0 by convention.

• let U1,U2, . . . be a sequence of i.i.d. uniform r.v. on [0,1] and define the random partition ξ � πR on N2 by

(i, j) ∼ξ
(
i′, j ′) ⇐⇒ i = i′ or Ui,Ui′ ∈ [tk, tk+1) for a unique k ≥ 0.

• �̂s is now defined to be the distribution of the random nested partition π = (πR, ξ).
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Now for νout a measure on Pm satisfying (4), we define

�̂νout(·) :=
∫

Pm

νout(ds)̂�s(·).

It is straight-forward to check that �̂νout is an M-invariant measure measure on P2,�
N2 satisfying (8), so there exists a

fragmentation process having �̂νout as M-invariant measure.
In intuitive terms, such a process can be described by saying that the outer blocks independently dislocate around

their inner blocks with outer dislocation rate νout. In a dislocation event, inner blocks are unchanged, and they are
indistinguishable. By construction, each newly created outer block selects a given frequency of inner blocks among those
forming the original outer block.

Inner dislocation. The upcoming example is the most complex on our list, exhibiting simultaneous inner and outer
fragmentations. However, in construction it is very similar to the previous example, and it should pose no difficulties to
get a good intuition of the dislocation mechanics.

Let us first formally define a space which will serve as an analog of the space of mass partitions Pm.

Definition 13. We define a particular space of bivariate mass partitions

Pm,� ⊂ [0,1]N × [0,1]N2 × [0,1] × [0,1]N

as the subset consisting of elements p = ((ul)l≥1, (sk,l)k,l≥1, ū, (s̄k)k≥1) satisfying the following conditions.

u1 ≥ u2 ≥ · · · and
∑

l

ul ≤ ū,

∀k ≥ 1, sk,1 ≥ sk,2 ≥ · · · and
∑

l

sk,l ≤ s̄k,

s̄1 ≥ s̄2 ≥ · · · ,

ū +
∑

k

s̄k ≤ 1,

if s̄k = s̄k+1, then
(
l0 = inf{l ≥ 1, sk,l �= sk+1,l} < ∞) ⇒ (sk,l0 > sk+1,l0).

(11)

We claim that Pm,� is Polish with respect to the product topology. Indeed, recall [see e.g. 24, Theorem 2.2.1] that any
Gδ subset – i.e. a countable intersection of open sets – of a Polish space is Polish. Now, it is readily checked that every
condition in (11) is closed in the compact space X := [0,1]N × [0,1]N2 × [0,1] × [0,1]N except the last one, but the
subset of X satisfying this condition can be written⋂

k≥1

[
{s̄k �= s̄k+1} ∪

(⋂
l≥1

{∃i < l, sk,i �= sk+1,i} ∪ {sk,l ≥ sk+1,l}
)]

,

so finally Pm,� can be written as a countable intersection of open and closed sets in X, which are all Gδ (recall that closed
subsets of any metrizable space are Gδ). Therefore considering this topology, Pm,� is Polish and we will have no trouble
considering measures on Pm,�.

Now, given a fixed i ≥ 1 and p = ((ul)l≥1, (sk,l)k,l≥1, ū, (s̄k)k≥1) ∈ Pm,�, one can define a random element π(i) =
(ζ (i), ξ (i)) ∈ P2,�

N2 with the following paintbox procedure:

• for k ≥ 0, define t̄k = ū + ∑k
k′=1 s̄k′ .

• for l ≥ 0, define t	,l = ∑l
l′=1 ul′ .

• for k ≥ 1 and l ≥ 0, define tk,l = t̄k−1 + ∑l
l′=1 sk,l′ .

• write π0 = (ζ0, ξ0) for the unique element of P2,�
[0,1] such that the non-dust blocks of ξ0 are

[0, ū) and [t̄k−1, t̄k), k ≥ 1,

and such that the non-singleton blocks of ζ0 are

[t	,l−1, t	,l), l ≥ 1 and [tk,l−1, tk,l), k, l ≥ 1.
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Fig. 4. Paintbox construction of π(i).

• let (Uj , j ≥ 1) be an i.i.d. sequence of uniform random variables on [0,1].
• define the random element π(i) ∈P2,�

N2 as the unique element π(i) = (ζ (i), ξ (i)) � (πR,1) such that

– (ζ (i), ξ (i))|(N\{i})×N = (πR,1)|(N\{i})×N, i.e. only the i-th row may dislocate.
– On the i-th row, we have

(i, j) ∼ζ (i) (
i, j ′) ⇐⇒ Uj ∼ζ0 Uj ′ ,

(i, j) ∼ξ (i) (
i, j ′) ⇐⇒ Uj ∼ξ0 Uj ′ ,

and also

(i, j) ∼ξ (i)

(i + 1,1) ⇐⇒ Uj ∈ [0, ū),

where it should be noted that (i + 1,1) could be replaced by any element (i′, j ′) with i′ �= i.
See Figure 4 for a representation of the bivariate paintbox process. In words, π(i) is a random nested partition such
that the outer partition ξ (i) has a distinguished block containing (N \ {i}) × N, which also contains a proportion ū of
elements of the i-th row. Other non-singleton blocks of ξ (i) can be indexed by k ≥ 1, each containing a proportion s̄k
of elements of the i-th row. The blocks of the inner partition ζ (i) are the entire rows, except for the i-th row where
non-singleton blocks can be indexed by (	, l) and (k, l) for k, l ≥ 1, each respectively containing a proportion ul or
sk,l of elements of the i-th row. As the notation suggests, inner blocks with frequency sk,l (resp. ul) are included in the
outer block with frequency s̄k (resp. ū) on the i-th row.

The distribution of π(i) obtained with this construction is a probability on P2,�
N2 that we denote by �̃

(i)
p . We finally

define

�̃p =
∑
i≥1

�̃(i)
p .

It is clear from the exchangeability of the sequence (Uj , j ≥ 1) that �̃p is M-invariant.
Now consider a measure νin on Pm,� satisfying

νin
({u1 = 1 or s1,1 = 1}) = 0, and

∫
Pm,�

(1 − u1)νin(dp) < ∞. (12)

Similarly as in the previous example, we define

�̃νin(·) =
∫

Pm,�
�̃p(·)νin(dp).

It is again straight-forward to check that �̃νin is an M-invariant measure on P2,�
N2 satisfying (8), so there exists a

fragmentation process having �̃νin as M-invariant measure.
In intuitive terms, such a process can be described by saying that the inner blocks independently dislocate with inner

dislocation rate νin. In a dislocation event, new inner blocks are formed, each with a given proportion of the original
block, and regroup, either in the original outer block (with a total proportion ū with respect to the original inner block) or
in newly created outer blocks.
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A combination of the above. The mechanisms we discussed in the three proposed examples can be added in a parallel
way, each event arising at its own independent rate and events from distinct mechanisms occurring at distinct times. More
precisely, for a set of erosion coefficients cout, cin,1, cin,2 ≥ 0, an outer dislocation measure νout on Pm satisfying (4) and
an inner dislocation measure νin on Pm,� satisfying (12), the measure

μ := coute
out + cin,1e

in,1 + cin,2e
in,2 + �̂νout + �̃νin

is a valid M-invariant measure on P2,�
N2 satisfying (8), and thus corresponds to a fragmentation process exhibiting simul-

taneously all the discussed mechanisms at the rates described above. The main result of this article is to prove that any
nested fragmentation process admits such a representation.

5.2. Characterization of nested fragmentations

Theorem 14. Let 
 = (
(t), t ≥ 0) = ((ζ(t), ξ(t)), t ≥ 0) be a nested fragmentation process. Then there are

• an outer erosion coefficient cout ≥ 0 and two inner erosion coefficients cin,1, cin,2 ≥ 0;
• an outer dislocation measure νout on Pm satisfying (4);
• an inner dislocation measure νin on Pm,� satisfying (12);

such that the M-invariant measure μ of the process can be written

μ = coute
out + cin,1e

in,1 + cin,2e
in,2 + �̂νout + �̃νin .

Corollary 15. Definition 1 is equivalent to Definition 1′.

Proof. We have shown most of the equivalence in Corollary 4 and Remark 8. What remains is to show that if 
 = (ζ, ξ)

is a nested fragmentation process according to Definition 1′, then ζ is a homogeneous fragmentation process in P∞. Now
if μ is given by the expression of the preceding theorem, using the Poissonian construction of Section 4.3 one easily
checks that ζ has the same transition rates as a homogeneous fragmentation with erosion coefficient c = cin,1 + cin,2 and
dislocation measure ν = νin ◦ S−1, where S : Pm,� → Pm is the map given by

S(p) := nonincreasing reordering of {ul, l ≥ 1} ∪ {sk,l , k, l ≥ 1}. �

The rest of Section 5 is dedicated to proving Theorem 14. Let μ be the M-invariant characteristic measure on P2,�
N2

associated with 
. Recall that πR denotes the rows partition, defined by

πR = {{
(i, j), j ≥ 1

}
, i ≥ 1

}
.

First, notice that the inner branching property implies that μ-a.e. we have

∃i ∈N, ζ|(N\{i})×N = (πR)|(N\{i})×N,

where ζ is the first coordinate in the standard variable π = (ζ, ξ) ∈P2,�
N2 . This will enable us to decompose μ further. Let

us write

μout := μ
(· ∩ {ζ = πR}),

for i ∈N,μin,i := μ
({ζ|{i}×N �= 1{i}×N} ∩ ·),

such that μin := μ
(· ∩ {ζ �= πR}) =

∑
i≥1

μin,i

and μ = μout + μin.

(13)

On the event {ζ = πR}, we have

ξ = f
(
ξσ

)
,

where σ : N→ N2 is the injection i 
→ (i,1), and f : P∞ → PN2 is the map such that (i, j) ∼f (π0) (i′, j ′) ⇐⇒ i ∼π0 i′.
By M-invariance of μ, the measure

μ̃out := μ
({ζ = πR} ∩ {

ξσ ∈ ·})
is an exchangeable measure on P∞, of which μout is the push-forward by the map (πR, f (·)).
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Also, note that μ satisfies the σ -finiteness assumption (8), which implies that μ̃out satisfies (3), showing (see Sec-
tion 2.2) that it can be decomposed

μ̃out = coute+ �νout ,

where cout ≥ 0 and νout is a measure on Pm satisfying (4). Thanks to our definitions, this immediately translates into

μout = coute
out + �̂νout,

and to prove Theorem 14, it only remains to show that we can write

μin =
∑
i≥1

μin,i = cin,1e
in,1 + cin,2e

in,2 + �̃νin .

To that aim, note that by exchangeability we have μin,i = μ
τ1,i

in,1 where τ1,i : N2 → N2 denotes the bijection swapping the
first and i-th rows, so the measure μin,1 is sufficient to recover μin entirely. Let us examine the distribution of ξ under
μin,1. We claim that μ-a.e. on the event {ζ|{1}×N �= 1{1}×N}, the equality ξ|(N\{1})×N = 1(N\{1})×N holds. Indeed, if this was
not the case, by M-invariance we would have

a := μ
(
ζ|{1}×N �= 1{1}×N, and (2,1)�ξ (3,1)

)
> 0.

Let us then show that in fact a = 0. By M-invariance of μ, we have for any i ≥ 4,

a = μ
(
ζ|{i}×N �= 1{i}×N, and (2,1) �ξ (3,1)

)
,

but because of the inner branching property, we have seen that the events {ζ|{i}×N �= 1{i}×N} have μ-negligible intersec-
tions. Now we have

∞ > μ
(
π|[3]2 �= (πR,1)|[3]2

) ≥ μ
(
(2,1) �ξ (3,1)

)
≥ μ

(⋃
i≥4

{
ζ|{i}×N �= 1{i}×N, and (2,1)�ξ (3,1)

})
=

∑
i≥4

a.

This shows that necessarily a = 0.
Now in order to further study μin,1 we need to introduce exchangeable partitions on a space with a distinguished

element. Results in that direction have been established by Foucart [12], where distinguished exchangeable partitions
are introduced and used to construct a generalization of �-coalescents modeling the genealogy of a population with
immigration. Here we need to define in a similar way distinguished partitions in our bivariate setting. Informally, we
will see that in a gene fragmentation, certain resulting gene blocks remain in a distinguished species block, that one can
interpret as the mother species.

Definition 16. For n ∈ N ∪ {∞}, we define [n]	 := [n] ∪ {	}, where 	 is not an element of N. We define P2,�
n,	 as the set

of nested partitions π = (ζ, ξ) ∈ P2,�
[n]	 such that 	 is isolated in the finer partition ζ :

P2,�
n,	 := {

π = (ζ, ξ) ∈P2,�
[n]	 , {	} ∈ ζ

}
.

We define the action of an injection σ : [n] → [n] on an element π ∈ P2,�
n,	 as the action of the unique extension σ̃ :

[n]	 → [n]	 such that σ̃ (	) = 	, and define exchangeability for measures on P2,�
n,	 as invariance under the actions of such

injections σ : [n] → [n].

Let us come back to the decomposition of μin,1. We define an injection

τ :

⎧⎪⎨⎪⎩
[∞]	 −→ N2

j ∈N 
−→ (1, j)

	 
−→ (2,1).
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Note that here we could have chosen any value τ(	) = (i, j) with i ≥ 2, since μ-a.e. on the event {ζ|{1}×N �= 1{1}×N} those
elements are all in the same block of ξ . The argument above shows that on the event {ζ|{1}×N �= 1{1}×N}, we have μ-a.e.
the equality

π = (ζ, ξ) = g
(
πτ

)
,

where g : P2,�∞,	 → P2,�
N2 is a deterministic function which we can define by: g(π0) is the only π ∈ P2,�

N2 such that

πτ = π0, π � (πR,1N2)

and π|(N\{1})×N = (πR,1N2)|(N\{1})×N.

Let us now write

μ̃in := μin,1
(
πτ ∈ ·). (14)

Note that the push-forward of this exchangeable measure on P2,�∞,	 by the map g is μin,1. Also, note that the σ -finiteness
assumption (8) and the fact that μin,1-a.e. we have ζ|{1}×N �= 1{1}×N imply that μ̃in satisfies

μ̃in
({ζ|[∞] = 1}) = 0, and ∀n ≥ 1, μ̃in(π|[n]	 �= πn) < ∞ (15)

where πn := ({{	}, [n]},1[n]	 ) denotes the coarsest partition on P2,�
n,	 .

We can summarize the previous discussion in the following lemma.

Lemma 17. The characteristic M-invariant measure μ of a nested fragmentation process in P2,�∞ can be decomposed

μ = coute
out + �̂νout + μin,

where cout ≥ 0, νout is a measure on Pm satisfying (4), and μin := μ(· ∩ {ζ �= πR}). Also, there exists an exchangeable
measure μ̃in on P2,�∞,	 which satisfies (15) and such that μin = ∑

i μ
τ1,i

in,1, where

• μin,1 is a measure on P2,�
N2 which is the push-forward of μ̃in by the map g defined in the previous paragraph.

• τ1,i : N2 →N2 is the bijection swapping the first row with the i-th row.

In the next section, we will develop tools to analyze and further decompose the measure μ̃in into terms of erosion and
dislocation.

5.3. Bivariate mass partitions

Recall our space of bivariate mass partitions defined in Definition 13,

Pm,� ⊂ [0,1]N × [0,1]N2 × [0,1] × [0,1]N,

as the subset consisting of elements p = ((ul)l≥1, (sk,l)k,l≥1, ū, (s̄k)k≥1) satisfying conditions (11). We wish to match
exchangeable measures on P2,�∞,	 and measures on Pm,�, and to that aim we need some further definitions. We say that
an element π = (ζ, ξ) ∈ P2,�∞,	 has asymptotic frequencies if ζ and ξ have asymptotic frequencies, and we write

|π |↓ = (
(ul)l≥1, (sk,l)k,l≥1, ū, (s̄k)k≥1

) ∈ Pm,�

for the unique – because of the ordering conditions in (11) – element satisfying:

• the block B ∈ ξ containing 	 has asymptotic frequency |B| = ū and the nonincreasing reordering of the asymptotic
frequencies of the blocks of ζ ∩ B is the sequence (ul, l ≥ 1).

• for any other block B ∈ ξ with a positive asymptotic frequency, there is a k ∈N such that |B| = s̄k and the nonincreasing
reordering of the asymptotic frequencies of the blocks of ζ ∩ B is the sequence (sk,l , l ≥ 1).

• the mapping B 
→ k is injective, and for any k such that s̄k > 0, there is a block B ∈ ξ such that |B| = s̄k .
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5.4. A paintbox construction for nested partitions

We first adapt the construction used in our third example of Section 5.1 to our new partition space P2,�∞,	. Note that if
p = ((ul)l≥1, (sk,l)k,l≥1, ū, (s̄k)k≥1) ∈ Pm,�, then one can define a random element π = (ζ, ξ) ∈ P2,�∞,	 with a paintbox
procedure very similar to the one described in the inner dislocation example in Section 5.1. For the sake of readability,
let us recall the notation and construction:

• for k ≥ 0, define t̄k = ū + ∑k
k′=1 s̄k′ .

• for l ≥ 0, define t	,l = ∑l
l′=1 ul′ .

• for k ≥ 1 and l ≥ 0, define tk,l = t̄k−1 + ∑l
l′=1 sk,l′ .

• write π0 = (ζ0, ξ0) for the unique element of P2,�
[0,1] such that the non-dust blocks of ξ0 are

[0, ū) and [t̄k, t̄k+1), k ≥ 1,

and such that the non-singleton blocks of ζ0 are

[t	,l−1, t	,l), l ≥ 1 and [tk,l−1, tk,l), k, l ≥ 1.

• let (Ui, i ≥ 1) be an i.i.d. sequence of uniform random variables on [0,1] and define the random injection σ : i ∈ N 
→
Ui ∈ [0,1].

• finally define the random element π ∈P2,�∞,	 as the unique π = (ζ, ξ) such that π|N = πσ
0 , and the block of ξ containing

	 is equal to:

{	} ∪ {i ≥ 1,Ui < ū}.
The distribution of π obtained with this construction is a probability on P2,�∞,	 that we denote by �̄p. It is clear from
the exchangeability of the sequence (Ui, i ≥ 1) that �̄p is exchangeable, and from the strong law of large numbers, that
�̄p-a.s., π possesses asymptotic frequencies equal to |π |↓ = p. For a measure ν on Pm,�, we will define a corresponding

exchangeable measure �̄ν on P2,�∞,	 by

�̄ν(·) =
∫

Pm,�
�̄p(·) ν(dp).

The following lemma shows that every probability measure on P2,�∞,	 is of this form.

Lemma 18. Let π = (ζ, ξ) be a random exchangeable element of P2,�∞,	. Then π has asymptotic frequencies |π |↓ ∈ Pm,�
a.s. and its distribution conditional on |π |↓ = p is �̄p. In other words, we have

P(π ∈ ·) =
∫

Pm,�
P
(|π |↓ ∈ dp

)
�̄p(·).

Proof. Independently from π , let (Xi, i ≥ 1) and (Yi, i ≥ 1) be i.i.d. uniform random variables on [0,1]. Conditional on
π , we define a random variable Zn ∈ [0,1] × ([0,1] ∪ {	}) for each n ∈ N by

Zn :=
{

(XAn,YBn) if 	�ξ n,

(XAn, 	) if 	 ∼ξ n,
where

{
An := min{m ∈ N,m ∼ζ n}
Bn := min{m ∈N,m ∼ξ n}.

It is straight-forward that we recover entirely π from the sequence (Zn,n ≥ 1) because we have

n ∼ζ m ⇐⇒ x(Zn) = x(Zm),

n ∼ξ m ⇐⇒ y(Zn) = y(Zm),

n ∼ξ 	 ⇐⇒ y(Zn) = 	,

(16)

where x and y denote respectively the projection maps from [0,1] × ([0,1] ∪ {	}) to the first and second coordinates.
Now, notice that the exchangeability of π implies that the sequence (Zn,n ≥ 1) is an exchangeable sequence of random
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variables. Then, by an application of de Finetti’s theorem, we see that there is a random probability measure P on
[0,1] × ([0,1] ∪ {	}) such that conditional on P , the sequence (Zn,n ≥ 1) is i.i.d. with distribution P .

Now notice that if P is a probability measure on [0,1] × ([0,1] ∪ {	}), we can define

|P |↓ = (
(ul)l≥1, (sk,l)k,l≥1, ū, (s̄k)k≥1

) ∈ Pm,�

by setting the following, where everything is numbered in an order compatible with our conditions (11).

• ū := P(y = 	).
• s̄k := P(y = yk), where (yk, k ≥ 1) is the injective sequence of points of [0,1] such that P(y = yk) > 0.
• ul := P(x = x	,l, y = 	) where (x	,l, l ≥ 1) is the injective sequence of points of [0,1] such that P(x = x	,l, y = 	) > 0.
• sk,l := P(x = xk,l, y = yk) where (xk,l, l ≥ 1) is the injective sequence of points of [0,1] such that P(x = xk,l, y =

yk) > 0.

It should now be clear that defining with (16) a random π ∈ P2,�∞,	 from a sequence (Zn,n ≥ 1) of P -i.i.d. random
variables is in fact the same as defining π from a paintbox construction �̄p with p = |P |↓. Therefore, the distribution of
π is given by

P(π ∈ ·) =
∫

Pm,�
P
(|P |↓ ∈ dp

)
�̄p(·),

which concludes the proof since for any p we have �̄p-a.s. that |π |↓ exists and is equal to p. �

5.5. Erosion and dislocation for nested partitions

As in the standard P∞ case, we can decompose any exchangeable measure μ on P2,�∞,	 satisfying some finiteness condition
similar to (3) in a canonical way. To ease the notation, recall that we define for n ∈ N∪ {∞}, πn the maximal element in
P2,�

n,	

πn := ({{	}, [n]},1[n]	
)
.

We also define two erosion measures e1 and e2 by

e1 =
∑
i≥1

δ({{	},{i},[∞]\{i}},1[∞]	 ),

e2 =
∑
i≥1

δ({{	},{i},[∞]\{i}},{{i},[∞]	\{i}}).

Proposition 19. Let μ be an exchangeable measure on P2,�∞,	 satisfying (15), namely

μ
({ζ|[∞] = 1}) = 0, and ∀n ≥ 1, μ(π|[n]	 �= πn) < ∞.

Then there are two real numbers c1, c2 ≥ 0 and a measure ν on Pm,� satisfying (12), namely

ν
({u1 = 1 or s1,1 = 1}) = 0, and

∫
Pm,�

(1 − u1) ν(dp) < ∞

such that μ = c1e
1 + c2e

2 + �̄ν . Conversely, any μ of this form is exchangeable and satisfies (15).

Proof. The proof follows closely that of Theorem 3.1 in [3], as our result is a straight-forward extension of it. We first
define μn := μ(· ∩ {π[n]	 �= πn}) which is a finite measure, and

←−μ n := μθn
n ,

where θn : N → N is the n-shift defined by θn(i) = i + n. We can check that ←−μ n is an exchangeable measure on P2,�∞,	.
Indeed let us take σ :N→ N a permutation, and consider τ :N→ N the permutation defined by

τ :
{

i ≤ n 
−→ i

i > n 
−→ n + σ−1(i − n).
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We have clearly τ ◦ θn ◦ σ = θn and τ|[n] = id[n], so we can use the τ -invariance of μ to conclude

←−μ n

(
πσ ∈ ·) = μn

(
πθn◦σ ∈ ·)

= μ
({

πθn◦σ ∈ ·} ∩ {π|[n]	 �= πn}
)

= μ
({

πτ◦θn◦σ ∈ ·} ∩ {(
πτ

)
|[n]	 �= πn

})
= μ

({
πθn ∈ ·} ∩ {π|[n]	 �= πn}

)
= ←−μ n(·),

which proves that ←−μ n is exchangeable. Since it is also finite, Lemma 18 implies that |(πθn)|↓ = |π |↓ exists μ-a.e. on the
event {μ|[n]	 �= πn}, and that we have

←−μ n(·) =
∫

Pm,�
μn

(|π |↓ ∈ dp
)
�̄p(·). (17)

Now since
⋃

n{π|[n]	 �= πn} = {π �= π∞} and μ({π = π∞}) ≤ μ({ζ|[∞] = 1}) = 0, necessarily the existence of |π |↓ ∈
Pm,� holds μ-a.e.

For simplicity, denote by 1 ∈ Pm,� the element ((ul)l≥1, (sk,l)k,l≥1, ū, (s̄k)k≥1) ∈ Pm,� with ū = u1 = 1 (note that
�̄1 = δπ∞ ), and define ϕ(·) := μ(· ∩ {|π |↓ �= 1}). Fix k ∈ N, and consider the measure ϕ(π|[k]	 ∈ ·) on P2,�

k,	 . Note that{|π |↓ �= 1
} =

⋃
n≥1

{|π |↓ �= 1,
(
πθk

)
|[n]	 �= πn

}
,

where the union is increasing, so one can write

ϕ(π|[k]	 ∈ ·) = μ
({π|[k]	 ∈ ·} ∩ {|π |↓ �= 1

})
= lim

n→∞μ
({π|[k]	 ∈ ·} ∩ {|π |↓ �= 1,

(
πθk

)
|[n]	 �= πn

})
. (18)

Now let us use invariance of μ under the permutation σ : N→N defined by

σ :

⎧⎪⎨⎪⎩
i ∈ {1, . . . k} 
→ i + n,

i ∈ {k + 1, . . . , k + n} 
→ i − k,

i ≥ k + n + 1 
→ i,

to obtain

μ
({π|[k]	 ∈ ·} ∩ {|π |↓ �= 1,

(
πθk

)
|[n]	 �= πn

})
= μ

({(
πθn

)
|[k]	 ∈ ·} ∩ {|π |↓ �= 1,π|[n]	 �= πn

})
.

Now by definition of μn and ←−μn, this expression is exactly

μn

({(
πθn

)
|[k]	 ∈ ·} ∩ {|π |↓ �= 1

}) = ←−μ n

({π|[k]	 ∈ ·} ∩ {|π |↓ �= 1
})

.

Plugging this into (18) and then using (17), we obtain

ϕ(π|[k]	 ∈ ·) = lim
n→∞

←−μ n

({π|[k]	 ∈ ·} ∩ {|π |↓ �= 1
})

= lim
n→∞

∫
Pm,�\{1}

μn

(|π |↓ ∈ dp
)
�̄p(π|[k]	 ∈ ·).

Finally, note that the sequence of measures μn is increasing and converges to μ, in the sense that μn(B) ↑ μ(B) when
n → ∞ for any Borel set B ⊂P2,�∞,	. This allows us to take the limit in the last display:

ϕ(π|[k]	 ∈ ·) =
∫

Pm,�\{1}
μ

(|π |↓ ∈ dp
)
�̄p(π|[k]	 ∈ ·).
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Since this is true for all k ∈ N, we have

ϕ(·) =
∫

Pm,�\{1}
μ

(|π |↓ ∈ dp
)
�̄p(·) = �̄ν,

with ν(·) = μ({|π |↓ ∈ ·} ∩ {|π |↓ �= 1}). Now notice that the paintbox construction of the probability measures �̄p implies
that

�̄ν(π|[n]	 �= πn) =
∫

Pm,�
ν(dp)

(
1 −

∑
l≥1

un
l

)
,

and that since u1 ≥ u2 ≥ · · · and
∑

l ul ≤ 1, we have for n ≥ 2,

1 − u1 ≤ 1 − u1

∑
l

un−1
l ≤ 1 −

∑
l

un
l ≤ 1 − un

1 ≤ n(1 − u1).

Integrating this with respect to ν, we find that clearly �̄ν satisfies the right-hand side of (15) iff ν satisfies the right-hand
side of (12). For the left-hand side, notice that by construction ν({u1 = 1 or s1,1 = 1}) = �̄ν({ζ|[∞] = 1}) = 0.

We now write ψ(·) := μ(· ∩ {|π |↓ = 1}) so that μ = ϕ + ψ = �̄ν + ψ . Take an integer n ∈ N. We know that
←−
ψ n(·) :=

ψ({πθn ∈ ·} ∩ {π|[n]	 �= πn}) is a finite exchangeable measure on P2,�∞,	 such that |π |↓ = 1
←−
ψ n-a.e. Now recall that �̄1 =

δπ∞ . A consequence of Lemma 18 is that π = π∞
←−
ψ n-a.e., which in turn implies that ψ -a.e. on the event {π|[n]	 �= πn},

we have πθn = π∞. Since there is only a finite number of elements π ∈ P2,�∞,	 such that πθn = π∞, we have

ψ
(· ∩ {π|[n]	 �= πn}

) =
∑

i

aiδπ̂i
,

where the sum is finite, and for each i, we have π̂
θn

i = π∞. Now suppose we have ψ({π̂}) > 0, for a π̂ ∈ P2,�∞,	 such that
π̂ θn = π∞. Let I (π̂) := {π̂σ , σ permutation}. By the exchangeability of ψ , we have necessarily ψ({π}) = ψ({π̂}) > 0
for any π ∈ I (π̂). Since for any m ∈ N we have ψ(π|[m]	 �= πm) < ∞, we deduce

#
{
π ∈ I (π̂),π|[m]	 �= πm

} ≤ ψ(π|[m]	 �= πm)/ψ
({π̂}) < ∞. (19)

We claim that the elements π̂ = (̂ζ , ξ̂ ) ∈P2,�∞,	 satisfying π̂ θn = π∞ and (19) for any m are such that ζ̂ and ξ̂ have no more
than two blocks, and in that case one of the blocks is a singleton. Indeed if 1 ∼ 2 � 3 ∼ 4 for ξ̂ or ζ̂ , then the permutations
σi = (2, i + 2)(4, i + 4), written as a composition of two transpositions, are such that for i �= j ≥ n and m ≥ 3, π̂σi �= π̂σj

and π̂
σi|[m]	 �= πm. So having two blocks with two or more integers contradicts (19). One can check in the same way that

the situation 1 � 2 � 3 is also contradictory.
Putting everything together, we necessarily have

• either π̂ = ({{	}, {i},N \ {i}},1[∞]	 ) for an i ∈ N,
• or π̂ = ({{	}, {i},N \ {i}}, {{i}, [∞]	 \ {i}}) for an i ∈ N.

We conclude using the exchangeability of ψ that there exists two real numbers c1, c2 ≥ 0 such that ψ = c1e
1 + c2e

2,
enabling us to write

μ = ϕ + ψ = �̄ν + c1e
1 + c2e

2,

which concludes the proof. �

Applying this result to μ̃in implies the existence of cin,1, cin,2 ≥ 0 and νin a measure on Pm,� satisfying (12) such that

μ̃in = cin,1e
1 + cin,2e

2 + �̄νin .

This concludes the proof of Theorem 14 because with our definitions in Section 5.1, this equality translates into

μin = cin,1e
in,1 + cin,2e

in,2 + �̃νin .

Combining this with Lemma 17, we conclude

μ = coute
out + cin,1e

in,1 + cin,2e
in,2 + �̂νout + �̃νin .
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6. Application to binary branching

Consider a nested fragmentation process (
(t), t ≥ 0) = (ζ(t), ξ(t), t ≥ 0) with only binary branching. The representa-
tion given by Theorem 14 then becomes quite simpler, because the dislocation measures νout and νin necessarily satisfy

s1 = 1 − s2 νout-a.e.

and ⎧⎪⎨⎪⎩
u1 = 1 − u2

or s1,1 = 1 − s1,2

or u1 = 1 − s1,1

νin-a.e.,

i.e. their support is the set of mass partitions with only two nonzero terms, and no dust. See Figure 5 for an example of a
nested discrete tree illustrating the three possible dislocation events corresponding to νin.

Therefore, we can decompose νout and νin into four measures on [0,1] defined by

ν̄out(·) := νout(s1 ∈ ·) + νout(1 − s1 ∈ ·)
ν̄in,1(·) := 1{u1 = 1 − u2}

(
νin(u1 ∈ ·) + νin(1 − u1 ∈ ·))

ν̄in,2(·) := 1{s1,1 = 1 − s1,2}
(
νin(s1,1 ∈ ·) + νin(1 − s1,1 ∈ ·))

ν̄in,3(·) := 1{u1 = 1 − s1,1}νin(u1 ∈ ·).
Thus defined, and because of the σ -finiteness conditions (4) and (12), those measures satisfy the following

ν̄out, ν̄in,1 and ν̄in,2 are (x 
→ 1 − x)-invariant (20)∫
[0,1]

ν(dx)x(1 − x) < ∞, for ν ∈ {ν̄out, ν̄in,1} (21)

ν̄in,2
([0,1]) < ∞ (22)∫

[0,1]
ν̄in,3(dx)(1 − x) < ∞. (23)

For the sake of completeness, let us use those measures to express the transition rates qn
π,π ′ of the Markov chain


n := (
(t)|[n]) from one nested partition π = (ζ, ξ) ∈P2,�
n to another π ′ = (ζ ′, ξ ′) ∈P2,�

n \ {π} in the following way:

Fig. 5. Binary nested tree exhibiting the three different inner dislocation events. Time flows from top to bottom, and the right-hand side of the picture
shows the sequence of nested partitions picked at chosen times between events, in the form π = (ζ � ξ). The first event corresponds to the case
u1 = 1 − u2, where the inner block {1,2,3,4} splits into two blocks {1,2} and {3,4} and the outer block remains unchanged. The second dislocation
is of the type u1 = 1 − s1,1, that is the block {3,4} splits into two distinct blocks, one of which (the singleton {3}) stays in the mother outer block. The
other new inner block {4} forms a new outer block identical to itself. The last and third dislocation is of the type s1,1 = 1 − s1,2, meaning that {1,2}
splits into {1} and {2}, these two blocks together forming a new outer block, distinct from the mother block – i.e. the one containing {3}.
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• If π ′ cannot be obtained from a binary fragmentation of π , then qn
π,π ′ = 0.

• If π ′ can be obtained from a binary fragmentation of π , with B ∈ ζ and C ∈ ξ two blocks of π participating in the
fragmentation, but such that B �⊂ C, then qn

π,π ′ = 0.
• Otherwise, let us write B ⊂ C, with B ∈ ζ and C ∈ ξ for (the) two blocks of π participating in the fragmentation, and

B1,B2 ∈ ζ ′, C1,C2 ∈ ξ ′ the resulting blocks, chosen in a way that B1 ⊂ C1. Note that B or C might not fragment, in
which case we let B2 or C2 be the empty set ∅. Now define X1 := #B1 and X2 := #B2 the cardinality of the resulting
blocks of ζ ′. Also, we define Y1 := #ζ ′|C1

the number of inner blocks in C1 in the resulting partition π ′, and similarly
Y2 := #ζ ′|C2

.

With those definitions, the transition rates for the Markov chain 
n can be written

qn
π,π ′ = cout

(
1
{
ζ ′ = ζ,Y1 = 1

} + 1
{
ζ ′ = ζ,Y2 = 1

})
+ cin,1

(
1
{
ξ ′ = ξ,X1 = 1

} + 1
{
ξ ′ = ξ,X2 = 1

})
+ cin,2

(
1{X1 = Y1 = 1} + 1{B2 = C2 and X2 = Y2 = 1})

+ 1
{
ζ ′ = ζ

}∫
[0,1]

ν̄out(dx)xY1(1 − x)Y2

+ 1
{
ξ ′ = ξ

}∫
[0,1]

ν̄in,1(dx)xX1(1 − x)X2

+ 1{B1 ∪ B2 = C1}
∫

[0,1]
ν̄in,2(dx)xX1(1 − x)X2

+ 1
{
ζ ′ = ζ

}∫
[0,1]

ν̄in,3(dx)
(
(1 − x)#C11{Y1 = 1}

+ (1 − x)#C21{Y2 = 1})
+ 1

{
ζ ′ �= ζ

}∫
[0,1]

ν̄in,3(dx)
(
xX2(1 − x)X11{Y1 = 1}

+ xX1(1 − x)X21{Y2 = 1}). (24)

Note that several indicator functions in the last display may be equal to 1 for the same pair (π,π ′). This explicit formula
allows for computer simulations of binary nested fragmentations, although to that aim it might be simpler to adapt the
Poissonian construction (Section 4.3) and use nested partitions of arrays [n]2. Also, one could exactly compute the
probability of a given nested tree under different nested fragmentation models, which would be a first step towards
statistical inference.
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