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Abstract. In this article we study the natural nonparametric estimator of a Wasserstein type cost between two distinct continuous
distributions F and G on R. The estimator is based on the order statistics of a sample having marginals F , G and any joint distribution.
We prove a central limit theorem under general conditions relating the tails and the cost function. In particular, these conditions are
satisfied by Wasserstein distances of order p > 1 and compatible classical probability distributions.

Résumé. Dans cet article nous étudions l’estimateur non paramétrique naturel d’un coût de type Wasserstein entre deux lois F et G

distinctes et continues sur R. Cet estimateur est construit à partir des statistiques d’ordre d’un échantillon d’un couple quelconque de
lois marginales F et G. Nous démontrons un théorème limite central sous des conditions générales reliant les queues de distribution à
la fonction de coût. En particulier, ces conditions sont satisfaites par les distances de Wasserstein d’ordre p > 1 et les lois classiques
compatibles.
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1. Introduction

1.1. Motivation

In this article we address the problem of estimating the distance between two different distributions with respect to a
class of Wasserstein costs that we define in the sequel. The framework is very simple: two samples of independent and
identically distributed (i.i.d.) real random variables taking values in R with continuous cumulative distribution functions
(c.d.f.) F and G are available. These samples are not necessarily independent, for instance they may be issued from
simultaneous experiments. From these samples we estimate the Wasserstein distances or costs between F and G and we
prove a central limit theorem (CLT).

The motivation of this work is to be found in the fast development of computer experiments. Nowadays the output of
many computer codes is not only a multidimensional variable but frequently a function computed on so many points that
it can be considered as a functional output. In particular this function may be the density or the c.d.f. of a real random
variable. To analyze such outputs one needs to choose a distance to compare various c.d.f. Among the possibilities offered
by the literature the Wasserstein distances are now commonly used – for more details on general Wasserstein distances we
refer to [19]. Since computer codes only provide samples of the underlying distributions, the estimation of such distances
are of primordial importance. The p-Wasserstein distance between two univariate probability distributions simply is the
Lp distance of simulated random variables from a universal simulator U , uniform on [0,1], namely

W
p
p (F,G) =

∫ 1

0

∣∣F−1(u) − G−1(u)
∣∣p du = E

∣∣F−1(U) − G−1(U)
∣∣p, (1)
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where F−1 is the generalized inverse of F . It is then natural to estimate W
p
p (F,G) by its empirical counterpart that is

W
p
p (Fn,Gn) where Fn and Gn are the empirical c.d.f. of F and G build through i.i.d. samples of F and G, the two

samples being possibly dependent.
Many authors were interested in the convergence of W

p
p (Fn,F ), see e.g. the survey paper [4] or [1,7–9] in the i.i.d.

case. Very few papers are devoted to the estimation of W
p
p (F,G), actually only for p = 2. In [14] then [11] the authors

derive from the functional delta method a CLT for the trimmed version of Mallows distance
∫ 1−β

β
|F−1(u)−G−1(u)|2 du

with 0 < β < 1/2, in the independent case then in the dependent framework described above. We are concerned with the
untrimmed case β = 0 which so crucially involves the tails of F and G that it cannot be handled by classical direct
arguments such as Hadamard differentiability and functional delta method. Two recent works study the convergence of
W 2

2 (Fn,Gn) for two independent samples [10,18]. In [10] very general results are obtained in the multivariate setting,
however the estimator is not explicit from the data, the centering in the CLT is EW 2

2 (Fn,Gn) rather than W 2
2 (F,G) itself,

and the limiting variance is also not explicit. In [18] multivariate but finite discrete distributions are considered, thus the
trimming is unnecessary, and the CLT is explicit.

To investigate more deeply the univariate setting we consider a large class of convex or non convex costs c(x, y),
including in particular W

p
p (F,G) for p > 1. We study the natural and easily computed nonparametric plug-in estimator.

In the main case of infinite support distributions our main contribution is to avoid trimming by working out a sharp analyse
of the Wasserstein type stochastic integrals of the involved stochastic processes. We moreover allow dependent marginal
samples from F and G, thanks to a new Brownian strong approximation result for k joint marginal quantile processes –
Theorem 29 which is of independent interest. We restrict ourselves to strictly separated tails. Our main result is an explicit
untrimmed CLT under almost minimal conditions relating the two continuous c.d.f. F and G to the cost c(x, y).

1.2. Setting

Let F and G be two c.d.f. on R. The p-Wasserstein distance between F and G is defined to be

W
p
p (F,G) = min

X∼F,Y∼G
E|X − Y |p, (2)

where X ∼ F , Y ∼ G means that X and Y are random variables with respective c.d.f. F and G. The minimum in (2) has
the explicit expression (1). The Wassertein distances can be generalized to Wasserstein costs. Given a real non negative
function c(x, y) of two real variables, we consider the Wasserstein cost

Wc(F,G) = min
X∼F,Y∼G

Ec(X,Y ). (3)

We consider costs for which the minimum in (3) is finite and an analogue of (1) exists.

Definition 1. We call a good cost function any application c from R
2 to R that defines a negative measure on R

2 in the
sense that it satisfies the “measure property” P ,

P : c(x′, y′) − c
(
x′, y

) − c
(
x, y′) + c(x, y) ≤ 0, x ≤ x′, y ≤ y′.

Remark 2. It is obvious that c(x, y) = −xy satisfies the P property and if c satisfies P then any function of the form
a(x)+ b(y)+ c(x, y) also satisfies P . In particular (x − y)2 = x2 + y2 − 2xy satisfies P . More generally if ρ is a convex
real function then c(x, y) = ρ(x − y) satisfies P . This is the case of |x − y|p , p ≥ 1 and for the cost associated to the
α-quantile c(x, y) = (x − y)(α − 1x−y<0).

When the property P holds, the following theorem provides an explicit formula for Wc similar to (1).

Theorem 3 (Cambanis, Simon, Stout [5]). Let c satisfy the “measure property” P and U be a random variable uni-
formly distributed on [0,1], then

Wc(F,G) =
∫ 1

0
c
(
F−1(u),G−1(u)

)
du = Ec

(
F−1(U),G−1(U)

)
.

In view of Theorem 3, an estimator of Wc(F,G) based on a sample from the joint distribution of (F−1(U),G−1(U))

seems the most natural one. However this optimal distribution is usually unknown, and such a sample is typically not
available. Nevertheless, it is not necessary and one can sample from any coupling of the marginal c.d.f. as will be shown
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below. This is very interesting in practice, since experimental data can then be used without any assumption on the
coupling structure. Moreover the joint distribution of the sample only affects the limiting variance in the CLT, not the rate
of convergence.

Let (Xi, Yi)1≤i≤n be an i.i.d. sample of a random vector with distribution H and marginal c.d.f. F and G. Write Fn

and Gn the random empirical c.d.f. built from the two marginal samples. Let c be a good cost function. Denote by X(i)

(resp. Y(i)) the ith order statistic of the sample (Xi)1≤i≤n (resp. (Yi)1≤i≤n), i.e. X(1) ≤ · · · ≤ X(n). We have

Wc(Fn,Gn) = 1

n

n∑
i=1

c(X(i), Y(i)). (4)

By Theorem 3, Wc(Fn,Gn) is a natural estimator of Wc(F,G). We study its asymptotic properties when F �= G and F

and G are continuous, and establish the weak convergence of
√

n(Wc(Fn,Gn) − Wc(F,G)).

1.3. Overview of the paper

In order to control the integrals Wc(F,G) and Wc(Fn,Gn) we separate out three sets of assumptions. First, about the
regularity of F and G and the separation of their tails, with the convention that G has a lighter right-hand tail than F and
that we only provide notation for the right hand tails – with an easy adaptation for the left-hand tails. Second, on the rate of
increase, the regularity, the asymptotic expansion of the cost c(x, y) and its behavior close to the diagonal y = x. The first
two sets are hereafter labeled (FG) and (C) respectively. They allow to separately select a class of probability distributions
and an admissible cost. The third set of assumptions is labeled (CFG) and mixes the requirements on (F,G, c) making
them compatible.

Conditions (C) encompass a large class of good Wasserstein costs c, however W1 is not included – see Section 4.
Conditions (FG) are satisfied by all classical probability distributions since the regular variation of tails is a sufficient
condition. It is important to point out that conditions (FG) and (CFG) are unaffected by the joint distribution � of the
two samples. Given a cost c satisfying conditions (C), conditions (FG) and (CFG) provide sufficient regularity and tail
conditions on F then regularity, tail and closeness conditions on G. The nice feature is that (CFG) are almost minimal to
ensure that the limiting variance σ 2(H, c) is finite whatever the joint distribution H , hence it is close to be minimal for
our CLT.

A foreword about our method of proof. The (F,G, c)-dependent technique we propose consists in two major steps.
At the first step we combine the assumptions to show that extreme tail terms and approximations taken at an appropriate
level of truncation of the integral Wc(Fn,Gn) − Wc(F,G) can be neglected in probability. Next, large quantiles can be
centered on a larger scale and their deviation is led by the two marginal empirical quantile processes. All the assumptions
(C), (FG) and (CFG) are required to control the outer integral error processes at the

√
n rate in the asymptotic expansions

below the first truncation. At the second step, since only the most central part of integrals eventually matters in the integral
we prove its weak convergence to a Gaussian distribution by means of a new Brownian strong approximation of joint non
extreme quantiles. It is noteworthy that most intermediate terms are actually not shown to vanish in probability due to the
Brownian coupling, hence we work very closely to the weak convergence. Finally, the joint distribution naturally shows
up together with the CLT rate

√
n.

The paper is organized as follows. Assumptions are discussed in Section 2. In Section 3 we state our main result in
the form of a CLT for

√
n(Wc(Fn,Gn) − Wc(F,G)) and several Corollaries for W 2

2 (Fn,Gn). A discussion follows in
Section 4. All the results are proved in Section 5. The Appendix contains the proofs of technical results used in Section 5
and useful complements on the assumptions.

2. Notation and assumptions

2.1. Notation

Let H denote the bivariate distribution function of the sample, thus H(x,y) = P(X ≤ x,Y ≤ y), F(x) = H(x,+∞) and
G(y) = H(+∞, y). For the sake of clarity, we focus on the generic case where the c.d.f. F and G have positive densities
f = F ′ and g = G′ supported on the whole line R. Write F−1 and G−1 their quantile functions. The tail exponential
order of decay are defined to be

ψX(x) = − logP(X > x), ψY (x) = − logP(Y > x), x ∈ R+. (5)
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We introduce the density quantile functions hX = f ◦ F−1, hY = g ◦ G−1, and their companion functions

HX(u) = 1 − u

F−1(u)hX(u)
, HY (u) = 1 − u

G−1(u)hY (u)
.

For k ∈ N∗ denote Ck(I ) the set of functions that are k times continuously differentiable on I ⊂ R, and C0(I ) the set
of continuous functions. Let M2(m,+∞) be the subset of functions ϕ ∈ C2(R) such that ϕ′′ is monotone on (m,+∞).
Write RV(γ ) the set of regularly varying functions at +∞ with index γ ≥ 0. We consider slowly varying functions L

satisfying

L′(x) = ε1(x)L(x)

x
, ε1(x) → 0 as x → +∞. (6)

This slight restriction is explained in Section A.4. Then for integrability reasons we impose

L′(x) ≥ l1

x
, l1 ≥ 1. (7)

When γ = 0, we define RV+
2 (0,m) = {L : L ∈ M2(m,+∞) such that (6) and (7) hold}. When γ > 0, we define

RV+
2 (γ,m) = {ϕ : ϕ ∈ M2(m,+∞), ϕ(x) = xγ L(x) such that L′ obeys (6)}.

2.2. Assumptions

2.2.1. Conditions (FG)

We state this set of conditions for the right-hand tails only, under the convention that F has the heavier tail. Let m >

max(0,F−1(1/2),G−1(1/2)) be large enough to satisfy all the subsequent assumptions. Let u = max(F (m),G(m)) >

1/2. We assume that there exists τ0 > 0 such that

(FG1) F,G ∈ C2(R+), f,g > 0 on R+.

(FG2) (1 − u)
∣∣(logh(u)

)′∣∣ is bounded on (ū,1), h = hX,hY .

(FG3) HX,HY are bounded on (ū,1).

(FG4) τ (u) = F−1(u) − G−1(u) ≥ τ0, u ≥ u.

Remark 4. Assumption (FG4) means that the right tails of F and G are asymptotically well separated. In particular it
allows translation models.

Rewriting (FG2) and (FG3) with the density functions we get the following equivalent conditions

(FG5) sup
x>m

1 − F(x)

f (x)

(
1

x
+ |f ′(x)|

f (x)

)
< +∞ and sup

x>m

1 − G(x)

g(x)

(
1

x
+ |g′(x)|

g(x)

)
< +∞.

The following proposition provides a sufficient condition for (FG1), (FG2), (FG3). The proof is omitted and simply
relies on (6), (7) and (A.11).

Proposition 5. If ψX ∈ RV+
2 (0,m) then F satisfies (FG). If ψX ∈ RV2(γ1,m) for some γ1 > γ0 > 0 and, if γ1 = 1

assume also that ψX(x) = xL(x) with L′ ∈ RV1(−1,m) and (6), then F satisfies (FG) and moreover (FG3) can be
improved into

HX(u) ≤ 1

γ0 log(1/(1 − u))
, u > F(m). (8)

Example 6. By the first part of Proposition 5 all classical probability distributions satisfy (FG) since they are smooth
enough. An example of heavy tail is the Pareto distribution with parameter p > 0 for which

ψX(x) = p logx, F−1(u) = (1 − u)−1/p, HX(u) = 1

p
,

hX(u) = p(1 − u)1+1/p, (1 − u)
∣∣(loghX(u)

)′∣∣ = 1

p
.
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An example of light tail is the Weibull distribution with parameter q > 0 for which

ψX(x) = xq, F−1(u) = (
log

(
1/(1 − u)

))1/q
, HX(u) = 1

q log(1/(1 − u))
,

hX(u) = q(1 − u)
(
log

(
1/(1 − u)

))1−1/q
, (1 − u)

∣∣(loghX(u)
)′∣∣ ∼ 1

q
as u → 1,

and this distribution is log-convex if q < 1, log-concave if q > 1. If ψX is regularly varying with index q > 0 the previous
functions are only modified by a slowly varying factor, as for the Gaussian distribution.

2.2.2. Conditions (C)

We consider smooth Wasserstein costs satisfying property P . We impose (wlog) that c(x, x) = 0 and assume that, for
0 < τ1 < τ0 and some γ ≥ 0

(C1) c(x, y) ≥ 0, c ∈ C1
([−m,m] ×R∪R× [−m,m]).

(C2) c(x, y) = ρ
(|x − y|) = exp

(
l
(|x − y|)), (x, y) ∈ (m,+∞)2, l ∈ RV+

2 (γ, τ1).

Thus c is asymptotically smooth and symmetric. Moreover we need the following contraction of c(x, y) along the diago-
nal x = y. We assume that there exists d(m, τ) → 0 as τ → 0 such that

(C3)
∣∣c(x′, y′) − c(x, y)

∣∣ ≤ d(m, τ)
(∣∣x′ − x

∣∣ + ∣∣y′ − y
∣∣) for (x, y),

(
x′, y′) ∈ Dm(τ),

where Dm(τ) = {(x, y) : max(|x|, |y|) ≤ m, |x − y| ≤ τ }.

Remark 7. Under (C2) we have ρ(|x − y|) ≤ ρ(max(x, y)) ≤ ρ(x) + ρ(y), (x, y) ∈ (m,+∞)2, hence

sup
x>m,y>m

c(x, y)

ρ(x) + ρ(y)
≤ 1. (9)

Example 8. Typical costs satisfying the conditions (C) are, for α > 1 and β > 1,

cα(x, y) = |x − y|α, c−
β (x, y) = exp

((
log

(
1 + |x − y|))β) − 1, c+

β (x, y) = exp
(|x − y|β) − 1. (10)

They satisfy (C1), (C2) with γ = 0, γ = 0 and γ = β respectively, and (C3).

2.2.3. Conditions (CFG)

Recall that if (C2) holds then l ∈ RV+
2 (γ, τ1). Now when γ = 0 in order to compare the tail functions and the cost

function we need

lim sup
x→+∞

log(xl′(x))

log l(x)
= 1 − lim inf

x→+∞
log(1/ε1(x))

log l(x)
= θ1 ∈ [0,1], (11)

where ε1 is defined in (6). In the case γ > 0 we set θ1 = 1. The following crucial assumption (CFG) connects the
distribution’s tails with the cost function.

(CFG) There exists θ > 1 + θ1 such that
(
ψX ◦ l−1)′

(x) ≥ 2 + 2θ

x
, x ≥ l(τ1).

Remark 9. For Wasserstein distances given by cα,α > 1, l(x) = α logx. We have γ = 0 and ε1(x) = α/l(x) in (11) so
that the restriction in (CFG) is θ > 1.

Remark 10. If we have, for some ζ > 2,

P(X > x) ≤ 1

exp(l(x))ζ
, x ∈ (m,+∞), (12)

then ψX(x) ≥ ζ l(x) so that (CFG) holds with arbitrarily large θ .
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We often make use of the following consequences of (CFG). Integrating (CFG) yields

ψX ◦ l−1(x) ≥ 2x + 2θ logx + K, x ≥ l(τ1), (13)

where the integrating constant K does not matter and may change from line to line. This also implies

ψX(x) ≥ 2l(x) + 2θ log l(x) + K, x ≥ τ1, (14)

and, more importantly for our needs, inverting (13) we obtain

l ◦ ψ−1
X (x) ≤ x

2
− θ logx + K, x ≥ τ1. (15)

Now, (13) gives

P
(
ρ(X) > x

) = P
(
l(X) > logx

) = exp
(−ψX ◦ l−1(logx)

) ≤ K

x2(logx)2θ

and since θ > 1 we have∫ +∞

m

√
P
(
ρ(X) > x

)
dx < +∞. (16)

Remark 11. This is the same kind of condition that ensures the convergence of W1(Fn,F ) at rate
√

n in (3.4) of [4]. So
it turns out that (16) is almost a minimal assumption in proving Theorem 14. This is confirmed at Lemmas 20 and 21
establishing that the asymptotic variance of

√
n(Wc(Fn,Gn) − Wc(F,G)) is finite.

Example 12. For the Wasserstein cost cα from (10), α > 1, consider a Pareto distribution, ψX(x) = p logx. Then (CFG)

reads αx/p < x/2−θ logx, and holds if p > 2α. Condition (CFG) is then obviously satisfied for all classical distributions
with lighter tail than Pareto distributions.

For an over-exponential cost c+
β from (10), β > 1, (CFG) is satisfied if P(X > x) ≤ exp(−2xβ − δ logx) with δ >

4(1 − β).
Gaussian distributions are compatible without restriction with any cost less than ρ(x) = exp(axγ ), γ < 2, a > 0. In

the case γ = 2 the variance of X has to be less than a/4 for (CFG) to hold, and G may be any Gaussian distribution
different from F with smaller variance or same variance but smaller expectation.

3. Statement of the results

3.1. Consistency

Under the following conditions, Wc(Fn,Gn) is a consistent estimator of Wc(F,G).

Theorem 13. Assume that the good cost c(x, y) is such that 0 ≤ c(x, y) ≤ V (x)+V (y) with V a non negative continuous
function such that EV (X) < +∞ and EV (Y ) < +∞. Then

lim
n→+∞Wc(Fn,Gn) = Wc(F,G) < +∞ a.s.

3.2. A central limit theorem

Recall that our assumptions are stated for the right hand tails only, and the left hand tail of F and G should be reversed
from R− to R+ to obey the same conditions, so that if G has the heavier left tail then the couples (F,X) and (G,Y ) are
simply exchanged in (FG) and (CFG). In other words, we say that conditions (C), (FG) and (CFG) hold if they hold for
(c(x, y),X,Y ) as stated above and also for (c(−x,−y),−X,−Y) with possibly different functions ρ, l, ψ and F again
denoting the heavier tail.

For u,v ∈ (0,1) define the covariance matrix

�(u,v) =
(

min(u,v)−uv
hX(u)hX(v)

�(u,v)−uv
hX(u)hY (v)

�(v,u)−uv
hX(v)hY (u)

min(u,v)−uv
hY (v)hY (u)

)
, �(u, v) = P

(
X ≤ F−1(u),Y ≤ G−1(v)

)
, (17)
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and the gradient

∇(u) =
(

∂

∂x
c
(
F−1(u),G−1(u)

)
,

∂

∂y
c
(
F−1(u),G−1(u)

))
. (18)

Let N stands for the normal distribution. Our main result is the following.

Theorem 14. If (C), (FG) and (CFG) hold then
√

n
(
Wc(Fn,Gn) − Wc(F,G)

) →weak N
(
0, σ 2(H, c)

)
with

σ 2(H, c) =
∫ 1

0

∫ 1

0
∇(u)�(u, v)∇(v) dudv < +∞. (19)

Combining Theorem 14 and Lemma 22 we obtain the following trimmed version. The sequences kn and k−
n depend

on (c,F,G) and are in ((logn)/n,1/
√

n). Trimming more than below may induce a bias since for any distribution and
any cost one can find a sequence εn → 0 such that

√
n

∫ 1
1−εn

c(F−1(u),G−1(u)) du → +∞.

Corollary 15. If (C), (FG) and (CFG) hold then, for any positive real sequences εn ≤ kn/n and ε−
n ≤ k−

n /n with kn and
k−
n defined at (22) for the right and left tails respectively,

Wc,n(Fn,Gn) =
∫ 1−εn

ε−
n

c
(
F

−1
n (u),G−1

n (u)
)
du

satisfies
√

n
(
Wc,n(Fn,Gn) − Wc(F,G)

) →weak N
(
0, σ 2(H, c)

)
.

Moreover, for any positive real sequences εn, ε
−
n → 0 we have

√
n
(
Wc,n(Fn,Gn) − Wc,n(F,G)

) →weak N
(
0, σ 2(H, c)

)
.

Slight changes in the proof of Theorem 14 yield the following version with one known marginal.

Theorem 16. If (C), (FG) and (CFG) hold then
√

n
(
Wc(Fn,G) − Wc(F,G)

) →weak N
(
0, σ 2

x (F, c)
)
,

√
n
(
Wc(F,Gn) − Wc(F,G)

) →weak N
(
0, σ 2

y (G, c)
)
,

with

σ 2
x (F, c) =

∫ 1

0

∫ 1

0

∂

∂x
c
(
F−1(u),G−1(u)

) ∂

∂x
c
(
F−1(v),G−1(v)

)min(u, v) − uv

hX(u)hX(v)
dudv ≤ σ 2(H, c) < +∞,

σ 2
y (G, c) =

∫ 1

0

∫ 1

0

∂

∂y
c
(
F−1(u),G−1(u)

) ∂

∂y
c
(
F−1(v),G−1(v)

)min(u, v) − uv

hY (u)hY (v)
dudv ≤ σ 2(H, c) < +∞.

Theorem 14 can easily be specialized for W
p
p (F,G), p > 1, since cp from (10) satisfies (C) and then (FG) and (CFG)

provides compatible c.d.f. F and G. For instance, by applying Remarks 9 and 10 the following convergence holds for the
square Wasserstein distance and two independent samples, in which case the copula function in (17) is �(u,v) = uv for
u,v ∈ (0,1).

Corollary 17. Assume that the two samples are independent, that (FG) holds and that P(X > x) ≤ 1/x4+ε for some
ε > 0. Then

√
n

(
1

n

n∑
i=1

(X(i) − Y(i))
2 − W 2

2 (F,G)

)
→weak N

(
0, σ 2(H, c2)

)
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with variance

σ 2(H, c2) = 4
∫ 1

0

∫ 1

0

(
min(u, v) − uv

hX(u)hX(v)
+ min(u, v) − uv

hY (u)hY (v)

)(
F−1(u) − G−1(u)

)(
F−1(v) − G−1(v)

)
dudv.

The next result could be useful for applications. We say that F is symmetric if F(−x) = 1 − F(x), x > 0.

Corollary 18. Consider a family of c.d.f. defined for a > 0 and b ∈ R by Fa,b(x) = F((x − b)/a), x ∈R. Assume that F

is symmetric and var(Z) = 1, V4 = var(Z2) < +∞ for Z with c.d.f. F . If (a, b) �= (a′, b′) and H(x,y) = Fa,b(x)Fa′,b′(y)

then it comes

σ 2(H, c2) = 4
(
a2 + a′2)((

b − b′)2 + V4

4

(
a − a′)2

)
.

By Corollary 18, for two independent samples from two distinct Gaussian distributions N (ν, ζ 2) and N (μ, ξ2) we
recover the limiting variance 4(ζ 2 + ξ2)(ν − μ)2 + 2(ζ 2 + ξ2)(ζ − ξ)2 of Theorem 2.2 in [15] which proves that our
general non-parametric estimator performs as well as their plug-in parametric estimator in the univariate doubly Gaussian
case.

Finally, it is easy to extend Theorem 14 to probability distributions supported by intervals. If (C) holds we have
c(x, y) → +∞ as x or y tends to infinity while the other remains bounded so that Wc(F,G) < +∞ means that the right
hand and left hand supports of F and G are finite or infinite simultaneously.

Theorem 19. Let F and G be supported by intervals and such that Wc(F,G) < +∞. Assume that (FG), (C) and (CFG)

hold, with (FG4) discarded on each side – right or left – where the most lightly tailed distribution has bounded support.
Then the conclusion of Theorem 14 holds true.

4. Discussion

In this paper we have proved a CLT for the plug-in estimator of Wc(F,G). This estimator is fast to compute and our easily
verified assumptions are valid for a wide class of probability distributions and Wasserstein costs. Moreover our CLT is
centered on Wc(F,G) and the limiting variance has a closed form expression. It extends the results of [11] concerning
trimmed Mallows distance to untrimmed Wasserstein distances W

p
p , p > 1 and to more general cost functions, in the

framework of a couple of samples having the same size but being possibly dependent. Due to the fact that we work
beyond the case of W 2

2 for which an exact expansion exists, we require the marginal distributions to be distinct enough
through (FG4). In the limiting case F = G a difficulty actually shows up in the untrimmed Mallows distance. In the one
hand, in [11] when F = G the limiting variance at the scale

√
n is 0, which means that the rate of convergence is faster.

In the other hand, in [9] W 2
2 (Fn,F ) has an exact rate of convergence n, but the Gaussian distributions are excluded since

the expected limiting variance turns to be infinite, so F should have a sub-Gaussian tail. This suggests that it should be
the same for W 2

2 (Fn,Gn).
Since W1(Fn,Gn) = ∫

R
|Fn(x)−Gn(x)|dx the mathematical treatment of the distance W1 is usually more direct. The

known CLT type results concern W1(Fn,F ) as in [7]. Our present work does not catch the distance W1 because it does
not satisfy assumption (C3) – the derivative of the absolute value does not vanish at 0. This is a meaningful border case
since the limiting distribution of

√
n(W1(Fn,Gn) − W1(F,G)) should depends on the set {F = G}.

In our setting, if (FG4) is not satisfied and the diagonal {F = G} is allowed in extremes, the cost is evaluated randomly
at 0 or infinity, which leads to a true difficulty.

In order to complete our work it remains to handle three main problems closely related to conditions (C3) and (FG4).
Firstly, the case F = G, that clearly violates (FG4), for which the speed of weak convergence could be different from√

n and the limiting distribution could be non Gaussian, as discussed above. Secondly, the case of W1 or close to W1 up
to a slowly varying function, for which (C3) does not hold, with F �= G and F = G. The third problem is to extend our
results to samples of different sizes, still without assuming independence. We will hopefully achieve these three studies
in forthcoming papers.

5. Proofs

5.1. Proof of Theorem 13

First note that
∫ 1

0 V (F−1
n (u)) du = n−1 ∑n

i=1 V (Xi) converges to EV (X) = ∫ 1
0 V (F−1(u)) du on a set �0 of probability

one. We also have by Glivenko-Cantelli theorem that Fn almost surely weakly converges to the continuous F , say on the
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same �0. In particular, given any ω in �0 the sequence V (F−1
n (u)) converges to V (F−1(u)) simultaneously for all u

in (0,1) where F−1(u) is continuous, hence almost everywhere on (0,1). Next consider the Borel measurable functions
V (F−1

n ) and V (F−1) as random variables on (0,1) endowed with the uniform measure. By applying Vitali’s theorem –
see Theorem 5.5 in [17] with r = 1 – the random variables V (F−1

n ) and V (F−1) are uniformly integrable. The same holds
for V (G−1

n ). As c(F−1
n (u),G−1

n (u)) ≤ V (F−1
n (u)) + V (G−1

n (u)) we conclude that c(F−1
n ,G−1

n ) is uniformly integrable
on (0,1) and converges in L1(0,1). This shows that it holds, on �0,

lim
n→+∞

∫ 1

0
c
(
F

−1
n (u),G−1

n (u)
)
du =

∫ 1

0
c
(
F−1(u),G−1(u)

)
du.

5.2. Proof of Theorem 14

The proof of Theorem 14 is organized as follows. In Section 5.2.1 we prove (19). Section 5.2.2 is dedicated to the proof
of the weak convergence of

√
n(Wc(Fn,Gn) − Wc(F,G)). As explained at Section 3.2 we only deal with the upper

part of the integrals. For that purpose we split the interval (1/2,1) into four parts, (1/2,F (M)), (F (M),1 − hn/n),
(1 − hn/n,1 − kn/n), (1 − kn/n,1), where F(M), hn, kn will be specified further on. The first integral is the main
term and the other ones will be proved to be small. We study the integral over (1 − kn/n,1) at Step 1, the one over
(1−hn/n,1− kn/n) at Step 2 and the one over (F (M),1−hn/n) at Step 3. Finally, we deal with the main part at Step 4.

5.2.1. The limiting variance
In this section we establish that (C), (FG) and (CFG) imply that σ 2(H, c) < +∞ in (19). The covariance matrix �(u,v)

and the gradient ∇(u) are defined at (17) and (18). It is sufficient to study the right hand tails, corresponding to the upper
domain of integration [1/2,1]2. As a matter of fact, this implies the same for [0,1/2]2, then similar arguments hold for
mixing both tails through [1/2,1]× [0,1/2] and [0,1/2]× [1/2,1] by separating the variables exactly as we show below.
Hence by cutting [1/2,1] = [1/2, u]∪ [u,1] into mid quantiles and extremes we are reduced to control ∇(u)�(u, v)∇(v)

on [u,1] × [u,1] then on [1/2, u] × [1/2,1]. The forthcoming two lemmas are then enough to conclude that (19) is true
under (C), (FG) and (CFG).

Lemma 20. Under (C2), (FG1), (FG4) and (CFG) we have, for any u > F(m),

σ 2(u) =
∫ 1

u

∫ 1

u

∇(u)�(u, v)∇(v) dudv < +∞.

Proof. By (C2) we have, for x ≥ y ≥ m,

∂

∂x
c(x, y) = − ∂

∂y
c(x, y) = ∂

∂x
ρ(x − y) = l′(x − y)ρ(x − y) = ρ′(x − y).

By (FG4) it holds F−1(u) ≥ τ(u) = F−1(u) − G−1(u) ≥ τ0 > 0 for u > F(m). Thus, for u ∈ [u,1], ∇(u) = (ρ′ ◦
τ(u),−ρ′ ◦ τ(u)). Let us split σ 2(u) into

A1 =
∫ 1

u

∫ 1

u

ρ′ ◦ τ(u)
min(u, v) − uv

hX(u)hX(v)
ρ′ ◦ τ(v) dudv,

A2 = −
∫ 1

u

∫ 1

u

ρ′ ◦ τ(u)
�(v,u) − uv

hX(v)hY (u)
ρ′ ◦ τ(v) dudv,

A3 = −
∫ 1

u

∫ 1

u

ρ′ ◦ τ(u)
�(u, v) − uv

hX(u)hY (v)
ρ′ ◦ τ(v) dudv,

A4 =
∫ 1

u

∫ 1

u

ρ′ ◦ τ(u)
min(u, v) − uv

hY (v)hY (u)
ρ′ ◦ τ(v) dudv.

Observe that if 0 < u < v < 1 then

0 ≤ min(u, v) − uv√
1 − u

√
1 − v

= u

√
1 − v

1 − u
≤ 1,
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so that we always have 0 ≤ min(u, v) − uv ≤ √
1 − u

√
1 − v and we get

|A1| ≤
(∫ 1

u

ρ′ ◦ τ(u)

√
1 − u

hX(u)
du

)2

, |A4| ≤
(∫ 1

u

ρ′ ◦ τ(u)

√
1 − u

hY (u)
du

)2

.

Consider the bound of |A1| first. By (C2), ρ′ is C1(m,+∞) and positive. Now, as u → 1, τ(u) ≥ τ0 > 0 is either
unbounded or bounded. In both cases we have

0 < ρ′(τ(u)
) ≤ max

(
ρ′ ◦ F−1(u), sup

τ0<x≤l2

ρ′(x)
)

≤ k1ρ
′ ◦ F−1(u)

for k1 ≥ 1 since by Proposition 31 the increasing function ρ is convex on (l2,+∞) under (C2). Observe that ρ is also
invertible, so that ρ(X) has quantile function, density function and density quantile function respectively given by

F−1
ρ(X) = ρ ◦ F−1, fρ(X) = f ◦ ρ−1

ρ′ ◦ ρ−1
, hρ(X) = fρ(X) ◦ F−1

ρ(X) = hX

ρ′ ◦ F−1
. (20)

Recalling that (CFG) implies (16), the change of variable x = ρ ◦ F−1(u) yields

1

k1

∫ 1

u

ρ′ ◦ τ(u)

√
1 − u

hX(u)
du ≤

∫ 1

F(m)

ρ′ ◦ F−1(u)

√
1 − u

hX(u)
du

=
∫ 1

F(m)

√
1 − u

hρ(X)(u)
du =

∫ +∞

ρ(m)

√
P
(
ρ(X) > x

)
dx < +∞.

Having proved that |A1| < +∞ let us next study the upper bound of |A4|. Under (C2) and (11) we have, for some
ε1(x) → γ ,

ρ′(x) = l′(x)ρ(x) = ε1(x)
l(x)

x
ρ(x) ≤ (1 + γ )

l(x)θ
′
1

x
ρ(x),

where θ ′
1 ∈ (θ1, θ − 1) if γ = 0, and θ ′

1 = 1 if γ > 0. It then follows from the change of variable u = G(x) that, by setting
φ = G−1 ◦ F = ψ−1

Y ◦ ψX ,

∫ 1

u

ρ′ ◦ τ(u)

√
1 − u

hY (u)
du ≤ (1 + γ )

∫ +∞

G−1(u)

(l ◦ φ−1(x))θ
′
1

φ−1(x)
ρ ◦ φ−1(x)

√
P(Y > x)dx. (21)

Now, by (FG4) we have

x ≤ φ−1(x) = F−1 ◦ G(x) = ψ−1
X ◦ ψY (x) = ψ−1

X

(
log

(
1

P(Y > x)

))
,

thus by (15) it holds

l ◦ φ−1(x) ≤ 1

2
log

(
1

P(Y > x)

)
− θ log log

(
1

P(Y > x)

)
+ K.

We can bound (21) from above by

(1 + γ )

∫ +∞

φ(m)

(l ◦ φ−1(x))θ
′
1

φ−1(x)
exp

(
l ◦ φ−1(x)

)√
P(Y > x)dx

≤ K

∫ +∞

φ(m)

(ψY (x))θ
′
1−θ

ψ−1
X ◦ ψY (x)

dx

≤ K

∫ +∞

φ(m)

1

x(ψY (x))θ−θ ′
1
dx ≤ K

∫ +∞

φ(m)

1

x(l(x))θ−θ ′
1
dx.

The last inequality comes from ψY (x) > ψX(x) by (FG4). If γ > 0 then θ − θ ′
1 = θ − 1 > 0 and l(x) > xγ/2 hence the

bounding integral is finite. If γ = 0 then l(x) ≥ logx by (7) and having enforced θ − θ1 > θ − θ ′
1 > 1 also makes the
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above integral finite. We have shown that |A4| < +∞. It remains to bound A2 = A3. Since F and G are continuous it
holds

�(u,v) ≤ min
(
P
(
X ≤ F−1(u)

)
,P

(
Y ≤ G−1(v)

)) = min(u, v),

�(u, v) ≥ P
(
X ≤ F−1(u)

) + P
(
Y ≤ G−1(v)

) − 1 = u + v − 1,

and thus

�(u,v) − uv ≤ min(u, v) − uv ≤ √
1 − u

√
1 − v,

�(u, v) − uv ≥ u + v − 1 − uv = −(1 − u)(1 − v),

which proves that |�(u,v) − uv| ≤ √
1 − u

√
1 − v. Hence A2 and A3 both satisfy

|A2| ≤
∫ 1

u

ρ′ ◦ τ(v)

√
1 − v

hX(v)
dv

∫ 1

u

ρ′ ◦ τ(u)

√
1 − u

hY (u)
du

≤ k2
1

∫ 1

F(m)

ρ′ ◦ F−1(v)

√
1 − v

hX(v)
du

∫ 1

F(m)

ρ′ ◦ F−1(u)

√
1 − u

hY (u)
du

where these integrals are already proved to be finite. Finally σ 2(u) = A1 + A2 + A3 + A4 < +∞. �

Lemma 21. Under (C1), (C2), (FG1), (FG4) and (CFG) we have, for any u > F(m),

σ 2−(u) =
∫ u

1/2

∫ 1

1/2
∇(u)�(u, v)∇(v) dudv < +∞, σ 2+(u) =

∫ 1

u

∫ u

1/2
∇(u)�(u, v)∇(v) dudv < +∞.

Proof. Since F−1 and G−1 are bounded on [1/2, u] we have, by (C1), that ∇(u) exists and is bounded on [1/2, u]. Like-
wise (FG1) ensures that hX and hY are bounded on [1/2, u] hence �(u,v) is bounded on [1/2, u]2. As a consequence,

A0 =
∫ u

1/2

∫ u

1/2
∇(u)�(u, v)∇(v) dudv, |A0| < +∞.

By (C2) we have ∇(u) = (ρ ′ ◦ τ(u),−ρ′ ◦ τ(u)) on [u,1], thus

A01 =
∫ u

1/2

∫ 1

u

∂

∂x
c
(
F−1(u),G−1(u)

)min(u, v) − uv

hX(u)hX(v)
ρ′ ◦ τ(u)dudv,

A02 = −
∫ u

1/2

∫ 1

u

∂

∂y
c
(
F−1(u),G−1(u)

)�(v,u) − uv

hX(v)hY (u)
ρ′ ◦ τ(u)dudv,

A03 = −
∫ u

1/2

∫ 1

u

∂

∂x
c
(
F−1(u),G−1(u)

)�(u,v) − uv

hX(u)hY (v)
ρ′ ◦ τ(u)dudv,

A04 =
∫ u

1/2

∫ 1

u

∂

∂y
c
(
F−1(u),G−1(u)

)min(u, v) − uv

hY (v)hY (u)
ρ′ ◦ τ(u)dudv.

Along the same arguments as in Lemma 20 we have

|A01| ≤ IXJX, |A02| ≤ IY JX, |A03| ≤ IXJY , |A04| ≤ IY JY ,

where, by the previous boundedness argument on [1/2, u],

IX =
(∫ u

1/2

∣∣∣∣ ∂

∂x
c
(
F−1(u),G−1(u)

)∣∣∣∣
√

1 − u

hX(u)

)
< +∞,

IY =
(∫ u

1/2

∣∣∣∣ ∂

∂y
c
(
F−1(u),G−1(u)

)∣∣∣∣
√

1 − u

hY (u)

)
< +∞
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and by (CFG), (13), (14) and (16) on [u,1],
JX

k1
=

(∫ 1

u

ρ′ ◦ F−1(v)

√
1 − v

hX(v)
dv

)
< +∞,

JY

k1
=

(∫ 1

u

ρ′ ◦ F−1(v)

√
1 − v

hY (v)
dv

)
< +∞.

Therefore σ 2−(u) = A0 + A01 + A02 + A03 + A04 < +∞. In the same way the result holds for σ 2+(u). �

5.2.2. Proof of the weak convergence
Step1: Extreme values. In this first step we show that the contribution of extremes is negligible despite the rate

√
n. With-

out information on the joint distribution of extreme values we treat separately the upper tail of the integrals Wc(Fn,Gn)

and Wc(F,G). Indeed the latter in not a centering of the former at the very end of tails so that the empirical quantile
processes cannot help. Let Kn and kn be positive increasing sequences, with Kn increasing and

Kn → +∞,
Kn

log logn
→ 0, kn =

√
n

Kn exp(l ◦ ψ−1
X (logn + Kn))

. (22)

Under (C2) and (FG1) we have l ◦ ψ−1
X (x) → +∞ as x → +∞ thus kn = o(

√
n/Kn). Moreover, by (15) and (22) for

any θ ′ ∈ (1, θ) and all n large enough it holds

kn ≥ c

Kn

exp

(
−Kn

2
+ θ log(logn + Kn)

)
> (logn)θ

′
. (23)

Hence we have kn/ log logn → +∞ and kn/
√

n → 0. Let us define

Dn =
∫ 1

1−kn/n

c
(
F−1(u),G−1(u)

)
du,

Sn =
∫ 1

1−kn/n

c
(
F

−1
n (u),G−1

n (u)
)
du = 1

n

n∑
i=n−[kn]

c(X(i), Y(i)).

Lemma 22.

1. If (C2), (FG1), (FG4) and (CFG) hold then
√

nDn → 0.
2. If (C2) and (CFG) hold then

√
nSn → 0 in probability.

Proof. 1. By C2 and FG4 we have

Dn =
∫ 1

1−kn/n

ρ
(
F−1(u) − G−1(u)

)
du ≤

∫ 1

1−kn/n

w(u)du

where

w(u) = exp
(
l ◦ F−1(u)

) = exp

(
l ◦ ψ−1

X

(
log

(
1

1 − u

)))
.

Under (CFG), for θ > 1 it holds, by (15),

l ◦ F−1(u) ≤ 1

2
log

(
1

1 − u

)
− θ log log

(
1

1 − u

)
+ K

thus, as n → +∞,

∫ 1

1−kn/n

w(u)du ≤
[
− K

√
1 − u

(log(1/(1 − u)))θ

]1

1−kn/n

= K
√

kn/n

(log(n/kn))θ
→ 0

so that w(u) is integrable on (u,1). By (CFG) ϕ = ψX ◦ l−1 satisfies

(
ϕ−1)′

(x) = 1

ϕ′ ◦ ϕ−1(x)
≤ 1

2 + 2θ/ϕ−1(x)
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and for x large enough,

(
ϕ−1)′

(x) = (
l ◦ ψ−1

X

)′
(x) ≤ 1

2 + 2θ/(x/2 − θ logx + K)
<

1

2
− θ

x
. (24)

We then have

(−(1 − u)w(u)
)′ = w(u)

(
1 − (

l ◦ ψ−1
X

)′
(

log

(
1

1 − u

)))
>

w(u)

2
,

which gives

∫ 1

1−kn/n

w(u)du ≤ 2
[−(1 − u)w(u)

]1
1−kn/n

≤ 2kn

n
w

(
1 − kn

n

)
,

since limu→1(1 − u)w(u) = 0. Recalling (22) it follows that for n large enough,

√
nDn ≤ 2kn√

n
exp

(
l ◦ ψ−1

X

(
log

(
n

kn

)))
≤ 2

Kn

exp

(
l ◦ ψ−1

X

(
log

(
n

kn

))
− l ◦ ψ−1

X (logn + Kn)

)
.

By (22), (23) and (15) with θ > 1 we get

log

(
n

kn

)
∼ logn

2
+ logKn + l ◦ ψ−1

X (logn + Kn) ≤ logn + Kn

2
+ logKn − θ log(logn + Kn) + K

hence
√

nDn ≤ 2/Kn → 0 as n → +∞ since l ◦ ψ−1
X is increasing.

2. Next we control Sn the stochastic sum of extreme values. Fix δ > 0 and consider the events

An = {√nSn ≥ 4δ}, Bn,X = {X(n−[kn]) > m}, Bn,Y = {Y(n−[kn]) > m}.
We have P(An) ≤ P(An ∩ Bn,X ∩ Bn,Y ) + P(Bc

n,X) + P(Bc
n,X). Since F and G are strictly increasing it obviously holds,

for ξ > 0 and u0 = F(m + ξ), as n → +∞,

P
(
Bc

n,X

) = P

(
F

−1
n

(
1 − kn

n

)
< m

)
≤ P

(
F

−1
n (u0) < F−1(u0) − ξ

) → 0

and likewise, P(Bc
n,Y ) → 0. By (9) we can write, under Bn,X ∩ Bn,Y ,

√
nSn ≤ 1√

n

n∑
i=n−[kn]

(
ρ(X(i)) + ρ(Y(i))

) ≤ kn + 1√
n

(
ρ(X(n)) + ρ(Y(n))

)
,

hence P(An ∩ Bn,X ∩ Bn,Y ) ≤ P(Cn,X) + P(Cn,Y ) where

Cn,X =
{
ρ(X(n)) ≥ δ

√
n

kn

}
, Cn,Y =

{
ρ(Y(n)) ≥ δ

√
n

kn

}
.

Now we have, by (FG4) and since X1, . . . ,Xn are independent,

P(Cn,Y ) ≤ P(Cn,X) = 1 −
(

1 − P

(
ρ(X) > δ

√
n

kn

))n

,

then combining ρ−1(x) = l−1(logx) with (22) gives,

P

(
ρ(X) > δ

√
n

kn

)
= exp

(−ψX ◦ l−1(log δ + l ◦ ψ−1
X (logn + logKn) + logKn

))
Now by (CFG) ψX ◦ l−1 is increasing. As soon as logKn > | log δ| we get

P

(
ρ(X) > δ

√
n

kn

)
≤ exp

(−ψX ◦ l−1(l ◦ ψ−1
X (logn + logKn)

)) = 1

nKn

,
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which yields P(Cn,X) ≤ 1 − exp(−K/Kn) → 0. From

P(An) ≤ P(An ∩ Bn,X ∩ Bn,Y ) + P
(
Bc

n,X

) + P
(
Bc

n,X

) ≤ P(Cn,X) + P(Cn,X) + P
(
Bc

n,X

) + P
(
Bc

n,X

)
we conclude that P(An) → 0. �

Step2: Centered high order quantiles. This section ends the part of the proof of Theorem 14 devoted to the secondary
order. We split the arguments into the three lemmas below. Remind that kn is defined at (22). Let introduce

hn = nβ, β ∈
(

1

2
,1

)
, In =

[
1 − hn

n
,1 − kn

n

]
, (25)

and define the centered random integral of non extreme tail quantiles to be

Tn =
∫ 1−kn/n

1−hn/n

(
c
(
F

−1
n (u),G−1

n (u)
) − c

(
F−1(u),G−1(u)

))
du.

Lemma 23. If (C2), (FG) and (CFG) hold then
√

nTn → 0 almost surely.

The proof of this lemma is based on the two following lemmas whose proof are postponed to the appendix. In order to
bound Tn we first evaluate the quantile empirical processes

βX
n (u) = √

n
(
F

−1
n (u) − F−1(u)

)
, βY

n (u) = √
n
(
G

−1
n (u) − G−1(u)

)
. (26)

Lemma 24. Define �n = [u,1 − kn/n]. Under (FG1) and (FG2) we have

lim sup
n→+∞

sup
u∈�n

|βn(u)|h(u)√
(1 − u) log logn

≤ 4 a.s.

where (βn,h) = (βX
n ,hX) or (βn,h) = (βY

n ,hY ).

In the next key lemma we have to carefully check that the conditions given at Proposition 30 are almost surely met on
In ⊂ �n. For u ∈ In and n ≥ 3 define

εn(u) = εX
n (u) − εY

n (u), εX
n (u) = βX

n (u)√
n

, εY
n (u) = βY

n (u)√
n

. (27)

In the third lemma, the condition (FG4) is crucial.

Lemma 25. Assume that (C2), (FG) and (CFG) hold. Then there exists K2 > 0 such that

lim sup
n→+∞

sup
u∈In

|c(F−1
n (u),G−1

n (u)) − c(F−1(u),G−1(u))|
ρ′ ◦ F−1(u) |εn(u)| ≤ K2 a.s.

Proof of Lemma 23. Remind notation from (22), (25) and (27). By Lemma 25 it holds, with probability one, for all n

large enough

|Tn| ≤ K

∫ 1−kn/n

1−hn/n

ρ′ ◦ F−1(u)
∣∣εn(u)

∣∣du.

We proceed as in the proof of Lemma 20 where similar integrable functions show up, however they have now to be
integrated to sharply evaluate

√
n|Tn|. From Lemma 24 it follows, with probability one, that for all n large and all

u ∈ In ⊂ �n,

∣∣εn(u)
∣∣ ≤

∣∣∣∣βX
n (u)√

n

∣∣∣∣ +
∣∣∣∣βY

n (u)√
n

∣∣∣∣ ≤ 5

√
log logn

n

(√
1 − u

hX(u)
+

√
1 − u

hY (u)

)
. (28)
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We then compute separately the following two integrals

√
n|Tn| ≤ 5K

√
log logn

(∫ 1−kn/n

1−hn/n

tX(u)du +
∫ 1−kn/n

1−hn/n

tY (u) du

)
, (29)

where, for Z = X,Y we write tZ(u) = ρ′ ◦ F−1(u)
√

1 − u/hZ(u).
Consider the first integral in (29). Since ρ is convex by Proposition 31 we can use (20) as in the proof of Lemma 20 to

justify the change of variable u = F ◦ ρ−1(x) then apply (5) to ρ−1(x) = l−1(logx) and rewrite the first integral as∫ 1−kn/n

1−hn/n

tX(u)du =
∫ 1−kn/n

1−hn/n

√
1 − u

hρ(X)(u)
du =

∫ b(n/kn)

b(n/hn)

√
P
(
ρ(X) > x

)
dx

=
∫ b(n/kn)

b(n/hn)

exp

(
−1

2
ψX ◦ l−1(logx)

)
dx

where, by (CFG) reformulated into (15),

b(x) = ρ ◦ F−1
(

1 − 1

x

)
= exp

(
l ◦ ψ−1

X (logx)
) ≤ K

√
x

(logx)θ
. (30)

Equation (16) justifies that tX is integrable since θ > 1 and, by (13),

exp

(
−1

2
ψX ◦ l−1(logx)

)
≤ K

x(logx)θ
.

Now observe that ϕ = ψX ◦ l−1 satisfies ϕ′ = (ψ ′
X/l′) ◦ l−1 and (CFG) reads

ϕ′(x) ≥ 2 + 2θ

x
, x > l(τ1),

so that we have, for all x > b(n/hn) > l(τ1),(
−x exp

(
−1

2
ϕ(logx)

))′
=

(
1

2
ϕ′(logx) − 1

)
exp

(
−1

2
ϕ(logx)

)
≥ θ

logx
exp

(
−1

2
ϕ(logx)

)
.

Therefore it holds, thanks to the upper bound (30) and since b(x) is increasing,∫ 1−kn/n

1−hn/n

tX(u)du ≤ logb(n/kn)

θ

∫ b(n/kn)

b(n/hn)

θ

logx
exp

(
−1

2
ψX ◦ l−1(logx)

)
dx

≤ logb(n)

θ

[
−x exp

(
−1

2
ψX ◦ l−1(logx)

)]b(n/kn)

b(n/hn)

≤ K logn

θ

b(n/hn)√
n/hn

= K

θ(1 − β)θ (logn)θ−1

since hn = nβ . This proves that

lim
n→+∞

√
log logn

∫ 1−kn/n

1−hn/n

tX(u)du = 0.

We now turn to the second integral in (29),

Jn =
∫ 1−kn/n

1−hn/n

tY (u) du =
∫ 1−kn/n

1−hn/n

l′ ◦ F−1(u)

√
1 − u

hY (u)
ρ ◦ F−1(u) du.

By (A.10) and (6), under (C2) we have l′(x) = ε1(x)l(x)/x with ε1(x) → γ as x → +∞. If γ = 0 the rate of ε1(x) is
given by (11) and we pick θ ′

1 ∈ (θ1, θ − 1). If γ > 0 let θ ′
1 = 1. Recall that φ−1 = F−1 ◦ G = ψ−1

X ◦ ψY . Start with

Jn ≤ (1 + γ )

∫ 1−kn/n

1−hn/n

(l ◦ F−1(u))θ
′
1

F−1(u)

√
1 − u

hY (u)
ρ ◦ F−1(u) du
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= (1 + γ )

∫ G−1(1−kn/n)

G−1(1−hn/n)

(l ◦ φ−1(x))θ
′
1

φ−1(x)
exp

(
l ◦ φ−1(x)

)√
P(Y > x)dx.

Observe that (CFG) and (15) imply

l ◦ φ−1(x) = l ◦ ψ−1
X ◦ ψY (x) ≤ ψY (x)

2
− θ logψY (x) + K.

Since ψ−1
X ◦ ψY (x) ≥ x by (FG4) and ψ ′

Y (x) ≥ K/x by (FG5) it readily follows, for θ − θ ′
1 > 1 and K > 0,

Jn ≤ (1 + γ )

∫ G−1(1−kn/n)

G−1(1−hn/n)

(ψY (x))θ
′
1−θ

ψ−1
X ◦ ψY (x)

dx ≤ K

∫ G−1(1−kn/n)

G−1(1−hn/n)

ψ ′
Y (x)

(ψY (x))θ−θ ′
1
dx

= K

[ −1

(ψY (x))θ−θ ′
1−1

]ψ−1
Y (log(n/kn))

ψ−1
Y (log(n/hn))

≤ K

((1 − β) logn)θ−θ ′
1−1

therefore

lim
n→+∞

√
log logn

∫ 1−kn/n

1−hn/n

tY (u) du = 0.

As a conclusion, the almost sure upper bound of
√

n|Tn| tends to zero. �

Step 3: Upper middle order quantiles. At (25) we have defined hn = nβ with β ∈ (1/2,1) to be chosen. Let us introduce

IM,n =
(

F(M),1 − hn

n

)
, M > m. (31)

Since F(M) > F(m) = u and (A.2) in Section A.2 holds we have by (C2)

UM,n =
∫ 1−hn/n

F(M)

(
c
(
F

−1
n (u),G−1

n (u)
) − c

(
F−1(u),G−1(u)

))
du =

∫ 1−hn/n

F(M)

ρ
(∣∣τ(u) + εn(u)

∣∣) − ρ
(
τ(u)

)
du,

where εn(u) is as in (27). In order to control the last integral, we expand ρ and make use of a distribution free Brownian
approximation of the joint quantile processes.

Lemma 26. Assume (C2), (FG) and (CFG). For any ε > 0 and λ > 0 we can find M > m such that, for all n large
enough, P(

√
n|UM,n| > λ) < ε.

Proof. 1. Under (C2) we have l′(x) = ε1(x)l(x)/x where ε1(x) → γ as x → +∞ thus ε1 is bounded on (M,+∞).
Moreover, (CFG) ensures that l ◦ψ−1

Y (x) ≤ l ◦ψ−1
X (x) < x whereas (14) and (7) entail that ψX(x) > 2l(x) ≥ 2 logx thus

F−1(u) = ψ−1
X

(
log

(
1

1 − u

))
<

1√
1 − u

for all u ∈ IM,n and x ∈ F(IM,n). Under (FG4) we have τ(u) = F−1(u)−G−1(u) ≥ τ0 for u ∈ IM,n. Hence by choosing
M > m and K > 0 sufficiently large, (28) and (FG3) imply that it almost surely eventually holds

sup
u∈IM,n

ε1 ◦ τ(u)
l ◦ τ(u)

τ(u)

∣∣εn(u)
∣∣

≤ K sup
u∈IM,n

l ◦ F−1(u)
(
HX(u)F−1(u) + HY (u)G−1(u)

)√ log logn

n(1 − u)

≤ K
√

log logn sup
u∈IM,n

l ◦ ψ−1
X (log(1/(1 − u))√

n(1 − u)
F−1(u)
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≤ K
√

n log logn sup
u∈IM,n

log(1/(1 − u)

n(1 − u)

≤ K
logn

hn

√
n log logn

which vanishes since β > 1/2 in (25). We have shown that

lim
n→+∞ sup

u∈IM,n

∣∣εn(u)
∣∣l′ ◦ τ(u) = 0 a.s. (32)

2. By (32), the second part of Proposition 30 can be applied for all large n. It says that

ρ
(∣∣τ(u) + εn(u)

∣∣) − ρ
(
τ(u)

) = k0
(
τ(u), εn(u)

)
ρ′ ◦ τ(u)εn(u)

where, by (A.12),

lim
δ0→0

sup
τ(u)>τ0

sup
|εn(u)|l′◦τ(u)≤δ0

∣∣k0
(
τ(u), εn(u)

) − 1
∣∣ = 0

which can be reformulated through (32) into k1(u) = k0(τ (u), εn(u)) and

lim
n→+∞ sup

u∈IM,n

∣∣k1(u) − 1
∣∣ = 0 a.s. (33)

Thus, given any ϑ ∈ (0,1) the random function k1(u) is such that k1(u) ∈ (1 − ϑ,1 + ϑ) for all u ∈ IM,n and

√
nUM,n =

∫ 1−hn/n

F(M)

k1(u)ρ′ ◦ τ(u)
(
βX

n (u) + βY
n (u)

)
du.

From now on we make use of notation introduced at Section A.3 and we work on the probability space of Theorem 29.
This allows us to write

√
nUM,n =

∫ 1−hn/n

F(M)

k1(u)ρ′ ◦ τ(u)

(
BX

n (u) + ZX
n (u)

hX(u)
+ BY

n (u) + ZY
n (u)

hY (u)

)
du

where (UM,n,B
X
n ,ZX

n ,BY
n ,ZY

n , k1) are built together on �∗ in such a way that for some small ξ > 0 independent of the
distribution PH ,

lim
n→+∞nξ sup

u∈IM,n

∣∣ZX
n (u)

∣∣ = lim
n→+∞nξ sup

u∈IM,n

∣∣ZY
n (u)

∣∣ = 0 a.s. (34)

and BX
n , BY

n are Brownian bridges defined at (A.7). Let
√

nUM,n = NM,n + RM,n + SM,n with

NM,n =
∫ 1−hn/n

F(M)

ρ′ ◦ τ(u)

(
BX

n (u)

hX(u)
+ BY

n (u)

hY (u)

)
du,

RM,n =
∫ 1−hn/n

F(M)

k1(u)ρ′ ◦ τ(u)

(
ZX

n (u)

hX(u)
+ ZY

n (u)

hY (u)

)
du,

SM,n =
∫ 1−hn/n

F(M)

(
k1(u) − 1

)
ρ′ ◦ τ(u)

(
BX

n (u)

hX(u)
+ BY

n (u)

hY (u)

)
du.

3. We first deal with RM,n. Since ρ′(x) is increasing by Proposition 31, (C2) implies l′(x) < Kl(x)/x with K > γ and
(CFG) entails l ◦ ψ−1

Y (x) ≤ l ◦ ψ−1
X (x) ≤ x/2 − θ logx by (13) we readily have

∣∣∣∣
∫ 1−hn/n

F(M)

ρ′ ◦ τ(u)

hX(u)
ZX

n (u)du

∣∣∣∣ ≤ K

nξ

∫ 1−hn/n

F(M)

l ◦ ψ−1
X (log(1/(1 − u))

F−1(u)hX(u)
exp(l ◦ ψ−1

X

(
log

(
1/(1 − u)

))
du

≤ K

nξ

∫ 1−hn/n

F(M)

log(1/(1 − u))

(log(1/(1 − u)))θ

HX(u)

(1 − u)3/2
du
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which is, by using (FG3) and θ > 1 then choosing β ∈ (1 − ξ,1), less than

K

nξ

∫ 1−hn/n

F(M)

1

(1 − u)3/2
du < Kn−ξ/2.

The same bound holds for hY since F−1 > G−1 and

∣∣∣∣
∫ 1−hn/n

F(M)

ρ′ ◦ τ(u)

hY (u)
ZY

n (u)du

∣∣∣∣ ≤ K

nξ

∫ 1−hn/n

F(M)

G−1(u) log(1/(1 − u))HY (u)

F−1(u)(log(1/(1 − u)))θ (1 − u)3/2
du.

By (33), (34) and the above bounds we have almost surely for n large enough |RM,n| ≤ 2Kn−ξ/2 → 0.
4. As NM,n is the sum of two linear functionals of Brownian bridges it is a mean zero Gaussian random variable with

variance

σ 2(M,n) =
∫ 1−hn/n

F(M)

∫ 1−hn/n

F(M)

ρ′ ◦ τ(u)ρ′ ◦ τ(v)�(u, v) dudv

where

�(u,v) = cov

(
BX

n (u)

hX(u)
+ BY

n (u)

hY (u)
,
BX

n (v)

hX(v)
+ BY

n (v)

hY (v)

)

= min(u, v) − uv

hX(u)hX(v)
+ �(v,u) − uv

hX(v)hY (u)
+ �(u,v) − uv

hX(u)hY (v)
+ min(u, v) − uv

hY (v)hY (u)
.

Therefore by Lemma 20 taken in u = F(M) we see that σ 2(M,n) → σ 2(M) as n → ∞ and σ 2(M) → 0 as M → +∞.
On the other hand,

|SM,n| ≤ sup
u∈IM,n

∣∣k1(u) − 1
∣∣∫ 1−hn/n

F(M)

ρ′ ◦ τ(u)

∣∣∣∣BX
n (u)

hX(u)
+ BY

n (u)

hY (u)

∣∣∣∣du,

which tends to 0 in probability when n → +∞ since the integral is bounded in probability.
5. As a conclusion, for any ε > 0 and λ > 0 we can find M = M(ε,λ) > m such that

P
(√

n|UM,n| > λ
) ≤ P

(
|NM,n| > λ

3

)
+ P

(
|RM,n| > λ

3

)
+ P

(
|SM,n| > λ

3

)
≤ σ 2(M,n)

(λ/3)2
+ ε

3
+ ε

3
< ε,

for all n > n(ε,λ,M). �

Step 4: Centered middle order quantiles. For M > m define IM = (F (−M),F(M)) and consider the centered random
integral

MM,n =
∫ F(M)

F(−M)

(
c
(
F

−1
n (u),G−1

n (u)
) − c

(
F−1(u),G−1(u)

))
du.

In order to conclude the proof of Theorem 14 it remains to exploit the Brownian approximation of the joint quantile
processes βX

n and βY
n defined at (26) to accurately approximate

√
nMM,n. Recalling (18) write

∇x(u) = ∂

∂x
c
(
F−1(u),G−1(u)

)
, ∇y(u) = ∂

∂y
c
(
F−1(u),G−1(u)

)
and

√
nNM,n =

∫ F(M)

F(−M)

(∇x(u)βX
n (u) + ∇y(u)βY

n (u)
)
du.

In the following lemma the condition (C3) is essential, which excludes the distance W1.
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Lemma 27. Assume (C), (FG) and (CFG). Then for any δ > 0, any ε > 0 and any M > m′ > m there exists n(ε, δ,M)

such that for all n > n(ε, δ,M),

P
(|√nMM,n − √

nNM,n| > ε
) ≤ δ.

Proof. 1. Under (FG1), hX and hY are away from 0 on IM and we write

ηM = min
(

inf
u∈IM

hX(u), inf
u∈IM

hY (u)
)

> 0.

We keep working on the probability space of Theorem 29. In particular, since IM ⊂ In we can apply again Theorem 29
and get the analogue of (34)

P

(
sup
u∈IM

∣∣∣∣ZX
n (u)

hX(u)

∣∣∣∣ >
1

nξ

)
= o(1), P

(
sup
u∈IM

∣∣∣∣ZY
n (u)

hY (u)

∣∣∣∣ >
1

nξ

)
= o(1). (35)

Introduce the event

An(M,C) =
{

sup
u∈IM

∣∣F−1
n (u) − F−1(u)

∣∣ + ∣∣G−1
n (u) − G−1(u)

∣∣ ≤ 4C√
n

}
.

By (35), for any δ > 0 one can find Cδ > 0 so large that, for all n large enough,

P
(
An(M,Cδ)

c
)

= P

(
sup
u∈IM

√
n
∣∣F−1

n (u) − F−1(u)
∣∣ + √

n
∣∣G−1

n (u) − G−1(u)
∣∣ > 4Cδ

)

≤ P

(
sup
u∈IM

∣∣∣∣BX
n (u)

hX(u)

∣∣∣∣ > Cδ

)
+ P

(
sup
u∈IM

∣∣∣∣BY
n (u)

hY (u)

∣∣∣∣ > Cδ

)
+ o(1)

≤ 2P
(

sup
u∈IM

∣∣B(u)
∣∣ > ηMCδ

)
+ δ

2
≤ δ,

where B denotes a standard Brownian bridge.
2. Since F �= G and F , G are continuous, for any τ1 ∈ (0, τ0) there exists an open interval I (τ1) ⊂ IM such that

|τ(u)| > τ1 for u ∈ I (τ1), provided that m > 0 is chosen large enough. By taking M > m, by (FG4) we further have
τM = supu∈IM

|τ(u)| ≥ τ0 > τ1. Thus

D+
M(τ1) = {

u : τ1 <
∣∣τ(u)

∣∣ ≤ τM

} ∩ IM,D−
M(τ1) = {

u : ∣∣τ(u)
∣∣ ≤ τ1

} ∩ IM,

are such that I (τ1) ⊂ D+
M(τ1) �= ∅ and D−

M(τ1) ⊂ IM is possibly empty, and D+
M(τ1) ∪ D−

M(τ1) = IM . By (C3), for any
(x, y), (x′, y′) ∈ Dm(τ),∣∣c(x′, y′) − c(x, y)

∣∣ ≤ d(m, τ)
(∣∣x′ − x

∣∣ + ∣∣y′ − y
∣∣)

with d(m, τ) → 0 as τ → 0 and m is fixed. Observe that u ∈ D−
M(τ1) = D−

m(τ1) if, and only if, (F−1(u),G−1(u)) ∈
Dm(τ1). Let τ ′

1 ∈ (τ1, τ0) and m′ ∈ (m,M).
Now, given M and Cδ , if An(M,Cδ) is true for a large enough n then (F−1

n (u),G−1
n (u)) ∈ Dm′(τ ′

1) whenever
(F−1(u),G−1(u)) ∈ Dm(τ1) ⊂ Dm′(τ ′

1) and u ∈ IM . Thus, under the event An(M,Cδ) it holds

√
nM−

M,n(τ1) := √
n

∫
u∈D−

M(τ1)

∣∣c(F−1
n (u),G−1

n (u)
) − c

(
F−1(u),G−1(u)

)∣∣du

≤ √
n

∫
u∈D−

M(τ1)

d
(
m′, τ ′

1

)(∣∣F−1
n (u) − F−1(u)

∣∣ + ∣∣G−1
n (u) − G−1(u)

∣∣)du

≤ 4Cδ d
(
m′, τ ′

1

)
.
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3. The main term is

√
nM+

M,n(τ1) := √
n

∫
u∈D+

M(τ1)

(
c
(
F

−1
n (u),G−1

n (u)
) − c

(
F−1(u),G−1(u)

))
du.

Under the event An(M,Cδ) the Taylor expansion of c(F−1(u),G−1(u)) is justified on D+
M(τ1), that is away from the

diagonal. As a matter of fact, under (C1) we have, for x, y in (−M,M) such that |x − y| ≥ τ ,∣∣c(x + εx, y + εy) − c(x, y) − ∇x(x, y)εx − ∇y(x, y)εy

∣∣ ≤ λ(M,τ)�
(|εx | + |εy |

)
,

where �(s)/s → 0 as s → 0 for M and τ1 fixed. Then the expansion of c(F−1(u),G−1(u)) on u ∈ D+
M(τ1) can be

written as

c
(
F

−1
n (u),G−1

n (u)
) − c(F−1(u),G−1(u) = (∇x(u)βX

n (u) + ∇y(u)βY
n (u)

) +Rn(u).

We have∣∣∣∣√nM+
M,n(τ1) −

∫
u∈D+

M(τ1)

(∇x(u)βX
n (u) + ∇y(u)βY

n (u)
)
du

∣∣∣∣
≤ √

n

∣∣∣∣
∫

u∈D+
M(τ1)

Rn(u)du

∣∣∣∣
≤ λ(M,τ1)

√
n�

(
1√
n

sup
u∈IM

∣∣βX
n (u)

∣∣ + ∣∣βY
n (u)

∣∣).

As |MM,n −M
+
M,n(τ1)| ≤ M

−
M,n(τ1), whenever An(M,Cδ) is true, it holds

∣∣∣∣√nMM,n −
∫

u∈D+
M(τ1)

(∇x(u)βX
n (u) + ∇y(u)βY

n (u)
)
du

∣∣∣∣
≤ √

nM−
M,n(τ1) + λ(M,τ1)

√
n�

(
4Cδ√

n

)
,

where
√

n�(4Cδ

√
n) → 0 as n → +∞. We also have D−

M(τ1) = IM \D+
M(τ1) ⊂ IM and ∇x , ∇y are bounded on IM thus

∣∣∣∣
∫

u∈D−
M(τ1)

(∇x(u)βX
n (u) + ∇y(u)βY

n (u)
)
du

∣∣∣∣ ≤ 2m
4Cδ√

n
sup
u∈IM

∣∣∇x(u)
∣∣ + ∣∣∇y(u)

∣∣.
Hence under An(M,Cδ) |√nMM,n − √

nNM,n| is bounded by

4Cδ d
(
m′, τ ′

1

) + λ(M,τ1)
√

n�

(
4Cδ√

n

)
+ 2m

4Cδ√
n

sup
u∈IM

∣∣∇x(u)
∣∣ + ∣∣∇y(u)

∣∣.
Therefore, for any δ > 0, any ε > 0 and any triplet M > m′ > m we can choose τ1 and τ ′

1 > τ1 so small that
4Cδd(m′, τ ′

1) ≤ ε/2. Then there exists n(ε, δ,M) such that for all n > n(ε, δ,M),

P
(|√nMM,n − √

nNM,n| > ε
) ≤ P

(
An(M,Cδ)

c
) ≤ δ. �

Step 5: Conclusion. Now recall that
√

n(Wc(Fn,Gn) − Wc(F,G)) = √
nDn + √

nSn + √
nTn + √

nUM,n + √
nMM,n.

By Steps 1 and 2,
√

nDn + √
nSn + √

nTn converges to zero in probability. Hence, we only need to prove the weak
convergence of

√
nUM,n + √

nMM,n. Let X∞ be a centered Gaussian random variable with variance σ 2(H, c). For any
B-bounded r-Lipschitz function �, we have

E
∣∣�(√

n(UM,n +MM,n)
) − �(X∞)

∣∣
≤ E

∣∣�(√
n(UM,n +MM,n)

) − �(
√

nMM,n)
∣∣ +E

∣∣�(
√

nMM,n) − �(X∞)
∣∣
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Dealing with the first right hand term we have

E
∣∣�(√

n(UM,n +Mn)
) − �(

√
nMM,n)

∣∣
= E

(∣∣�(√
n(UM,n +MM,n)

) − �(
√

nMM,n)
∣∣1|√nUM,n|>λ

)
+E

(∣∣�(√
n(UM,n +MM,n)

) − �(
√

nMM,n)
∣∣1|√nUM,n|≤λ

)
≤ 2BP

(|√nUM,n| > λ
)
rλ

By Lemma 26 we can make 2BP(|√nUM,n| > λ)rλ as small as we want by choosing λ small enough and M large
enough. We now consider the second right hand term

E
∣∣�(

√
nMM,n) − �(X∞)

∣∣ ≤ E
∣∣�(

√
nMM,n) − �(

√
nNM,n)

∣∣ +E
∣∣�(

√
nNM,nn) − �(X∞)

∣∣
By Lemma 27 the term E|�(

√
nMM,n) − �(

√
nNM,n)| can be made as small as desired. As

√
nNM,n is a Gaussian

random variable with variance

σ 2(M,H, c) =
∫ F(M)

F(−M)

∫ F(M)

F(−M)

∇(u)�(u, v)∇(v) dudv

that converges to σ 2(H, c), the term E|�(
√

nNM,n) − �(X∞)| is small enough for large enough M . This achieves the
proof of Theorem 14.

Appendix

A.1. Proof of Lemma 24

Remind that �n = [u,1 − kn/n] where kn/ log logn → +∞ and kn/n → 0 comes from (22) and (23). Let us study
(βn,h) = (βX

n ,hX) in Lemma 24. Under (FG1) we have f > 0 on R thus the random variables Ui = F(Xi) are inde-
pendent, uniformly distributed on [0,1] and such that X(i) = F−1(U(i)). Let FU,n and F

−1
U,n denote the empirical cdf and

quantile functions associated to U1, . . . ,Un so that Fn = FU,n ◦ F and F
−1
n = F−1 ◦ F

−1
U,n. Write qn(u) = F

−1
U,n(u) − u.

By [6] we have

lim sup
n→∞

sup
u∈�n

√
nqn(u)√

(1 − u) log logn
≤ 4 a.s. (A.1)

Since (FG1) ensures that hX is C1 on �n the following expansion almost surely asymptotically holds,

sup
u∈�n

∣∣(F−1(u + qn(u)
) − F−1(u)

)
hX(u) − qn(u)

∣∣
= sup

u∈�n

∣∣∣∣
(

qn(u)

hX(u)
+ q2

n(u)

2

(
1

hX(u)

)′

u=u∗

)
hX(u) − qn(u)

∣∣∣∣
≤ AnBn

where |u − u∗| ≤ |qn(u)| and, by (A.1),

An = sup
u∈�n

q2
n(u)

2(1 − u)
≤ K

log logn

n

whereas, by (FG2),

Bn = sup
u∈�n

(1 − u)hX(u)

∣∣∣∣
(

1

hX(u)

)′

u=u∗

∣∣∣∣
≤ sup

u∈�n

(
1 − u∗)hX

(
u∗)∣∣∣∣

(
1

hX(u)

)′

u=u∗

∣∣∣∣ sup
u∈�n

1 − u

1 − u∗
hX(u)

hX(u∗)

≤ K sup
u∈�n

1 − u

1 − u∗ sup
u∈�n

hX(u)

hX(u∗)
.
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Now, (A.1) shows that the random sequence

sup
u∈�n

∣∣∣∣1 − u∗

1 − u
− 1

∣∣∣∣ ≤ sup
u∈�n

1√
1 − u

sup
u∈�n

∣∣∣∣ qn(u)√
1 − u

∣∣∣∣ ≤ 5

√
n

kn

√
log logn

n

almost surely tends to 0. Moreover (FG2) implies that

∣∣(loghX(u)
)′∣∣ ≤ K

(
log

1

1 − u

)′

so that | loghX(u2)− loghX(u1)| ≤ K(log(1−u1)− log(1−u2)) for any u1 < u2 in �n. Therefore, the random sequence

sup
u∈�n

hX(u)

hX(u∗)
≤ sup

u∈�n

max

(
1 − u∗

1 − u
,

1 − u

1 − u∗

)K

almost surely tends to 1. We have shown that it almost surely ultimately holds

sup
u∈�n

∣∣∣∣βX
n (u)hX(u) − √

nqn(u)√
(1 − u) log logn

∣∣∣∣ ≤ AnBn

√
n

log logn
sup
u∈�n

1√
1 − u

≤ 10K

√
log logn

kn

,

which proves Lemma 24, by (A.1) again.

A.2. Proof of Lemma 25

In this proof the condition (FG4) allows to make use of Proposition 30. In view of (23) and (25) we eventually have
In ⊂ �n. Hence Lemma 24 and (FG3) imply that, almost surely, for all n large

sup
u∈In

|F−1
n (u) − F−1(u)|

F−1(u)
≤ 2K0 sup

u∈In

√
1 − u

F−1(u)hX(u)

√
log logn

n

= 2K0 sup
u∈In

HX(u)

√
log logn

n(1 − u)
≤ K

√
log logn

kn

.

The same bound holds for |G−1
n (u) − G−1(u)|/G−1(u). By (23) we then get

lim
n→+∞ sup

u∈In

|εY
n (u)|

F−1(u)
≤ lim

n→+∞ sup
u∈In

|εY
n (u)|

G−1(u)
= lim

n→+∞ sup
u∈In

|εX
n (u)|

F−1(u)
= 0 a.s.

so that supu∈In
|εn(u)|/F−1(u) almost surely vanishes. Under (FG1) the law of large numbers for Fn and Gn readily

implies

lim
n→+∞F

−1
n

(
1 − hn

n

)
= lim

n→+∞G
−1
n

(
1 − hn

n

)
= +∞ a.s.

Therefore for any q0 > 0, all n large enough and all u ∈ In, it holds

min
(
F

−1
n (u),F−1(u),G−1

n (u),G−1(u)
)
> m,

∣∣εn(u)
∣∣ < q0F

−1(u) (A.2)

which implies, by (C2) and for τ(u) = F−1(u) − G−1(u),

c
(
F

−1
n (u),G−1

n (u)
) − c

(
F−1(u),G−1(u)

) = ρ
(∣∣τ(u) + εn(u)

∣∣) − ρ
(
τ(u)

)
.

Case 1. Assume that γ = 0 in (C2). By Proposition 31 ρ ′ is increasing and∣∣ρ(∣∣τ(u) + εn(u)
∣∣) − ρ

(
τ(u)

)∣∣ ≤ ρ′(τ(u) + ∣∣εn(u)
∣∣)∣∣εn(u)

∣∣.
Observe that if

lim inf
u→1

G−1(u)

F−1(u)
= q1 > 0
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then the result follows with K2 = 1 since by taking 0 < q0 < q1 ≤ 1 in (A.2) we ultimately have, with probability one,

ρ′(τ(u) + ∣∣εn(u)
∣∣) = ρ′

(
F−1(u)

(
1 − G−1(u)

F−1(u)
+ |εn(u)|

F−1(u)

))
≤ ρ′(F−1(u)

)
.

If q1 = 0, let us control ρ′(τ (u) + |εn(u)|) ≤ ρ′(F−1(u)(1 + |εn(u)|/F−1(u))). Remind that l is increasing and slowly
varying whereas l′ is decreasing, by (6) and (7). As a consequence, for y > x, x → +∞, y ∼ x we have l(x) ≤ l(y) ≤
l(2x) ∼ l(x) and

ρ′(y)

ρ′(x)
= l′(y)

l′(x)

ρ(y)

ρ(x)
≤ ρ(y)

ρ(x)
= exp

(
l(y) − l(x)

) ≤ exp
(
l′(x)(y − x)

)
.

Therefore, by (6), (11) and (FG3), taking θ ′
1 ∈ (θ1, θ − 1) yields

1 ≤ 1

ρ′ ◦ F−1(u)
ρ′

(
F−1(u)

(
1 + |εn(u)|

F−1(u)

))

≤ exp
(
l′ ◦ F−1(u)

∣∣εn(u)
∣∣) = exp

(
ε1 ◦ F−1(u)l ◦ F−1(u)

|εn(u)|
F−1(u)

)

≤ exp

((
l ◦ F−1

(
1 − kn

n

))θ ′
1

K

√
log logn

kn

)

provided n is large enough and u ∈ In. Moreover (13) implies

l ◦ F−1
(

1 − kn

n

)
= l ◦ ψ−1

X

(
log

(
n

kn

))
≤ l ◦ ψ−1

X (logn) ≤ logn. (A.3)

By choosing θ ′ in (23) such that θ > θ ′ > 1 + θ ′
1 ≥ max(1,2θ ′

1) we get

lim
n→+∞ sup

u∈In

ρ′(τ (u) + |εn(u)|)
ρ′ ◦ F−1(u)

≤ 1 a.s.

which yields the result with K2 = 1 again.
Case 2. Assume that γ > 1 in (C2). Since l′ is now increasing the above argument fails to guaranty that ρ′(x) ∼

ρ′(y) as y ∼ x are sufficiently close. Instead we check the sufficient condition in Proposition 30. The function l(x)/x

is increasing as it is regularly varying with index γ − 1 > 0. Recall also that (CFG) yields (A.3) and that HX + HY is
bounded thanks to (FG3). As a consequence of In ⊂ �n and Lemma 24 we almost surely have, for all n large,

sup
u∈In

l ◦ τ(u)

τ(u)

∣∣εn(u)
∣∣ ≤ 2K0 sup

u∈In

l ◦ F−1(u)
(
HX(u) + HY (u)

)√ log logn

n(1 − u)

≤ 2K0l ◦ F−1
(

1 − kn

n

)√
log logn

kn

sup
u∈In

(
HX(u) + HY (u)

)

≤ K
logn√

kn

√
log logn sup

u∈In

(
HX(u) + HY (u)

)
. (A.4)

Since θ > 2 in (CFG) choosing θ ′ ∈ (2, θ) in (23) makes the upper bound in (A.4) vanish. Therefore, under (CFG) the
requirements of Proposition 30 are almost surely ultimately fulfilled with

x0 = τ0, x = τ(u), |ε| = ∣∣εn(u)
∣∣ ≤ δ0

l′(x)
= δ0

l′ ◦ τ(u)
= δ0τ(u)

γ l ◦ τ(u)
, u ∈ In,

which entails that, for all n large enough and K2 = k0,∣∣ρ(∣∣τ(u) + εn(u)
∣∣) − ρ

(
τ(u)

)∣∣ ≤ k0ρ
′ ◦ τ(u)

∣∣εn(u)
∣∣ ≤ K2ρ

′ ◦ F−1(u)
∣∣εn(u)

∣∣. (A.5)
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Case 3. Assume that 0 < γ ≤ 1 in (C2). Since l(x)/x is either decreasing or, if γ = 1, not even monotone, l ◦ τ(u)/τ(u)

cannot be compared to the worse case τ(u) ∼ F−1(u) directly. However, by Proposition 30, if u ∈ In is such that |εn(u)| ≤
δ0/l′ ◦ τ(u) then (A.5) holds. Consider

I−
n =

{
u ∈ In : ∣∣εn(u)

∣∣ >
δ0

l′ ◦ τ(u)

}
.

Since l′(x) ∼ γ l(x)/x and ρ(x) ∼ xρ′(x)/γ l(x) as x → +∞, for 0 < x0 < τ0 we can find ξ0 > 1/γ such that

ρ(x) ≤ ξ0ρ
′(x)

x

l(x)
, x ≥ x0. (A.6)

Let ξ1 > γ/δ0 and assume n so large that l ◦ τ(u) > 1/ξ1 and τ(u) ≥ τ0 for u ∈ In. Any u ∈ I−
n then satisfies

τ0 ≤ max
(
τ(u),

∣∣εn(u)
∣∣) ≤ max

(
δ0ξ1

l ◦ τ(u)

l′ ◦ τ(u)
,
∣∣εn(u)

∣∣) ≤ xn(u)

2
:= ξ1l ◦ τ(u)

∣∣εn(u)
∣∣.

By (A.6) and the fact that l(x) is increasing it follows that

∣∣ρ(∣∣τ(u) + εn(u)
∣∣) − ρ

(
τ(u)

)∣∣ ≤ ρ
(
τ(u) + ∣∣εn(u)

∣∣) ≤ ξ0ρ
′(xn(u)

) xn(u)

l ◦ τ(u)
= 2ξ0ξ1ρ

′(xn(u)
)∣∣εn(u)

∣∣.
Using (A.3) as for (A.4) we almost surely eventually have

1

2ξ1
sup
u∈I−

n

xn(u)

F−1(u)
= sup

u∈I−
n

l ◦ τ(u)
|εn(u)|
F−1(u)

≤ K
logn√

kn

√
log logn sup

u∈I−
n

(
HX(u) + HY (u)

)

and the upper bound tends to 0 provided that 2 < θ ′ < θ from (23). As a conclusion, xn(u) ≤ F−1(u) on I−
n even if

|εn(u)| is large and it asymptotically holds, for K2 = max(k0,2ξ0ξ1),∣∣ρ(∣∣τ(u) + εn(u)
∣∣) − ρ

(
τ(u)

)∣∣ ≤ K2ρ
′(F−1(u)

)∣∣εn(u)
∣∣, u ∈ In.

A.3. Strong approximation of the joint quantile processes

Let PH denote the probability distribution associated to the c.d.f. H . In this section (FG1) and (FG2) are crucially
required to justify the key approximation used at steps 4 and of the main proof. Let kn be defined as in (22), thus
kn/n → 0, kn/ log logn → +∞. Consider In = (kn/n,1 − kn/n) which contains both IM,n from (31) and �n from (25).
As in (26) write βX

n = √
n(F−1

n −F−1) and βY
n = √

n(G−1
n −G−1) the quantile processes associated to each sample. Our

goal is to derive a coupling of

{(
βX

n (u),βY
n (u)

) : u ∈ In

}
and

{(
BX

n (u)

hX(u)
,
BY

n (u)

hY (u)

)
: u ∈ In

}
,

where (BX
n ,BY

n ) are two marginal standard Brownian Bridges indexed by u ∈ [0,1],

BX
n (u) = Bn(HF−1(u)) and BY

n (u) = Bn

(
HG−1(u)

)
, (A.7)

driven by a sequence Bn of PH -Brownian Bridge indexed by the set C of half planes Hx0 = {(x, y) : x ≤ x0} or Hy0 =
{(x, y) : y ≤ y0}. In other words, Bn is a zero mean Gaussian process indexed by C having covariance

cov
(
Bn(A),Bn(B)

) = PH (A ∩ B) − PH (A)PH (B),

for A,B ∈ C, and BX
n are centered Gaussian processes with covariance

cov
(
BX

n (u),BX
n (v)

) = PH (HF−1(u) ∩HF−1(v)) − uv = min(u, v) − uv,

cov
(
BY

n (u),BY
n (v)

) = PH

(
HG−1(u) ∩HG−1(v)

) − uv = min(u, v) − uv,

cov
(
BX

n (u),BY
n (v)

) = PH

(
HF−1(u) ∩HG−1(v)

) − uv = L(u, v) − uv,
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for u,v ∈ [0,1], where the usual copula function L(u, v) = H(F−1(u),G−1(v)) measures the distortion between H and
F ⊗ G on all quadrants, half spaces and then rectangles.

The coupling is achieved at Theorem 29 simply by combining the strong approximation of the empirical process (see
[3])

�n(A) = √
n
(
PHn(A) − PH (A)

)
, A ∈ C,PHn = 1

n

∑
i≤n

δ(Xi,Yi ),

with the usual quantile transform and classical results for real quantiles. This result has an interest by itself as it is valid
whatever the joint distribution � satisfying the marginal conditions (FG1) and (FG2).

Remark 28. Theorem 29 remains valid for the d marginal quantile processes of a distribution in R
d provided each

marginal distribution obeys (FG1) and (FG2), with no change in the proof for d = 2.

Theorem 29. Assume that F , G satisfy (FG1) and (FG2). One can built on the same probability space the sequence
{(Xn,Yn)} and a sequence of versions of {(BX

n (u),BY
n (u)) : u ∈ In} such that

βX
n (u) = BX

n (u) + ZX
n (u)

hX(u)
, βY

n (u) = BY
n (u) + ZY

n (u)

hY (u)
,

satisfy, for some ξ > 0,

lim
n→+∞nξ sup

u∈In

∣∣ZX
n (u)

∣∣ = lim
n→+∞nξ sup

u∈In

∣∣ZY
n (u)

∣∣ = 0 a.s.

Moreover we can take (BX
n (u),BY

n (u)) = ∑n
k=1(G

X
k (u),GY

k (u))/
√

n where {(GX
k (u),GY

k (u)) : u ∈ (0,1)} is a sequence
of independent versions of Brownian Bridges (GX,GY ) with cov(GX(u),GY (v)) = L(u, v) − uv.

Proof. Define the two marginal empirical processes to be, for x ∈ R,

αX
n (x) = √

n
(
Fn(x) − F(x)

) = �n(Hx), α
Y
n (x) = √

n
(
Gn(x) − G(x)

) = �n

(
Hx

)
.

Under (FG1) the random variables Ui = F(Xi) and Vi = G(Yi) are uniform on (0,1). Write α
X,U
n and α

Y,V
n the uniform

empirical process associated to U1, . . . ,Un and V1, . . . , Vn respectively. Also write FX,U,n and F
−1
X,U,n the empirical c.d.f.

and quantile functions then β
X,U
n (u) = √

n(F−1
X,U,n(u) − u). Likewise write FY,V,n, F−1

Y,V,n and β
Y,V
n . Clearly α

X,U
n and

α
Y,V
n are not independent, neither are β

X,U
n and β

Y,V
n . What is next obtained for X is also valid for Y . Under (FG1) and

(FG2) the arguments given in Section A.1 yield that

lim
n→+∞

√
n

log logn
sup
u∈In

∣∣hX(u)βX
n (u) − βX,U

n (u)
∣∣ = 0 a.s. (A.8)

since β
X,U
n = √

nqn and the supremum is showed to be less than
√

nanbn with the almost sure bounds such that an <

K(log logn)/n and bn → 0 as n → +∞. By [2] and [12] we also have

lim sup
n→+∞

n1/4

√
logn(log logn)1/4

sup
u∈In

∣∣βX,U
n (u) + αX,U

n (u)
∣∣ ≤ 1

21/4
a.s. (A.9)

thus for any ξ < 1/4 it holds

lim
n→+∞nξ sup

u∈In

∣∣hX(u)βX
n (u) + αX,U

n (u)
∣∣ = 0 a.s.

It is important here that (A.8) and (A.9) holds true for β
X,U
n and β

Y,U
n simultaneously with probability one whatever the

underlying probability space. Hence, recalling that α
X,U
n = αX

n ◦F−1, PHn(HF−1(u)) = Fn(F
−1(u)) and PH (HF−1(u)) =

u it follows that

lim
n→+∞nξ sup

u∈In

∣∣hX(u)βX
n (u) + �n(HF−1(u))

∣∣ = 0 a.s.

lim
n→+∞nξ sup

u∈In

∣∣hY (u)βY
n (u) + �n

(
HG−1(u)

)∣∣ = 0 a.s.
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on any probability space. It remains to approximate �n uniformly on C. The collection of sets C is a VC-class of order
3 thus satisfies the uniform entropy condition (VC) used in [3] with v0 = 2(3 − 1) = 4. By their Proposition 1 taken
with θ = 2 there exists a probability space on which the sequence {(Xn,Yn)} can be built together with a sequence Bn of
PH -Brownian Bridges indexed by C such that

P

(
sup
A∈C

∣∣�n(A) +Bn(A)
∣∣ ≥ K

nβ2

)
≤ 1

n2

where we take β2 < 1/22 to avoid the logn factor. Note that since Bn and −Bn have the same distribution, we choose to
approximate with −Bn. Consider in particular HX

n = {HF−1(u) : u ∈ In} ⊂ C and define BX
n (u) = Bn(HF−1(u)). On the

previous probability space it holds

lim sup
n→+∞

nβ2 sup
u∈In

∣∣αX
n ◦ F−1(u) + BX

n (u)
∣∣ = lim sup

n→+∞
nβ2 sup

A∈HX
n

∣∣�n(A) +Bn(A)
∣∣ ≤ K a.s.

the above comparison between hX(u)βX
n (u) and αX

n ◦ F−1(u) gives in turn, for ξ < min(1/4, β2) = β2 and ZX
n (u) =

hX(u)βX
n (u) − BX

n (u),

lim sup
n→+∞

nξ sup
u∈In

∣∣ZX
n (u)

∣∣ = 0 a.s.

In the same way we simultaneously obtain, for ZY
n (u) = hY (u)βY

n (u) − BY
n (u),

lim sup
n→+∞

nξ sup
u∈In

∣∣ZY
n (u)

∣∣ = 0 a.s.

The processes BX
n and BY

n are joint through the leading process Bn and the covariance cov(BX
n (u),BY

n (v)) = L(u, v) −
uv. The second statement to be proved follows by applying Theorem 1 of [3] in place of Proposition 1. If β2 > 0 is
chosen small enough the approximating process can be built in the form Bn = ∑n

k=1 B
∗
k/

√
n where {B∗

k : k ≥ 1} is a
sequence of independent PH -Brownian Bridges. Since Bn is again a PH -Brownian Bridge, GX

k (u) = B
∗
k(HF−1(u)) and

GY
k (u) = B

∗
k(HG−1(u)) are standard Brownian Bridges with the desired correlation structure. �

A.4. Consequences of (C2)

In this section, we establish the deterministic expansion that is required to stochastically control the centered extreme
values of the cost function evaluated at large quantiles. We start by presented some regular and slow variation properties
– for more details we refer to [13,16]. For k ∈ N∗ let Mk(m,+∞) be the subset of functions ϕ ∈ Ck such that ϕ(k) is
monotone on (m,+∞), and hence ϕ,ϕ′, ϕ′′, . . . , ϕ(k) are also monotone on (m,+∞) by changing m. Let M0(m,+∞)

denote the set of continuous functions monotone on (m,+∞). Write RV(γ ) the set of regularly varying functions at +∞
with index γ ∈ R. They are of the form xγ L(x) with L ∈ RV(0), which means that given any λ > 0, L(λx)/L(x) → 1
as x → +∞. If L ∈ RV(0) is monotone on (m,+∞) then L is equivalent at +∞ to a function in C∞(m,+∞) ∩ RV(0).
Therefore, at the first order, it is not a restriction to assume that functions of RV(γ ) are in Mk(m,+∞) as well. Problems
however arise with respect to differentiation. In particular, two apparently close slowly varying functions may have very
different local variations. First consider the smooth regular variation. Let introduce

RVk(γ,m) = RV(γ ) ∩Mk(m,+∞), γ �= 0.

The following statements are taken as x → +∞. Assuming that k ≥ 1 and γ �= 0, if ϕ ∈ RVk(γ,m) then ϕ′ is monotone,
so that it holds, by the monotone density theorem,

ϕ′(x) ∼ γ ϕ(x)

x
. (A.10)

This implies that ϕ′ ∈ RVk−1(γ − 1,m) and, whenever k ≥ 2 and γ �= 1, ϕ′′ in turns satisfies ϕ′′ ∈ RVk−2(γ − 2,m) and

ϕ′′(x) ∼ (γ − 1)ϕ′(x)

x
∼ γ (γ − 1)ϕ(x)

x2
. (A.11)
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For L ∈ RV(0) it holds, by (6) and Karamata’s theorem,

∫ x

m
L′(t)( 1

ε1(t)
) dt∫ x

m
L′(t) dt

=
∫ x

m
L′(t)( L(t)

tL′(t) ) dt∫ x

m
L′(t) dt

= 1

L(x)

∫ x

m

L(t)

t
dt → +∞.

Hence the function 1/ε1(t) is unbounded and, if L ∈ C1(m,+∞), continuous on (m,+∞). It is not very restric-
tive to exclude such functions that are asymptotically oscillating and not going to infinity. If L(x) = ϕ(L1(x))

where ϕ ∈ RV2(γ,m) and γ > 0 then we get ε1(x) ∼ γ xL′
1(x)/L1(x). For instance, if L(x) = ϕ(logx) where

ϕ ∈ RV2(γ,m) and γ > 0 then ε1(x) ∼ γ / logx. Also remind the well known representation, for x ∈ (m,+∞),
L(x) = d0(x) exp (

∫ x

m
ε0(t)/t dt), d0(x) → d0 > 0, ε0(x) → 0. If d0(x) is constant then d0 = L(m) and ε0(x) = ε1(x)

from (6). More generally, (6) is equivalent to xd ′
0(x) → 0 and we have ε1(x) = ε0(x) + xd ′

0(x).

Proposition 30. Assume (C2). Then it holds, for any x0 > τ1,

ρ
(|x + ε|) − ρ(x) = k0(x, ε)ρ′(x)ε and lim

δ0→0
sup
x>x0

sup
|ε|l′(x)≤δ0

∣∣k0(x, ε) − 1
∣∣ = 0. (A.12)

In particular, there exists δ0 > 0 and k0 > 0 such that, for all x > x0 and |ε| ≤ δ0/l′(x) we have |ρ(|x + ε|) − ρ(x)| ≤
k0ρ

′(x)|ε|.

Proof. Fix x0 > τ1 > 0 and let M > x0 be as large as needed below. If ε = 0 then (A.12) requires that k0(x,0) = 1
for x > x0. For ε �= 0 we distinguish between x ∈ (x0,M) and x ≥ M . In the first case, since ρ ∈ C2(R+) under (C2)

the Taylor expansion of ρ holds uniformly on (x0,M). Namely, for any δ0 small enough, x ∈ (x0,M) and |ε| ≤ ε0 =
δ0/ inf{l′(x) : x ∈ (x0,M)} < x0 − τ1 we have

ρ
(|x + ε|) − ρ(x) = k0(x, ε)ρ′(x)ε, k0(x, ε) = 1 + ρ′′(x∗)

2ρ′(x)
ε,

with x∗ ∈ (x0 − ε0,M + ε0) and |k0(x, ε) − 1| ≤ Kδ0 where K < +∞ depends on x0, M , ρ. We deduce that, for any
M > x0,

lim
δ0→0

sup
x0<x<M

sup
|ε|l′(x)≤δ0

∣∣k0(x, ε) − 1
∣∣ = 0. (A.13)

If x ≥ M then l′(x) > 0 and we intend to expand

ρ
(|x + ε|) − ρ(x) = ρ(x)

(
exp

(
l
(|x + ε|) − l(x)

) − 1
)
. (A.14)

Case 1. Assume (C2) with γ > 0. Write l(x) = xγ L(x) where L ∈ RV2(0, τ1) satisfies (6). For any δ0 ∈ (0, γ l(M)/4)

define

�0 = {
(x, ε) : x ≥ M, |ε|l′(x) ≤ δ0

}
. (A.15)

By (A.10), for M large enough and (x, ε) ∈ �0 it holds l′(x) > γ l(x)/2x, which implies |ε|/x ≤ 2δ0/γ l(x) < 1/2 and
|x + ε| = x + ε > M/2. Therefore sup(x,ε)∈�0

|ε|/x → 0 as δ0 → 0 and we have, for (x, ε) ∈ �0,

l(x + ε) − l(x)

xγ
=

(
1 + ε

x

)γ

L(x + ε) − L(x) = γ ε

x

(
1 + δ1(x, ε)

)
L(x + ε) + L(x + ε) − L(x) (A.16)

where sup(x,ε)∈�0
|δ1(ε, x)| → 0 as δ0 → 0. By (6) we also have, for (x, ε) ∈ �0,

∣∣L(x + ε) − L(x)
∣∣ ≤ sup

|y−x|≤|ε|
∣∣L′(y)

∣∣|ε| = sup
|y−x|≤|ε|

∣∣ε1(y)
∣∣L(y)

y
|ε|

where ε1(y) → 0 as y > x − |ε| > M/2 → +∞. Moreover, for δ = 2δ0/γ l(M),

1

L(x)
sup

|y−x|≤|ε|
L(y) = sup

1−|ε|/x<λ<1+|ε|/x
L(λx)

L(x)
≤ sup

1−δ<λ<1+δ

L(λx)

L(x)
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and the second term has limit 1 as x → +∞ since L ∈ RV(0). Hence for any η > 0, assuming M so large that
supy>M/2 |ε1(y)| < η/4 and δ0 small ensures that, for (x, ε) ∈ �0,

∣∣L(x + ε) − L(x)
∣∣ ≤ η

3

L(x)

x − |ε| |ε| ≤
η

2

|ε|
x

L(x)

and (A.16) reads

l(x + ε) − l(x) = (
1 + δ2(x, ε)

)γ xγ L(x)

x
ε = (

1 + δ3(x, ε)
)
l′(x)ε.

Then (A.14) gives

ρ(x + ε) − ρ(x)

l′(x)ρ(x)ε
= exp(l(x + ε) − l(x)) − 1

l′(x)ε
= 1 + δ4(x, ε) = k0(x, ε)

with sup(x,ε)∈�0
|δk(ε, x)| < η for k = 2,3,4. We have proved that for any η > 0 there exists M such that

lim
δ0→0

sup
x≥M

sup
|ε|l′(x)≤δ0

∣∣k0(x, ε) − 1
∣∣ ≤ η,

which yields (A.12) when combined to (A.13).
Case 2. Assume (C2) with γ = 0. Since l ∈ RV+

2 (0, τ1), (6) and (7) give ε1(x) = xl′(x)/ l(x) ≥ l1/l(x) > 0 where
ε1(x) → 0. Thus l′(x) → 0 as x → +∞ and l′ ∈RV2(−1, τ1), and l′ is decreasing on (M,+∞) since l′ ∈M2(τ1,+∞).
Consider δ0 ∈ (0,1/2l1) and define �0 as in (A.15). For (x, ε) ∈ �0 it holds

|ε|
x

≤ l1
|ε|
x

≤ l(x)ε1(x)
|ε|
x

= |ε|l′(x) ≤ δ0,

hence |x + ε| = x + ε > M/2 again, and

l′
(
x + |ε|)|ε| ≤ ∣∣l(x + ε) − l(x)

∣∣ ≤ l′
(
x − |ε|)|ε|

where, since l′′(x) ∼ −l′(x)/x by (A.11),

0 ≤ l′(x − |ε|) − l′(x)

l′(x − |ε|) ≤ sup
x−|ε|≤y≤x

|l′′(y)ε|
l′(y)

≤ |ε|
x − |ε| ≤ 2δ0,

0 ≤ l′(x) − l′(x + |ε|)
l′(x)

≤ sup
x≤y≤x+|ε|

|l′′(y)ε|
l′(y)

≤ |ε|
x

≤ δ0.

We deduce that for k = 1,2 and sup(x,ε)∈�0
|δk(ε, x)| → 0 as δ0 → 0 it holds

l(x + ε) − l(x) = (
1 + δ1(x, ε)

)
l′(x)ε

for all (x, ε) ∈ �0 and, by (A.14),

ρ(x + ε) − ρ(x)

l′(x)ρ(x)ε
= exp(l(x + ε) − l(x)) − 1

l′(x)ε
= 1 + δ2(x, ε) = k0(x, ε)

thus (A.12) follows. �

Several arguments exploit the asymptotic convexity of ρ which follows from (C2).

Proposition 31. Under (C2) the function ρ(x) is convex on (l2,+∞) for some l2 > 0. If moreover l1 > 1 it is strictly
convex.

Proof. We have to show that ρ′′(x) = (l′′(x) + l′(x)2)ρ(x) ≥ 0 if (C2) holds. In the case 1 �= γ > 0 we have, by (A.10)
and (A.11), as x → +∞,

l′(x) ∼ γ l(x)

x
, l′′(x) ∼ γ (γ − 1)l(x)

x2
� l′(x),

l′′(x)

l′(x)
∼ γ − 1

x
,
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thus there exists l2 > l−1(1/γ ) such that all x > l2 satisfy l′(x) > 0 and

l′′(x) + l′(x)2 ∼ l′(x)

(
γ − 1

x
+ γ l(x)

x

)
≥ l′(x)

x

(
γ l(x) − 1

)
> 0.

If γ = 1 then l(x) = xL(x) and l′′(x) = 2L′(x) + xL′′(x) ∼ L′(x) whereas l′(x)2 ∼ (L(x) + xL′(x))2 ∼ L2(x). Since
L′(x)/L2(x) = ε1(x)/xL(x) → 0 we have l′′(x) + l′(x)2 > 0 for x > l2. If γ = 0 in (C2) then by (6), (7) and (A.11) we
have l1/x ≤ l′(x) ≤ l(x)/x and l′ ∈ RV+

1 (−1,0) and we get, as x → +∞,

l′′(x) + l′(x)2 ∼ l′(x)

x

(
ε1(x)l(x) − 1

) ≥ l′(x)

x
(l1 − 1).

Therefore if l1 > 1, ρ(x) is strictly convex on (l2,+∞) for l2 large enough. It remains convex for l1 = 1. �
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